xlinkit: A Consistency Checking and
Smart Link Generation Service!

Christian Nentwich, Licia Capra, Wolfgang Emmerich
and Anthony Finkelstein

xlinkit.com white paper

Abstract

xlinkit is a lightweight application service that provides rule-based link generation and checks the
consistency of distributed web content. It leverages standard Internet technologies, notably XML and
XLink. xlinkit can be used as part of a consistency management scheme or in applications that require
smart link generation, including portal construction and management of large document repositories. In
this paper we show how consistency constraints can be expressed and checked. We describe a method
for generating links based on the result of the checks and we give an account of our content management
strategy. We present the architecture of our service and the results of a substantial ‘real-world’ evaluation.

1Department of Computer Science, University College London, Research Note RN/00/06. Submitted for publication.

1 Overview

This paper describes xlinkit, a lightweight application service that provides rule-based link generation and
checks the consistency of distributed web resources. The paper is supplemented by the on-line demonstra-
tions athttp://www.xlinkit.com

The operation of xlinkit is quite simple. Itis given a set of distributed XML resources and a set of potentially
distributed rules that relate the content of those resources. The rules express consistency constraints across
the resource types. xlinkit returns a set of XLinks, in the form of a linkbase, that support navigation
between elements of the XML resources. The precise link generation behaviour is determined by link
building annotations on the rules.

xlinkit leverages standard Internet technologies. It supports document distribution and can support multiple
deployment models. It has a formal basis and evaluation has shown that it scales, both in terms of the size
of documents and in the number of rules.

With this thumbnail description in mind it is easiest to motivate and to explain xlinkit by reference to a
simple example. This example is given in Section 3 below. It is preceded by some essential background.

2 Background

The paper assumes some familiarity with XML (Extensible Markup Language) [6] and XSLT (Extensible
Stylesheet Language Transformations) [7]. It also makes significant reference to technologies related to
XML, specifically XLink [10], the XML linking scheme and XPath [8], which supports addressing of the
internal structures of an XML resource. We make some reference in the paper to the XML DOM (Document
Object Model) [2], the API for XML resources though this paper does not require a detailed understanding
of it. For details of XML and related technologies good sources are the World Wide Web Consortium
(W3C) and the Organisation for the Advancement of Structured Information Standards (OASIS).

As XLink and XPath are less well known than XML it is worthwhile providing a brief orientation. XLink

is an XML markup language that provides additional linking functionality for web resources, it effectively
brings much of the power of Open Hypermedia models such as Hytime [20] to the web. HTML links are
highly constrained, notably: they are unidirectional and point-to-point; have a limited range of behaviours;
link only at the level of files unless an explicit target is inserted in the destination resource; and, most
significantly, are embedded within the resource, leading to maintenance difficulties and the familiar 404:
Not Found error that results from dangling links. XLink addresses these problems allowing any XML
elementto act as a link and allowing the user to specify complex link structures and traversal behaviours and
to add metadata to links. Most importantly for what follows in this paper XLinks can exist in “linkbases”
and such “extended links” can be managed separately from the resources they link. Linkbases can be
selectively applied to sets of resources. An XML resource can be viewed as a tree, an XPath expression
specifies traversals of the document tree and choice of its internal parts based on properties such as element
types, attribute values, character content, and relative position. When combined with XLinks, an XPath
expression can address not only a resource but a specified element within that resource.

3 Example

We now introduce an example which is used throughout the paper. Wilbur’s Bike Shop sells bicycles and
makes information about their company available on the Internet and on a corporate intranet. Wilbur’'s use
XML for web publication and information exchange.

The information collected by Wilbur’s is spread across several web resources:

e a product catalogue — containing product name, product code, price and description;
e advertisements — containing product name, price and description;
e customer reports — listing the products purchased by particular customers;

e service reports — giving problems with products reported by customers.

Wilbur’'s has only one product catalogue, but many advertisements, customer reports and service reports.
The information is distributed across different web servers.

It should be clear that much of this information, though produced independently, is closely related. For
example: the product names in the advertisements and those in the catalogue; the advertised prices and the
product catalogue prices; the products listed as sold to a customer and those in the product catalogue; the
goods reported as defective in the service reports and those in the customer reports; and so on.

Relationships among independently evolving and separately managed resources can give rise to inconsis-
tencies. This is not necessarily a bad thing but it is important to be aware of such inconsistencies and deal
with them appropriately. In view of this, Wilbur's would like to check their resources to establish their
position.

For the example which follows we will concentrate on the relationship between the product catalogue and
the advertisements. Figure 1 shows an extract from the product catalogue and Figure 2 shows a sample
advertisement. Samples of the other resources and can be found in Appendix A.

<Catalogue>
<Product>
<Name>Haro Shredder</Name>
<Code>B001</Code>
<Price currency="sterling">349.95</Price>
</Product>
<Product>
<Name>Dyno NFX</Name>
<Price currency="sterling">119.95</Price>
<Code>B003</Code>
</Product>
</Catalogue>

Figure 1: Wilbur’s product catalogue extract

This relationship requires a check:

e Are all the product names in the advertisements the same as in the catalogue?

<Advert>
<ProductName>Dyno NFX</ProductName>
<Price currency="sterling">119.95</Price>
<Description>BMX Bike. Dyno expert frame.
Coaster brake or freewheel.
</Description>
</Advert>

Figure 2: Wilbur's sample advertisement

Other checks might include :

e Do the advertised prices and the product catalogue prices correspond?
e Are the products listed as sold to a customer in the product catalogue?

e Did we sell the goods reported as problematic to the customer reporting the problem?

We define these checks as rules and assemble them in a rule set. The rule set could consist of further
distributed rule sets. We describe our rule language and the assembly of rule sets in the following sections.

The document set is the collection of documents we want to check against the rules. In the same way as the
rule set the document set can consist of further distributed document sets. In this example we have a set of
adverts, a set of customers and a set of service reports. Both the document set and the rule set are identified
by URLs.

The rules are annotated with information specifying the sort of links we want built when the rule holds or
when it does not hold. Thus:

e Are all the product names in the advertisements the same as in the catdfmgust? Links between
the product advertised and the corresponding product entry in the catalogue. If there is no corre-
sponding product in the catalogue, the advertisement is linked to the rule for diagnostic purposes.

e Do the advertised prices and the product catalogue prices correspaaifft: Links between the
advertisement and the rule for diagnostic purposes only when the advertised price does not match.

e Are the products listed as sold to a customer in the product cataldgesdt: Links between the
product entry in the customer record and the corresponding product entry in the catalogue. If there
is no corresponding product in the catalogue, the customer record entry is linked to the rule for
diagnostic purposes.

e Did we sell the goods reported as defective to the customer reporting the proRlesuft: Links
between the product with the problem and the product entry in the customer record. If there is
no corresponding product entry in the customer record, the product entry is linked to the rule for
diagnostic purposes.

The checks are made by submitting the document set and the rule set URLs to the check engine which
makes the checks and returns the URL of an XLink linkbase. Figure 3 shows the submission form that
is passed to the check engine. Because the linkbase is itself XML we can apply a stylesheet to render it

-3 B il Dmiite Dl b g]
e BE fow [Cosseecio o
o - 4 i - ol & ol 5 | L H
B e femm lmmi Haemm Pl Beiaily
R P TS Ty ——"r P ——"——— . S— T Ea
D.-r-rr-.-:m Lisk Erpies (W Ttass Bde Ehap)
e - - - hain ral il
&
Fomrmrmra S
ey | IR T SR a = - =
ok frd. 1R, .
[T oM
[e
s
-
& o T-r -k

Figure 3: Web submission form

in HTML for review or deliver in source XML. Figure 4 shows an HTML representation of a linkbase.
Users can click on the consistency links; a servlet will then retrieve the two XML files that are being linked,
convert them to HTML and highlight the linked elements.

Most “off-the-shelf” browsers do not yet implement support for extended links of the sort that xlinkit
produces, only limited support is available for simple links, that is XLinks embedded in documents (in-line
as distinct from out-of-line) from browsers such as Amaya [9] or the latest releases of Mozilla [21] . One
way to make the linkbase navigable is to first “fold” it into the resources. This entails applying an XLink
processor to fetch the resources referenced in the linkbase, convert the extended links into simple links and
integrate them into the resources in the appropriate place. We use a standard XLink processor, X2X from
Empolis [15] for this purpose — there are a number of other similar processors available. The resulting XML
resources can then be handled in the familiar manner, that is by applying stylesheets to render a browsable
hyperlinked HTML presentation. In the case of our example we deliver a product catalogue site that links
to the advertisements.

4 Rule Language

This section presents our new set-based rule language — cheXML — which serves to express consistency
constraints between distributed documents. We outline a simple formal basis for the language and formalise
our example rule.

To do this we use a notation for evaluating XPath expressions and for the formalisation of the DOM which

| [T Yo
e BE fow [Cosseecio o
il E | B = + o O L] n
B e femm lmmi Haemm Pl Beiaily
I I TS e p—— . i Crnm Dk lari e T S ——
Leamerrr - et i
|URL e s e L B el e o Dk ksl
Ceprisiency Link
Sk (D
| mmle brp e mmie rer Sy pera e e e T o e maed ek T e B 1]
Rt . it
| Em Swoes sheid veew B Bcrd Qo am s ool
Brmmne . dan
LU v pinh S e Bassie Bk e sl re peCemmnc s ol fpkais
LUnmivicecy Link
ke ~]
S deard i
[¥] [;
-
Frvde. T L
-
Fomt b a
- o
h - (i
a'ric
gl |- i3
& e W-u ol T

Figure 4. Sample linkbase in HTML

is due to Wadler [31]. In order to make the explanation as easy to read as possible, we will introduce some
further simplifying notation. For the full grammar and semantics the reader is referred to Appendix B.

e Uppercase letterd, B, C, ... correspond to sets of DOM nodes
e Lowercase letters, b, ¢, . .. correspond to DOM nodes

e The functionS[p],, creates a set of nodes by evaluating the path expregsidth = as the con-
text node. (For example§[Price/Qcurrency] ;5 4, IN Figure 2 would return a one-element set
containing a text node with the strirfgterling”). / refers to the root node.

When specifying a rule, we want to express a relationship of one set of nodes with one or more other sets of
nodes. For example, the set of Alllvert elements in Wilbur's advertisements has to be consistent with
the set of alProducts in their product catalogue.

We will rephrase the questidAre all the product names in the advertisement the same as in the catalogue?”
more formally as an assertiofiFor all Advert elements, there exists a Product element in the Catalogue
element where the ProductName subelement of the former equals the Name subelement of théf latter”
this condition holds, a consistent relationship exists between the Advert element and the Product element
being considered. Otherwise, the Advert element is inconsistent with respect to our rule.

We can denote the sets of elements to be checked as followed:

o LetS bethe setoAdvert elements:S = S[/Advert] . S will be our “source” set.

o LetD be the set oProduct elementsD = S[[/Product] ;. D will be our “destination” set.

Source set (S) Destination set(D)
Advert (ProductName="Dyno NFX”") Product (Name="Haro Shredder{)
Advert (ProductName="Haro Shredderl")Product (Name="Dyno NFX”)
Advert (ProductName="Phunky Brake”

Table 1: Source and destination node sets

Table 1 shows the two sets selected after evaluating the path expressions. For convenience, the relevant
subelements of the elements we are going to check are shown in brackets. We can now express the rule
formally asVs € S(|D/(S[ProductName], = S[Name],)| > 0), which reads “For alk in S, the size

of the set created by restrictinig using the formulaS[Product Name], = S[Name], must be greater

than zero”.s will be bound to the current source node being processed by the quantifiémalhde bound

to the current node in the destination set being filtered. If the size of the filtered set is zero, the current
source node is inconsistent with respect to this rule, otherwise it is consistent.

As an example of how the approach can be implemented, consider again the documents in Figure 1 and
Figure 2 and the source and destination sets shown in Table 1.

The check engine steps through the source set and processes the first entry. According to our rule, the
destination set will be filtered by the expressi@[ProductName], = S[Name],). The resulting

filtered set is shown in Table 2. Clearly the cardinality of the filtered set satisfies the condition of being
greater than zero, as specified in our rule. As a consequence, the current source eleoreistientvith

respect to our rule.

Source set Filtered set

x Advert (ProductName="Dyno NFX") | Product (Name="Dyno NFX")
Advert (ProductName="Haro Shredder()
Advert (ProductName="Phunky Brake”

Table 2: Filtered destination set (* is the current source node)

The check engine then continues to step through the source set and eventually reaches the last Advert
element. Again, the filtering expression is applied and the resulting filtered set can be seen in Table 3.
This time, the filtered set is empty and the conditi®}) (S[ProductName], = S[Name],)| > 0is not

satisfied. The current source element is time®nsistentvith respect to our rule.

Source set Filtered set |
Advert (ProductName="Dyno NFX")

Advert (ProductName="Haro Shredder”
x Advert (ProductName="Phunky Brake’)

Table 3: Empty filtered destination set (* is the current source node)

Some rules require the added power of a transitive closure operator. For example, if Wilbur’'s bikeshop
were to offer composite products such as bikes made from several components, they might want to check
that composite components are not parts of themselves. It is then not enough to check whether a part of
a component equals the component itself, since the part may itself be made up from several parts - the
transitive closure of the part-whole hierarchy has to be computed.

We specify the operatafiosure(z, p;, p2) that takes a node which is part of some nodesat and two
Xpath expressiong, andp,. Initially, only z is in the closure. Then, for all nodesin X and all nodeg

in the closure, ifS[p],, = S[p=].. thenn is added to the closure. This process is repeated until the closure
set does not change anymore.

A presentation of the complete grammar and semantics for our language is given in Appendix B.

5 Link Generation

Having established whether a rule holds or has been violated, we have to record this information. This
section explains our handling of consistency information.

Our approach is always to take a tolerant view of inconsistency — inconsistencies are not always accidental
or undesirable and we do not force their immediate resolution; instead we provide diagnostic information
by creating links. This approach has its roots in previous work which will discussed in the related work
section.

Table 2 shows the information obtained previously by filtering a destination set according to some rule. The
star next to théddvert element in the source set shows the source node currently being processed. As
outlined previously, the question of whether an inconsistency or a consistency has been found is answered
by comparing the size of the filtered set to some constant value.

In the example rule, if the cardinality of the filtered set is greater than zero we have found a node consistent
with our current source node. The strategy is then to link the current source node to all entries in the filtered
set. However, if the filtered set was empty and the comparison operator failed, there would be nothing to
link to. Furthermore, by the definition of the consistency rule, this would unveil an inconsistency. The
strategy is then to link the current source node to the definition of the rule in the rule file — the node is
inconsistent with respect to the rule. Using this strategy, we can later provide an overview the elements that
are inconsistent with each rule.

Figure 5 shows the XLinks generated after processing the filtered set in Table 2 and the inconsistent link
generated after processing the set in Table 3. The first link picks out the root element in the advert file as
the source element and links it to the filsbduct element, which it is consistent with. The second link
picks the root element in the third advert file as the source and links it to the rule with tagributer1 in

the rule file.

If people want to choose different strategies, we offer a choice of what to do when a consistency is found (the
CMode) and what to do when an inconsistency is found (the IMode). Table 4 presents all options available.
Experience suggests that the most popular strategy is to link consistent elements (CMode=C) and to generate
links to the consistency rule for inconsistent elements (IMode= IX). However, other sensible strategies can
be used, for example (CMode=, IMode=l), which ignores consistent cases and links inconsistent cases for
diagnostic purposes, or (CMode=CX, IMode=IX), which links to the rule in all cases.

<LinkBase docset="DocumentSet.xml" ruleset="RuleSet.xml">
<ConsistencyLink ruleid="bike_rule.xml#/id(’r1")">
<State>consistent</State>
<Locator xlink:href="advertl.xml#/Advert"
xlink:label="source" xlink:title=" "/>
<Locator xlink:href="catalogue.xml#//Product[1]"
xlink:label="dest" xlink:title=" "/>
</ConsistencyLink>
<ConsistencyLink ruleid="bike_rule.xml#/id(’r1’)">
<State>inconsistent</State>
<Locator xlink:href="advert3.xml#/Advert"
xlink:label="source" xlink:title=" "/>
<Locator xlink:href="bike_rule.xml#/id('r1’)"
xlink:label="dest" xlink:title=""/>
</ConsistencyLink>
</LinkBase>

Figure 5: Wilbur's Bike Shop — Consistency links

CMode | Consistency found IMode | Inconsistency found
(consistent link generation) (inconsistent link generation)
C Link current source and filter | Link current source and filter
CX Link source to rule IX Link source to rule
Generate no links Generate no links

Table 4: Link mode table

6 XML Implementation

We now present an XML encoding for our language. Encoding the language in XML has the advantage of
blending more uniformly into the environment where it is going to be used. It also allows us to treat the
rule files as targets which can be checked by other rules.

Presenting the encoding of the whole language is beyond the scope of this paper and the interested reader
is referred to Appendix E for the complete DTD. Instead, we will present two example rules expressing
constraints for Wilbur’s Bike Shop.

Our first example will be the now familiar ruté-or all Advert elements, there exists a Product element in
the Catalogue element where the ProductName subelement of the former equals the Name subelement of
the latter’ Figure 6 shows a rule file which specifies this rule in XML format.

A rule consists of three main parts: the first entry in a rule Beacription element (not shown in the

figure) which is a natural language description of the rule that can be used for diagnosis. The following
SetDefinition elements contain an XPath expression, which will be used to build up node sets from
the target documents. Each node set is given a unique identifier, which can be referred to in the actual rule.

The most important part of the rule, the actual consistency constraint, is containedroréle element.
Thesetid parameter specifies which node set will be treated as the source set whose elements will be
checked for consistency. Contained inside Hugall element is theset operatorSizeNotEqual

This operator compares the cardinality of its first argument to the cardinality of its second argument. If

<ConsistencyRule id="r1">
<SetDefinition id="source">
/Advert
</SetDefinition>

<SetDefinition id="destination">
/Catalogue/Product
</SetDefinition>

<Forall setid="source">
<SizeNotEqual cmode="C" imode="|X">
<Filter setid="destination">
<Equal>
<XPathSource value="ProductName"/>
<XPathFilter value="Name"/>
</Equal>
<Integer value="0"/>
</SizeNotEqual>
</Forall>
</ConsistencyRule>

Figure 6: Consistency rule with link modes

they are not equal the current source node is consistent, otherwise it is inconsistent. Since the decision
about consistency or inconsistency is made byStzeNotEqual element, the linking strategy attributes
cmode andimode are also specified there. In our sample rule, we link consistent elements (C) and link
inconsistent source elements to the rule (IX).

The two arguments contained in tBzeNotEqual operator are both filtered sets: thiéter argument
actually produces a filtered set from a node set whileltheger argument contains a fixed size set of
cardinality 0. Similar to thé-orall element, theFilter element must also specify which set to filter
since there can be multiple destination sets.

Inside theFilter operator, any boolean expression can be specified, in this case only an equality operator
is used. The two values that will be compared for equality by the filter are retrieved ket Source
andXPathFilter operators. BottXPathSource andXPathFilter take as an argument a relative
XPath expressionXPathSource uses the current source node as the context node — the source set is
the set specified by the closgabrall operator in the current scop&XPathFilter uses the current
destination node as the context — the destination set is the set specified by theRiltesest operator in

the current scope.

Our XML implementation includes a further feature calieasor variableswvhich can be used to speed up
the checking process with large destination sets. Consider again Table 1. For a destination settbisize
filter expression will have to decide times which nodes to discard. In some cases, we can make use of
XPath’s ability to apply predicates to pre-filter our destination set in order to make it smaller. We rewrite
the rule in Figure 6 as in Figure 7.

When evaluating thEiltered expression, the current source node being consideréotall will be

bound to theSsource variable in the destination set path expression. We then regenerate the destination
nodeset accordingly, making the XPath processor picking out only those nodes from the tree which are
relevant. This leads to considerable time savings with large destination sets but can introduces penalties

<ConsistencyRule id="r1">
<SetDefinition id="source">
/Advert
</SetDefinition>

<SetDefinition id="destination">
/Catalogue/Product[Name=$source/ProductName]
</SetDefinition>

<Forall setid="source">
<SizeNotEqual cmode="C" imode="|X">
<Filtered setid="destination"/>

</SizeNotEqual>
</Forall>
</ConsistencyRule>

Figure 7: Simplification with cursor variables

with small sets.

We have written a stylesheet that transforms the rules from XML to HTML to make them more accessible
for browsing. The boolean expressions inside the filter are translated from their XML prefix form back into
infix. Figure 8 shows the translated rules.

7 Content Management

The selection of documents and rules to be checked against each other has to be managed. It is infeasible
to check every document against every rule and it is certainly not necessary to check every document every
time. Instead, we use document sets, which contain a selection of documents taken from resources, and
rule sets which contain several rules. A document set together with a rule set can then be submitted for
checking.

Figure 9 shows a sample document set. Document sets form a hierarchy in that they consist of documents
and further document sets. In the figure, acFile directive is used to add a file directly into the set
while theSet directive includes further sets. At check time, the hierarchy is flattened and resolved into

a single set. To find out whether a document needs to be checked against a rule, we check if the XPath
expressions in the rule’s set definition can be applied.

Our method of retrieval of document information is not limited to XML content stored in files. Instead, we
abstract from the underlying data store by providietgherclasses. It is the responsibility of a fetcher to
liaise with some data store in order to provide a DOM tree representation of its content. By default, data
are retrieved from XML files using thEileFetcher class, however user-defined classes can override
this behaviour. Using this mechanism, it is possible to read in content that follows a legacy format and
translate it into a DOM tree, to read data from network sockets or to construct a DOM tree from a relational
or object-oriented database.

As a proof of concept, we provide a JDBC fetcher, which executes a query on a database and translates the
resulting table into a DOM tree. Figure 10 shows a version of Wilbur’s bikeshop document set where the

10

= [T #=e0@

e B v Lo Cossrecso -]
i - a @ = « of O L] n
Bmi [femm lmmsk Heemm 2 I S

1 ol e [Lsnmn ity e mliskah oo Mgl ke kiis_ynke ml o T T e——

. £ |

ComnsE ey Fiils sl

CenrrwwT Aok rl

Frogrias T o g, o arbesrrp [T wes o e o vy g

S e (il

Bl ---Hrlwﬂnhrr
[

=R

Ve kens; ol rl

(BT Tl 1 0 o 0 P Tl T W O I B R AW M A IR

ol Smaae 15 e

oy Domat g Frsbpen Freburd H e e o FresoH el
1 '-._ U Parsler m e,
| 0 P& i Froee ol co ey = FancRoeorep | W0

sy B

_ Irrsipiina (L e e b

T S R e e L T

o fea e, T e T e - b T T
- Pl s 2t
& mew e =T e T

Figure 8: Rules in HTML

service reports have been put into a relational databasdetdfer attribute in theDocFile directory
overrides the defauRileFetcher , which can be omitted, to select tiBBCFetcher class.

The JDBC fetcher class executes the SQL query on the database and transforms the resulting relational
table into a DOM tree. Figure 11 shows a sample table of service reports fetched from Wilbur's database
by executing the JDBC query from the document set. Shown below the table is the XML representation,
containing oneow element for every row stored in the table and using the column name data from the data
dictionary for the element names inside the rows.

Rule sets are managed in a similar fashion. A rule set contains references to rules and further rule sets.
Figure 12 shows a sample rule set. RAlleFile element is used to specify a rule file to load and an
xpath attribute specifies which rules from that file to actually include. The fiadmsistencyRule-

<DocumentsSet name="BikeDoc">
<Description>Wilbur's complete collection</Description>
<DocFile href="catalogue.xml"/>
<Set href="Adverts.xml"/>
<Set href="Customers.xml"/>

<Set href="Services.xml"/>
</DocumentsSet>

Figure 9: Sample document set

11

<DocumentsSet name="BikeDoc">
<Description>Wilbur's complete collection</Description>

<DocFile href="catalogue.xml"/>

<Set href="Adverts.xml"/>
<Set href="Customers.xml"/>

<DocFile fetcher="JDBCFetcher"
href="jdbc:mysql://www.xlinkit.com/testdb?user=wilbur#select * from report"/>

</DocumentsSet>
Figure 10: Document set with SQL resource
+ + + +
| productname | productcode | description |
+ + + +
| HARO SHREDDER | BOO1 | Found a problem in ... |
| HARO TR2.1 | BOO2 | Found a problem while... |
+ + + +
<rows>
<row>
<productname>HARO SHREDDER</productname>
<productcode>B001</productcode>
<description>Found a problem in ...</description>
</row>
<row>
<productname>HARO TR2.1</productname>
<productcode>B002</productcode>
<description>Found a problem while...</description>
</row>
</rows>
Figure 11: Relational table XML representation
Set/ConsistencyRule will match all ConsistencyRule elements included in the rule file. If that

is not desired, a more constrained path such as
/ConsistencyRuleSet/ConsistencyRule[@id =' r1']

could be used, which only loads the rule wha$eattribute is equal te1.

8 Architecture

We have implemented a publicly accessible, free to use Internet service. Our architecture is very simple.
Figure 13 shows its basic structure.

We have implemented the check engine as a Java Servlet, which is hosted on an Apache web server running
the Apache JServ servlet engine. Users are presented with the form shown in Figure 3 to enter the URL of
the document set and rule set to be checked.

12

<RulesSet name="BikeRules">
<Description>Rules related to the Bike environment</Description>

<RuleFile href="bike_rule.xml"
xpath="/ConsistencyRuleSet/ConsistencyRule"/>
</RulesSet>

Figure 12: Sample rule set

When the form is submitted, a new servlet instance is created to deal with the request. The servlet itself uses
the Xerces XML parser from the Apache XML project to parse the documents and rule files. After checking
the rules, the servlet writes an XML file containing the generated links to the web server’s local storage.
The servlet then generates a result page that contains the URL of the link base and returns it back to the
browser client. The input form also gives the user a choice whether to return the raw XML file containing
the links or to add a processing directive for it to be translated into HTML using a stylesheet. Please refer
back to Figure 4.

9 Evaluation

This section presents two sample case studies that we used to evaluate the expressiveness of our rule lan-
guage and the scalability of our implementation. Our major goal was to find out if xlinkit can be applied to

a real-world example. In addition, we also wanted a “stress-test” scenario for performance, scalability and
expressiveness.

Our first study checks the consistency of course syllabus information and the second study performs a
validation of multiple software engineering documents.

The Department of Computer Science at University College London recently introduced a new curriculum
and associated course syllabi. In order to provide high quality information in the wide variety of different
representations required, it decided to adopt XML as a common format. The system has to hold a curriculum
and provide links to the syllabuses for students, depending on which degree programme they are pursuing.
Figure 14 shows a sample abreviated syllabus file for a course. Each course is held in a separate XML file.
The curricula for degree programmes are kept in a single file. For each degree programme, the mandatory
and optional courses are listed, grouped by the year in which they can be selected. Figure 15 shows a
fragment from the curricula file.

The process of syllabus development is highly decentralised, with different people providing additions
and corrections to course syllabi. Curriculum files contain information related to the individual syllabus
files. For example, course codes mentioned in the curriculum files have to be part of a syllabus definition.
Altogether, ten rules where identified as necessary to preserve the consistency of the system. The complete
list of rules can be found in Appendix D.

It is desirable for navigation purposes to provide hyper-links from the curriculum to individual courses.
However, providing links from the curriculum file to all 48 syllabus files would be error prone as files get
deleted and courses renamed. Itis preferable to use the semantically equivalent information in the files (e.g.
the course codes) to generate the hyperlinks automatically. We used our xlinkit to achieve both goals.

Figure 16 shows the time used for checking each rule against all 52 documents. Checking was performed

13

browser
.......... @ resources,
form document
.. sets & rule

sets
document | 1
set & rule linkbase
set URL URL
generated Xlgg('t
linkbases w
server
A
xlinkit servlet
servlet engine

Figure 13: Architecture overview

on a 700 Mhz Intel machine with 128Mb of RAM, running Linux and the IBM JDK 1.3. The total checking
time was5.2 seconds, with no single rule taking longer tiaseconds to check. In total10 consistent
and14 inconsistent links were generated.

Our second goal was to provide a fully linked HTML version of the department’s curriculum to be browsed
by staff and students. One of the rules for the curriculum is that every course listed in the curriculum must
have a syllabus definition. If the rule is satisfied, a consistent link is generated from the course entry in the
curriculum to the syllabus defining the course. We used X2X, as in the example section, to fold all consistent
links from this rule back into the XML file containing the curriculum. We then only had to provide a simple
XSL stylesheet that transforms the XML file and simple links into an HTML representation, as shown in
Figure 17.

Our second case study uses our rule language to express some of the semantic constraints of the UML [24].
The typical scenario for this study is a distributed development team working on the same model and
producing their own additions and copies of documents. If frequent merging of the documents is not
feasible, for example due to geographical separation, checks can be used to ensure consistency.

We have expressed about half of the constraints from the UML specification in our language. Seven sample
rules, some of which require transitive closure were tested against a set of real-world models from a large
bank, for whom we have been consulting. The models are stored in the XMI [25] format defined by the
OMG, a standard exchange format for models that comply with the Meta-Object Facility [23] specification.

14

<syllabus>
<identity>
<title>Concurrency</title>
<code>3C03</code>
<summary>The principles of concurrency
control and specification</summary>
</identity>

<teaching>
<normal_year>3</normal_year>
<term>1</term>
<taught_by>
<name>Wolfgang Emmerich</name>
<pct_proportion>100</pct_proportion>
</taught_by>
</teaching>

<subject>
<prerequisites descr="">
<pre_code>1B11</pre_code>
</prerequisites>
</subject>
</syllabus>

Figure 14: Sample shortened syllabus file in XML

In total, there wer@9 XMl files, containing12192 model elements, of whict49 were classes.

The seven rules that were selected as examples to work on are given in Appendix D and were chosen in
order to support comparison with previous work, as described below. Figure 18 shows the time taken for
checking each rule. Checking was performed on a 650 Mhz Intel machine with 384Mb of RAM, running
Linux and the IBM JDK 1.3. The total checking time w&8 minutes and maximum RAM use arousl
megabytes1958 consistent links and07 inconsistent links were generated.

As the UML model we were checking was large and complex, we believe that the checking times are
reasonable. Full checks on all model files would not always be necessary, enabling users to bring down the
checking time further by excluding documents that have not changed from their document sets. Integration
with a change management system could help to automate this process.

The rather heavy memory consumption will however turn out to be a problem if much larger amounts of
data are to be checked. The present check engine parses all XML files at startup and retains their DOM
tree representation in memory throughout the process. As the amount of data increases this becomes less
feasible. Proper resource management, parsing files on demand and ordering of the rules to minimise the
amount of parsing will be required.

While it was possible to express all the example rules for XMI without problems, we have found problems
with the expressiveness of our language when translating a small number of rules from the UML specifi-
cation. As an example, consider the constraint tlifari Association has three or more AssociationEnds,

then no AssociationEnd may be an aggregation or compdsitRepresented in logic, this rule is roughly

of the formVa—3z3yIz(z £y A = # z A y # z A a € {composition,aggregation }). However,

rules in our language are restricted to the formy. It is not possible to introduce additional quantifiers

and to express relationships among more than two nodes at the same time. Therefore, without resorting to

15

<Curricula>
<Curriculum>
<Programme>
<Title>CS</Title>
<Award>BSc</Award>
</Programme>

<Constraint>6 compulsory half-units,
2 optional half-units, no more than 1
optional half-unit can be non-programme.
</Constraint>

<Course value="Standard">
<Name>Computer Architecture I</Name>
<Code>1B10</Code>
<Theme>Architecture</Theme>
<Type requirement="C" level="F"/>
<Dept>CS</Dept>

</Course>

</Year>

</Curriculum>
</Curricula>

Figure 15: Curriculum fragment

introducing additional functions into the language, this rule cannot be expressed in the current version of
cheXML.

10 Applications

xlinkit is a highly generic technology. It can be applied whereever you want to establish links between web
resources, broadly construed, where those links reflect relationships between resource types. In particular
rather than directly authoring and maintaining links xlinkit can provide semantically aware link generation.

Our principal interest derives from our software engineering background. Thus we have worked on applica-
tions largely in this area, most notably managing the consistency of complex development models produced
by distributed teams. The UML study reported in the evaluation section is a case in point.

A large range of other applications primarily focusing on link generation and content management have
been worked on by us or our partners. For example, information about important customers can be found in
many places in sales files, service agreements, problem reports, logistics and supply records. xlinkit can be
used to build a web-based customer relationship management system that allows you to navigate between
all the pieces of information which reflect the interests of a single customer.

eCRM (e Customer Relationship Management) of this form is an example of a broad class of lightweight
intranet portals. Many organisations have information in many different databases scattered across different
sites. xlinkit can be used to build portals that can deliver coordinated access to this information and diagnose
consistency problems.

16

2000

1600 -

1200 ~

800 +

Time (msec)

400 -

1 2 3 4 5 6 7 8 9 10
Rule

Figure 16: Syllabus study timings

The idea of delivering web content on multiple channels such as web-TV, phones, PDAs etc. is now com-
mon. Unfortunately content has to be adapted for each channel to make a high value service. Content adap-
tation risks inconsistency with its attendant problems. xlinkit can be used to support navigation between
information presented in different channels and identify problems. Web sites which aggregate content can
use xlinkit to add value by providing content-relevant navigation without directly authoring links.

Other applications which have not been fully evaluated but appear promising are: consistency of information
in service-level agreements, security policy and network management policy.

11 Related Work

This account of related work is not intended to be a survey of work on consistency management, for which
you are referred to [3]. Below we highlight some key comparison points and work which has had a particular
influence on xlinkit.

Consistency management has been recognised as an important issue by the programming language and
software engineering communities. Early work in this area can be found in publications on program-
ming environments such as the Cornell Synthesizer Generator [26], Gandalf [19] or Centaur [5]. These
environments typically provide syntax-directed editors. When the user has finished entering a construct,
incremental consistency checks related to the static programming language semantics being used are car-
ried out. These semantic checks are typically carried out on a centralized data structure such as an abstract
syntax tree. Later work on Software Development Environments (SDESs) such as IPSEN [22], Arcadia [29],
ESF [28], ATMOSPHERE [4] and GOODSTEP [14] raised the complexity by integrating tools for different
languages. The latter in particular allowed the specificati@eofantic rulesChecks for semantic integrity
between documents could be triggered by user actions. Our approach represents a generalisation in that it

17

L]
i 4 f =& 4 of O i n
Hmi Fmam [e [I = S P
:'_t'uu—wu*l.uul--. T WY, Ty —————— ¥ R e —
=y
bﬂl
PEpp—
fmaart N Vomr 1 B o a1 Seleraey B
3. o Ul of L™ Pl ol 2 il '~ G0 s Wl e L ol Bl ~ % L B i 2
5 —— e Eopdramim
O s | Cezgubery
| R Al
4

Frsscarsesen |

Bl Emiraryin

-
[Rt E A e BT] Ly

Frofll Mo pragrersee Opiem Syt

=1 | ey Eps’ e b sl Pk

"] BE X T e T

Figure 17: Automatically generated links in the curriculum

builds on the open model of XML rather than specific programming formalisms. In addition, we allow for
the distribution of the documents and provide diagnostics in the form of links.

A viewpoint [18] allows developers to express a design fragment in some specification language, together
with additional attributes describing the viewpoint. Multiple viewpoints can describe the same design frag-
ment, leading to overlap and hence the possibility of inconsistency. The issues involved in inconsistency
handling of multi-perspective specifications are outlined in [17]. Research in the viewpoints area also in-
troduces the idea afonsistency rulegl2] between distributed specifications. The work on viewpoints has

spun off our continuing interest in consistency management and in particular our tolerant view in which
consistency is not always enforced. For a detailed discussion see [16]. Although a lot of theoretical work
on viewpoints and the associated consistency checking scheme has been done, no generic implementation
was ever provided. Our work realises these ideas by providing a concrete implementation on top of which

a viewpoint framework can be built.

Graph grammars [33] can be used as a system-specification method. For example, recent work [30] has used
graph grammars as a representation for UML class and sequence diagrams. For the approach to work, a
translation of the participating specifications into graph grammars is necessary. The algorithm for matching
graph morphisms, at least in its diagrammatic form, does not have the expressive power of our boolean filter
formulae. More fundamentally, graph grammar systems make use of proprietary formalisms and centralised
data structures, whereas we build on open standards and make distribution of participating documents our
fundamental assumption.

The hypertext community has worked on the problem of automatic link generation. For a survey of this
topic we refer you to [32]. Work in the area has traditionally focused on textual documents and many

18

100000

80000 -
60000 ~
40000 -
20000 ~
0 - T T
1 2 3 4 5 6 7

Rule

Time (msec)

Figure 18: XMI study timings

approaches based on information retrieval techniques such as similarity measures can be found. We exploit
the structure afforded by XML, and its widespread use for storing data rather than textual information in
our approach to provide a much richer and more fine-grained expression of linking semantics.

There is a growing body of work concerned with applications of hypertext in software engineering. The
CHIMERA project [1] demonstrates multiple document views and the capability of separating linking in-

formation from the underlying documents. It does not support consistency checking. CHIME [11] provides
a framework for folding links into legacy software documents using information from software analysis

tools. The work provides a strong case for the sort of browsing which our approach provides.

Our work has some analogies with Schematron [27], an XML structure validator which employs XSL
and XPath to traverse documents and check constraints. Though simple and elegant, Schematron lacks the
expressiveness of xlinkit and does not provide link generation or scalable support for distributed documents.

Finally, xlinkit builds on two previous prototype consistency checking schemes [13] which have substan-
tially influenced the ideas on which it is based. In both cases these were standalone applications and used
a rule language based on a restricted form of first-order logic. The language, architecture and content
management framework are novel and the genericity, scaleability and performance of the xlinkit approach
distinguish it from the earlier prototypes. For a comparison of runtime efficiency when checking rules on
XMl files, please refer to Figure 19 in Appendix D.

12 Future Work

In this section we present aspects of our approach which need further research. Our work in this area has
raised many problems, both technical and theoretical. Below we give what we think is a realistic agenda of

19

issues to be tackled in the near future.

Our immediate goal will be to extend the expressiveness of our language to allow an arbitrary number of
quantifiers. The biggest problem with this will be to find an adequate and understandable semantics for link
generation — early investigation has however shown some promising results.

A “static” application service such as ours does more work than is really necessary because it has to recheck
all documents against all rules upon request. When documents are changed, we would like to recheck only
those rules that are affected by the changes. Sudtcaemental checkingcheme is certainly a barrier we

have to overcome if our approach is to scale to very large datasets. We do not think that this is a major
problem and have a draft algorithm which implements this functionality.

Conflict resolution is a logical back-end of a consistency check and has not been discussed in this paper. It
is assumed that the user will refer to our linkbases as a diagnostic tool and then take action in accordance
with some real-world process. While we believe that conflict resolution can never be fully automated, it
should still be possible to set certain default actions for handling trivial inconsistencies. Integration with

a workflow management system may prove valuable in this respect and we will investigate this option.
Achieving this goal without compromising the light-weight characteristics of xlinkit will however be a
challenge.

The linkbases themselves are currently displayed rather statically, limiting their usefulness for diagnostic
purposes. We are working on more interactive stylesheets which will use a multi-frame layout to allow a
quick overview of which items are being linked. Prototypes for this can be found on our website.

13 Conclusion

This paper has described xlinkit, a lightweight application service that provides rule-based link generation
and checks the consistency of distributed web resources. xlinkit leverages standard Internet technologies.
It supports document distribution and can support multiple deployment models. It has a formal basis and
evaluation has shown that it scales, both in terms of the size of documents and in the number of rules. We
have identified some important applications and pointed to future directions for our work. xlinkit is the
product of long-standing research looking at consistency management. It is available for use now and we
are keen to see it applied in several areas.

Acknowledgements

We would like to thank Giulio Carlone, who wrote the linkbase stylesheet, and our colleagues from earlier
incarnations of this project, Ernst Ellmer, Andrea Zisman and Torbjoern Revheim, for their contributions.
We would also like to thank the Apache Software Foundation and its volunteers for its continued and
free provision of high-quality tools such as Xerces and Xalan, which have greatly simplified our work. The
XLink working group also deserve thanks, in particular we are grateful to Eve Maler for technical feedback.

xlinkit is covered by PCT 9914232.5. Licenses for xlinkit can be obtained free for research and evaluation
purposes. The technology and interactive examples can be fointigh Zbwvww.xlinkit.com

20

References

[1] ANDERSON K. M., TAYLOR, R. N., AND WHITEHEAD, E. J. Chimera: Hypertext for Heteroge-
neous Software Environments. Rtoc. of the European Conference on Hypermdéidinburgh, UK,
Sept. 1994).

[2] APPARAOQ, V., BYRNE, S., CGHAMPION, M., ISAACS, S., AcosBS, |., HORS, A. L., Nicol, G.,
RoOBIE, J., TOR, R., WiLSON, C., AND WooOD, L. Document Object Model (DOM) Level 1
Specification. W3C Recommendation http://www.w3.0rg/TR/1998/REC-DOM-Level-1-19981001,
World Wide Web Consortium, Oct. 1998.

[3] B. NUSEIBEH AND S. EASTERBROOK ANDA. RUssQ Leveraging Inconsistency in Software De-
velopment.IEEE Computer 334 (April 2000), 24—29.

[4] BOARDER, J., BBINK, H., SCHMIDT, M., AND VOLKER, A. Advanced techniques and methods
of system production in a heterogeneous, extensible, and rigorous environmétroclrof the 1st
Int. Conf. on System Development Environments and Fac{@etn, Germany, 1989), N. Madhaviji,
W. Scteéfer, and H. Weber, Eds., Pitman Publishing, pp. 199-206.

[5] BORRAS, P., Q. EMENT, D., DESPEYROUX T., INCERP|, J., KAHN, G., LANG, B., AND PASCUAL,
V. CENTAUR: The SystemACM SIGSOFT Software Engineering Notes3.81988), 14—24. Proc. of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Boston, MA, USA.

[6] BRAY, T., PaoLI, J., PERBERGMCQUEEN, C. M., AND MALER, E. Extensible Markup Lan-
guage. Recommendation http://www.w3.0rg/TR/2000/REC-xm|-20001006, World Wide Web Con-
sortium, Oct. 2000.

[7] CLARK, J. XSL Transformations (XSLT). Tech. Rep. http://www.w3.org/TR/xslt, World Wide Web
Consortium, Nov. 1999.

[8] CLARK, J., AND DEROSE, S. XML Path Language (XPath) Version 1.0. Recommendation
http://www.w3.0rg/TR/1999/REC-xpath-19991116, World Wide Web Consortium, Nov. 1999.

[9] ConsoRTIUM, W. W. W. Amaya. http://www.w3.org/Amaya/, 2000.

[10] DEROSE, S., MALER, E., ORCHARD, D., AND TRAFFORD, B. XML Linking Language (XLink)
Version 1.0. Candidate Recommendation http://www.w3.0rg/TR/2000/CR-xlink-20000703, World
Wide Web Consortium, July 2000.

[11] DEvANBU, P., CHEN, Y.-F., GANSNER, E., MULLER, H., AND MARGIN, J. CHIME — Customiz-
able Hyperlink Insertion and Maintenance Engine for Software Engineering Environmemscn
of the 21%¢ Int. Conf. on Software Engineeringlos Angeles, CA, USA, May 1999), ACM Press,
pp. 473-482.

[12] EASTERBROOK S., HNKELSTEIN, A., KRAMER, J.,AND NUSEIBEH, B. Coordinating Distributed
ViewPoints: The Anatomy of a Consistency Chelek. Journal of Concurrent Engineering: Research
& Applications 2 3 (1994), 209-222.

21

[13] ELLMER, E., EMMERICH, W., FINKELSTEIN, A., SMOLKO, D., AND ZISMAN, A. Consistency
Management of Distributed Documents using XML and Related Technologies. Research Note 99-94,
University College London, Dept. of Computer Science, 1999. Submitted for Publication.

[14] EMMERICH, W. GTSL — An Object-Oriented Language for Specification of Syntax Directed Tools.
In Proc. of the 8th Int. Workshop on Software Specification and D€4ig#6), IEEE Computer Soci-
ety Press, pp. 26-35.

[15] EmPoLIS. X2X. http://www.empolis.co.uk, 2000.

[16] FINKELSTEIN, A. AFoolish Consistency: Technical Challenges in Consistency Managemémo-In
ceedings of the 11th International Conference on Database and Expert Systems Applications (DEXA)
(London, UK, September 2000), Springer, pp. 1-5.

[17] FINKELSTEIN, A., GABBAY, D., HUNTER, H., KRAMER, J., AND NUSEIBEH, B. Inconsistency
Handling in Multi-Perspective SpecificationdEEE Transactions on Software Engineering, 30
(1994), 569-578.

[18] FINKELSTEIN, A., KRAMER, J., NUSEIBEH, B., FINKELSTEIN, L., AND GOEDICKE, M. View-
points: a framework for integrating multiple perspectives in system developmettJournal of
Software Engineering and Knowledge Engineering £1992), 21-58.

[19] HABERMANN, A. N., AND NOTKIN, D. Gandalf: Software Development Environment&EE
Transactions on Software Engineering 12 (1986), 1117-1127.

[20] ISO 10744. Hypermedia/Time-based Structuringduaage (HyTime). International standard, Inter-
national Standards Organisation, 1997.

[21] Mozilla. http://www.mozilla.org, 2000.

[22] NAGL, M. Building Tighly Integrated Software Development Environments: The IPSEN Approach.
Lecture Notes in Computer Science 117996).

[23] OBJECT MANAGEMENT GROUP. The Meta Obiject Facility Object Management Group, 492 Old
Connecticut Path, Framingham, MA 01701, USA, 1997.

[24] OBJECTMANAGEMENT GROUP. Unified Modeling Language Specificatigviarch 2000.

[25] OBJECT MANAGEMENT GROUP. XML Metadata Interchange (XMI) Specification 1.492 Old
Connecticut Path, Framingham, MA 01701, USA, Nov. 2000.

[26] REPS T. W., AND TEITELBAUM, T. The Synthesizer GeneratoACM SIGSOFT Software Engi-
neering Notes 93 (1984), 42—-48. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Pittsburgh, PA, USA.

[27] Rick JELLIFFE. The Schematron Assertion Language 1.5. Tech. rep., GeoTempo Inc., October 2000.

[28] ScHAFER, W., AND WEBER, H. European Software Factory Plan — The ESF-ProfileMbuern
Software Engineering — Foundations and current perspectife\. Ng and R. T. Yeh, Eds. Van
Nostrand Reinhold, NY, USA, 1989, ch. 22, pp. 613-637.

22

[29] TAYLOR, R. N., &ELBY, R. W., YOUNG, M., BELZ, F. C., QARCE, L. A., WILEDEN, J. C.,
OSTERWEIL, L., AND WOLF, A. L. Foundations of the Arcadia Environment Architectu’CM
SIGSOFT Software Engineering Notes $31988), 1-13. Proc. of th&" ACM SIGSOFT Sympo-
sium on Software Development Environments, Irvine, Cal.

[30] TsioLAkIs, A. Consistency Analysis of UML Class and Sequence Diagrams bas ed on Attributed
Typed Graphs and their Transformation. Tech. Rep. 2000/3, Technical University of Berlin, March
2000. ISSN 1436-9915.

[31] WADLER, P. A formal semantics of patterns in XSLT. Markup Technologies, December 1999.

[32] WILKISON, R., AND SMEATON, A. F. Automatic Link GenerationACM Computing Surveys 31
4es (December 1999). Article No. 27.

[33] ZUNDORF, A. PROgrammierte GRaphErsetzungsSysteme — Spezifikation, Implementierung und An-
wendung einer integrierten EntwicklungsumgehuriD thesis, University of Aachen, 1996.

23

A Wilbur’'s Bike Shop sample files

Product catalogue sample
<Catalogue>

<Product>
<Name>HARO SHREDDER</Name>
<Code>B001</Code>
<Price currency="sterling">349.95</Price>
<Description>Freestyle Bike.</Description>
</Product>

<Product>
<Name>HARO TR2.1</Name>
<Code>B002</Code>
<Price currency="sterling">179.95</Price>
<Description>BMX / Trail Bike.</Description>
</Product>

</Catalogue>

Sample advert file
<Advert>

<ProductName>HARO SHREDDER</ProductName>
<Price currency="sterling">349.95</Price>
<Description>Freestyle Bike. Super versatile frame for dirt,
street, vert or flat. New full cromoly frame.
Fusion MegaTube axle extenders.
</Description>

</Advert>

Sample service report file
<ServiceReport>

<Customerldentity reg_number="3645"/>

<Report>
<ProductName>HARO SHREDDER</ProductName>
<ProductCode>B001</ProductCode>
<ProblemDescr>Found a problem in ...</ProblemDescr>
</Report>

</ServiceReport>
Sample customer report file

24

<CustomerReport>

<Customerldentity>
<FirstName>Licia</FirstName>
<FamilyName>Capra</FamilyName>
<Reg_Number>3645</Reg_Number>
</Customerldentity>

<Purchase>
<ProductName>HARO SHREDDER</ProductName>
<ProductCode>B001</ProductCode>

</Purchase>

<Purchase>
<ProductName>Shimano LX Mountain Bike Crank Set</ProductName>
<ProductCode>A102</ProductCode>

</Purchase>

</CustomerReport>

B Rule language semantics

B.1 Definitions

The following definitions are due to Wadler [31]. They are included here for a quick overWewle is
the basic datatype, referring to a DOM nodez(N ode) denotes a set of nodes afet, (N ode) is the set
containing exactly one node.

The following function is defined for the DOM:

value : Node — String

The result ofvalue depends on the type of node being passed. The value of an element node is the value of
its children, the value of a text node is its content, etc.

The abstract syntax of XPath patterns is defined as follows (the semantics will be omitted but should be
fairly clear from the syntax for readers familiar with XPath).

n : Name
s : String
p : Pattern p = pilpa [Ip | lp | pilp2 | pillp2 | plq] |
n|* |Qn|@x |text() |comment() |pi(n) |pi() |
id(p) |id(s) | ancestor(p) | ancestor-or-self(p)|. .

And the following semantic function is defined to assign meaning to pattsifp§; selects a set of nodes
using patterm with z as the context node. (We uses a subscript because it improves the readability of
the following sections considerably).

25

S : Pattern — Node — Set(Node)

B.2 Rule language syntax

In the syntaxn, p ands are used as described in the previous section. For a concrete syntax, please refer to
the DTD in Appendix E.

i . Number
N : Set(Node)
forall . Forall forall = N setop
setop . Setoperator setop = setop and setop | setop or setop | sizeeq f f|sizenoteq f f
f : FilteredSet filter == Neli
e . Ewaluator eval = v=v|v#v]|intersect wvwvi|subset vvi
eand e|eor e
v : Valueset v := xpathsource p | xpathfilter pli

B.3 Denotational semantics

This section defines the semantics of the abstract syntax specified above. The semantics will define how
to check the consistency of a pair of documents. The main function in the semantic model wijl be
which defines the meaning of thf@rall statement. The function will return a set of consistent nodes. It
should be noted that the real implementatiorfafall does not really return any nodes and this adjustment
was made in order to make the semantics easier to expfessl! will use aSetOperator to determine
whether consistent of inconsistent links should be generated. The mearfilag®ferator is defined by

the functionO.

A set operator typically examines the size of a filtered set and retuuror false depending on whether

a condition holds. The meanining éfilteredSet will be defined using thé- function. Filters themselves

use anEwvaluator on each node to determine whether to discard it or include it in the filteredSsist.

used to define the semantics of evaluators. Finally, in order to compare properties of source and destination
nodes, xpath expressions relative to them have to be created. Those XPath expressions are grouped into
Valuesets andV defines the semantics of the latter. The semantic functions are thus:

Forall — Set(Node)

SetOperator — Node — Boolean
FilteredSet — Node — Set(Node)
FEvaluator — Node — Node — Boolean
Valueset — Node — Node — Set(String)

<~ om0 x

26

Before defining the semantic functions, helper-functions have to be defiaedalue takes as an input
a set of DOM nodes and returns a set of strings corresponding to the value of the nodes (as defined in
section B.1). (To be precise, it returns a multiset of strings).

setequal returns true if two sets of strings have the same content, converselytfastequal. setofsize
takes an integeras a parameter and returns a set of cardinalifijled with random strings. The functions
are defined as follows:

setvalue : Set(Node) — Set(String)
setvalue(N) = {z|n € N Az =value(n)}
setequal : Set(String) — Set(String) — Boolean
setequal(X,Y) = |X|=Y|AVzeX(FyeY |z=y)
setofsize : Number — Set(Node)
setofsize(i) = {s|z=]I1.14]}
intersection : Set(String) — Set(String) — Set(String)
intersection(X,Y) = XNY

We can now proceed to implement the semantic functions introduced all@xaluates a forall expression
and returns a set of consistent nodes. It goes through all noitethe set it is processing and checks if the
child set operator evaluatesteue for n.

A . Forall — Set(Node)
A[N setop] = {n|neN A Olsetop],}

O has been passed the current source rodeits environment and needs to compute a set of node de-
pending on the results its children return. The functions currently supported are checking if the size of two
filtered sets matches and returninge/ false accordingly.

@ . SetOperator — Node — Boolean
O[setop; and setops], = O[setopi], N O[setop:].
O[setop; or setops] = O[setop1], V O[setop:].
Olsizeeq f1 f2]s = |FLAD] = |FLfD,|
O[sizenoteq f1 f2]~ = |[FIAl,l # 17111,

F is supposed to return a filtered set depending on the value of the current souree Sadd a set can be
generated from an actual node set or be of constant size. In the former case, the filter will go through each

27

node in the set to be filtered and use an evaluator to determine whether the node should be included. To that
effect, the filter binds each node it is examining into éhariable of theEvaluator environment.

F . FilteredSet — Node — Set(Node)
F[N €], = {n|neN A E[ello,n}
Flils = setofsize(i)

The function€ has in its environment the current source nedeand the current destination nodeand
returnstrue or false depending on whether a certain property relative to the two nodes holds.

& . FEvaluator — Node — Node — Boolean
Eler and es]s.s = Lleilos A Ele2]os

E[[61 or 62]1075 5[[61]](775 \Y 5[[62]](775

Ev1 = v2]los setequal(V[[vl]]ayd, V[[UQ]]O_’(;)

Elv1 # v2]los ﬂsetequal(V[[vl]]ma, V[[U2]]075)
Elintersect v v i)y lintersect(V[v1], 5, V[v2], 5)| =i
((:[[SUbset V1 ’1)2]]0’5 = V[[Ul]]a,é - V[[UQ]]0,76

VY examines the current source nagdand the current destination node&nd returns a valueset relative to
either, depending on the syntax used. It can also return a set of constant size.

1% . Valueset - Node — Node — Set(String)
V[xpathsource p|,.s = Slpl,
V[xpathfilter Plss = Slpls

V[ilo.s

setvalue(setofsize(i))

28

C Case study rules

Each course (of the CS department) must have a syllabus

The year of the course in the curriculum corresponds to the year in the syllabus

There must not be two courses with the same code

Each course listed as a pre-requisite in a syllabus must have a syllabus definition
A course cannot be a pre-requisite of itself

Each course in a studyplan is identified in the curricula

A student cannot take the same course twice

1st year BSc/CS and MSci: 6 compulsory half-units

1st year BSc/CS and MSci: 2 optional half-units

PO NOO O AWNF-

Table 5: Curriculum study rules

1styear BSc/CS and MSci: no more than 1 optional half-units can be Non-programme

Classes with the same name in different class diagrams
are considered to be identical

For every package P1 in a UML document UD1, there must exist
an associated UML document D2 that refines P1

A use case UC1 in a UML document UD1, and a document D2
containing an informal structured text describing the flow of
events of a use case UC1 are considered to be related

For every use case UCL1 that has a specialised use case UC2 in a UML document UD1, if

there exist a sequence diagram SD1 specifying the main flow of UC2, then SD1 must
include elements related to the main flow of use case UC1

For every classifier C1 there must not be a classifier C2 that is both a subtype and
supertype of C1 in any package diagram of the same UML model, for any level of nest

ng.

For every UML model, there must exist a package P1

For every link L1 between two instances 11 and 12 in a collaboration, there must
exist an association Al or an aggregation AG1 between two classifiers C1 and C2, wh
names of C1 and C2 equal the types of 11 and 12 respectively

Table 6: XMI study rules

29

ere the

D Case study results

O Previous result
M xlinkit

Rule
N

i — | |

0 1000000 2000000 3000000 4000000
msec

Figure 19: Comparison with previous results

E Rule language XML DTD

<IENTITY % Boolean "And,Or">

<IELEMENT XPathSource EMPTY>
<IATTLIST XPathSource
value CDATA #REQUIRED>

<I[ELEMENT XPathFilter EMPTY>
<IATTLIST XPathFilter
value CDATA #REQUIRED>

<IELEMENT Constant EMPTY>

<IATTLIST Constant
value CDATA #REQUIRED>

30

<IELEMENT Integer EMPTY>
<IATTLIST Integer
value CDATA "0">

<l-- ConsistencyRule -->
<IELEMENT ConsistencyRuleSet (ConsistencyRule)*>

<IELEMENT ConsistencyRule (Description,SetDefinition*,Forall)>
<IATTLIST ConsistencyRule
id ID #REQUIRED>

<I[ELEMENT Description (#PCDATA)>

<IELEMENT SetDefinition (#PCDATA)>
<IATTLIST SetDefinition
id ID #REQUIRED>

<!-- Forall -->

<IELEMENT Forall (AndOperator|OrOperator|SizeEqual|SizeNotEqual)>
<IATTLIST Forall

setid IDREF #REQUIRED

mode (oneSet|multipleSet) "multipleSet">

<IELEMENT AndOperator (SizeEqual*,SizeNotEqual*,AndOperator*,OrOperator*)>
<IATTLIST AndOperator

cmode (C|CX) "C"

imode (IJIX) ">

<IELEMENT OrOperator (SizeEqual*,SizeNotEqual*,AndOperator*,OrOperator*)>
<IATTLIST OrOperator

cmode (C|CX) "C"

imode (IJIX) ">

<I[ELEMENT SizeEqual (Filter*,Filtered*,Integer*)>
<IATTLIST SizeEqual

cmode (C|CX) "C"

imode (l]IX) ">
<IELEMENT SizeNotEqual (Filter*Filtered*,Integer*)>
<IATTLIST SizeNotEqual

cmode (C|CX) "C"

imode (I]IX) ">

<l-- Filters -->

31

<IELEMENT Filter (%Boolean;,Equal,NotEqual,isintersect,Subset)>
<IATTLIST Filter

setid IDREF #REQUIRED

mode (oneSet|multipleSet) "multipleSet">

<IELEMENT Filtered (%Boolean;,Equal,NotEqual,Isintersect,Subset)?>
<IATTLIST Filtered

setid IDREF #REQUIRED

mode (oneSet|multipleSet) "multipleSet">

<IELEMENT Equal (XPathSource,XPathFilter,Constant*)>
<IELEMENT NotEqual (XPathSource,XPathFilter,Constant*)>
<IELEMENT IsIntersect (XPathSource,XPathFilter,Constant*)>
<IATTLIST IsIntersect size CDATA #REQUIRED>
<IELEMENT Subset (XPathSource,XPathFilter,Constant*)>
<IATTLIST Subset size CDATA #REQUIRED>

<I[ELEMENT And (Equal*,NotEqual*Isintersect*,Subset*,And*,Or*,Not*)>

<IELEMENT Or (Equal*,NotEqual*Isintersect*,Subset*,And*,Or*,Not*)>
<IELEMENT Not (Equal|NotEqual|lsintersect|Subset|And|Or|Not)>

32

