
.

.

Version 1.0 November 27th 2000 Page 1

XML Key Management Specification (XKMS)

VeriSign
 Microsoft
 webMethods

Draft Version 1.0: November 27th 2000

Send comments to:
Phillip Hallam-Baker, Senior Author
401 Edgewater Place, Suite 280
Wakefield MA 01880
Tel 781 245 6996 x227
Email: pbaker@verisign.com

Page 2 XML Key Management Specification (XKMS) v1.0

 2

Table Of Contents
Table Of Contents 2
Table of Figures 4
Executive Summary 5
1 Introduction 5
1.1 Overview 5
1.2 Definition of Terms 7
1.3 Namepaces 7
1.4 Key Information Service Specification 7
1.5 Key Registration Service Specification 8
1.6 Tiered Service Model 8
1.7 Structure of this document 9
1.8 Key Information Service Protocol Overview 10
1.9 Tier 0 RetrievalMethod 11
1.10 Tier 1 Locate Service 12
1.10.1 Example: Document Signature 13
1.10.2 Example: Data Encryption 14
1.11 Tier 2: Validate Service 14
1.11.1 Example: Document Signature 15
1.12 Validity of the Service Response 16
2 Key Information Service Message Set 16
2.1 Common Data Elements 17
2.1.1 ds:KeyInfo 17
2.1.2 ResultCode 17
2.1.3 AssertionStatus 18
2.1.4 Reason 18
2.1.5 Respond 19
2.2 Locate Service 20
2.2.1 Request Message 20
2.2.2 Response Message 21
2.2.3 Faults 21
2.3 Validate Service 22
2.3.1 ValidityInterval 22
2.3.2 KeyId 23
2.3.3 KeyUsage 23
2.3.4 KeyBinding 23
2.3.5 Request Message 24
2.3.6 Response Message 24
2.3.7 Faults 25

XML Key Management Specification (XKMS) v1.0 Page 3

 3

3 Key Registration Service Protocol Overview 26
3.1 Linkage to an Underlying PKI 26
3.2 Registration 27
3.3 Revocation 30
3.4 Key Recovery 31
3.5 Request Authentication 32
4 Key Registration Service Message Set 33
4.1 Common Syntax 33
4.1.1 Respond 33
4.2 Registration 33
4.2.1 Authentication 34
4.2.2 Request Message 34
4.2.3 Response Message 35
4.2.4 Faults 35
5 Cryptographic Algorithm Specific Parameters 35
5.1 Use of Symmetric Keying Data 35
5.1.1 Authentication 36
5.1.2 PassPhrase 37
5.1.3 ProofOfPossession 37
5.2 Registration of User-Generated RSA or DSA Keys 37
5.3 Registration of Service-Generated RSA Keys 37
5.3.1 Encoding of RSA Private Key Parameters 38
5.3.2 Encryption of Private Key Parameters 38
6 Authors 39
Appendix A Web Service Contract 40
A.1 Protocol Interface 40
A.2 Schemas and Web Service Definition 41
A.3 Authentication Schema 45
A.4 Encryption Envelope 46
Appendix B Sample Protocol Exchanges 46
B.1 Tier 1 Example 1 46
B.2 Tier 1 Example 2 47
B.3 Tier 2 48
B.4 Registration of Client Generated Key Pair 49
B.5 Registration of server generated key 50
Appendix C Immediate Binding 52
Appendix D References 55
Appendix E Legal Notices 55

Page 4 XML Key Management Specification (XKMS) v1.0

 4

Table of Figures
Figure 1: Substitution of the <ds:KeyInfo> element as a message is passed

among processors 11
Figure 2: Tier 0 Protocol allows a ds:KeyInfo element to reference external

data 12
Figure 3: Tier 1 Protocol Provides Name Resolution Service 13
Figure 4: Tier2 Protocol Provides Key Validation Service 15
Figure 5: Registration of a KeyBinding 27

XML Key Management Specification (XKMS) v1.0 Page 5

 5

 Executive Summary

This document specifies protocols for distributing and registering public keys, suitable
for use in conjunction with the proposed standard for XML Signature [XML-SIG]
developed by the World Wide Web Consortium (W3C) and the Internet Engineering
Task Force (IETF) and an anticipated companion standard for XML encryption. The
XML Key Management Specification (XKMS) comprises two parts -- the XML Key
Information Service Specification (X-KISS) and the XML Key Registration Service
Specification (X-KRSS).

The X-KISS specification defines a protocol for a Trust service that resolves public key
information contained in XML-SIG elements. The X-KISS protocol allows a client of
such a service to delegate part or all of the tasks required to process <ds:KeyInfo>
elements. A key objective of the protocol design is to minimize the complexity of
application implementations by allowing them to become clients and thereby shielded
from the complexity and syntax of the underlying PKI used to establish trust
relationships. These may be based upon a different specification such as X.509/PKIX,
SPKI or PGP.

The X-KRSS specification defines a protocol for a web service that accepts registration
of public key information. Once registered, the public key may be used in conjunction
with other web services including X-KISS.

Both protocols are defined in terms of structures expressed in the XML Schema
Language, protocols employing the Simple Object Application Protocol (SOAP) v1.1
[SOAP] and relationships among messages defined by the Web services Definition
Language v1.0 [WDSL]. Other compatible expressions are possible.

1 Introduction

1.1 Overview

This document specifies protocols for distributing and registering public keys, suitable
for use in conjunction with the proposed standard for XML Signatures [XML-SIG]
developed by the World Wide Web Consortium (W3C) and the Internet Engineering
Task Force (IETF) and an anticipated companion standard for XML encryption. The
XML Key Management Specification (XKMS) comprises two parts -- the XML Key
Information Service Specification (X-KISS) and the XML Key Registration Service
Specification (X-KRSS).

These protocols do not require any particular underlying public key infrastructure (such
as X.509) but are designed to be compatible with such infrastructures.

This document comprises the following service specifications:

Page 6 XML Key Management Specification (XKMS) v1.0

 6

• = XML Key Information Service Specification: A protocol to support the
delegation by an application to a service of the processing of Key Information
associated with an XML signature, XML encryption, or other public key. Its
functions include the location of required public keys and the binding of such
keys to identification information.

• = XML Key Registration Service Specification: A protocol to support the
registration of a key pair by a key pair holder, with the intent that the key pair
subsequently be usable in conjunction with the XML Key Information Service or
XML Trust Assertion Service.

Design criteria include:

• = Compatibility with the XML Signature Specification (currently a standards
proposal to the W3C and IETF) and with an anticipated specification on XML
Encryption. However, its use is not restricted to these grammars.

• = Implementation should be as simple as possible using standard XML tools while
remaining consistent with the entirety of relevant specifications; the only
cryptographic functions required by an application are those needed to support
XML Signature or Encryption;

• = Implementation should not require ASN.1 tools;

• = Management of status information (e.g. “revocation”) is transparent to a public-
key using application in an online environment;

• = Minimize client code and configuration complexity through use of standard
protocols and message grammars and also by delegating tasks that may require
complex configuration to web services.

To meet these design criteria, the specifications in this family are layered, separating the
protocol semantics from the implementation syntax.

The message syntax presented in this document is based on XML and is designed to
allow use of the Simple Object Access Protocol (SOAP) and the Web Service Definition
Language (WSDL) specifications. From these, it is possible to generate APIs in common
programming languages such as the C family of program languages.

It is also possible to express the messages in syntax other than XML, over protocols other
than SOAP and through a definition language other than WSDL, though such expression
is outside the scope of this specification except to note that SOAP and WSDL are
proposals currently or potentially considered by the World Wide Web Consortium XML
Protocol Activity. If XML and SOAP are not adopted by this Activity, we anticipate that
the protocol would be expressible in any specification recommended by the Activity.

XML Key Management Specification (XKMS) v1.0 Page 7

 7

1.2 Definition of Terms

The following terms are used within this document with the particular meaning indicated
below:

Service An application that provides computational or informational

resources on request. A service may be provided by several
physical servers operating as a unit.

Web service A service that is accessible by means of messages sent using
standard web protocols, notations and naming conventions

Client An application that makes requests of a service. The concept of
‘client’ is relative to a service request; an application may have the
role of client for some requests and service for others.

1.3 Namepaces

For clarity, some examples of XML are not complete documents and namespace
declarations may be omitted from XML fragments. In this document, certain namespace
prefixes represent certain namespaces. References to XML schema defined herein use the
prefix “s0” and are in the namespace

xmlns:s0=http://www.xmltrustcenter.org/xml/schema/2000-11-12-XKMS.sdl.

This specification uses the elements already defined in the XML Signature namespace.
The “XML Signature namespace” is represented by the prefix “ds” and is declared as
xmlns:ds=http://www.w3.org/2000/09/dsig. Unqualified elements in examples, unless
otherwise noted, are also in this namespace. The “XML Signature schema” is defined in
http://www.w3.org/2000/09/xmldsig, and the “ds:KeyInfo” element (and all of its
contents) are found at http://www.w3.org/2000/09/xmldsig#sec-KeyInfo. The
corresponding XML Schema definition can be found in xmldsig-core-schema.xsd.

1.4 Key Information Service Specification

X-KISS allows a client to delegate part or all of the tasks required to process XML
Signature <ds:KeyInfo> elements to a Trust service. A key objective of the protocol
design is to minimize the complexity of applications using XML Signature. By becoming
a client of the trust service, the application is relieved of the complexity and syntax of the
underlying PKI used to establish trust relationships, which may be based upon a different
specification such as X.509/PKIX, SPKI or PGP.

By design, the XML Signature Specification does not mandate use of a particular trust
policy. The signer of a document is not required to include any key information but may
include a <ds:KeyInfo> element that specifies the key itself, a key name, X.509

Page 8 XML Key Management Specification (XKMS) v1.0

 8

certificate, a PGP Key Identifier etc. Alternatively, a link may be provided to a location
where the full <ds:KeyInfo> information may be found.

The information provided by the signer may therefore be insufficient by itself to perform
cryptographic verification and decide whether to trust the signing key or may not be in a
format the client can use. For example:

• = The Key may be specified by a name only.

• = The local trust policy of the client may require additional information in order to
trust the key.

• = The Key may be encoded in an X.509 certificate that the client cannot parse.

In the case of an encryption operation:

• = The client may not know the public key of the recipient.

1.5 Key Registration Service Specification

X-KRSS describes a protocol for registration of public key information. A client of a
conforming service may request that the Registration Service bind information to a public
key. The information bound may include a name, an identifier or extended attributes
defined by the implementation.

The key pair to which the information is bound may be generated in advance by the client
or, to support key recovery, may be generated on request by the service. The Registration
protocol may also be used for subsequent recovery of a private key

The protocol provides for authentication of the applicant and, in the case that the key pair
is generated by the client, Proof of Possession (POP) of the private key. A means of
communicating the private key to the client is provided in the case that the private key is
generated by the Registration Service.

This document specifies means of registering RSA and DSA keys and a framework for
extending the protocol to support other cryptographic algorithms such as Diffie-Helleman
and Elliptic Curve variants.

1.6 Tiered Service Model

Different applications require different levels of PKI service. To support this need a
tiered implementation model is defined in which applications may select the precise level
of processing that meets their requirements.

Tier 0 Processing of the <ds:KeyInfo/RetrievalMethod> element is by
the application. Processing is as defined by the XML Signature
specification and without assistance of a trust service.

XML Key Management Specification (XKMS) v1.0 Page 9

 9

Tier 1 Processing of the <ds:KeyInfo> element by the application is delegated
to a service. The service returns a <ds:KeyInfo> element that
describing a public key meeting the criteria specified by the client
application. Validation of the <ds:KeyInfo> is performed by the
client.

Tier 2 Validation Service
As in tier 1, but in addition, the service reports further information
concerning the data specified in a <ds:KeyInfo> block.

Additional tiers could be defined in separate documents

Tier 3 Assertion Service
Establishment and management of long term trust relationships.

Tier 4 Assertion Status Service
Management of the status of assertions.

In each case, the trust service shields the client application from the complexities of the
underlying PKI such as:

• = Handling of complex syntax and semantics (e.g. X.509v3)

• = Retrieval of information from directory and data repository infrastructure

• = Revocation status verification

• = Construction and processing of trust chains.

1.7 Structure of this document

The remainder of this document describes the XML Key Information Service
Specification and XML Key Registration Service Specification.

Section 2: Protocol Overview.
The functional behavior of the protocol is described.

Section 3: Message Set.
The semantics of the protocol messages are defined.

Section 4: Protocol Overview.
The functional behavior of the protocol is described.

Section 5: Message Set.
The semantics of the protocol messages is defined.

Page 10 XML Key Management Specification (XKMS) v1.0

 10

Section 6: Cryptographic Algorithm support
Data formats to support use of the cryptographic algorithms RSA and DSA are
defined.

1.8 Key Information Service Protocol Overview

In the XML Signature Specification, a signer may optionally include information about
his public signing key (“<ds:KeyInfo>”) within the signature block. This key
information is designed to allow the signer to communicate “hints” to a verifier about
which public key to select.

Another important property of <ds:KeyInfo> is that it may or may not be
cryptographically bound to the signature itself. This allows the <ds:KeyInfo> to be
substituted or supplemented without “breaking” the digital signature.

For example Alice signs a document and sends it to Bob with a <ds:KeyInfo>
element that specifies only the signing Key Data. On receiving the message Bob retrieves
additional information required to validate the signature and adds this information into
the <ds:KeyInfo> element when he passes the document on to Carol (see Figure 1
below).

XML Key Management Specification (XKMS) v1.0 Page 11

 11

Alice

Bob

Carol

<ds:KeyInfo>
<ds:KeyName>

…
</ds:KeyName

</ds:KeyInfo>

<ds:KeyInfo>
<ds:KeyName>
…

</ds:KeyName>
<ds:KeyValue>
<ds:RSAKeyValue>
…

</ds:RSAKeyValue>
/

Figure 1: Substitution of the <ds:KeyInfo> element as a message is passed among processors

1.9 Tier 0 RetrievalMethod

A <ds:KeyInfo> element may include a RetrievalMethod, which is a means to convey
information available from a remote location. The <RetrievalMethod> element is a
feature of and is defined by the XML Signature Specification. Since it is the most basic
means of resolving a ds:KeyInfo element it is described here as the ‘Tier 0’ Key
Information service.

For example, the signer of a document may wish to refer verifiers to a chain of X.509
certificates without having to attach them. RetrievalMethod consists of a location, a
method, and a type, which in this case, would refer to a location on the web from which
the certificate chain may be retrieved.

The XML Signature Specification defines the ds:KeyInfo RetrievalMethod as
follows:

A RetrievalMethod element within ds:KeyInfo is used to convey a
reference to ds:KeyInfo information that is stored at another location. For
example, several signatures in a document might use a key verified by an X.509v3
certificate chain appearing once in the document or remotely outside the
document; each signature's ds:KeyInfo can reference this chain using a single
RetrievalMethod element instead of including the entire chain with a
sequence of X509Certificate elements.

Page 12 XML Key Management Specification (XKMS) v1.0

 12

RetrievalMethod uses the same syntax as Reference except that there is
no DigestMethod or DigestValue sub-element and presence of the URI
and Type attributes is mandatory. The referenced data is a ds:KeyInfo sub-
element type. The Type attribute, as in Section 4.3.3[of the XML Signature
Specification], is a URI consisting of "http://www.w3.org/2000/07/xmldsig#"
suffixed with a ds:KeyInfo sub-element type, such as
"http://www.w3.org/2000/07/xmldsig#X509Data".

Schema Definition:
<element name="RetrievalMethod">

<complexType>
<sequence>

<element ref="ds:Transforms" minOccurs="0"/>
</sequence>
<attribute name="URI" type="uriReference"/>
<attribute name="Type" type="uriReference" use="optional"/>

</complexType>
</element>

In the following example, the signer indicates a web-resident directory service
(www.PkeyDir.test) where they have published information about their public key.

<ds:KeyInfo>
<RetrievalMethod URI=”http://www.PKeyDir.test/CheckKey” />

</ds:KeyInfo>

The relying party retrieves the additional Key Information by resolving the specified
URL (Figure 2).

Client Server

GET HTTP/1.0

<KeyInfo>
<KeyData>

Figure 2: Tier 0 Protocol allows a ds:KeyInfo element to reference external data

1.10 Tier 1 Locate Service

Tier 1 of the protocol permits a client application to delegate processing of the
ds:KeyInfo element to a trust service.

The Tier 1 Locate service resolves a ds:KeyInfo element but does NOT REQUIRE
the service to make an assertion concerning the validity of the binding between the data
in the ds:KeyInfo element.

XML Key Management Specification (XKMS) v1.0 Page 13

 13

The Trust service MAY resolve the ds:KeyInfo element using local data or MAY
relay request to other servers. For example the Trust service might resolve a
RetrievalMethod element (Figure 3) or act as a gateway to an underlying PKI based
on a non-XML syntax.

 Client Trust
Service

<KeyInfo>
<KeyName>

<KeyInfo>
<KeyData>

Server - A

HTTP GET /..
…

<KeyInfo>
<KeyData>

Figure 3: Tier 1 Protocol Provides Name Resolution Service

Both the request and/or the response MAY be signed, to both authenticate the sender and
protect the integrity of the data being transmitted, using an XML Signature.

1.10.1 Example: Document Signature

The client receives a signed XML document. The ds:KeyInfo element specifies a
RetrievalMethod for an X.509 certificate that contains the public key. The client
sends the ds:KeyInfo element to the location service requesting that the KeyName
and KeyValue elements be returned.

Request:
<Locate>

<Query>
<ds:KeyInfo>

<ds:RetrievalMethod
URI=”http://www.PKeyDir.test/Certificates/01293122”
Type=”http://www.w3.org/2000/09/xmldsig#X509Data”/>

</ds:KeyInfo>
</Query>
<Respond>

<string>KeyName</string>
<string>KeyValue</string>

</Respond>
</Locate>

The location service resolves the RetrievalMethod, obtaining an X.509v3
certificate. The certificate is parsed to obtain the public key value that is returned to the
client.

The location service DOES NOT report the revocation status or the trustworthiness of the
certificate. The KeyName returned is obtained from the certificate.

Page 14 XML Key Management Specification (XKMS) v1.0

 14

Response:
<LocateResult>

<result>Success</result>
<answer>

<ds:KeyInfo>
<ds:KeyName>O=XMLTrustCernter.org OU=”Crypto”

CN=”Alice”</ds:KeyName>
<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>
</answer>

</LocateResult>

(For readability, the contents of the KeyValue element are omitted from the example
above. Full examples are shown in appendices.)

1.10.2 Example: Data Encryption

The client is attempting to send an encrypted XML document and requires the public key
encryption parameters of the recipient.

Request:
<Locate>

<Query>
<ds:KeyInfo>

<ds:KeyName>Alice Cryptographer</ds:KeyName>
</ds:KeyInfo>

</Query>
<Respond>

<string>KeyName</string>
<string>KeyValue</string>

</Respond>
</Locate>

Response:
<LocateResult>

<result>Success</result>
<answer>

<ds:KeyInfo>
<ds:KeyName>Alice Cryptographer</ds:KeyName>
<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>
</answer>

</LocateResult>

1.11 Tier 2: Validate Service

The Tier 2 Validate Service allows all that tier one does, and in addition, the client may
obtain an assertion specifying the status of the binding between the public key and other
data, for example a name or a set of extended attributes. Furthermore the service
represents that the status of each of the data elements returned is valid and that all are
bound to the same public key. The client sends to the trust service a template containing
some or all of the elements for which the status of the trust binding is required. If the
information in the template is incomplete, the trust service MAY obtain additional data
required from an underlying PKI Service. Once the validity of the Key Binding has been
determined the Trust service returns the status result to the client (Figure 4).

XML Key Management Specification (XKMS) v1.0 Page 15

 15

Client Trust

Service

<KeyBinding>
<…>

Result=Valid
<KeyBinding>

<KeyID>
<KeyInfo>

PKI services

Figure 4: Tier2 Protocol Provides Key Validation Service

1.11.1 Example: Document Signature

The client of the example in section 1.10.1 has verified the document signature. The
client now needs to determine whether the binding between the name and the public key
is both trustworthy and valid.

Request:
<Validate>

<Query>
<AssertionStatus>Valid</AssertionStatus
<KeyID/>

<ds:KeyInfo>
<ds:KeyName>...</ds:KeyName>
<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>

</Query>
<Respond>

<string>KeyName</string>
<string>KeyValue</string>

</Respond>
</Validate>

Response:
<ValidateResult>

<Result>Success</Result>
<Answer>

<KeyBinding>
<AssertionStatus>Valid</AssertionStatus>
<KeyID><KeyIdentifier>du9cXdWZN/0=</KeyIdentifier></KeyID>

<ds:KeyInfo>
<ds:KeyName>...</ds:KeyName>
<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>

Page 16 XML Key Management Specification (XKMS) v1.0

 16

<ValidityInterval>
<NotBefore>2000-09-20T12:00:00</NotBefore>
<NotAfter>2000-10-20T12:00:00</NotAfter>

</ValidityInterval>
</KeyBinding>

</Answer>
</ValidateResult>

1.12 Validity of the Service Response

Clients SHOULD ensure that the response from the service to a Locate or Validate
operation is valid, that is that the following criteria are met.

Authenticity: That the response message was issued by a trusted Trust service

Integrity: That the response message has not been modified

Correspondence: The response from the Trust service corresponds to the request that
was made to the client.

The appropriate means of validating the service response is dependent on the application.
It is not necessary for the requests to be authenticated with a digital signature if the client
supports some other secure means of communicating with the Trust service.

The authenticity, integrity and correspondence of the response SHOULD be ensured
using one or more of the following methods:

• = Authenticating the response messages using the XML Signature Specification.

• = Transport layer security (e.g. SSL, TLS, WTLS)

• = Packet layer security (e.g. IPSEC)

In the case that signed response messages are employed the means by which the client
determines that the signing key is trustworthy is outside the scope of this specification.
Possible mechanisms include:

• = A root key embedded in the client application

• = A trustworthy signing key exchanged using mechanisms described in the Tier 3
Trust Assertion Service Specification.

• = A signing key obtained using some other retrieval mechanism such as DNSSEC,
PKIX or SPKI.

2 Key Information Service Message Set

The protocol consists of pairs of messages, with an application sending a request message
to a trust service and the service responding with another message.

XML Key Management Specification (XKMS) v1.0 Page 17

 17

2.1 Common Data Elements

The content and format of messages are defined using the W3C XML Schema
specification. All values are encoded as element data. The XKMS specification itself
uses only a restricted set of types, but element values may potentially use any type
definable within XML Schemas. XKMS is compatible with the object serialization
format defined within SOAP (see Appendix A) but does not use some aspects of that
format. In particular, sequences of elements are expressed as sequences of elements
without reference to arrays.

The following common data elements are used in the message set:

2.1.1 ds:KeyInfo

The ds:KeyInfo element is defined in the XML Signature Specification schema and
that specification governs its format and use.

The ds:KeyInfo element communicates data using both attributes and elements.
Arbitrary extension elements are permitted.

2.1.2 ResultCode

The enumerated type ResultCode is used to return result codes from each interface. It
has the following possible values:

Success
The operation succeeded.

NoMatch
No match was found for the search template provided.

Incomplete
Only part of the information requested could be provided.

Failure
The operation failed for unspecified reasons.

Refused
The operation was refused.

Pending
The operation was queued for future processing.

ResultCode is defined as:
<simpleType name="ResultCode" base="string">

<enumeration value="Success"/>
<enumeration value="NoMatch"/>
<enumeration value="Incomplete"/>
<enumeration value="Failure"/>
<enumeration value="Refused"/>
<enumeration value="Pending"/>

Page 18 XML Key Management Specification (XKMS) v1.0

 18

</simpleType>

2.1.3 AssertionStatus

The enumerated type AssertionStatus is used to report the status of an assertion
such as a key binding. The following values are defined:

Valid
The binding is definitively valid.

Invalid
The binding is definitively invalid.

Indeterminate
The status of the assertion cannot be determined.

AssertionStatus is defined as:
<simpleType name="BindingStatus" base="string">

<enumeration value="Valid"/>
<enumeration value="Invalid"/>
<enumeration value="Indeterminate"/>

</simpleType>

2.1.4 Reason

One or more strings that specify the reason(s) for a particular assertion status.

If the Trust service returns the AssertionStatus Valid, the Reason element lists
the aspects of status that have been affirmatively verified to be Valid. If the service
returns the AssertionStatus Invalid the Reason element lists the aspects of
status that have been determined to be either Invalid or Indeterminate. If the
service returns the AssertionStatus Indeterminate the Reason element lists
the aspects of status that have been determined to be Indeterminate.

The status aspects are defined in the table below. For convenience the equivalent X509
processing steps are given:

Aspect Description X.509 Equivalent

IssuerTrust The assertion issuer is
considered to be trustworthy
by the Trust service.

Certificate path anchored by
trusted root successfully
constructed

Status The Trust service has
affirmatively verified the
assertion status with an
authoritative source

Certificate status validated
using CRL or OCSP

ValidityInterval The request was made within
the validity interval of the

The request was made at a
time when the certificate

XML Key Management Specification (XKMS) v1.0 Page 19

 19

assertion chain was valid

Signature Signature on signed data
provided by the client in the
ds:KeyInfo element (e.g.
X509Data element) was
successfully verified.

Certificate Signature verified

2.1.5 Respond

One or more strings included in the request that specify data elements to be provided in
the ds:KeyInfo element of the response. Each string is a single identifier
corresponding to a sub-element of the XML Signature Specification ds:KeyInfo
element [XML-SIG] or the private key information defined in section 5.3.2. The XML
Signature elements are described here for convenience. The normative reference is the
specification [XML-SIG].

The Service SHOULD return a requested data element if it is available. The Service
MAY return additional data elements that were not requested. In particular, the service
MAY return data elements specified in the request with the response.

Defined identifiers include:

Identifier ds:KeyInfo Element Description

KeyName <ds:KeyName> Key Name

KeyValue <KeyValue> Public key parameters

X509Cert <X509Data> X509 Certificate v3 that authenticates
the specified key

X509Chain <X509Data>* X509 Certificate v3 chain that
authenticates the specified key

X509CRL <X509Data> X509 Certificate Revocation List v2

OCSP <X509Data> PKIX OCSP token that validates an
X509v3 certificate that authenticates
the key

RetrievalMethod <RetrievalMethod> Retrieval Method data

MgmtData <MgmtData> Management Data

PGP <PGPData> PGP key signing data

Page 20 XML Key Management Specification (XKMS) v1.0

 20

PGPWeb <PGPData>* Collection of PGP key signing data

SPKI <SPKIData> SPKI key signing

Private Request that the encrypted private key
be returned in the response. [Used in
the X-KRSS protocol]

For example, a client that has no X.509 processing capability might perform a Locate
operation to obtain the public key parameters and name information from a
ds:KeyInfo element that specifies only a certificate. The Respond element values in
this case would be “KeyName” and “KeyValue”.

2.2 Locate Service

The Locate service accepts as input a ds:KeyInfo element that specifies a public key
and returns one or more ds:KeyInfo elements that relate to the same public key. The
ds:KeyInfo elements returned are specified by the Respond element in the request.

2.2.1 Request Message

The request message consists of the Locate element defined by the following schema:
<element name="Locate">

<complexType>
<sequence>

<element name="query" type="ds:KeyInfo"/>

<element name="respond" >
<complexType>

<sequence>
<element name="string" type=“string"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</complexType>
</element>

</sequence>
</complexType>

</element>

The following elements are defined:

Query
A single complex structure containing a ds:KeyInfo element that specifies the
public key for which additional data is requested.

Respond
An sequence of identifiers that specify data elements that the client requests
returned in the response.

XML Key Management Specification (XKMS) v1.0 Page 21

 21

2.2.2 Response Message

The Response Message consists of a LocateResult element defined by the following
schema:

<element name="LocateResult">
<complexType>

<sequence>
<element name="result" type="s0:ResultCode"/>
<element name="answer" >

<complexType>
<all>

<element name=”ds:KeyInfo” type=”ds:KeyInfo”
minOccurs="0" maxOccurs="unbounded"/>

</all>
</complexType>

</element>
</sequence>

</complexType>
</element>

The following elements are defined:

Answer
A sequence of strings that contain ds:KeyInfo elements that provide the
additional information specified by the Respond attribute, for the public key
identified by the Query element.

The response message returns a ResultCode depending on the success of the Locate
operation as follows:

ResultCode Answer Description

Success At least one element The locate operation succeeded. All the
information requested was available.

NoMatch No elements The locate operation succeeded but
returned no matches.

Incomplete At least one element The locate operation succeeded. Some of
the information requested was not
available.

Failure No elements The locate operation failed.

2.2.3 Faults

When the protocol is expressed in SOAP, all ResultCode values except Success,
Incomplete and NoMatch are expressed using the SOAP Fault element with a
faultcode of soap:Server. See the [SOAP] specification for further details. The
service MAY return the descriptive text set out in section 2.2.2 above.

Page 22 XML Key Management Specification (XKMS) v1.0

 22

The format of the contents returned by the service within the detail element is left as
an implementation decision.

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<soap:Body>
<soap:Fault>
<faultcode>soap:Server</faultcode>
<faultstring>The locate operation failed.</faultstring>
<detail>
</detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

2.3 Validate Service

The Validate service allows the client to query the binding between a ds:KeyInfo
element and other data such as an identifier. The client supplies a template for the
KeyBinding assertion requested. The template may specify either a KeyId or a
ds:KeyInfo element or both. The server returns one or more KeyBinding assertions
that meet the criteria specified in the request.

2.3.1 ValidityInterval

The ValidityInterval structure specifies limits on the validity of the assertion.
<complexType name="ValidityInterval">

<sequence>
<element name="NotBefore" type="timeInstant"/>
<element name="NotAfter" type="timeInstant"/>

</sequence>
</complexType>

Member Type Description

NotBefore DateTime Time instant at which the validity interval
begins

NotAfter DateTime Time instant at which the validity interval
has ended

The DateTime instant MUST fully specify the date.

The NotBefore and NotAfter elements are optional. If the value is either omitted or
equal to the start of the epoch it is unspecified. If the NotBefore element is unspecified
the assertion is valid from the start of the epoch until the NotAfter element. If the
NotAfter element is unspecified the assertion is valid from the NotBefore element
with no expiry. If neither element is specified the assertion is valid at any time.

XML Key Management Specification (XKMS) v1.0 Page 23

 23

In accordance with the XML Schemas Specification, all time instances are interpreted in
Universal Coordinated Time unless they explicitly indicate a time zone.Implementations
MUST NOT generate time instances that specify leap seconds.

For purposes of comparison, the time interval NotBefore to NotAfter begins at the
earliest time instant compatible with the specification of NotBefore and has ended at
the earliest time instant compatible with the specification of NotAfter

For example if the time interval specified is dayT12:03:02 to dayT12:05:12 the
times 12:03:02.00 and 12:05:11.9999 are within the time interval. The time
12:05:12.0000 is outside the time interval.

2.3.2 KeyId

The KeyId element specifies a URI identifier for the key. The URI MAY be a name
(URN), a locator (URL) or anything else permitted by the URI specification. The KeyId
element is distinct from the KeyName element of ds:KeyInfo in that the KeyName
element is not required to be a URI.

2.3.3 KeyUsage

The KeyUsage element specifies one or more intended uses of the key. If no KeyUsage
is specified all uses are permitted.

<simpleType name="KeyUsage" base="string">
<enumeration value="Encryption"/>
<enumeration value="Signature"/>
<enumeration value="Exchange"/>

</simpleType>

If a key usage is specified that the algorithm does not support (e.g. use of a DSA key for
encryption) the element MUST be ignored.

The following identifiers are defined:

Identifier Description

Encryption The key pair may be used for encryption and decryption

Signature The key pair may be used for signature and verification

Exchange The key pair may be used for key exchange

2.3.4 KeyBinding

The KeyBinding element asserts a binding between data elements that relate to a
public key including KeyName, KeyID, KeyValue and X509Data. Furthermore, the
Service represents to the client accessing the service and to that client alone that the
binding between the data elements is valid under whatever trust policy the service offers
to that client.

Page 24 XML Key Management Specification (XKMS) v1.0

 24

<complexType name="KeyBinding">
<sequence>

<element name="Status" type="s0:BindingStatus"/>
<s:element name="KeyID">

<s:complexType content="mixed">
<s:all>

<s:any/>
</s:all>

</s:complexType>
</s:element>
<element name="KeyInfo" type="ds:KeyInfo"/>

<element name="ValidityInterval" type="s0:ValidityInterval"/>
<element name="KeyUsage" type="s0:KeyUsage"

minOccurs="0" maxOccurs="unbounded"/>
<s:element name="KeyUsage">

<s:complexType>
<s:all>

<s:element name="string" type="s:string" minOccurs="0"
maxOccurs="unbounded"/>

</s:all>
</s:complexType>

</s:element>
</sequence>

</complexType>

2.3.5 Request Message

The request message consists of the Validate element defined by the following
schema:

<element name="Validate">
<s:complexType>

<s:all>
<s:element name="query" type="s0:KeyBinding"/>
<s:element name="respond">

<s:complexType>
<s:all>

<s:element name="string" type="s:string"
minOccurs="0" maxOccurs="unbounded"/>

</s:all>
</s:complexType>

</s:element>
</s:all>

</s:complexType></element>

The following elements are defined:

Query
A single KeyBinding structure that is to be completed and validated.

Respond
A sequence of identifiers that specify data elements that the client requests be
returned in the response.

2.3.6 Response Message

The Response Message consists of a ValidateResult element defined by the
following schema:

XML Key Management Specification (XKMS) v1.0 Page 25

 25

<element name="ValidateResult">
<complexType>

<all>
<element name="result" type="s0:ResultCode"/>
<element name="answer" >

<complexType>
<sequence>

<element name="KeyBinding" type="s0:KeyBinding"
minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
</all>

</complexType>
</element>

The following elements are defined:

Answer
A sequence of KeyBinding structures that contain the results of the validation.

The response message returns a ResultCode depending on the success of the
Validate operation as follows:

ResultCode Answer Description

Success At least one element The validate operation succeeded.
all the information requested was
available.

NoMatch No elements The validate operation succeeded
but returned no matches.

Incomplete At least one element The validate operation succeeded.
Some of the information
requested was not available.

Failure No elements The validate operation failed.

Note that the Validate operation returns the ResultCode Success even if the
KeyBinding assertion was found to be Invalid or Indeterminate. The
ResultCode reflects the success or failure of the service query and not the information
returned by that query.

2.3.7 Faults

In the SOAP binding, all ResultCode values except Success and NoMatch are
expressed using the SOAP Fault element.

The format of additional data elements returned by the service is left as an
implementation decision.

Page 26 XML Key Management Specification (XKMS) v1.0

 26

3 Key Registration Service Protocol Overview

The XML Key Registration Service Specification permits management of information
that is bound to a public key pair.

The service specification supports the following operation:

Register
Information is bound to a public key pair through a XKMS KeyBinding
element. Generation of the public key pair by either the client or the server is
supported.

The Register request does not in itself place any requirement on the Registration
Service to communicate that information to any other party.

In most applications, however, a Registration Service will provide key information to
other trust services such as those described in the XKMS specification or a separate
underlying PKI such as PKIX.

3.1 Linkage to an Underlying PKI

Linkage to such an underlying PKI is considered to be an intrinsic property of the
Registration Service rather than a parameter that the client application may negotiate. To
be useful such a negotiation service would need to express more than the syntax of the
credentials issued.

If necessary, Registration Services may offer links to multiple underlying PKIs through
separate service address URIs. For example:

http://register.trustcenter.org/pgp
Obtain a PGP credential

http://register.trustcenter.org/x509/public_class2
Obtain an X.509v3 credential in the “Trust Center Public Class 2” hierarchy

http://register.trustcenter.org/private/AKEHJQ
Obtain an X.509v3 credential in a private hierarchy, the details of which the client
application does not understand

The ds:KeyInfo elements X509Data, PGPData and SPKIData MAY be used to
return credentials issued in an underlying PKI. Alternatively the client may request that a
RetrievalMethod element be returned in the response to allow retrieval of the
credential to be generated (e.g. an X.509v3 certificate).

XML Key Management Specification (XKMS) v1.0 Page 27

 27

3.2 Registration

The Register request is used to assert a binding of information to a public key pair.
Generation of the public key pair MAY be performed by either the client or the
Registration service.

The Registration request message consists of a prototype of the requested assertion. The
Registration Service MAY require the client to provide additional information to
authenticate the request. If the public key pair is generated by the client the service MAY
require the client to provide Proof of Possession of the private key.

On receipt of a registration request, the registration service verifies the authentication and
POP information provided (if any). If the registration service accepts the request an
assertion is registered. This assertion MAY include some, all or none of the information
provided by the Template and MAY include additional information.

The Registration Service MAY return part or all of the registered assertion to the client.

Client Server

KeyBinding
ProofOfPossession
Authentication

KeyBinding

Figure 5: Registration of a KeyBinding

Example: Registration of Client Generated Key Pair

Alice requests registration of an RSA key pair for her email address
Alice@cryptographer.test. Alice has previously received from the trust service
the code “024837” with which to authenticate her request. Alice selects the pass phrase
“Help I have revealed my key” to authenticate herself should it be necessary to revoke
the registration at a later date.

The X-KRSS request message parameters are:
<Register>

<KeyBinding>
<AssertionStatus>Valid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test<KeyID>
<KeyInfo>

<ds:KeyInfo>
<ds:KeyValue>

<ds:RSAKeyValue>

Page 28 XML Key Management Specification (XKMS) v1.0

 28

<ds:Modulus>
998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7E

fdxSXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw
</ds:Modulus>

<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>
<KeyInfo>

<Authentication>
<AuthUserInfo

xmlns=“http://www.xmltrustcenter.org/xml/schema/2000-10-27-
AuthInfo.xsd”>

<ProofOfPossession>
<Signature [RSA-Sign (KeyBinding, Private)] />

</ProofOfPossession>
<Authentication>

<Signature [HMAC-SHA1 (KeyBinding, Auth)] />
<Authentication>
<PassPhrase>Pass</PassPhrase>

</AuthUserInfo>
</Authentication>
<Respond>

<string>KeyName<string>
<string>KeyValue</string>
<string>RetrievalMethod</string>

</Respond>
</Register>

Where:

Auth = HMAC-SHA1 (“024837”, 0x1)
Pass = HMAC-SHA1 (HMAC-SHA1 (“helpihaverevealedmykey”, 0x2),
0x3)

For clarity, the details of the signature elements are omitted.

The service accepts the registration and returns the following response:
<ResultCode>Success</ResultCode>
<Answer>

<AssertionStatus>Valid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyID>

<ds:KeyInfo>
<ds:RetrievalMethod

URI=”http://www.PKeyDir.test/Certificates/01293122”
Type=”http://www.w3.org/2000/09/xmldsig#X509Data”/>

<ds:KeyValue>
<ds:RSAKeyValue>

<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7Efdx
SXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw</ds:Modulus>

<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>

</Answer>

XML Key Management Specification (XKMS) v1.0 Page 29

 29

Example: Registration of Service Generated Key Pair

The request for registration of a service generated key pair omits the public key data and
requests that private key data be returned with the response.

<KeyBinding>
<AssertionStatus>Valid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyID>
<KeyInfo>

<ds:KeyInfo>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>
</KeyInfo>

</KeyBinding>
<Authentication>

<AuthServerInfo
xmlns=“http://www.xmltrustcenter.org/xml/schema/2000-10-27-
AuthInfo.xsd”>

<Authentication>
<Signature [HMAC-SHA1 (KeyBinding, Auth)] />

<Authentication>
<PassPhrase>Pass</PassPhrase>

</AuthServerInfo>
<Authentication>
<Respond>

<string>KeyName</string>
<string>KeyValue</string>
<string>Private</string>

</Respond>

Where

Auth = HMAC-SHA1 (“024837”, 0x1)
Pass = HMAC-SHA1 (HMAC-SHA1 (“helpihaverevealedmykey”, 0x2),
0x3)

The response includes both the public key data and the encrypted private key:
<ResultCode>Success</ResultCode>
<Answer>

<AssertionStatus>Valid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test<KeyID>

<ds:KeyInfo>
<ds:KeyValue>

<ds:RSAKeyValue>

<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7Efdx
SXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw</ds:Modulus>

<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>

<Private> Base64 (3DES (RSAPrivate, Enc)) </Private>

Where:

Enc = HMAC-SHA1 (“024837”, 0x4)
RSAPrivate =

Page 30 XML Key Management Specification (XKMS) v1.0

 30

<RSAKeyPair>
<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidr
uAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw </ds:Modulus>
<PublicExponent>AQAB</PublicExponent>
<PrivateExponent>whatever</PrivateExponent>
<P>whatever</P>
<Q>whatever</Q>

</RSAKeyPair>

3.3 Revocation

A Registration service MAY permit clients to revoke previously issued assertions. A
revocation request is made in the same manner as the initial registration of a key except
that:

• = The status of the KeyBinding or KeyAssertion template is Invalid.

• = If the Registration service has no record of the assertion the result code
NotFound is returned.

Example: Revocation

For some reason Alice requests the Registration Service revoke the binding for her public
key. Alice authenticates herself using by signing her request with the corresponding
private key. Alice could have used the pass phrase she established during registration
instead.

The parameters of the request message are:
<KeyBinding>

<AssertionStatus>Invalid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyId>

<ds:KeyInfo>
<ds:KeyValue>

<ds:RSAKeyValue>

<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7Efdx
SXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw</ds:Modulus>

<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>

</KeyBinding>
<Authentication>

<AuthUserInfo
xmlns=“http://www.xmltrustcenter.org/xml/schema/2000-10-27-
AuthInfo.xsd”>

<ProofOfPossession>
<Signature [RSA-Sign (KeyBinding, Private)] />

</ProofOfPossession>
</AuthUserInfo>

</Authentication>
<Respond>

<string>KeyName</string>
<string>KeyValue</string>

</Respond>

XML Key Management Specification (XKMS) v1.0 Page 31

 31

The service responds that the key binding has been revoked:
<ResultCode>Success</ResultCode>
<Answer>

<AssertionStatus>Invalid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyID>

<ds:KeyInfo>
<ds:KeyValue>

<ds:RSAKeyValue>

<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7Efdx
SXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw</ds:Modulus>

<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>

</Answer>

3.4 Key Recovery

A Registration service MAY permit clients to request key recovery. A key recovery
request is made in the same manner as the initial registration of a key except that:

• = The key recovery service is likely to require time to respond to the recovery
request and MAY return a ResultCode of Pending.

• = If the Registration service has no record of the assertion the result code
NotFound is returned.

Example: Key Recovery

Alice has forgotten the private key she registered earlier. She first contacts the
administrator of the key recovery service using an out-of-band authentication procedure
determined by site policy. The key recovery administrator issues to Alice (using an out of
band method) the key recovery authorization code “A8C8S H93HU C9H29 8Y43U H9J3
I23”.

The request parameters for the key recovery are:
<KeyBinding>

<AssertionStatus>Indeterminate</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyId>

<ds:KeyInfo>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>

</KeyBinding>
<Authentication>

<AuthUserInfo
xmlns=“http://www.xmltrustcenter.org/xml/schema/2000-10-27-AuthInfo.xsd”

<PassPhrase>Auth</PassPhrase>
</AuthUserInfo>

</Authentication>
<Respond>

Page 32 XML Key Management Specification (XKMS) v1.0

 32

<string>KeyName</string>
<string>KeyValue</string>
<string>Private</string>

</Respond>

Where

 Auth = HMAC-SHA1 (“a8c8sh93huc9h298y43uh9j3i23”, 0x1)

The registration service policy is to revoke a private key whenever key recovery is
performed. The service returns the revoked key binding and the private key parameters:

<Answer>
<AssertionStatus>Invalid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyID>

<ds:KeyInfo>
<ds:KeyValue>

<ds:RSAKeyValue>

<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7Efdx
SXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw</ds:Modulus>

<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>

</ds:KeyInfo>

</Answer>
<Private> Base64 (3DES (RSAPrivate, Enc)) </Private>

Where:

Enc = HMAC-SHA1 (“a8c8sh93huc9h298y43uh9j3i23”, 0x4)
RSAPrivate = “

<RSAKeyPair>
<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidr
uAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw</ds:Modulus>
<PublicExponent>AQAB</PublicExponent>
<PrivateExponent>whatever</PrivateExponent>
<P>whatever</P>
<Q>whatever</Q>

</RSAKeyPair>”

3.5 Request Authentication

The Service SHOULD ensure that all requests are valid.

Authenticity: The request message originated from the specified party.

Integrity: The request message has not been modified.

Possession: If a public key is specified in a registration request, proof that the request
is authorized by a party that has access to the corresponding private key.

XML Key Management Specification (XKMS) v1.0 Page 33

 33

Registration services set their own authentication policy. This specification defines an
authentication mechanism that employs a shared secret established out of band between
the client and the Registration Service.

Services SHOULD require that clients demonstrate Proof of Possession of the private key
components of a public key if a request is made to register a valid assertion bound to that
public key.

Services SHOULD accept Proof of Possession of the private key component of a public
key to effect revocation of any assertion bound to that key.

4 Key Registration Service Message Set

The protocol operations consist of a remote procedure call that consists of a single
request message sent by the client to the Registration Service followed by a single
response message sent by the server to the client.

4.1 Common Syntax

In addition to the common syntax elements defined in section Error! Reference source
not found. the following additional parameters are defined:

4.1.1 Respond

A sequence of strings included in the request that specify data elements to be provided in
the ds:KeyInfo element of the response. This element is specified in Section 2.1.5
above

The following additional response code is defined:

Identifier ds:KeyInfo
Element

Description

Private - Request that the encrypted private key be
returned in the response.

4.2 Registration

The Request message specifies a KeyBinding element that provides a template for the
key binding to be registered.

The KeyBinding element may contain only partial information, a key without a name
or a name without a key. In this case, the client is requesting that the Registration Service
provide the additional information required to complete the binding.

For example, the client may not specify the public key parameters because the public and
private key pair is to be generated by the Registration Service.

Page 34 XML Key Management Specification (XKMS) v1.0

 34

4.2.1 Authentication

The Authentication element contains data that authenticates the request. The form of the
authentication data depends upon:

• = The means of authentication used;

• = The public key algorithm used; and

• = The party that generates the key pair (client or service).

The information MAY include a proof of possession for a public key that is registered
and MAY include information that authenticates the request through a cryptographic
binding to the KeyBinding element.

4.2.2 Request Message

The request message consists of the Register element defined by the following
schema:

<element name="Register">
<complexType>

<all>
<element name="Template" type="s0:KeyBinding"/>
<element name="Authentication">

</all>
<AuthUserInfo/>
<all>
</element>

<element name="Respond" >
<complexType >

<sequence>
<element name="string" type=“string"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</complexType>
</element>

</sequence>
</complexType>

</element>

The following elements are defined:

Template
A single KeyBinding structure that specifies elements that the client requests
be registered.

Authentication
An XML document node that provides information that authenticates the request.

Respond
A sequence of identifiers that specify data elements that the client requests be
returned in the response.

XML Key Management Specification (XKMS) v1.0 Page 35

 35

4.2.3 Response Message

The Response Message consists of a RegisterResult element defined by the
following schema:

<element name="RegisterResult">
<complexType>

<sequence>
<element name="result" type="s0:ResultCode"/>
<element name="Answer" >

<complexType>
<all>

<element name="KeyBinding" type="s0:KeyBinding"
minOccurs="0" maxOccurs="unbounded"/>

</all>
</complexType>

</element>
<element name="Private" type=“string" />

</sequence>
</complexType>

</element>

The following elements are defined:

KeyBinding
If present specifies the key binding that was registered by the service

Private
Additional information provided by the server that MAY provide values for
private key parameters generated by the Registration Service

Both the KeyBinding and the Private data elements are optional.

4.2.4 Faults

In the SOAP binding the ResultCode values NoMatch and Failure are expressed
using the SOAP Fault element. The service MAY return the descriptive text set out in
section 2.2.2 above.

The format of additional data elements returned by the service is left as an
implementation decision.

5 Cryptographic Algorithm Specific Parameters

5.1 Use of Symmetric Keying Data

It is frequently necessary or desirable to use symmetric authentication data (i.e. a one
time use PIN or pass phrase) to authenticate registration request messages. In particular a
private key cannot be used for authentication until the corresponding public key has been
registered.

Page 36 XML Key Management Specification (XKMS) v1.0

 36

In addition it is desirable that private key parameters generated or recovered by the
registration service be returned encrypted. It is convenient to use symmetric data for this
purpose.

Since human users are the most demanding in terms of interface requirements the
handling of symmetric key data is designed for the needs of clients supporting human
users directly. Symmetric keying data is typically issued to a human user in the form of a
text string. The authentication data itself MAY be randomly generated and represent an
underlying numeric value, or MAY be a password or phrase. In either case it is most
convenient to present the value to the human user as a string of characters in a character
set the particular user understands.

• = All shared string values are encoded as XML

• = All space and control characters are removed.

• = All upper case characters in the Latin-1 alphabet (A-Z) are converted to lower
case.

• = No other characters, including accented characters are converted

Keying material is derived from the shared string using a MAC function. Different MAC
keying values are used according to the use of the symmetric key derived as follows:

Value Application

0x1 Authentication

0x2 Encoding of Pass Phrase – Pass 1

0x3 Encoding of Pass Phrase – Pass 2

0x4 Encryption of private key data

If the output of the MAC function provides more keying material than is required for a
cryptographic operation (i.e. encryption, MAC), the lowest significant bits are used.

If the output of the MAC function provides less keying material than is required the value
is padded with zero bits in the most significant bits.

5.1.1 Authentication

The Proof of Possession element contains a XML Signature element. The signature scope
is the KeyBinding template using the public key that is to be registered. The private
key component of the public key contained within the KeyBinding is used to generate
the signature.

XML Key Management Specification (XKMS) v1.0 Page 37

 37

5.1.2 PassPhrase

The PassPhrase element contains a MAC value encoded as a base64 string.

On initial registration the PassPhrase value is obtained by first performing the MAC
calculation on the pass phrase value, then performing a second MAC calculation on the
result.

To prove knowledge of the pass phrase in a subsequent revocation request the
PassPhrase value is obtained by performing the MAC calculation on the pass phrase
value.

5.1.3 ProofOfPossession

The Proof of Possession element contains a XML Signature element. The signature scope
is the KeyBinding template using the public key that is to be registered. The private
key component of the public key contained within the KeyBinding is used to generate
the signature.

5.2 Registration of User-Generated RSA or DSA Keys

If an RSA or DSA key pair generated by the user is to be registered, the registration
service MAY be required by its registration policy to ensure that:

• = The party that made the request has possession of the specified private key

• = The party that made the request is authorized to assert the specified binding to a
public key.

The Authentication element has the following form:
<element name="AuthUserInfo">

<complexType>
<all>

<element name="ProofOfPossession" type="s1:Signature" />
<element name="Authentication" type="s1:Signature" />
<element name="Passphrase" type="string" />

</all>
</complexType>

</element>

The Authentication, PassPhrase and ProofofPossession elements are as
defined in section 5.1.1 above.

5.3 Registration of Service-Generated RSA Keys

If the RSA key pair is generated by the registration service the registration MAY be
required by its registration policy to ensure that:

• = The party that made the request is authorized to assert the specified binding to a
public key.

Page 38 XML Key Management Specification (XKMS) v1.0

 38

In addition the Registration Service MUST communicate the private key parameters to
the user. The Registration Service SHOULD ensure that the confidentiality of the private
key is protected.

<element name="AuthServerInfo">
<complexType>

<all>
<element name="Authentication" type="s1:Signature" />
<element name="Passphrase" type="string" />

</all>
</complexType>

</element>

The Authentication and PassPhrase elements are as defined in section 5.1.1
above.

Registration of service-generated DSA keys is not supported. A DSA key can only be
used for signature. Key recovery of signature keys has only limited application. The
principal reason to perform server generation of key pairs is to support Key Recovery.

5.3.1 Encoding of RSA Private Key Parameters

The service MAY return the RSA public and private key parameters to the client.

The public and private parameters for the RSA algorithm are generated from the
parameters p and q. Although private key operations may be performed using the private
modulus alone knowledge of the generator parameters permits optimizations such as the
Chinese Remainder Theorem to be applied. Accordingly the private key element permits
these to be specified.

The XML schema for this structure is:
<element name='RSAKeyPair'>

<complexType content='elementOnly'>
<all>
<element name='Modulus' type='ds:CryptoBinary'

minOccurs='1' maxOccurs='1'/>
<element name='PublicExponent' type='ds:CryptoBinary'

minOccurs='1' maxOccurs='1'/>
<element name='PrivateExponent' type='ds:CryptoBinary'

minOccurs='1' maxOccurs='1'/>
<element name='P' type='ds:CryptoBinary'

minOccurs='0' maxOccurs='1'/>
<element name='Q' type='ds:CryptoBinary'

minOccurs='0' maxOccurs='1'/>
<element name='DP' type='ds:CryptoBinary'

minOccurs='0' maxOccurs='1'/>
<element name='DQ' type='ds:CryptoBinary'

minOccurs='0' maxOccurs='1'/>
<element name='QINV' type='ds:CryptoBinary'

minOccurs='0' maxOccurs='1'/>
</all>

</complexType>
</element>

5.3.2 Encryption of Private Key Parameters

The use of the XML Encryption standard for this purpose is anticipated.

XML Key Management Specification (XKMS) v1.0 Page 39

 39

Until the XML Encryption standard is available, the following syntax MAY be used to
wrap the private key:

<element name='Encrypt'>
<complexType content='elementOnly'>

<all>
<element name='KeyAlg' type='ds:String'

minOccurs='1' maxOccurs='1'/>
<element name='EncryptionAlg' type='ds:String'

minOccurs='1' maxOccurs='1'/>
<element name='IV' type='ds:CryptoBinary'

minOccurs='1' maxOccurs='1'/>
<element name='EncryptedData' type='ds:CryptoBinary'

minOccurs='1' maxOccurs='1'/>
</all>

</complexType>
</element>

Where the elements have the following meaning:

ID Type Description

KeyAlg String Means of deriving the encryption key
from the shared authentication parameter.
Possible value HMAC-SHA1

EncryptionAlg String Symmetric cipher algorithm. Possible
values to include 3DES-CBC, AES

IV CryptoBinary Initialization vector for the symmetric
cipher

EncryptedData CryptoBinary The encrypted data itself

6 Authors

Warwick Ford, Phillip Hallam-Baker (Verisign), Barbara Fox, Blair Dillaway, Brian
LaMacchia (Microsoft), Jeremy Epstein, Joe Lapp (webMethods)

The authors also acknowledge the contributions of David Solo (CitiGroup), Mack Hicks
(Bank of America), Andrew Layman (Microsoft).

Page 40 XML Key Management Specification (XKMS) v1.0

 40

Appendix A Web Service Contract

A.1 Protocol Interface

The protocol interface may be indicated informally (not normatively) using syntax based
on the C programming language. Note, however, that this indication serves only as a
brief introduction to the interactions. They are defined formally and normatively in the
next appendix and the definition is in terms of protocol elements and formats, not
procedure invocations.

public enum ResultCode {
Success,
NoMatch,
Incomplete,
Failure,
Refused,
Pending
}

public enum AssertionStatus {
Valid,
Invalid,
Indeterminate
}

public struct ValidityInterval {
public DateTime NotBefore;
public DateTime NotAfter;
} ;

public struct KeyBinding {
public AssertionStatus Status;
public XmlElement KeyID;
public XmlElement KeyInfo;
public string [] KeyUsage;
public ValidityInterval ValidityInterval;
} ;

public interface ITier1Service {
ResultCode Locate(

XmlElement Query,
string[] Respond,
out XmlElement[] Answer);

}

public interface ITier2Service {
ResultCode Validate (

KeyBinding Query,
string [] Respond,
out KeyBinding [] Answer);

}

public interface RegistrationService {
ResultCode Register (

KeyBinding Template,
XmlElement Authentication,
string Respond,
out KeyBinding [] Answer,
out XmlElement Private);

}

XML Key Management Specification (XKMS) v1.0 Page 41

 41

Where, XmlElement is a type that represents an valid XML Element
value. For example, this could be a serialized string representation or
an XML DOM node and would depend upon the tools being used.

A.2 Schemas and Web Service Definition

The following Web Service Definition Language definitions are normative. The Service,
and associated Port, elements define a specific implementation and are exemplary only.
In this case, a service located at http://service.xmltrustcenter.org/Test/KeySrvc.asmx.
<?xml version="1.0"?>
<definitions xmlns:s="http://www.w3.org/1999/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”
xmlns:s0="http://www.xmltrustcenter.org/xml/schema/2000-11-12-XKMS.sdl"
targetNamespace="http://www.xmltrustcenter.org/xml/schema/2000-11-12-
XKMS.sdl" xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<s:schema targetNamespace"http://www.xmltrustcenter.org/xml/schema/2000-

11-12-XKMS.sdl" attributeFormDefault="qualified"
elementFormDefault="qualified">

<s:import namespace=”http://www.w3.org/2000/09/xmldsig#”
schemaLocation=”http://www.w3.org/TR/2000/CR-xmldsig-core-

20001031/xmldsig-core-schema.xsd” />
<s:element name="Register">

<s:complexType>
<s:all>

<s:element name="Template" type="s0:KeyBinding"/>
<s:element name="Authentication">

<s:complexType content="mixed">
<s:all>

<s:AuthUserInfo/>
</s:all>

</s:complexType>
</s:element>
<s:element name="Respond">

<s:complexType>
<s:all>

<s:element name="string" type="s:string" minOccurs="0"
maxOccurs="unbounded"/>

</s:all>
</s:complexType>

</s:element>
</s:all>

</s:complexType>
</s:element>
<s:complexType name="KeyBinding">

<s:all>
<s:element name="Status" type="s0:AssertionStatus"/>
<s:element name="KeyID">

<s:complexType content="mixed">
<s:all>

<s:any/>

Page 42 XML Key Management Specification (XKMS) v1.0

 42

</s:all>
</s:complexType>

</s:element>
<s:element name="KeyInfo" type="ds:KeyInfo"/>

<s:element name="KeyUsage">
<s:complexType>

<s:all>
<s:element name="string" type="s:string" minOccurs="0"

maxOccurs="unbounded"/>
</s:all>

</s:complexType>
</s:element>
<s:element name="ValidityInterval" type="s0:ValidityInterval"/>

</s:all>
</s:complexType>
<s:simpleType name="AssertionStatus" base="s:string">

<s:enumeration value="Valid"/>
<s:enumeration value="Invalid"/>
<s:enumeration value="Indeterminate"/>

</s:simpleType>
<s:complexType name="ValidityInterval">

<s:all>
<s:element name="NotBefore" type="s:timeInstant"/>
<s:element name="NotAfter" type="s:timeInstant"/>

</s:all>
</s:complexType>
<s:element name="RegisterResult">

<s:complexType>
<s:all>

<s:element name="result" type="s0:ResultCode"/>
<s:element name="Answer">

<s:complexType>
<s:all>

<s:element name="KeyBinding" type="s0:KeyBinding"
minOccurs="0" maxOccurs="unbounded"/>

</s:all>
</s:complexType>

</s:element>
<s:element name="Private">

<s:complexType content="mixed">
<s:all>

<s:any/>
</s:all>

</s:complexType>
</s:element>

</s:all>
</s:complexType>

</s:element>
<s:simpleType name="ResultCode" base="s:string">

<s:enumeration value="Success"/>
<s:enumeration value="NoMatch"/>
<s:enumeration value="Incomplete"/>
<s:enumeration value="Failure"/>
<s:enumeration value="Refused"/>
<s:enumeration value="Pending"/>

</s:simpleType>

XML Key Management Specification (XKMS) v1.0 Page 43

 43

<s:element name="Validate">
<s:complexType>

<s:all>
<s:element name="query" type="s0:KeyBinding"/>
<s:element name="respond">

<s:complexType>
<s:all>

<s:element name="string" type="s:string" minOccurs="0"
maxOccurs="unbounded"/>

</s:all>
</s:complexType>

</s:element>
</s:all>

</s:complexType>
</s:element>
<s:element name="ValidateResult">

<s:complexType>
<s:all>

<s:element name="result" type="s0:ResultCode"/>
<s:element name="answer">

<s:complexType>
<s:all>

<s:element name="KeyBinding" type="s0:KeyBinding"
minOccurs="0" maxOccurs="unbounded"/>

</s:all>
</s:complexType>

</s:element>
</s:all>

</s:complexType>
</s:element>
<s:element name="Locate">

<s:complexType>
<s:all>

<s:element name="query" type="ds:KeyInfo"/>
<s:complexType content="mixed">

<s:element name="respond">
<s:complexType>

<s:all>
<s:element name="string" type="s:string" minOccurs="0"

maxOccurs="unbounded"/>
</s:all>

</s:complexType>
</s:element>

</s:all>
</s:complexType>

</s:element>
<s:element name="LocateResult">

<s:complexType>
<s:all>

<s:element name="result" type="s0:ResultCode"/>
<s:element name="answer">

<s:complexType>
<s:all>

< element name=”ds:KeyInfo” type=”ds:KeyInfo” minOccurs="0"
maxOccurs="unbounded"/>

</s:all>

Page 44 XML Key Management Specification (XKMS) v1.0

 44

</s:complexType>
</s:element>

</s:all>
</s:complexType>

</s:element>
</s:schema>

</types>
<message name="RegisterSoapIn">

<part name="parameters" element="s0:Register"/>
</message>
<message name="RegisterSoapOut">

<part name="parameters" element="s0:RegisterResult"/>
</message>
<message name="ValidateSoapIn">

<part name="parameters" element="s0:Validate"/>
</message>
<message name="ValidateSoapOut">

<part name="parameters" element="s0:ValidateResult"/>
</message>
<message name="LocateSoapIn">

<part name="parameters" element="s0:Locate"/>
</message>
<message name="LocateSoapOut">

<part name="parameters" element="s0:LocateResult"/>
</message>
<portType name="KeyServiceSoap">

<operation name="Register">
<input message="s0:RegisterSoapIn"/>
<output message="s0:RegisterSoapOut"/>

</operation>
<operation name="Validate">

<input message="s0:ValidateSoapIn"/>
<output message="s0:ValidateSoapOut"/>

</operation>
<operation name="Locate">

<input message="s0:LocateSoapIn"/>
<output message="s0:LocateSoapOut"/>

</operation>
</portType>
<portType name="KeyServiceHttpPost"/>
<portType name="KeyServiceHttpGet"/>
<binding name="KeyServiceSoap" type="s0:KeyServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>

<operation name="Register">
<soap:operation soapAction="http://service.xmltrustcenter.org/Register"

style="document"/>
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
<operation name="Validate">

<soap:operation
soapAction=="http://service.xmltrustcenter.org/Validate" style="document"/>

XML Key Management Specification (XKMS) v1.0 Page 45

 45

<input>
<soap:body use="literal"/>

</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
<operation name="Locate">

<soap:operation soapAction=="http://service.xmltrustcenter.org/Locate"
style="document"/>

<input>
<soap:body use="literal"/>

</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>
<binding name="KeyServiceHttpPost" type="s0:KeyServiceHttpPost">

<http:binding verb="POST"/>
</binding>
<binding name="KeyServiceHttpGet" type="s0:KeyServiceHttpGet">

<http:binding verb="GET"/>
</binding>
<service name="KeyService">

<port name="KeyServiceSoap" binding="s0:KeyServiceSoap">
<soap:address

location=="http://service.xmltrustcenter.org/Test/KeySrvc.asmx"/>
</port>
<port name="KeyServiceHttpPost" binding="s0:KeyServiceHttpPost">

<http:address
location=="http://service.xmltrustcenter.org/Test/KeySrvc.asmx"/>

</port>
<port name="KeyServiceHttpGet" binding="s0:KeyServiceHttpGet">

<http:address
location=="http://service.xmltrustcenter.org/Test/KeySrvc.asmx"/>

</port>
</service>

</definitions>

A.3 Authentication Schema

The following schema defines the authentication data:
<schema

targetNamespace="http://www.xmltrustcenter.org/xml/schema/2000-10-27-
AuthInfo.xsd”

xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:ds=”http://www.w3.org/2000/09/xmldsig”>
<element name="AuthUserInfo">

<complexType>
<sequence>

<element name="ProofOfPossession" type="s1:Signature"
/>

<element name="Authentication" type="s1:Signature"
/>

Page 46 XML Key Management Specification (XKMS) v1.0

 46

<element name="Passphrase" type="string"
/>

</sequence>
</complexType>

</element>
<element name="AuthServerInfo">

<complexType>
<sequence>

<element name="Authentication" type="s1:Signature"
/>

<element name="Passphrase" type="string"
/>

</sequence>
</complexType>

</element>
<element name='RSAKeyPair'>

<complexType content='elementOnly'>
<sequence>

<element name='Modulus' type='ds:CryptoBinary'
minOccurs='1' maxOccurs='1'/>

<element name='PublicExponent' type='ds:CryptoBinary'
minOccurs='1' maxOccurs='1'/>

<element name='PrivateExponent' type='ds:CryptoBinary'
minOccurs='1' maxOccurs='1'/>

<element name='P' type='ds:CryptoBinary'
minOccurs='0' maxOccurs='1'/>

<element name='Q' type='ds:CryptoBinary'
minOccurs='0' maxOccurs='1'/>

</sequence>
</complexType>

</element>
</schema>

A.4 Encryption Envelope
<schema

targetNamespace="http://www.xmltrustcenter.org/xml/schema/2000-11-12-
XKMS.sdl/EncInfo.xsd”

xmlns=”http://www.w3.org/1999/XMLSchema”
xmlns:ds=”http://www.w3.org/2000/09/xmldsig”>
<element name='Encrypt'>

<complexType content='elementOnly'>
<sequence>

<element name='KeyAlg' type='ds:String'
minOccurs='1' maxOccurs='1'/>

<element name='EncryptionAlg' type='ds:String'
minOccurs='1' maxOccurs='1'/>

<element name='IV' type='ds:CryptoBinary'
minOccurs='1' maxOccurs='1'/>

<element name='EncryptedData' type='ds:CryptoBinary'
minOccurs='1' maxOccurs='1'/>

</sequence>
</complexType>

</element>
<Schema>

Appendix B Sample Protocol Exchanges

B.1 Tier 1 Example 1

This example shows the formatting of the X-KISS request and response for the first
example in section 1.10 above.

XML Key Management Specification (XKMS) v1.0 Page 47

 47

Client Request
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<soap:Body>

<Locate xmlns="http://www.xmltrustcenter.org/xml/schema/2000-11-
12-XKMS.sdl">

<query><ds:KeyInfo><ds:KeyValue><ds:RSAKeyValue><ds:Modulus>998/T2PUN
8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidruAszNqBoOqfarJIsfcVKLob1hGnQ
/l6xw==</ds:Modulus><ds:Exponent>AQAB</ds:Exponent></ds:RSAKeyValue></ds
:KeyValue></ds:KeyInfo></query>

<Respond>KeyName</Respond>
</Locate>

</soap:Body>
</soap:Envelope>

Server Response
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<soap:Body>

<LocateResult
xmlns="http://www.xmltrustcenter.org/xml/schema/2000-11-12-XKMS.sdl">

<Result>Success</Result>
<Answer>

<ds:KeyInfo><ds:KeyValue><ds:RSAKeyValue><ds:Modulus>998/T2PUN8HQlnhf
9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw==
</ds:Modulus><ds:Exponent>AQAB</ds:Exponent></ds:RSAKeyValue></ds:KeyVal
ue><ds:KeyName>Account 1823945 Key 3</ds:KeyName></ds:KeyInfo>

</Answer>
</LocateResult>

</soap:Body>
</soap:Envelope>

B.2 Tier 1 Example 2

This example shows the formatting of the X-KISS request and response for the second
example in section 1.10 above.

Client Request
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<soap:Body>

<Locate xmlns="http://www.xmltrustcenter.org/xml/schema/2000-11-
12-XKMS.sdl">

<query><ds:KeyInfo><ds:KeyName>Alice
Cryptographer</ds:KeyName></ds:KeyInfo></query>

<Respond>KeyValue</Respond>
</Locate>

</soap:Body>

Page 48 XML Key Management Specification (XKMS) v1.0

 48

</soap:Envelope>

Server Response
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<soap:Body>

<LocateResult
xmlns="http://www.xmltrustcenter.org/xml/schema/2000-11-12-XKMS.sdl">

<Result>Success</Result>
<Answer>

<ds:KeyInfo><ds:KeyValue><ds:RSAKeyValue><ds:Modulus>998/T2PUN8HQlnhf9YI
KdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw==</d
s:Modulus><ds:Exponent>AQAB</ds:Exponent></ds:RSAKeyValue></ds:KeyValue>
<ds:KeyName>Alice Cryptographer</ds:KeyName></ds:KeyInfo>

</Answer>
</LocateResult>

</soap:Body>
</soap:Envelope>

B.3 Tier 2

This example shows the formatting of the X-KISS request and response for the example
in section 1.10.1 above.

Client Request
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<soap:Body>

<Validate xmlns="http://www.xmltrustcenter.org/xml/schema/2000-
11-12-XKMS.sdl">

<Query>
<AssertionStatus>Valid</AssertionStatus>
<KeyID/>

<ds:KeyInfo><ds:KeyValue><ds:RSAKeyValue><ds:Modulus>998/T2PUN8HQlnhf
9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw==
</ds:Modulus><ds:Exponent>AQAB</ds:Exponent></ds:RSAKeyValue></ds:KeyVal
ue><ds:KeyName>Account 1823945 Key 3</ds:KeyName></ds:KeyInfo>

</Query>
<Respond>KeyName</Respond>
<Respond>KeyValue</Respond>

</Validate>
</soap:Body>

</soap:Envelope>

Server Response
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

XML Key Management Specification (XKMS) v1.0 Page 49

 49

<soap:Body>
<ValidateResult

xmlns="http://www.xmltrustcenter.org/xml/schema/2000-11-12-XKMS.sdl">
<Result>Success</Result>
<Answer soapenc:arrayType=”KeyBinding[1]”>

<KeyBinding>
<AssertionStatus>Valid</AssertionStatus>
<KeyID><KeyIdentifier>du9cXdWZN/0=</KeyIdentifier</KeyID>

<ds:KeyInfo><ds:KeyValue><ds:RSAKeyValue><ds:Modulus>998/T2PUN8HQlnhf
9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw==
</ds:Modulus><ds:Exponent>AQAB</ds:Exponent></ds:RSAKeyValue></ds:KeyVal
ue><ds:KeyName>Account 1823945 Key 3</ds:KeyName></ds:KeyInfo>

<ValidityInterval>
<NotBefore>2000-09-20T12:00:00</NotBefore>
<NotAfter>2000-10-20T12:00:00</NotAfter>

</ValidityInterval>
</KeyBinding>

</Answer>
</ValidateResult>

</soap:Body>
</soap:Envelope>

B.4 Registration of Client Generated Key Pair

Request Message
<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<soap:Body>

<Register xmlns="http://www.xmltrustcenter.org/xml/schema/2000-
11-12-XKMS.sdl">

<Template>
<AssertionStatus>Valid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyID>

<ds:KeyInfo>

<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>
</ds:KeyInfo>

<ValidityInterval>
<NotBefore>2000-09-20T12:00:00</NotBefore>
<NotAfter>2001-09-20T12:00:00</NotAfter>

</ValidityInterval>
</Template>
<Authentication>

<RSAAuthUserInfo
xmlns='http://schema.tbs.test/RSAUserInfo.xsd'>

<ProofOfPossession>
<Signature>2PUN8HQlnhf9YI</Signature>

</ProofOfPossession>
<Authentication>

<Signature>EfdxSXAidruAszN</Signature>
</Authentication>
<PassPhrase>qfarJIsfcVKLo</PassPhrase>

</RSAAuthUserInfo>
</Authentication>

Page 50 XML Key Management Specification (XKMS) v1.0

 50

<Respond>
<string>KeyName</string>
<string>KeyValue</string>

</Respond>
</Register>

</soap:Body>
</soap:Envelope>

Server Response
<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<soap:Body>

<RegisterResult
xmlns="http://www.xmltrustcenter.org/xml/schema/2000-11-12-XKMS.sdl">

<Result>Success</Result>
<Answer soapenc:arrayType=”KeyBinding[1]”>

<KeyBinding>
<AssertionStatus>Valid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyID>

<ds:KeyInfo>
<ds:KeyValue>

<ds:RSAKeyValue>
<ds:Modulus>998/T2PUN8HQlnhf9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidruAsz

NqBoOqfarJIsfcVKLob1hGnQ/l6xw==</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>

</ds:RSAKeyValue>
</ds:KeyValue>

<ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName>
</ds:KeyInfo>

<ValidityInterval>
<NotBefore>2000-09-20T12:00:00</NotBefore>
<NotAfter>2001-09-20T12:00:00</NotAfter>

</ValidityInterval>
</KeyBinding>

</Answer>
<Private/>

</RegisterResult>
</soap:Body>

</soap:Envelope>

B.5 Registration of server generated key

Request
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<soap:Body>
<Register xmlns="http://www.xmltrustcenter.org/xml/schema/2000-

11-12-XKMS.sdl">
<Template>

<AssertionStatus>Valid</AssertionStatus>

XML Key Management Specification (XKMS) v1.0 Page 51

 51

<KeyID>mailto:Alice@cryptographer.test</KeyID>

<ds:KeyInfo><ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName><
/ds:KeyInfo>

<ValidityInterval>
<NotBefore>2000-09-20T12:00:00</NotBefore>
<NotAfter>2001-09-20T12:00:00</NotAfter>

</ValidityInterval>
</Template>
<Authentication><RSAAuthServerInfo

xmlns='http://schema.tbs.test/RSAServerInfo.xsd'><Authentication><Signat
ure>EfdxSXAidruAszN</Signature></Authentication><PassPhrase>qfarJIsfcVKL
o</PassPhrase></RSAAuthUserInfo></Authentication>

<Respond>KeyName</Respond>
<Respond>KeyValue</Respond>
<Respond>Private</Respond>

</Register>
</soap:Body>

</soap:Envelope>

Service Response
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<soap:Body>
<RegisterResult

xmlns="http://www.xmltrustcenter.org/xml/schema/2000-11-12-XKMS.sdl">
<result>Success</result>
<Answer soapenc:arrayType=”KeyBinding[1]”>

<KeyBinding>
<AssertionStatus>Valid</AssertionStatus>
<KeyID>mailto:Alice@cryptographer.test</KeyID>

<ds:KeyInfo><ds:KeyValue><ds:RSAKeyValue><ds:Modulus>998/T2PUN8HQlnhf
9YIKdMHHGM7HkJwA56UD0a1oYq7EfdxSXAidruAszNqBoOqfarJIsfcVKLob1hGnQ/l6xw==
</ds:Modulus><ds:Exponent>AQAB</ds:Exponent></ds:RSAKeyValue></ds:KeyVal
ue><ds:KeyName>mailto:Alice@cryptographer.test</ds:KeyName></ds:KeyInfo>

<ValidityInterval>
<NotBefore>2000-09-20T12:00:00</NotBefore>
<NotAfter>2001-09-20T12:00:00</NotAfter>

</ValidityInterval>
</KeyBinding>

</Answer>
<Private>IsfcVKLob1hGnQ/l6xw</Private>

</RegisterResult>
</soap:Body>

</soap:Envelope>

Page 52 XML Key Management Specification (XKMS) v1.0

 52

Appendix C Immediate Binding

This appendix describes a means of expressing X-KISS and X-KRSS messages without
reference to the SOAP protocol or an equivalent. This is an optional feature,
implementations may implement this but are considered fully compliant with XKMS if
they do not.

Messages may be layered on a MIME compliant transport protocol such as HTTP or
MIME using the following header descriptor.

Content-Type: text/xml; charset="utf-8"

In HTTP the POST method is used to exchange a request and response.

The collected XML schema specification is:
<schema

xmlns:s0="http://www.xmltrustcenter.org/xml/schema/2000-11-12-
XKMS.xsd"

targetNamespace="http://www.xmltrustcenter.org/xml/schema/2000-11-
12-XKMS.xsd"

attributeFormDefault="qualified" elementFormDefault="qualified">
<element name="Register">

<complexType>
<sequence>

<element name="Template" type="s0:KeyBinding"/>
<element name="Authentication" type=“string" />
<element name="Respond" >

<complexType >
<sequence>

<element name="string" type=“string"
minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

<complexType name="KeyBinding">
<sequence>

<element name="AssertionStatus" type="s0:BindingStatus"/>
<element name="KeyID" type=“string" />
<element name="KeyInfo" type="ds:KeyInfo"/>
<element name="ValidityInterval"

type="s0:ValidityInterval"/>
<element name="KeyUsages" >

<complexType >
<sequence>

<element name="KeyUsage" type="s:string"
minOccurs="0" maxOccurs="unbounded"/>

<sequence>
<complexType>

</element>
</sequence>

</complexType>

<simpleType name="BindingStatus" base=“string">
<enumeration value="Valid"/>

XML Key Management Specification (XKMS) v1.0 Page 53

 53

<enumeration value="Invalid"/>
<enumeration value="Indeterminate"/>

</simpleType>

<simpleType name="KeyUsage" base="string">
<enumeration value="Encryption"/>
<enumeration value="Signature"/>
<enumeration value="Exchange"/>

</simpleType>

<complexType name="ValidityInterval">
<sequence>

<element name="NotBefore" type=“timeInstant"/>
<element name="NotAfter" type=“timeInstant"/>

</sequence>
</complexType>

<element name="RegisterResult">
<complexType>

<sequence>
<element name="result" type="s0:ResultCode"/>
<element name="Answer" >

<complexType>
<sequence>

<element name="KeyBinding" type="s0:KeyBinding"
minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
<element name="Private" type=“string" />

</sequence>
</complexType>

</element>

<simpleType name="ResultCode" base=“string">
<enumeration value="Success"/>
<enumeration value="NoMatch"/>
<enumeration value="Incomplete"/>
<enumeration value="Failure"/>
<enumeration value="Refused"/>
<enumeration value="Pending"/>

</simpleType>

<element name="Validate">
<complexType>

<sequence>
<element name="query" type="s0:KeyBinding"/>
<element name="respond" >

<complexType>
<sequence>

<element name="string" type=“string"
minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

<element name="ValidateResult">
<complexType>

<sequence>
<element name="result" type="s0:ResultCode"/>
<element name="answer" >

Page 54 XML Key Management Specification (XKMS) v1.0

 54

<complexType>
<sequence>

<element name="KeyBinding" type="s0:KeyBinding"
minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

<element name="Locate">
<complexType>

<sequence>
<element name="query" type="ds:KeyInfo"/>

<element name="respond" >
<complexType>

<sequence>
<element name="string" type=“string"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</complexType>
</element>

</sequence>
</complexType>

</element>

<element name="LocateResult">
<complexType>

<sequence>
<element name="result" type="s0:ResultCode"/>
<element name="answer" >

<complexType>
<all>

< element name=”ds:KeyInfo” type=”ds:KeyInfo”
minOccurs="0" maxOccurs="unbounded"/>

</all>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

XML Key Management Specification (XKMS) v1.0 Page 55

 55

Appendix D References

[SOAP] D. Box, D Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Frystyk
Nielsen, S Thatte, D. Winer. Simple Object Access Protocol
(SOAP) 1.1, W3C Note 08 May 2000,
http://www.w3.org/TR/SOAP

[WDSL] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web services
Description Language (WSDL) 1.0 September 25, 2000,
http://msdn.microsoft.com/xml/general/wsdl.asp

[XML-SIG] D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon.
XML-Signature Syntax and Processing, World Wide Web
Consortium. http://www.w3.org/TR/xmldsig-core/

[XML-Schema1] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn. XML
Schema Part 1: Structures, W3C Working Draft 22 September
2000, http://www.w3.org/TR/xmlschema-1/

[XML-Schema2] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes; W3C
Working Draft 22 September 2000,
http://www.w3.org/TR/xmlschema-2/

Appendix E Legal Notices
Microsoft, Verisign, WebMethods hereby grant to the W3C, a perpetual, nonexclusive, non-
sublicensable, non-assignable, royalty-free, worldwide right and license under any copyrights in
this contribution to copy, publish and distribute the contribution, as well as a right and license of
the same scope to any derivative works prepared by the W3C and based on, or incorporating all
or part of the contribution.

Microsoft, Verisign, WebMethods further agree that, upon submission of this contribution to the
W3C, Microsoft, Verisign, WebMethods will grant to any party a royalty-free license on other
reasonable and non-discriminatory terms under Microsoft's applicable intellectual property rights
essential to implement and use the technology proposed in this contribution in products that
comply with this contribution, but only for the purpose of complying with this contribution.
Microsoft, Verisign, WebMethods expressly reserve all other rights it may have in the material
and subject matter of this contribution. The licensing commitments made hereunder do not
include any license for implementation of other published specifications developed elsewhere but
referred to in this contribution.

This contribution is being provided “AS IS”, and MICROSOFT, VERISIGN and WEBMETHODS
EXPRESSLY DISCLAIM ANY AND ALL WARRANTIES REGARDING THIS CONTRIBUTION,
INCLUDING ANY WARRANTY THAT THIS CONTRIBUTION DOES NOT VIOLATE THE
RIGHTS OF OTHERS OR IS FIT FOR A PARTICULAR PURPOSE.

