XADL: Enabling Architecture-Centric Tool Integration With XML

Rohit Khare®

Nenad Medvivovic'?

TDepartment of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

{rohit,mgunters,peymano,taylor}@ics.uci.edu

ABSTRACT

In order to support architecture-centric tool integration
within the ArchStudio 2.0 Integrated Development
Environment (IDE), we adopted Extensible Markup
Language (XML) to represent the shared architecture-in-
progress. Since ArchStudio is an architectural style-based
development environment that incorporates an extensive
number of tools, including commercial off-the-shelf
products, we developed a new, vendor-neutral, ADL-neutral
interchange format called Extensible Architecture
Description Language (XADL), as well as a ‘vocabulary’
specific to the C2 style (xC2). This paper outlines our vision
for representing architectures as hypertext, the design
rationale behind xADL and xC2, and summarizes our
engineering experience with this strategy.

Keywords: Software environments, software architectures,
off-the-shelf tool integration, XML

1 INTRODUCTION

The widespread adoption of Software Engineering
Environments (SEE) predates the term itself. The rational
decomposition of the development process and its artifacts
can arguably be traced back to the advent of separate
compilation. The zeroth generation of SEE integration took
files as its primary unit of discourse between various tools.
The well-known UNIX pipe-and-filter architectural style
was entirely based on the concept that one tool’s output data
could be used as an input to another [11].

The first step, then, was a repository-centric approach for
managing these artifacts. In such an Integrated Development
Environment (IDE), different tools would work upon a
central, shared database representing the product-in-
progress. The archetype of this generation was the Stoneman
reference model for the Ada Program Support Environment
[7]. Interlisp [26] can be seen as one instance of this
approach with suite of tools operating on a shared parse-tree.

Michael Guntersdorfer?

Peyman Oreizy'
Richard N. Taylor’r

T Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781, USA
neno@usc.edu

A versioned filesystem was another popular variant, notably
Revision Control System (RCS) [27].

Continuing the ascent, a second generation of process-
centric IDEs emerged in the 1980s which took relations
between these artifacts and their associated workflows as its
unit of discourse. Tools such as Marvel [3] assisted
developers by automating basic process steps and
coordinating the work of tools “outside” the development
path proper. In the extreme, IDE support tools maintained
only those relations, as in the Chimera Linkbase [1].

Finally, we see the current era as the advent of architecture-
centric IDEs that control the evolution of software
throughout its lifecycle using architecture descriptions as its
primary unit of discourse. As an example, ArchStudio 2.0
assumes the existence of versioned repositories and process
automation in its foundation, and so focuses on the design,
evaluation, instantiation, and editing of C2-style
architectures. Supporting tool integration in this generation
now requires an open, hypertext web representing the entire
product, from architecture down to development artifacts.

We developed an Extensible Markup Language (XML)
syntax for Architecture Description Languages (xADL) and
customizations to the C2 style in particular (xC2) in support
of these goals. Furthermore, we integrated our XML
Abstract Syntax Tree (AST) and an Abstract Data Type
(ADT) representing the architecture-in-progress to the
ArchStudio 2.0 environment on the fly, thereby highlighting
the ease of dynamism in an IDE itself designed in the C2
style. By wrapping a parsed, shared representation of the
work at hand behind a (potentially-distributed) event
notification interface, our approach technologically updates
the basic strategy of Field [23].

The balance of this paper focuses particularly on the role
XML played in the integration of several tools within
ArchStudio 2.0. We shall outline the origins and promise of
XML broadly, our detailed design of xADL and xC2, our
implementation experience with it, and a discussion of its
implications for broader and deeper tool integration within
architecture-centric IDEs.

2 EXTENSIBLE MARKUP LANGUAGE (XML)
The HyperText Markup Language (HTML) allows the

structural markup of World Wide Web documents. Now,
HTML's evolutionary successor, XML, takes document
markup to the next level, by offering human-readable
semantic markup that is also machine-readable. As a result,
XML makes it dramatically easier to develop and deploy
new mission-specific markup, enabling the automation of
the authoring, parsing, and processing of networked data.

Broadly speaking, the XML 1.0 standard [6] is a
simplification of the Standard Generalized Markup
Language (SGML) which itself dates back to the mid-60s.
XML should be seen as a toolkit for creating new elements
(also known as ‘tags’) and attributes upon them, as well as
grammar rules governing the parse tree. All of these rules are
captured in a Document Type Definition (DTD), which can
be used to fomally validate any XML instance (file) against
it.

More usefully, though, XML defines a lower level of
conformance known as ‘well-formed’. This level merely
assures that all the elements open and close properly, and so
on. Such purely mechanical checking allows designers to
‘mix and match’ elements from several DTDs. In
particularly, the XML Namespaces facility allows us to
interpret unknown element names as URLs which can be
further investigated automatically or by hand. Namespaces
thus disambiguate potentially conflicting tag semantics.

Our data integration strategy for ArchStudio 2.0 adopted
XML for several of the properties introduced above:

* A text format governed by an open standard promised
future-proof file formats. Furthermore, the advent of
hybrid XHTML modules already provided a rich tagset
for human-readable documentation and presentation of
the architecture-in-progress.

» Well-formed XML accommodated multiple tools’ own
subtrees within the data model, as well as tool-specific
attributes decorating existing elements.

» Namespaces explicitly articulated separate control over
the vocabulary for describing high-level architectures in
common (XADL), style-specific features (xC2), and tool-
specific additonal data.

« Intrinsic support for hypertext linking encouraged future

refactoring of architecture description into separate
resources describing individual components and types,
potentially published remotely by several developers
(hyperlinked reuse).

« Finally, rich protocols for accessing, managing, and ver-
sioning XML repositories already existed, in the form of
WebDAV (Web Distributed Authoring and Versioning)
extensions to HTTP and the XPointer language for
hyperlinking directly within XML documents

3 APPROACH

ArchStudio [20] is an architecture-centric IDE, based on the
C2 architectural style [25]. The C2 style is an event- and
component-based style, which allows dynamic evolution of
the software system at runtime [12], due to its enforced
decomposition into units of computation and data store,
called components, and units that enable the interaction
among components, called connectors, as suggested by
David Garlan and Mary Shaw [23]. The highly dynamic
nature of the C2 style is primarily caused by a central rule of
the style, which does not allow direct links between two
components, but rather requires the involvement of a
connector in between. Hence components may be plugged in
and out of the system without leaving another component
behind with a dangling link. The separation of architectural
units into components and connectors may be regarded
analog to the nodes and transitions concept of Petri nets [21],
where direct links may only exist from nodes to transitions
and vice versa, but not within each domain. However, the C2
concept differs insofar as connector may be linked directly to
other connectors.

ArchStudio not only supports the development of C2 style
software, but was itself implemented in the C2 style. Such
support for software evolution made ArchStudio itself an
excellent target for incremental tool integration. Version 2.0
built upon a suite of tools already developed for ArchStudio
1.0 to add a new shared repository format (XADL), new
style-checking tools, and several commercial- and research-
grade off-the-shelf tools, including Rational Rose [22],
Armani [19], Metamata [14], and JavaBeans [24] as shown
in Figure 1.

1 I [1 1
Arch Evolution Rescurce Rational Rose
Boure C2 SADEL Tapdagied
Manager Partitioning | ||Generats LML desior| e i
Furime medfiction || Meps componsnes from 3 C2ante el \erityCo.siyk:
darchtedums | |[procsssng sements || arhiscd moded i e
Web Browser Depandancy Armani Argalli ML Type Chacker Code G enerator]
Retrieve softwar, Analyzer Archectual UML-based design| Type modeling and|| |Code genemtion|
komponantai o || Veriies componen consimnt o compone chacking ior of compenan
the Web depandencies checking internala archiectures interfaces
] I]]]]
Argoic2 ArchShell Extenaion Wiz Uncx Palatto
Giraphical design Inferactie e Installanew e
environment for edtealie e i e e
ca & F ior DA,
Metamata IDE Arabica
Vertlies conomance java Beana/C!
between soure cod| reegraion
and architecture
DRADEL

Figure 1. .ArchStudio 2.0 integrates several tools in the C2 style.

The first step required introducing an abstract data type

representing the architecture-in-progress, ArchADT, quite

apart from its new representation in an XML-based abstract

syntax tree (AST). Each step had a beneficial consequence:

1. Since the message-based C2 style transmits by-copy
rather than by-reference, globally sharing an ArchADT
replaced the habit of sending enormous messages repre-
senting the entire architecture-in-progress. Furthermore,
the new technique removed artificial sequence dependen-
cies for tools that modified disjoint aspects of the archi-
tecture.

2. While ArchStudio 1.0 tool integration was either limited
to tools that understood its internal application program-
ming interface (API) or were mapped to it using compo-
nent wrappers, the advent of XML at least eased data
integration with off-the-shelf tools. Since the AST sup-
ported lowest-common-denominator access for tools
which added new subtrees of information, or new
attributes of existing objects, an XML AST enabled inte-
gration of tool-specific information transparently, within
the ArchADT.

In particular, we designed XxADL to be a shared language for
representing a variety of possible ADLs. It introduces five
basic tags, namely <Architecture>, <Component>,
<Connector>, <ComponentType>, and <ConnectorType>,
each with its own subtrees as well as hyperlinks between
them.
* XADL
* Architecture
* Links
» Component
* Supports
» ComponentType
* Interface
» Parameter
» Connector
» Supports
» ConnectorType
* Interface
 Parameter

where
» XADL->Architecture->Links specifies a list of directed
hyperlinks between component and connector instances
(links to <Component> and <Connector> tags, respec-

<l-- xC2 adds one parameter to the xADL:ConnectorType tag
namely a message filtering policy with a default of none -->

<IELEMENT xADL:ConnectorType (Supports*)>

<IATTLIST xADL:ConnectorType name CDATA #REQUIRED
xC2:filter (no_filtering |

notification_filtering |

message_filtering |

prioritized |

message_sink) 'no_filtering">

Figure 2. An excerpt from the combined xADL and xC2 DTD

tively),

« Component->Supports specifies name and type(s) sup-
ported by a component instance,

« ComponentType->Interface specifies name and method
interfaces for each component type,

« ComponentType->Interface->Parameter specifies input
and output parameters of a component interface,

« Connector->Supports specifies name and type(s) sup-
ported by a connector instance,

« ConnectorType->Interface specifies name and method
interfaces for each connector type, and

« ConnectorType->Interface->Parameter specifies input
and output parameters of the connector interface.

XADL may be extended to support a partciular architectural
style, such as C2, by mixing-in additional XML
Namespaces. In our case, xC2 added C2-specific tags,
attributes, and constraints to the specification, as shown in
the example in Figure 2.

XADL also supports the storage of tool-specific information
as well-formed XML data, though at the expense of formal
validation against a single, unified DTD. Leaving the
interpretation of data to participating tools still allows
ArchStudio to centrally manage and monitor the
architecture-in-progress, even if it does not “understand” the
data it stores.

3 IMPLEMENTATION ISSUES

The first tool to be upgraded was DRADEL (Development
of Robust Architectures using a Description and Evolution
Language) [18]. As the hub of the first-generation system, it
was used to model architectures in the C2 style, check and
enforce style constraints, manage heterogeneous subtyping,
and generate application skeleton code. The central artifact
representing the architecture-in-progress was a read-only,
edit-externally C2SADEL text file.

Our new repository strategy was implemented at two layers:
a ‘physical’ AST that guaranteed storage of well-formed
XML fragments; and a ‘logical” ArchADT that enforced the
grammar and semantic rules (validity) of xADL and xC2.
For the former service, we published a request-response
message interface for basic tree manipulation: CreateTree,
AddChildNode, DeleteNode, SetAttribute,
GetNodelnfo, ReadFromFile, SaveToFile, and so on in
the manner of Figure 1. At the logical layer, we preserved the
existing interface at a higher level of abstraction, such as

NewArchitecture, AddComponent, BasicSubtypeOf,
and so on. Two functions were used throughout the class
hierarchy to keep the two levels synchronized, namely
toAST and fromAST; each logical object in the architecture
maintained a ‘shadow node’ in the AST with its current state.

Thus, by contrast to the hand-coded text input parser of the
previous generation, using off-the-shelf XML parsing
technology automatically provided ‘round-trip’ input and
output of the AST at any point.

To dynamically evolve from the existing ArchitectureSpec
object that reflected a C2SADEL-format input file to the
new ArchADT object bound to an XML-format
representation, we applied a transition strategy which
mirrored the notification stream used to construct the former
onto the latter. The central challenge within that process, in
turn, was managing the extreme parallelism of our new
XML AST store, since the original environment was entirely
sequential by virtue of passing the entire ArchitectureSpec
object by value from parser to parser. Naturally, replacing
massive copying of the entire architecture-in-progress with
many more small queries against a shared representation
eased physical distribution of ArchStudio 2.0 across LANSs.
Replacing in-process procedure calls with remote ones has
its limits at Internet-scale, however. While we did not enact
ArchStudio 2.0 across high-latency public Internet links, the
‘chatty’ pattern of AST access could accumulate into
unacceptable overall performance.

Serializing edits to the shared AST was another difficult
problem to address within the C2 event-based architectural
style. Since it does not make any assumptions about the
order messages are sent and retrieved within the system,
edits must be tracked by unique identifiers or treated as
idempotent (that is, reorderable). Of course, one atomicity
solution is strict sequencing of requests and responses with
one speaker at a time, as ArchStudio 1.0 did. This
corresponds to a depth-first construction of the AST, while
our parallel approach permits multiple tools to construct or
analyze portions of the architecture simultaneously.

The problem, then, is that several messages or notifications
of the exact same type, sometimes even with the same
parameters, might be outstanding at the same time. Two
notices that ChildAdded 38 <Component> 40 and
ChildAdded 38 <Component> 41 cannot be reliably
demultiplexed back to their respective initiators (the first
numerical parameter is a common parent id, as shown in
Figure 1, and the second is a newly-minted nodelD not
initially known to the requestor).

Our solution was an additional optional parameter which
identified the calling component, ref_com. Sending a
pointer to the calling object on a round-trip through the AST
interface was essential to decentralizing access to it within
ArchStudio2 (i.e. multiple parallel readers and writers).
Note, though, that the sequential delivery of requests by the
C2 connector interface wrapping the AST still implicitly
serialized all 1/0 requests.

The complete decomposition of ArchADT includes several
more classes, as shown in Figure 1. AST, ASTNode, and

ASTAttribute represent the tree anchor (or root), nodes
within the tree, and attributes of the tree nodes, respectively.
Good Java programming style packaged the constant string
values and request names within an APIConstants class, as
well as a central ASTExceptions class. Finally, the entire
suite was encapsulated by an ASTComponent class which
handled the external event interface according to the C2
style.

c2.framework java.lang

ComponentT hread FIFOPaort

N/

]
Ld /

AST Component ASTEuxceptions

1 1
1

Request Exception

Naotification

c2.dradel

APIConstants

AST Mtribute

ASTHode |2
—
n

Figure 1. ArchADT component architecture in Booch notation [4].

*—— has
* ¥

4 DISCUSSION

There are several interesting implications of our adoption of
XML and our design of XADL and xC2 in particular. First,
adopting a standard syntax for representing the tool data
being integrated within ArchStudio 2.0 should generate
compelling ‘network effects’ for our product. That is to say,
there is dramatic potential for reuse with XML over our
previous custom text format. Already, we have been able to
leverage off-the-shelf parsing technology, user interfaces
(Figure 1), syntax-directed editors (Figure 2), and schema
development tools.

Most of all, the XML developer community is already
oriented towards enabling ‘mix-and-match’ reuse of
application-specific ontologies. For example, the World
Wide Web Consortium is developing the Scalable Vector
Graphics language (SVG, [8]) for drawings. A future Unified
Modeling Language (UML, [5]) graphical editor could
produce SVG documents which could be transparently
annotated with XADL and xC2 descriptions of the
components and connectors those boxes and lines represent.

Second, the approach we have adopted in xADL can be
easily extended to support multiple architecture description
languages (ADLs), even within a single XML schema. Our
extensive study of ADLs [16] has indicated that most all
mainstream ADLs agree on the existence of components,
connectors, and their configurations. A small number of
ADLs, including Rapide [12] and Darwin [13], do not
explicitly model connectors. However, even these ADLS

support simple component interconnections; furthermore,
Rapide employs specialized "connection components” to
support more complex interactions. Additionally, all ADLs
model component interfaces and do so in a relatively
uniform fashion. Therefore, these shared aspects of ADLs
would become part of the basic xADL schema.

That basic schema could then be extended in a number of
ways to represent the varying parts of architectural
descriptions across ADLs, such as the manner in which
ADLs model architectural semantics, support evolution
(both at system design time and run time), constrain the
architecture (and its evolution), and so forth. Thus, for
example, an XADL schema could simultaneously describe
architectures specified in C2SADEL [18] and Wright [1]. If a
particular tool isinterested in the static model of behavior, it
would access C2SADEL's component invariants and pre-
and postconditions; alternately, if the tool isinterested in the
system's dynamic semantics, it would access Wright's CSP-
related items and ignore others. Another possibility that
xADL affords usisthe support for multiple configurations of
the same set of components, where we access the part of the
schema representing the specific configuration we are
interested in, disregarding al other configurations.

Figure 1. An example xADL file viewed in Microsoft Internet
Explorer 5.0 rendered by our default XSL stylesheet

2} D:\wwwroot\planner.sml - Microsoft Internet Explorer =

| Ele Edt Miew Favoites Toos Help |

Jcav-o_ca@

at
Back fonad | Siop Refiesh Home

Mal Pt Edl
| Address [[2] D:vwmwmactiplanner sl =
|Links @]shoo! &]MSN @]HotBot ©]AksVists @]Google &]CNN &]lnvestor @]Kiklsnd &]lwinel >

(&
Search Favoites History

<7uml version="1,0" 7>
- <xADL>
£ <architecture name="pPlanner">
+ <Topology name="Planner">

<Component Running="false" supports="ClockComponent"
name="Clock1" />

<Component Running="false" supparts="InPortComponent"
name="Ports2" />

<Companent Running="false" supports="NextIncomingShipment"
name="NextShipment3' />

<Component Running="false" supports="¥ehicleGComponent"
name="vehicles4" />

<Companent Running="false" supports="WarehouseCamponent"
name="Warehousess" />

<Component Running="false" supports="ShipmentRouter'
name="Routert" />

<Compaonent Running="false’ supports="InPortArtist"
name="PortArtist?" />

<Component Running="false" supports="Warehouseartist"
name="WarehouseArtists' /> b

<Component Running="false" supports="VehicleArtist"
name="vehicleartist9' />

<Companent Running="false" supports="GraphicsBinding"
name="GraphicsBinding10" />

<Connectar Running="
<Connectar Running="
<Connectar Running="
<Connector Running="

</Architectures

<Component Type OS="Unix"
Implementationvadule="c2.planner.ClockGomponent” Language="Java"
natme="ClockComponent” />

<Component Type 0S="Unix"
ImplementationModule="c2 planner. InPertComponent” Language="Java"

supports="Bus1" name="Bus1" />
supports="Bus2" name="Bus2" />
supports="Bus3" name="Bus3" />
se" supports="Bus4" name="Bus4" />

2] [[[=) My Computer

S

Figure 2. IBM’s Xeena is a DTD-driven editor which can thus

automatically enforce XML validation rules on xADL/xC2 files

BEXEENA for xadl ditd ISi=] B3

File Edit Insert Selection Help
Djc|apm] o] X[|w[G[8[#[0] B~ #lv|a] 2w |
I)) I) @ ’@
| [5E0L]_Starcer
ﬁ |-T[UTF-8] d:\proj\archstudio'planner.xmi [CF]x]
il | = E oL |
i o [l I Architecture: name: Planner
~d &1 Topology: name: Planner
i o [l component: Archhell Running false, supports: ClockComponant, name: Clocki
-a -] Component. Archshell:Running: false, supports: InPoriComponent, name: Forts2
i o [comporent ArchSheliRunning false, supports:
~d npanent ArchShellRunning: false, -
o I component. ArehshellRunning: false, suppors:
i d [I Component: ArchShelRunning false, supports: ShipmentRouter, name: Routeré
f o -] Component. Archshell:Running: false, suppors: INPorArtist, name: Portarist?
~d 1 component ArchsheltRunning: false, support , name
- I Component: Arch3hellRunning false, supports: VehicleArist, name: VehicleArista
i Bl comporent I component. ArenshellRunning: false, supports: GraphiesBinding, name: GraphicsBinding10
-a Jﬂ I Connector: ArchShellRunning: false, supports: Bust, name: Bust
| N5 1 Connactor arehSholl Binning: faica_cunnare: Rus?_nama: Fiie Jﬂ
o Semerts | ! | -

5 CONCLUSIONS

We adopted XML as a key technology for enabling
architecture-centric tool integration in the ArchStudio 2.0
IDE. The C2 style eased the evolution from the previous
version’s custom text file format, C2SADEL, to a generic
XML AST as the repository. This had immediate benefits for
integrating several tools’ data in the same file, for annotating
existing data without interfering with its original use, and for
hyperlinking to external data transparently.

Furthermore, we developed a new ontology for describing
entire families of Architecture Description Languages
(ADLs). By extracting the five most common abstractions
and their relations into a top-level XADL namespace, we
were able to separately represent data specific to the C2
architectural style and C2SADEL in a subsidiary xC2
namespace.

These technologies directly aided a strictly distributed team
to integrate a substantial set of research and commercial
tools within ArchStudio 2.0. Our eventual aim is even wider,
to support Internet-scale development, with potentially large
and varying developer communities composing systems over
long times and distances [8]. Representing architectures as
hypertext affords us reach; extracting our ontology in XML
promises depth, through integration with generic, non-ADL-
aware XML applications.

6 ACKNOWLEDGMENTS

We wish to acknowledge the following individuals for their
participation in the work described in this paper. ArchStudio
1.0 was developed by P. Oreizy and N. Medvidovic.
ArchStudio 2.0 was developed by P. Oreizy, R. Khare, M.
Guntersdorfer, K. Nies, E. Dashofy, Y. Kanomata, R.
Natarajan, A. Hitomi, R. Klashner, L. Pan, M. Dias, M.
Vieira, S. Devanathan, and J. Robbins.

This effort was sponsored by the Defense Advanced
Research Projects Agency, and Air Force Research
Laboratory, Air Force Material Command, USAF, under
agreement numbers F30602-97-2-0021 and F30602-99-C-
0174. The U. S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Air Force Research Laboratory or the U.S.
Government.

7 REFERENCES

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

R. Allen and D. Garlan. A Formal Basis for Architectural Con-
nection. ACM Transactions on Software Engineering and Meth-
odology, vol. 6, no. 3, pp. 213-249, July 1997.

K. M. Anderson, R. N. Taylor, and E. James Whitehead, Jr.,
Chimera: Hypertext for Heterogeneous Software Environ-
ments, Proceedings of the 1994 European Conference on
Hypermedia Technology ECHT '94, Edinburgh, Scotland, 1994.
N. S. Barghouti. Supporting Cooperation in the Marvel Pro-
cess-Centered SDE, 5th ACM SIGSOFT Symposium on Soft-
ware Development Environments, edited by Weber, H. pp21-31
December 1992.

G. Booch, Object-Oriented Analysis and Design with Applica-
tions, Benjamin/Cummings, Redwood, City, CA, 1996.

G. Booch, I. Jacobsen, and J. Rumbaugh, The Unified Model-
ing Language User Guide, Addison-Wesley, Reading, MA,
1998.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen, eds. Extensible
Markup Language (XML) 1.0, World Wibe Web Consortium
Recommendation, 1998.

DoD. Requirements for Ada Programming Support Environ-
ments: STONEMAN. United States Department of Defense,
Office of the Under Secretary of Defense for Research and
Engineering, 18 February 1980. NTIS-AD-A100 404/3.

J. Ferraiolo, et al. Scalable Vector Graphics (SVG) 1.0 Specifi-
cation, World Wide Web Consortium Working Draft, 1999.

R. T. Fielding, E. J. Whitehead, Jr., K. M. Anderson, G. A. Bol-
cer, P. Oreizy, and Richard N. Taylor, Web-based Development
of Complex Information Products, Communications of the
ACM, 41(8), August 1998.

D. Garlan and M. Shaw, An Introduction to Software Architec-
ture, Advances in Software Engineering and Knowledge Engi-
neering, Volume I, World Scientific Publishing Company, NJ,
1993.

B. Kernighan and R. Pike, The UNIX Programming Environ-
ment, Prentice-Hall, Englewood Cliffs, NJ, 1984.

D. C. Luckham and J. Vera. An Event-Based Architecture Defi-
nition Language. IEEE Transactions on Software Engineering,
vol. 21, no. 9, pp. 717-734, September 1995.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
Distributed Software Architectures. In Proceedings of the Fifth
European Software Engineering Conference (ESEC’95), Barce-
lona, September 1995.

Metamata IDE, Metamata Corp., http://www.metamata.com/
N. Medvidovic, Architecture-Based Specification-Time Soft-
ware Ecolution, Ph. D. Dissertation, University of California,
Irvine, 1998.

N. Medvidovic and R. N. Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guages. IEEE Transactions on Software Engineering. Accepted
for publication (to appear).

N. Medvidovic, P. Oreizy, R. N. Taylor, R. Khare, and M.
Guntersdorfer, An Architecture-Centered Approach to Software
Environment Integration, University of Southern California/
University of California, Irvine, 1999.

N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Lan-
guage and Environment for Architecture-Based Software
Development and Evolution. In Proceedings of the 21st Inter-
national Conference on Software Engineering (ICSE’99), Los
Angeles, CA, May 1999.

R. T. Monroe, Armani Language Referene Manual, Technical
Report CMU-CS-98-163, Carnegie Mellon University, School
of Computer Science, 1998.

20

21.
22.
23.
24.
25.

26.
217.

8

. P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G.
Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A.
L. Wolf. An Architecture-Based Approach to Self-Adaptive
Software, IEEE Intelligent Systems, vol. 14, no. 3, pages 54-62.
May/June 1999.

J. L. Peterson. Petri Nets, ACM Computing Surveys, 9(3):223-
252, September 1977.

Rational Software Corp., Rational Rose 98: Using Rational
Rose, 1998.

S. P. Reiss, Connecting Tools Using Message Passing in the
Field Environment, IEEE Software, July 1990.

Sun Microsystems, Inc., Enterprise JavaBeans 1.1, Draft Speci-
fication, http://java.sun.com/products/ejb/newspec.html.

R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead
Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow, A
Component- and Message-Based Architectural Style for GUI
Software, IEEE Transactions on Software Engineering, June
1996.

W. Teitelbaum and L. Masinter, The Interlisp Programming
Environment, IEEE Computer, April 1981.

W. F. Tichy. RCS: A System for Version Control, Software
Practice and Experience, 15(7):637-54, July 1985.

APPENDIX: THE XADL / XC2 DOCUMENT TYPE
DEFINITION (DTD)

<?xml version="1.0" encoding="US-ASCII"?>

<l--
<l--

<!ELEMENT xADL

<l--

<IELEMENT Architecture

<IATTLIST
<IELEMENT Topology

<I--

Revision 1 of xADL/1.0 -->

XADL

This is an arbitrary parent/container element that demarcates the
beginning of a "xADL block" of information.

In the future, we want xADL webs of documents spun from
individual XML instances describing single instances,
interfaces, or architectural configurations. However,

initial implementations will use a single file, so we

created a "surrogate parent" element which functions as
the root for XML purposes -->

(ComponentType |
ConnectorType |
Architecture)*>

ARCHITECTURE

The Architecture tag represents a single configuration
of instances by the directed edges between them. Thus,
the content model is a list of Link tags. -->

(Component |
Connector)*,

Topology>
name

(Link*)>

Architecture CDATA #REQUIRED>

LINK

The Link Element represents a single directed edge between any two

>

instances (Components or Connectors). In particular, the edge endpoint
can be specified as a particular Port by using XLink Fragment
identifiers, e.g. gameboard#Top, or vault#DepositorySlot.

<IELEMENT Link EMPTY>

<IATTLIST Link from CDATA #REQUIRED
to CDATA #REQUIRED
name CDATA #IMPLIED >

<!-- COMPONENT TYPE

This tag has only one XADL attribute, name. At the basic XADL level,
the only salient feature of a ComponentType is its Methods. A type
hierarchy, if any, can be constructed with the Supports child element

C2, in particular DRADEL, adds analysis of "behavior",
for which see the optional child tag Behavior -->

<IELEMENT ComponentType (Supports*,

<IATTLIST ComponentType

<IELEMENT Component
<IATTLIST Component

<!ELEMENT Connector
<IATTLIST Connector

Method*,
xC2:Behavior?)>
name

CDATA #REQUIRED>

<!-- CONNECTOR TYPE

This tag has only one XADL attribute, name. At the basic XADL level,
there are no further refinements on a Connector except its type
relations (if any).

C2 adds the attribute filter, specifying one of several predefined
choices. The default setting is no_filtering-->

<IELEMENT ConnectorType (Supports*)>
<IATTLIST ConnectorType name

CDATA #REQUIRED
(no_filtering |
notification_filtering |
message_filtering |
prioritized |
message_sink)

xC2:filter

'no_filtering">

<I-- METHOD

The Method tag describes a single operation upon several
Parameters (which can represent inputs, outputs, or both).

C2 adds the direction attribute.

C2, in particular DRADEL, referred to these as InterfaceElements.

C2, in particular DRADEL, maps each Method to an Operation for
behavioral analysis. xC2:mapToOper cites a value for uid which occurs
on an Operation (since it is not clear if Operation names are unique
enough) -->

<IELEMENT Method (Parameter*)>
<IATTLIST Method name CDATA #REQUIRED
XxC2:direction (provide |
require) #REQUIRED
XxC2:mapToOper IDREF #IMPLIED >

<I-- PARAMETER

To support arbitrary method signatures in XADL, parameter roles
(in, out, inout; default of 'in") are specified separately for

each parameter. This allows multiple results, for examples.

The Parameter tag is an empty element.

Its type attribute is an opaque string for our purposes (e.g. "Int")

C2, in particular DRADEL, maps each Parameter to a Variable for
behavioral analysis. xC2:mapToVar cites a value for uid which occurs
on an Variable (since it is not clear if Variable names are unique
enough) -->

<IELEMENT Parameter EMPTY>

<IATTLIST Parameter name CDATA #REQUIRED
type CDATA #REQUIRED
role (in|out|inout) ‘in'
XC2:mapToVar IDREF #IMPLIED >

<!-- COMPONENT

The Component tag is a named instance that can point to one (or more)
ComponentTypes it supports. It can expose these functions over one
(or more) named Ports.

NOTE: C2 LINK SETS

C2 data structures traditionally put all of a brick's

connections to other bricks on this one, but we have chosen to
entirely externalize this responsibility to the Link tags, leaving

it as a simple computation over the hyperweb to compute sets such
as "aboveCompLinks". -->

(Port*,Supports*)>

name CDATA #REQUIRED >

<I-- CONNECTOR

The Connector tag is a named instance that can point to one (or more)
ConnectorTypes it supports. It can expose these functions over one
(or more) named Ports. -->

(Port*,Supports*)>

name CDATA #REQUIRED >

<!l-- PORT
The Port tag is a qualifier for naming Link endpoints within a given
Component or Connector.

NOTE: C2 USAGE

C2-style architectures will have to explicitly add <Port type="Top">

and <Port type="Bottom"> to every single Component and Connector, and
also specify #Top and #Bottom on every link. -->

<!ELEMENT Port EMPTY>
<IATTLIST Port type CDATA
<l-- SUPPORTS
The Supports tag specifies type-compatibility for Component and
Connector. However, the downside is that XML verification
alone can not enforce type-coherency (i.e. that a Component's Supports
child can only link to ComponentTypes rather than ConnectorTypes).

The "type" attribute must be a unique string ocurring in some other
ComponentType or ConnectorType's "name" attribute. -->

<IELEMENT Supports EMPTY>
<IATTLIST Supports type CDATA
<l-- xC2:BEHAVIOR
The following xC2:prefixes tags all support C2, in particular DRADEL,
in specifying component behavior. It also adds mapToOper and mapToVar
attributes to Method and Parameter, respectively, to link behavioral
specifications to interfaces.

The xC2:Behavior tag has only one xADL attribute, name,
which is implied as the name of the encolsing ComponentType.

Its children map onto C2SADL's specifications for state variables,
invariants, and operations. -->
<IELEMENT xC2:Behavior (xC2:State,
xC2:Invariant,
xC2:Operation*)>

<IATTLIST xC2:Behavior name CDATA #IMPLIED>

<IELEMENT xC2:State (xC2:Variable | xC2:Function)* >

<IELEMENT xC2:Variable =~ EMPTY>

<IATTLIST xC2:Variable name CDATA #REQUIRED
type CDATA #REQUIRED
uid CDATA #REQUIRED

<!-- xC2:FUNCTION
From and To values are supposed to be types, either language
built-ins (Integer, etc) or custom types -->

<IELEMENT xC2:Function EMPTY>

<IATTLIST xC2:Function name CDATA #REQUIRED
from CDATA #REQUIRED
to CDATA #REQUIRED

<IELEMENT xC2:Invariant (xC2:Expression)*>

<!-- xC2:EXPRESSION
Expression is an anonymous grouping tag to bracket unparsed expression
text from the original C2SADL spec.
E.g. <xC2:Expression> x \eqgreater y </xC2:Expression> -->

<IELEMENT

XC2:Expression ANY>

<!-- xC2:0PERATION
Operation is a named, uniquely identified grouping tag to bracket
related information from the original C2SADL spec. In particular,
it may include at most one Let, Pre, and Post sections. -->

<IELEMENT xC2:Operation (xC2:Let?, xC2:Pre?, xC2:Post?)>

<IATTLIST xC2:Operation name CDATA #REQUIRED
direction (provide |
require) #REQUIRED

#REQUIRED >

#REQUIRED >

v

v

uid CDATA #REQUIRED > <IELEMENT XxC2:Pre (xC2:Expression)>
<IELEMENT xC2:Let (xC2:Variable)*> <IELEMENT xC2:Post (XC2:Expression)>

