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Abstract

MSL (Model Schema Language) is an attempt to formalize some of the core idea in XML
Schema. The benefits of a formal description is that it is both concise and precise. MSL
has already proved helpful in work on the design of XML Query. We expect that similar
techniques can be used to extend MSL to include most or all of XML Schema.

1 Introduction

XML is based on two simple ideas: represent documents and data as trees, and represent the
types of documents and data using tree grammars. Tree grammars are represented using DTDs
[4] or XML Schema [6, 11, 3]. XML Schema is being developed under the auspices of the World
Wide Web Consortium (W3C), the body responsible for HTML and XML, among other things.
As of this writing, XML Schema has just entered candidate recommendation status.

XML Schema is more powerful than DTDs. Among other things, it uses a uniform XML
syntax, supports a sophisticated notion of derivation of document types, permits all groups and
nested definitions, and provides atomic data types (such as integers, floating point, dates) in
addition to character data. XML Schema is also more complex than DTDs, requiring around a
couple of hundred pages to describe, as opposed to the thirty or so in the original specification
of XML 1.0 (which included DTDs). The remainder of this paper assumes some familiarity with
XML Schema.

MSL (Model Schema Language) is an attempt to formalize some of the core idea in XML
Schema. The benefits of a formal description is that it is both concise and precise, although it
does require some familiarity with mathematical notation.

MSL is described with an inference rule notation. Originally developed by logicians [7, 13],
this notation is now widely used for describing type systems and semantics of programming
languages [10]. A basic understanding of grammar rules and first-order predicate logic should
be adequate to understand this paper; all other notations are defined before they are used.

We hope our work on MSL may make XML Schema easier to understand, and may aid in
the process of designing other specifications and tools that build on XML Schema. In particular,
MSL has already proved helpful in work on the design of XML Query, another W3C standard
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currently under development. We expect that similar techniques can be used to extend MSL to
include most or all of XML Schema.

MSL (like XML Schema) draws on standard ideas about type systems for semistructured data
as described in the literature [1, 9], notably the use of regular expressions and tree grammars. In
particular, MSL closely resembles the type system in Xduce [8]. Another example of formalizing
part of an XML specification can be found in [12].

Many important aspects of XML Schema are not modeled by MSL. We have focussed on
the core material in XML Schema Part I (Structures), as we believe this is the most complex.
Features of XML Schema that are not modeled include the following.

• Identity constraints.

• The mapping from XML Schema syntax into components.

• The unambiguity constraint on content models.

• Skip and lax wildcard validation.

• Null elements.

• A check that abstract components are not instantiated.

• Support for form and form default.

• Support for final, block, use, and value.

• The Post Schema Validation Infoset.

• Atomic datatypes.

We have begun to work on modeling the first two of these. We believe that most or all of the
items in the above list could be modeled with additional effort.

In addition, MSL differs from XML Schema on the definition of restriction. We believe the
definition of restriction in XML Schema is unnecessarily ad hoc, as explained in Appendix A.

The remainder of this paper is organized as follows.

• Section 2 gives an overview of MSL.

• Section 3 defines the basic MSL structures, including names, groups, and components.

• Section 4 describes normalization.

• Section 5 describes refinement.

• Section 6 describes matching.

• Appendix A lists problems with the current XML Schema Working Drafts, uncovered
during the MSL work.

• Appendix B lists suggestions for improving XML Schema, based on the MSL work.
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2 Overview

This section uses a running example to introduce the MSL representation of a schema, which
uses a mathematical notation that is easier to manipulate formally than the XML syntax of
Schema. Particular attention will be given to the use of normalization to provide a unique name
for each component of a schema.

Here is a sample schema written in W3C XML Schema syntax.

<xsi:schema
targetNamespace = "http://www.foo.org/baz.xsd"
xmlns = "http://www.foo.org/baz.xsd"
xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema"
elementFormDefault = "qualified">

<xsi:element name="a" type="t"/>
<xsi:simpleType name="s">
<xsi:list itemType="xsi:integer"/>

</xsi:simpleType>
<xsi:complexType name="t">
<xsi:attribute name="b" type="xsi:string"/>
<xsi:attribute use="optional" type="s" name="c"/>

</xsi:complexType>
<xsi:complexType name="u">
<xsi:complexContent>
<xsi:extension base="t">
<xsi:choice>
<xsi:element name="d">
<xsi:complexType>
<xsi:sequence>
<xsi:element name="a"

type="xsi:string"
minOccurs="1"
maxOccurs="unbounded" />

</xsi:sequence>
</xsi:complexType>

</xsi:element>
<xsi:element name="e" type="xsi:string"/>

</xsi:choice>
</xsi:extension>

</xsi:complexContent>
</xsi:complexType>

</xsi:schema>

And here is an XML document which matches the above schema.
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<a xmlns="http://www.foo.org/baz.xsd"
xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance"
xsi:type="u"
b="zero"
c="1 2">
<d xmlns="">
<a>three</a>
<a>four</a>

</d>
</a>

2.1 Normalization

MSL uses a normalized form of a schema, which assigns a unique universal name to each com-
ponent of a schema, and flattens the structure. (A component is anything which may be defined
or declared: an element, an attribute, a simple type, a complex type, a group, or an attribute
group.)

Here are the normalized (universal) names of the components in our sample schema. For
each name, we list two forms: the long form is the name proper, while the short form is an
abbreviated version we use in examples to improve readability.

long form short form

http://www.foo.org/baz.xsd#element::a a
http://www.foo.org/baz.xsd#type::s s
http://www.foo.org/baz.xsd#type::t t
http://www.foo.org/baz.xsd#type::t/attribute::b t/@b
http://www.foo.org/baz.xsd#type::t/attribute::c t/@c
http://www.foo.org/baz.xsd#type::u u
http://www.foo.org/baz.xsd#type::u/element::d u/d
http://www.foo.org/baz.xsd#type::u/element::d/type::* u/d/*
http://www.foo.org/baz.xsd#type::u/element::d/type::*/element::a u/d/*/a
http://www.foo.org/baz.xsd#type::u/element::e u/e

The names reflect the nesting structure of the original schema. Nested elements or attributes
are given the name of the element or attribute; nested types are given the anonymous name *.
The syntax of names is chosen to be similar to XPath [5].

MSL’s normalized names clearly distinguish local names from global names. Where previ-
ously it might be possible to confuse the global a element with the local a element, now these
are given distinct names, a and u/d/*/a respectively. The latter indicates that the global type
u contains a local element d which contain an anonymous type * which contains a local element
a. Each attribute or element contains at most one anonymous type, so using the name * for
such types leads to no confusion.

MSL uses a mathematical notation that is more compact than XML, and more amenable to
formal use. Mathematical notation is used for model groups, components, and documents.
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2.1.1 Model groups

MSL uses standard regular expression notation [2] for model groups. In what follows, g stands
for a model group (as does g1, g2, and so on). The constructors for model groups include the
following.

ε empty sequence

∅ empty choice

g1 , g2 sequence, g1 followed by g2

g1 | g2 choice, g1 or g2

g1 & g2 all, g1 and g2 in either order

g{m,n} repetition, g repeated between minimum m and maximum n times
(m is a natural number, n is a natural number or ∞)

mixed(g) mixed content in group g

a[g] attribute, with name a and content in group g

e[g] element, with name e and content in group g

w wildcard, with name in wildcard w

p atomic datatype (such as xsi:String or xsi:Integer)

x component name

Here is an example of a group in MSL notation, which corresponds to an a element with
content of type u in our running example.

a[
(t/@b[xsi:String] & t/@c[xsi:Integer{0,∞}]{0,1}),
(u/d[u/d/*/a[xsi:String]{1,∞}] | u/d/*/e[xsi:String])
]

Note that the group constructors are used uniformly in several contexts. Repetition (g{m,n}) is
used for lists of atomic datatypes, to indicate whether an attribute is optional, and for elements.
Similarly, all (g1 & g2) is used for attributes and for elements.

2.1.2 Components

Next, we show how components are represented in MSL notation. Each component is one of
seven sorts: element, attribute, simple type, complex type, attribute group, or model group.
Regardless of sort, each component is represented uniformly as a record with seven fields:

sort is the sort of the component;

name is the name of the component;

base is the name of the base component of the structure;
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derivation specifies how the component is derived from the base,
it is one of restriction or extension;

refinement is the set of permitted derivations from this component as base,
it is a subset of {restriction, extension};

abstract is a boolean, representing whether this type is abstract;

content is the content of the structure, a model group.

Here are the components of the normalized schema represented in MSL notation.

component(
sort = element,
name = a,
base = xsi:UrElement,
derivation = restriction,
refinement = {restriction,extension},
abstract = false,
content = a[u]

)

component(
sort = simpleType,
name = s,
base = xsi:UrSimpleType,
derivation = restriction,
refinement = {restriction},
abstract = false,
content = xsi:Integer{0,∞}

)

component(
sort = complexType,
name = t,
base = xsi:UrType,
derivation = restriction,
refinement = {restriction,extension},
abstract = false,
content = t/@b & t/@c

)

component(
sort = attribute,
name = t/@b,
base = xsi:UrAttribute,
derivation = restriction,
refinement = {restriction},
abstract = false,
content = t/@b[xsi:String]

)
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component(
sort = attribute,
name = t/@c,
base = xsi:UrAttribute,
derivation = restriction,
derivation = {restricition},
abstract = false,
content = t/@c[s]{0,1}

)

component(
sort = complexType,
name = u,
base = t,
derivation = extension,
refinement = {restriction,extension},
abstract = false,
content = (t/@b & t/@c), (u/d | u/e)

)

component(
sort = element,
name = u/d,
base = xsi:UrElement,
derivation = restriction,
refinement = {},
abstract = false,
content = u/d[u/d/*]

)

component(
sort = complexType,
name = u/d/*,
base = xsi:UrType,
derivation = restriction,
refinement = {},
abstract = false,
content = u/d/*{0,∞}

)

component(
sort = element,
name = u/d/*/a,
base = xsi:UrElement,
derivation = restriction,
refinement = {},
abstract = false,
content = u/d/*/a[xsi:String]

)
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component(
sort = element,
name = u/e,
base = xsi:UrElement,
derivation = restriction,
refinement = {},
abstract = false,
content = u/e[xsi:String]

)

Observe that if we start with the content of the top-level a node, replace the name t with its
refinement u, and then expand out all names (that is, replace the names t/@b and t/@c with the
contents of those attributes, and so on), then the result is the same as the model group given in
the previous subsection.

Note that MSL does not nest declarations to express their scope. Instead, the scope of a
declaration is reflected in its normalized name.

2.1.3 Documents

MSL also provides a compact notation for XML documents, both before and after normalization.
Here is the original document in MSL notation.

a[
@xsi:type["u"],
@b["zero"],
@c[1,2],
d[
a["three"],
a["four"]

]
]

Note that attributes and elements are represented uniformly, as are sequences of attributes,
sequences of elements, and lists of atomic datatypes.

Here is the normalized document in MSL notation.

a[
@xsi:type["u"],
t/@b["zero"],
t/@c[1,2],
u/d[
u/d/*/a["three"],
u/d/*/a["four"]

]
]

Finally, here is the normalized document in MSL notation with type information added.
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a[
u 3
t/@b[xsi:String 3 "zero"],
t/@c[s 3 1,2],
u/d[
u/d/* 3
u/d/*/a[xsi:String 3 "three"],
u/d/*/a[xsi:String 3 "four"]

]
]

Unlike the xsi:type convention, the MSL notation allows one to uniformly express information
about element and attribute types. The type of an element or attribute is indicated by writing
x[t 3 d] where x is an attribute or element name, t is a type name, and d is the content of the
attribute or element.

3 Structures

This section defines the structures used in MSL: names, wildcards, atomic datatypes, model
groups, components, and documents.

3.1 Names

A namespace is a URI, and a local name is an NCName, as in the Namespace recommendation.
We let i range over namespaces and j range over local names.

namespace i ::= URI
local name j ::= NCName

A symbol space is one of the six symbol spaces in XML Schema. We let ss range over symbol
spaces.

symbol space ss ::= element
| attribute
| type
| attributeGroup
| modelGroup
| notation

(Shortcoming: we make no further use of attributeGroup, modelGroup, and notation in this
document.)

A symbol name consists of a symbol space paired with a local name or with * (the latter
names an anonymous component). A name consists of a URI followed by a sequence of one or
more symbol names. We let sn range over symbol names, and x range over names.

symbol name sn ::= ss::j symbol space ss, local name j
| ss::* symbol space ss, anonymous name

name x ::= i#sn1/· · ·/snl namespace i, symbol names sn1, · · · , snl
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Here l ≥ 1 is the scope length of the name.
An example of a name is:

http://www.foo.org/baz.xsd#type::u/element::d/type::*/element::a

The scope length of this name is 4.
It is sometimes convenient to use a short form of names. For these, we make the simplifying

assumption that there are only two symbol spaces. Symbol names in the attribute symbol space
are written @j, all other symbol names are written j (or * for anonymous names). The URI may
be dropped when it is obvious from context. For example, the short form of the name above is
u/d/*/a. Additional examples of names and short forms appear in Section 2.1.

Before normalization, all names in a document have scope length equal to one. It is helpful
to define functions to extract the namespace from a name, and to extract the symbol space
and local name of the last symbol name. We define namespace(x) = i, symbol(x) = ss, and
local(x) = j when x = i#sn1/· · ·/snl and snl = ss::j.

We also introduce several subclasses of names. An attribute name is the name of an attribute
component, and similarly for element, simple type, and complex type names. We let a, e, s, k range
over attribute, element, simple type, and complex type names.

attribute name a ::= x
element name e ::= x
simple type name s ::= x
complex type name k ::= x

A type name is a simple or complex type name. We let t range over type names.

type name t ::= s simple type name
| k complex type name

The class of a name must be consistent with its symbol space.

symbol(a) = attribute
symbol(e) = element
symbol(t) = type

3.2 Wildcards

A wildcard denotes a set of element names. A wildcard item is of the form *:* denoting any
name in any namespace, i:* denoting any name in namespace i, or i:j denoting just the name
with namespace i and local name j. A wildcard consists of wildcard items, union of wildcards,
or difference of wildcards. We let v range over wildcard items, and w range over wildcards.

wildcard item v ::= *:* any namespace, any local name
| i:* namespace i, any local name
| i:j namespace i, local name j

wildcard w ::= v all names in v
| w1+w2 all names in w1 or in w2

| w1!w2 all names in w1 and not in w2
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For example, the wildcard *:*!(baz:*+xsi:String) denotes any name in any namespace,
except for names in namespace baz, and local name String in namespace xsi.

3.3 Atomic datatypes

MSL takes as given the atomic datatypes from XML Schema Part 2 [3]. We let p range over
atomic datatypes, and c range over constants of such datatypes.

Typically, an atomic datatype is either a primitive datatype, or is derived from another
atomic datatype by specifying a set of facets. Note lists of atomic datatypes are specified using
repetition, while unions are specified using alternation, as defined below.

An example of an atomic datatype is xsi:String, and a constant of that datatype is "zero".

3.4 Model groups

We use traditional regular expression notation for model groups. Let g range over model groups.

group g ::= ε empty sequence
| ∅ empty choice
| g1 , g2 sequence, g1 followed by g2

| g1 | g2 choice, g1 or g2

| g1 & g2 all, g1 and g2 in either order
| g{m,n} repetition of g between m and n times
| a[g] attribute with name a and content in g
| e[g] element with name e and content in g
| mixed(g) mixed content in group g
| w wildcard with name in w
| p atomic datatype
| x component name

minimum m natural number
maximum n ::= m natural number

| ∞ unbounded

An example of a group appears in Section 2.1.1.
The empty sequence matches only the empty document; it is an identity for sequence and

all. The empty choice matches no document; it is an identity for choice.

ε , g = g = g , ε
∅ | g = g = g | ε
ε & g = g = g & ε

For use with repetitions, we extend arithmetic to include ∞ in the obvious way. For any n
we have n+∞ =∞+ n =∞ and n ≤ ∞ is always true, and ∞ < n is always false.
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3.5 Components

A sort is one of the six sorts of component in XML Schema. We let srt range over sorts.

sort srt ::= attribute
| element
| simpleType
| complexType
| attributeGroup
| modelGroup

(Shortcoming: we make no further use of attributeGroup or modelGroup in this document.)
A derivation specifies how a component is derived from its base. We let der range over

derivations, and ders range over sets of derivations.

derivation der ::= extension
| refinement

derivation set ders ::= {der1, · · · , derl}

We let b range over booleans.

boolean b ::= true
| false

A component is a record with seven fields.

sort is the sort of the component (srt);

name is the name of the component (x);

base is the name of the base component of the structure (x);

derivation specifies how the component is derived from the base (der);

refinement is the set of permitted derivations from this component as base (ders);

abstract is a boolean, representing whether this type is abstract (b);

content is the content of the structure, a model group (g).

We let cmp range over components.

component cmp ::= component(
sort = srt
name = x
base = x
derivation = der
refinement = ders
abstract = b
content = g

)
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Examples of components appear in Section 2.1.2.
For a given schema, we assume a fixed dereferencing map that takes names to the corre-

sponding components. We write deref(x) = cmp if name x corresponds to component cmp.
The dereferencing map must map attribute names to attribute components, and similarly

for elements, simple types, and complex types.

deref(a).sort = attribute
deref(e).sort = element
deref(s).sort = simpleType
deref(k).sort = complexType

3.6 Constraints

Recall that the group constructs are used uniformly in several contexts. Repetition (g{m,n}) is
used for lists of atomic datatypes, to indicate whether an attribute is optional, and for elements.
Similarly, all (g1 & g2) is used for attributes and for elements. The advantage of this approach is
that the semantics of groups is uniform, and need be given only once. Thus, for instance, how
repetition acts is defined once, not separately for attributes and elements.

However, it is helpful to define additional syntactic categories that specify various subsets
of groups. These syntactic classes are then used to constrain the content of components, for
instance, to indicate that the content of an element component should be an element, and that
the content of a type component should consist of attributes followed by elements.

An attribute group contains only attribute names, combined using all. An element group
contains no attribute names. (Shortcoming: all groups in element groups should be further
constrained as in Schema Part 1, Section 5.7, All Group Limited.)

attribute group ag ::= ε empty sequence
| ag1 & ag2 all
| a attribute name

element group eg ::= ε empty sequence
| ∅ empty choice
| eg1 , eg2 sequence
| eg1 | eg2 choice
| eg1 & eg2 all
| eg{m,n} repetition
| w wildcard
| e element name
| t type name

Given the above, we can specify the allowed contents of the four sort of component as follows.
An attribute content is either an attribute or an optional attribute, where the content is a simple
type name. An element content is an element where the content is a type name. A simple type
content is an atomic datatype or a list of atomic datatype. A complex type content is an attribute
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group followed by either a simple type content or an element group.

attribute content ac ::= a[s] attribute
| a[s]{0,1} optional attribute

element content ec ::= e[t] element
union content uc ::= p simple type

| uc | uc union of simple types
simple content sc ::= uc union content

| uc{m,n} list of a union content
complex content kc ::= ag , sc attributes follwed by simple content

| ag , eg attributes followed by elements
| ag , mixed(eg) mixed content

The content of each sort of component corresponds to the syntax above. That is, the content
of an attribute component is always an attribute content ac; the content of an element component
is always an element content ec; the content of a simple type component is always a simple
content sc; and the content of a complex type component is always a complex content kc.
Further, for an attribute or element component the name of the component is the same as the
name of the attribute or element in its content.

It is easy to confirm that the example components in Section 2.1.2 satisfy these constraints.

3.7 Documents

A document is a sequence of items, where each item is either an atomic datatype, or an attribute
(with a document as content), or an element (with a document as content). We let d range over
documents.

document d ::= ε empty document
| d1 , d2 sequence
| c constant of atomic datatype
| a[d] attribute, with name a and content d
| e[d] element, with name e and content d

Examples of documents appear in Section 2.1.3.
A typed document is a document with added type information for each element and attribute.

We let td range over typed documents.

typed document td ::= ε empty document
| td1 , td2 sequence
| c constant of atomic datatype
| a[s 3 td] attribute, with simple type name s
| e[t 3 td] element, with type name t
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3.8 Inference rules

Operations such as normalization and matching are described with an inference rule notation.
Originally developed by logicians [7, 13], this notation is now widely used for describing type
systems and semantics of programming languages [10]. In this notation, when all judgements
above the line hold, then the judgement below the line holds as well. Here is an example of a
rule used later on. We write d ∈ g if document d matches group g.

d1 ∈ g1 d2 ∈ g2

d1 , d2 ∈ g1 , g2
(sequence)

The rule says that if both d1 ∈ g1 and d2 ∈ g2 hold, then d1 , d2 ∈ g1 , g2 holds as well. For
instance, take d1 = a[1], d2 = b["two"], g1 = a[xsi:Integer], and g2 = b[xsi:String].
Then since both

a[1] ∈ a[xsi:Integer] and b["two"] ∈ b[xsi:String]

hold, we may conclude that

a[1] , b["two"] ∈ a[xsi:Integer] , b[xsi:String]

holds.

4 Normalization

Normalization of a document replaces each name by the corresponding normalized name, and
adds type information to the document. Normalization is performed with respect to a given
schema; in our formalism the schema is determined by the dereferencing map, deref(). Sec-
tion 2.1.3 gives an example of a document before and after normalization.

Prior to normalization, all names in the document have exactly one symbol name. We build
normalized names by extending a name with an additional symbol name. Let x1 and x2 be two
names, and where the second document has only one symbol name. We write x1 � x2 for the
operation that extends x1 by adding the symbol name of x2. If x1 and x2 are from the same
namespace, namespace(x1) = namespace(x2) = i, then we define

i#sn1/· · ·/snl � i#sn = i#sn1/· · ·/snl/sn

Otherwise, if x1 and x2 are from different namespaces, namespace(x1) = i and namespace(x2) =
j with i 6= j), then we define

i#sn1/· · ·/snl � j#sn = j#sn

Finally, for each sort there is a root type (AnyType, AnyElement, etc), for which we define

x� AnyElement = AnyElement.

In effect, the root types are in a fixed namespace, so the rule for roots is subsumed by the rule
for different namespaces.
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We write x ` a⇒ a′ and x ` e⇒ e′ to indicate that in the context specified by name x that
attribute name a normalizes to a′ or that element name e normalizes to e′. To normalize an
attribute or element we extend the context (if the extended name is in the domain of deref();
these are the ‘extend’ rules), or use the element name directly (otherwise; these are the ‘reset’
rules). We write x ∈ dom(deref()) and x 6∈ deref() to indicate whether or not x is in the
domain of the derefercing map; that is, whether or not deref(x) is defined. If x1 and x2 are in
different namespaces, then x1 � x2 is undefined, and we say x 6∈ deref() holds.

x� a ∈ dom(deref())

x ` a⇒ x� a
(extend attribute)

x� e ∈ dom(deref())

x ` e⇒ x� e
(extend element)

x� a 6∈ dom(deref())

x ` a⇒ a
(reset attribute)

x� e 6∈ dom(deref())

x ` e⇒ e
(reset element)

We write x ` d ⇒ dt to indicate that in the context specified by name x that document d
normalizes to typed document td. We write @xsi:type 6∈ d if d does not contain an xsi:type
attribute. Note that the type names in xsi:type attributes always refer to global types and
need not be normalized.

x ` c⇒ c′
(constant)

x ` ε⇒ ε
(empty document)

x ` d1 ⇒ td1 y ` d2 ⇒ td2

x ` d1 , d2 ⇒ td1 , td2
(sequence)

x ` a⇒ a′

deref(a′).content = a′[s] or deref(a′).content = a′[s]{0,1}
s ` d⇒ td

x ` a[d]⇒ a′[s 3 td]
(attribute)

x ` e⇒ e′

@xsi:type 6∈ d
deref(e′).content = e′[t]

t ` d⇒ td

x ` e[d]⇒ e[t 3 td]
(untyped element)
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x ` e⇒ e′

deref(e′).content = e′[t′]
t <: t′

t ` d⇒ td

x ` e[@xsi:type[t] , d]⇒ e[t 3 td]
(typed element)

The (typed element) rule uses the relation x <: x′, which is defined Section 5.1.

5 Refinement

5.1 Base chain

We write x<:x′ if starting from the component with name x one can reach the component with
name x′ by successively following base links.

x <: x
(reflexive)

x <: x′ x′ <: x′′

x <: x′′
(transitive)

deref(x).base = x′

x <: x′
(base)

5.2 Extension

We write g <:ext g′ if group g is derived from group g′ by adding attributes and elements. It is
specified using attribute groups ag and element groups ag as defined in Section 3.6.

ag , eg <:ext (ag & ag′) , eg , eg′
(extend)

5.3 Restriction

We write g <:res g′ if the instances of group g are a subset of the instance of group g′. That is,
g <:res g′ if for every document d such that d ∈ g it is also the case that d ∈ g′.

5.4 Constraints

A schema must satisfy certain constraints on refinement to be well-formed. Define x <:der x′

to be x <:res x′ if der = restriction and x <:ext x′ if der = extension. We write ` x to
indicate that the component with name x is well-formed with respect to refinement.

x′ = deref(x).base
der = deref(x).derivation
der ∈ deref(x′).refinement

deref(x).content<:der deref(x′).content
` x

(refinement)
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6 Matching

We write c ∈p p if constant c matches atomic datatype p. We do not specify this relation further,
but simply assume it is as defined in Schema Part 2.

We write e ∈v v and e ∈w w if element name e matches wildcard item v or wildcard w. We
write e 6∈w w if it is not the case that e ∈w w.

e ∈v *:*
(any namespace, any local)

namespace(x) = i

e ∈v i:*
(given namespace, any local)

namespace(e) = i
local(e) = j

e ∈v i:j
(given namespace, given local)

e ∈v v
e ∈w v

(wildcard item)

e ∈w w1

e ∈w w1+w2
(wildcard sum 1)

e ∈w w2

e ∈w w1+w2
(wildcard sum 2)

e ∈w w1 e 6∈w w2

e ∈w w1!w2
(wildcard difference)

We write d 7→ d′ (read “d unmixes to d′”) if d is a sequence of elements and characters and d′

is the same sequence with all character data removed. This is used for processing mixed content.

ε 7→ ε
(unmix empty)

d1 7→ d′1 d2 7→ d′2

d1 , d2 7→ d′1 , d
′
2

(unmix sequence)

e[d] 7→ e[d]
(unmix element)

c 7→ ε
(unmix character data)

We write d ∈ g if document d matches model group g.

ε ∈ ε
(empty)
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d1 ∈ g1 d2 ∈ g2

d1 , d2 ∈ g1 , g2
(sequence)

d ∈ g1

d ∈ g1 | g2
(choice 1)

d ∈ g2

d ∈ g1 | g2
(choice 2)

d1 ∈ g1 d2 ∈ g2

d1 , d2 ∈ g1 & g2
(all 1)

d1 ∈ g2 d2 ∈ g1

d1 , d2 ∈ g1 & g2
(all 2)

d1 ∈ g d2 ∈ g{m,n}
d1 , d2 ∈ g{m+ 1,n+ 1}

(repetition 1)

d1 ∈ g d2 ∈ g{0,n}
d1 , d2 ∈ g{0,n+ 1}

(repetition 2)

ε ∈ g{0,n}
(repetition 3)

d ∈ g
a[d] ∈ a[g]

(attribute)

d ∈ g
e[d] ∈ e[g]

(element)

d 7→ d′ d′ ∈ g
d ∈ mixed(g)

(mixed group)

d ∈ s
e[s 3 d] ∈ e[s]

(typed attribute)

d ∈ t t <: t′

e[t 3 d] ∈ e[t′]
(typed element)

d ∈ e e ∈w w
d ∈ w

(wildcard)

c ∈p p
c ∈ p

(atomic datatype)

19



d ∈ e e <: e′

d ∈ e′
(element refinement)

d ∈ g g = deref(x).content

d ∈ x
(component name)

The (typed element) and (element refinement) rules use the relation x<:x′, which is
defined Section 5.1. The check that t <: t′ in the (typed element) rule is redundant, as it is
also performed during normalization.

When processing a normalized document with types, the (attribute) and (element) rules
are not required, the (typed attribute) and (typed elements) are used instead.

A Problems with XML Schema

• Restriction. The following problems were uncovered in Schema Part 1, Section 5.10, which
describes restriction.

– Transitivity. There appear to be numerous cases where type t is a restriction of type
t′ and type t′ is a restriction of type t′′, but type t is not a restriction of type t′′,
according to the given rules.

– Complexity. A first cut at defining formal rules corresponding to the definition of
restriction required more than 100 lines of formal rules (as compared to the one-line
definition given in the current document). Many rules had five or six premises.

– Ad hoc. As noted below, many of the choices in the defition of restriction seem
arbitrary.

– Elt:Elt – NameAndTypeOK. Why the constraint that nullable of R and B be identical?
A weaker constraint is more sensible: if R is nullable then B must be nullable. That
is, it is fine for R not to be nullable even if B is nullable.

– Elt:Elt – NameAndTypeOK. Why is it ok for the corresponding types to be related
by list or extension, but not by restriction? Clearly, restriction should be allowed.
(Also, the phrase ”is validly derived given list,extension” is unclear. Perhaps ”is
validly derived by list or extension” was meant. If it was derived by list, isn’t some
constraint on lengths appropriate?

– Elt:All/Choice/Sequence – RecurseAsIfGroup. Why does Elt:All/Choice/Sequence
recurse, but Wildcard:All/Choice/Sequence is forbidden? Recursion seems equally
sensible for both.

– All:All – Recurse vs. Sequence:All – RecurseUnordered. Why must the former main-
tain order while the latter need not? Losing order seems equally sensible for both.

• Wildcards. Say that element e is in the equivalence class of element e′ (that is, that e has
base e′), and that elements e and e′ are in different namespaces, and that a wildcard w
includes the namespace of e′ but not of e. If the wildcard is strict, does element e match
wildcard w? Intuitively, one would expect e to match w (and this is what happens in
MSL), but Schema Part 1 does not appear to consider this case.
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B Suggestions for XML Schema

• Restriction. Change the definition of restriction to the one used in this document. One
type is a restriction of another if every instance of the first type is also an instance of the
second.

• Uniformity. Change the name equivClass to base, to emphasize the uniformity between
elements and types.

• Wildcards. Specify how wildcards interact with equivalence classes. (See discussion in
Appendix A.)

• Symbol spaces. Combine all symbol spaces other than attribute. This allows one to use
the short form of naming described in the document. For instance, in place of

type::u/element::d/type::*/element::a

one could write u/d/*/a, and in place of

type::t/attribute::b

one could write t/@b.

• XPath. XML Schema permits the entirety of the XPath language in the specification of
identity constraints. There appears no reason to have this level of generality, in particular
it might be helpful to omit restrict access to the children of a node, omitting those parts
of XPath that allow access to a parent, ancestor, or sibling.
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