
System Desiderata for XML Databases

Airi Salminen* Frank Wm. Tompa

Department of Computer Science
University of Waterloo

Waterloo, ON
Canada

{asalminen,fwtompa}@db.uwaterloo.ca

Abstract

There has been much progress made towards
defining query languages for structured
document repositories, but emerging prototypes,
products, and even proposed specifications too
often assume overly simplistic data models and
application needs. In this paper we explore the
requirements for a general-purpose XML
database management system, taking into
account not only document structure and content,
but also the presence of XML Schemas,
Namespaces, XML entities, and URIs.
Furthermore, the requirements accommodate
applications that create, modify, and maintain
complex units of data and metadata that co-exist
with numerous versions and variants. Our
discussion addresses issues arising from data
modelling, data definition, data manipulation,
and database administration.

1. Introduction

Two extreme positions can be heard regarding the role of
XML in databases. One view is that XML is merely an
encoding representation for exchanging data; therefore an
XML database system is one that is able to import and
export data or programs and to convert them to and from
internal forms. The other extreme is that XML is merely
an encoding representation for formatting documents;
therefore an XML database system is one that is able to
store such documents and to retrieve them on demand in
order to present them to a browser. Our vision is for a

database system that can manage XML data on behalf of
applications that are far more demanding than either of
these extremes.

An XML database is a collection of XML documents
and their parts, maintained by a system having capabilities
to manage and control the collection itself and the
information represented by that collection. It is more than
merely a repository of structured documents or semi-
structured data. As is true for managing other forms of
data, management of persistent XML data requires
capabilities to deal with data independence, integration,
access rights, versions, views, integrity, redundancy,
consistency, recovery, and enforcement of standards.
Even for many applications in which XML is used as a
transient data exchange format, there remains the need for
persistent storage in XML form to preserve the
communications between different parties in the form
understood and agreed to by the parties. *

David Maier proposed a list of language properties
that are implied by the need to query collections of XML
data [Mai98], and these have largely been adopted by the
W3C XML Query Language Working Group [CFR01].
In this paper we propose further capabilities that must be
provided by database management systems that purport to
support XML databases and their applications.

The XML:DB initiative (http://www.xmldb.org) has
defined three classes of XML database system, supporting
native XML databases (designed to store and manipulate
XML documents), XML-enabled databases (providing
XML interfaces to other forms of stored data), and hybrid
XML databases (accessible through XML and other
interfaces), and there are a variety of database system
prototypes and products in each of these classes (as
documented in The XML Cover Pages [Cov01]).
Unfortunately, emerging prototypes, products, and even
proposed specifications too often assume overly simplistic
data models and application needs.

A problem in applying traditional database
technologies to the management of persistent XML data

* On leave from the University of Jyväskylä.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

SUBMITTED

 VLDB Submission #284, Salminen & Tompa, Page 2 of 12

lies in the special characteristics of such data, not
typically found in others databases. XML documents are
complex units of information, consisting of formal and
natural languages, and often including multimedia
entities. The units as a whole may be important legal or
historical records. The production and processing of XML
documents in an organization may create a complicated
set of versions and variants, covering both basic data and
metadata. Applications depend on systematic, controlled,
and long lasting management technologies for all such
collections.

These characteristics of document data also applied to
SGML documents [Gol90], long before XML evolved.
However XML imposes yet further demands:

• Closely related specifications that extend the
capabilities specified in XML 1.0 [BPS00], such as
XML Namespaces [BHL99] and XML Schema
[Fal00, TBM00, BiM00], must be accommodated
when developing XML database solutions, since they
are expected to be widely used.

• Because references in XML documents refer to
internet resources, general-purpose XML database
systems must include internet resource management.

In the following sections we explore many capabilities
needed to manage XML databases. After further
elaborating on the special characteristics of XML data, the
discussion addresses database system characteristics
required for appropriate data definition, data
manipulation, and database administration.

2. Modelling XML data

2.1 Modelling documents as well as enterprises

The complexity of XM L-related data repositories and
their management creates a special challenge for the
underlying data model. Unlike conventional databases,
the data in a document database does not represent an
enterprise directly. Instead it represents a collection of
documents, which, in turn, captures the information
embodying the enterprise. The data model must support
the description of the documents as they are built from
multimedia storage units and symbols, as well as the
description of the enterprise reflected by the information
in the documents’ contents [CoW97].

For example, electronic documents are often legal,
historic, or business transaction records, and queries
against such documents typically involve entities and
relationships that represent features of the text itself as
well as features of the businesses involved in the
contractual agreements. For an XML database one
fundamental semantic issue is document equivalence
[RTW96]: when are two documents or document parts the
same? This question is important in satisfying
requirements for evidence and archiving, for version

management, for metadata management, and (as is true of
all forms of data) for query optimization.

The XML 1.0 specification defines the components of
XML documents, partitioning them into logical structures
(“declarations, elements, comments, character references,
and processing instructions, all of which are indicated in
the document by explicit markup”) and physical
structures (entities, which may include entity references).
The text stored within these structures may represent
character data, markup, white space, or end-of-line
markers. The specification is explicit in stating which of
these components are to be provided to an application by
an XML processor and which text representations must be
considered to be identical by all XML processors. It is
expected that all XML applications will “view”
documents in terms of these components, which we shall
refer to as the abstract structure.

It is overly simplistic to assume that general-purpose
XML database systems can be built using models that
ignore the documents’ structure, just as it is misguided to
use models that ignore the enterprise data represented by
those documents’ content. In general, reconstruction of an
original XML document fro m the data stored in an XML
database must be possible.

2.2 Three-level architecture for XML data

It is well accepted by the database community that data
should be managed through a three-level architecture that
separates the conceptual model from an internal model
and a set of external models. Furthermore, it is
understood that data independence relies on the principle
that the conceptual model is shielded from the physical
arrangement of the data on storage devices and embodies
the “universe of discourse” for all applications, which
must access the data through the external models.

Applying these principles to an XML database
necessitates that the conceptual model incorporates not
only all the entities and relationships that are to be
modeled in the enterprise, but also all the document
components that are to be made available to any XML
application. With such a conceptual model at its core, an
XML database can then include external models that view
the database as having only document features or only
enterprise features, or any combination of document and
enterprise features that are required for various classes of
applications. It is in such external models that the various
notions of data equivalence can be encoded by defining
mappings from the conceptual model that mask
differences that are irrelevant to particular classes of
applications.

Unfortunately, complete models for describing XML
documents have not yet been developed, in spite of the
fact that abstract structures for XML documents have
been developed for four different W3C specifications: the
Infoset model [CoT01], the XPath data model [ClD99],
the DOM model [ABC98, LLW00], and the XML Query

 VLDB Submission #284, Salminen & Tompa, Page 3 of 12

Data Model [FeR01]. Brief descriptions of these models
are given in the Appendix, and Table 1 summarizes their
features. All four models describe an XML document as a
tree structure, but there are differences in the trees and in
the information available in the trees.

A common problem in the four models of Table 1 is
the lack of information from the document type definition
(DTD). Two of the models have a special node for the
DTD, but only a subset of it is represented. None of the
models includes explicit reference to an associated XML
Schema. (Although the XML Query Data Model requires
the existence of an XML Schema against which
documents have been validated, the information in the
schema is not accessible in the model, except to the extent
that it is itself in a separate document.) Furthermore, each
of the models in Table 1 also lacks some information
from the content parts of XML documents.1 Finally none

1 The development of Canonical XML is intended to
allow the comparison of two documents within a given
application context [Boy00]. The specification describes a

of the models incorporate any semantics to support the
need to relate document content to enterprise information.

Thus one challenge for the database community is to
develop an acceptable data specification model (e.g.,
extensions to the E-R model) that can be used to capture
the conceptual model of an XML database, including
features to represent detailed document structure,
enterprise information, and their interrelationships.
Subsequent challenges are to develop mapping languages
and techniques that can be used to define internal and
external models and to design tools to support those who
are charged with creating appropriate models for specific
databases.

method for generating a text representation, the canonical
form, of an XML document that accounts for permissible
changes. However, the current candidate
recommendation is based on the XPath Data Model, and
thus there is a loss of information, including, for example,
loss of the XML declaration, DTD, and all information
about entities.

 XML Information Set
(Draft)

XPath 1.0 Data
Model

DOM 1.0 Level 2 XML Query Data
Model (Draft)

Purpose To provide a set of
definitions for use in
other specifications that
need to refer to the
information in an XML
document

To provide the basis
for the XPath language
specification, which in
turn is intended to be a
component that can be
used by other speci-
fications, primarily by
XPointer and XSLT

To provide the basis
for a platform- and
language-neutral
interface that allows
programs and scripts
to access and update
the content and
structure of documents
dynamically

To provide a formal
definition for the
information contained
in the input to an XML
Query processor, and a
foundation for the
XML Query Algebra

What is
modelled?

XML document XML document XML (or HTML)
document

Collection of XML
documents or parts

Specification
technique

Attaches descriptions
(in terms of information
items with a set of
properties) to a set of
syntactic items
specified in XML 1.0

Informal description of
the data structure and
the string value of a
set of node types

IDL description for a
set of object interfaces

Functional description
of constructors and
accessors

of node types
in the tree
structure

17 7 11 9

DTD or XML
Schema validity
required?

no no no yes

DTD
represented?

yes , but the order of
declarations, content
models of elements,
grouping of attribute
declarations, and
ignored declarations are
not represented

no yes, representing its
name, general entities
and notations declared,
identifier(s) for the
external subset, and
the internal subset as a
string

no

Table 1. Characteristics of the four XML data models

 VLDB Submission #284, Salminen & Tompa, Page 4 of 12

2.3 XML Schema volatility

The XML 1.0 specification states:
“The function of the markup in an XML document
is to describe its storage and logical structure and
to associate attribute-value pairs with its logical
structure. XML provides a mechanism, the
document type declaration, to define constraints
on the logical structure and to support the use of
predefined storage units. An XML document is
valid if it has an associated document type
declaration and if the document complies with the
constraints expressed in it.”

The storage units may be text entities or other types of
resources such as images, animations, or binary software
applications. An XML document can be well-formed
even when a DTD has not been declared. Alternatively,
any of several more powerful constraining capabilities
(such as XML Schema) may be applied [LeC00]. XML
Schema, developed at W3C, is the most accepted of these,
extending the definition capabilities of DTDs, by allowing
the use of a variety of data types (e.g. boolean, float, int,
date) and corresponding data validation and by providing
mechanisms to define additional simple and compound
data types.

When considering XML in the context of databases, it
is tempting to treat a collection of documents as database
instance values and associated DTDs (or XML Schemas 2)
as database schemas. However, there are two features
that distinguish DTDs from database schemas:

• Documents may or may not be associated with a
DTD, at the discretion of the application that created
it.

• Any association with a DTD is represented within a
document, not by the document’s insertion into a
class or collection.

As a result, in practice DTDs are created and modified at
a rate that is more closely approximated by the volatility
of database instances than by the stability of database
schemas. For example, a relatively homogeneous
collection of technical documents produced by a prolific
organization typically includes many associated DTDs
that reflect the evolution of requirements over the period
of time during which the documents were created. Of
particular note is that older documents are usually not
updated to conform to newer versions of the constraints,
either because the effort to change the documents is
deemed to exceed any potential benefit or because there is
a requirement to preserve the documents in their original
form.

Elsewhere we have proposed that DTDs be stored and
manipulated as part of object-relational database instances

2 For simplicity and to avoid confusion between XML
schemas and database schemas, we henceforth use the
term DTD to refer generically to any form of XML
schema or document type definition facility.

[BCD98], and we reiterate this as a desired characteristic
for modelling DTDs in XML databases more generally.
We note that neither Oracle8i nor the DB2 XML Extender
represent the DTD associated with a document as part of
the schema; however the DTD is stored in a separate file,
which is unavailable to application programs as part of the
instance that can be queried and manipulated by SQL.

Even if DTDs are stored as part of a database instance,
they must still be used by the database system in the role
usually reserved for the schema. As such, they provide a
basis to formulate

• constraints for data input and thus for validity
checking,

• meaningful queries, updates, and views,
• text transformations,
• query optimization strategies, and
• presentations of documents and of query results for

subsequent browsing or other processing.
Thus a challenge for the database community is to

determine how best to provide DTDs as part of the
database instance but still to treat them as reliable
constraint mechanisms for other parts of the instance.
Because XML Schemas are themselves represented as
XML documents, parallels can likely be drawn with
system-defined “table tables” that provide read-only
access to relational schema information maintained in the
form of relational tables.

2.4 Versions and variants

The processing of structured documents often requires the
use of multiple DTDs. As mentioned above, the
production of large and complicated technical documents
typically involves the need for different DTDs for the
same material.

To illustrate the problem, we cite an analysis of the
production of manuals for machines produced by a paper
machine factory [KaT01]. Since each paper machine is
unique in some of its aspects, the manual for each
machine is also unique. Five different DTDs were
required for producing the operation and maintenance
manual for a single machine, covering various stages of
document development. One of the DTDs included over
200 element names used for writing the content with the
support of an SGML editor, a second was designed
especially for publishing on paper, a third was HTML for
publishing in the form readable by Web browsers, a
fourth was a more generic DTD used as an intermediary
between the detailed DTD used for creating the document
and the ones used for publishing it, and the last was a
DTD for metadata required to manage the transformations
and files involved.

In an ideal world multiple presentations could be
produced from a single data source as required, either
through the use of style sheets or through automated
transformations. In practice, however, publishing a
document often involves human intervention to “clean

 VLDB Submission #284, Salminen & Tompa, Page 5 of 12

up” the output of an initial transformation. Furthermore,
each published form must be supported by a
corresponding DTD.

As an additional complication, at the time of the
analysis of the paper machine factory, the detailed DTD
used for data entry was in its fourth version, and there
were instances in the document repository created with
respect to each of the different versions. In this factory,
documenting a new machine usually proceeds by adapting
the manual of an older machine that has the closest
specifications to the new one, even if some aspects of
documentation practices have since evolved. Therefore
older documents conforming to older versions of the
schema must be accessible to users. Because of ongoing
requirements to access the contents of a manual, the
various forms of the data are not merely historical
versions; information from all forms must remain
accessible concurrently.

Other case studies confirm that publishing documents
often requires multiple DTDs that represent various
versions developed over time as well as several variants
covering different phases of document production [Fah99,
SLT00]. Furthermore, these studies confirm that the data
content must be preserved in its variant forms
corresponding to different DTDs.

Thus, schema management is even more problematic
in XML databases than in traditional environments. Not
only do changes in business requirements cause the
design of new schemas, but also publication requirements
may impose the need for multiple schemas. Not only
does the integration of data from different partners cause
the need to accommodate multiple schemas, but also
access to multiple pieces of data from a single source
imposes the same requirement. Not only are different
schemas created over time, but also all past schemas must
be maintained. Not only are different schemas needed to
access different pieces of information about an enterprise,
but also several schemas are needed to access a single
piece of enterprise information in each of its various
forms.

3. Desired DDL characteristics
Each of the several schema languages developed or under
development for XML provides a mechanism to constrain
the structure and content of a class of XML documents.
The purpose of the XML schema languages is to allow the
validation of a given well-formed XML document against
the schema. Below we discuss the DDL characteristics
needed, in addition to the constraining capabilities, to
instantiate an XML database.

3.1 Data collections

A possible approach for defining an XML database
structure is as a single XML document, similarly to
defining a relational database as a universal relation. With
this approach any of the schema definition languages

could be used. However, if the database were restricted to
being one universal document (and all applications were
defined in terms of access to such a single document),
then any collection of views of the database that are to be
made accessible to an application must be interpreted as if
it were a single document and all intermediate results
would need to be (logically) inserted somewhere in the
document in order to be accessible to subsequent
processing.

As a general solution, therefore, the DDL should allow
the definition of collections of XML documents and
document parts, together with collections of values of
various data types that are not required to be (even
logically) a part of any document. The W3C proposal for
the XML Query Data Model specifies that a data instance
is logically an ordered or unordered collection of
complete XML documents or document parts. To be able
to apply a query language to such a database, the DDL
should offer the capability to define such collections. In
addition, because document management systems usually
organize documents into a hierarchy of folders, the
capability to declare that a particular XML document
represents a folder hierarchy may ease interoperability
with external sources.

3.2 DTD collections

As mentioned in Section 2, structured document
management often requires a versatile collection of
DTDs. Therefore the DDL of an XML database system
should support the definition of multiple DTDs, their
organization into manageable collections, their
presentation as data (typically in XML format), and their
role as metadata constraining other data in the database
instance. Furthermore, the DDL must provide capabilities
to manage different DTD versions and variants and do so
as new DTDs are created and existing ones are updated.

The need for several DTDs for the same material and
for different DTD versions has partly evolved from the
immaturity of software and from the experimental nature
of SGML and XML solutions for document creation. In
light of the growing use of XML for various types of data
and the simultaneous increase of the diversity of
presentation media, it is clear that the need for managing
rich collections of DTDs in a single environment will
increase. Since XML involves many forms of data
manipulation, many forms of media, and many persons
having diverse qualifications and application needs, all in
the presence of continuingly changing international and
industry-level standards, DTDs will be “alive,” and the
database system must support the management of their
evolution.

3.3 Entities and URIs

Entities are used in XML document repositories to avoid
redundancy. For example, a technical documentation suite
may involve thousands of images, and a specific image

 VLDB Submission #284, Salminen & Tompa, Page 6 of 12

may be used in several places. Each image is stored once
as an image file, and the documents or elements
containing the image refer to the file by an entity
reference. Similarly, pieces of text defined as entities can
be reused in different places of the logical structure of a
database via entity references. In XML, references to
entities internal to a document are shorthand notations
that are replaced by their values in the abstract structure
of the document, as if they were parameterless macros.
External entities, however, are referenced by URIs, and in
the abstract structure their contents remain outside the
entities from which they are referenced.

The central idea in the specification of XML and the
URI addressing mechanism has been to create a human
readable notation for information management on the
Internet, where readability encompasses the physical
structure as well as the logical structure of documents.
The URIs of accessible entities must be available to
applications, and they will also be stored beyond the
enterprise’s control in extranet environments, where
several organizations share database resources. In the
absence of careful attention, therefore, entities, files, and
URIs will violate data independence by exposing storage
decisions made at the internal level of an XML database
to application programs .

One approach for general-purpose XML database
systems is to separate the naming structure of URIs from
the file-naming mechanism used by the database system.
That is, the database system must include an internal
mapping from URIs to files (or equivalent storage units)
so that the names used as resource indicators can remain
independent of the names used for addressing units of
storage. The DDL must then also provide a capability to
define the URIs used for naming entities in the database
and for mapping such URIs to the structures used for
storing the collection of entities in the database.

3.4 Multiple levels of validity

Maier’s list of desired characteristics includes two
concerning XML schemas: the query language should be
usable on XML data when there is no schema known in
advance, and when schemas are available it should be
possible to judge whether a query is correctly formed with
respect to the schemas and to derive a schema for the
query’s result. In light of these characteristics, a database
should support multiple levels of validity for XML data.
For example, we may wish to define a database
subcollection or a view consisting of

• non-XML data values from a set of types (e.g.,

numbers, dates, strings, images, tables),
• well-formed XML documents,
• valid XML documents, each associated with some

DTD provided by a user or application,
• valid XML documents, each associated with a DTD

from a closed set known to the database system

(either predetermined by the database administrator
or pre-registered by some application), or

• parts of well-formed or valid XML documents.
Recall that our use of the term DTD encompasses any
mechanism to define an XML schema. In this context,
therefore, the DDL must support not only the declaration
of XML data and its level of validity but also the
declaration of the type of XML schema definition against
which validity is to be judged and the schema declaration
itself.

We note that the adoption of XML Schema will have a
major impact on content authoring, which will increase
the need for multiple levels of validity in XML databases.
The inclusion of a rich datatype mechanism in XML
schema languages has been motivated primarily by the
needs of electronic commerce, where much data is
numeric and produced by software. However, this will
make document creation by humans still more challenging
than earlier, when constraint-checking was restricted to
conformance with an XML 1.0 DTD. In the future,
authors must also understand the variety of datatypes used
in the schema and ensure that the documents they create
conform to the richer constraint mechanisms. Thus, the
extent to which rich datatypes are adopted in document
authoring by humans and in which phases of content
production they are introduced will influence in how
many different stages of validation documents will be
stored in the database.

3.5 Support for namespaces

XML namespaces provide a method for qualifying
element and attribute names in XML documents by
associating them with namespaces identified by URI
references. XML Schema as a schema language allows
the use of namespace names in schemas. To be able to use
particular namespaces for a specific database, the DDL
should include a capability to define the names included
in a namespace and optionally the data types that are to be
associated with those names (for situations in which
applications are dependent on the types).

As Maier has already noted, the database system must
also provide views of XML documents in which the
presence of document-specific namespace identifiers are
replaced by document-independent identifiers (i.e., fully-
expanded URIs in general).

3.6 Document indexing

Some relational data definition languages allow the
definition of indexes. Such indexes affect performance
efficiency but not query semantics. Traditional document
indexing, however, implicitly affects the set of documents
that are retrieved in response to various queries.

Document indexing assigns content indicators, called
index terms, to documents. These terms are then used by
retrieval systems to access the documents. For many
applications, a human indexer may choose the terms, as is

 VLDB Submission #284, Salminen & Tompa, Page 7 of 12

almost inevitably done for indexing non-text documents.
Other applications rely on full-text indexing, in which a
subset of words (or phrases) occurring in a document are
chosen as index terms and assigned to the document.
Some full-text indexing systems also apply morphological
and lexical analyses to the documents’ contents before
extracting index terms (thus, for example, converting the
presence of the word “data banks” in a document to the
term “database” in the index). The choice of words and
phrases for the index determines which query terms will
select which documents. As a result, a document index is
much more than a performance-enhancing device.

It is important to realize that the appropriateness of a
full-text indexing method to a specific document
repository depends on the language and content domain of
its documents. For example, the indexing terms that are
effective for a repository of English novels will perform
poorly when used against a repository of Finnish technical
documentation. Among other aspects, the stop words
(i.e., words considered to carry no important information)
left out from an index vary from language to language and
from one collection to another even when all documents
share a common language.

The nature of a document index, therefore, is closer to
that of instance data than is true of traditional database
indexes. The DDL for an XML database should allow
application programs to specify the rules for indexing
documents (and the DML should provide facilities for
querying the indexing rules and for choosing which
indexes to use to execute a given query). Furthermore,
the DDL should have facilities to bind a collection of such
rules to the whole database, to a subcollection of the
database, or to a view. An open problem is to develop
general techniques that will allow database designers to
specify precisely how document indexing is to be applied
to structured documents that include arbitrary character
data together with values taken from other types (such as
dates, numbers, and URIs).

3.7 Metadata

In database management systems, some metadata, such as
that stored in a data dictionary, is created by the system as
a result of comp iling DDL statements; other metadata,
such as the time of last update, results from executing
DML statements. Often metadata is not accessed directly
by applications, but rather it is consulted by the system
before instance data is accessed and perhaps updated
thereafter. In document repositories, metadata is data
about the documents, and the metadata is an important
means for end users to manage a repository. The schemas
that describe document structures and data types, as well
as the indexes describing the content of documents, can
be regarded as two common forms of metadata.

In an XML database, the system should provide all
metadata in XML form and allow querying and
manipulating through the DML (subject to permissions).

The DDL should include not only a capability to define
metadata, but also a capability to define the vocabularies
used for the metadata. Suitable features are available in
RDF, a W3C Recommendation for describing metadata
for Web resources in XML format [LaS99], and the RDF
Schema language, a W3C Candidate Recommendation for
defining metadata vocabularies [BrG00].

One way to manage inter-document references is to
separate them from documents and to express them as
metadata that is stored in separate documents. Such “link
documents” can be defined as linkbases, following the
recommendation of the XLink language [DMO00].
Declaring a link document as a separate object in an XML
database also simplifies the definition of views in which a
subset of links can be excluded even if the resources they
connect are included in the view. The DDL must support
the declaration of linkbases and their relationship to other
data.

4. Desired DML characteristics
The development of XML query languages has been
based on extensive discussion about the desired
characteristics of such languages [Mai98, CFM01]. We
will not repeat all those characteristics here; instead we
discuss those characteristics that are important for
manipulating persistent XML data in a controlled way, in
the context of a system having the definition capabilities
described in Section 3.

4.1 Queries

In an XML database we should be able to express queries
in terms of all data in the database, including entities,
URIs, tags, comments, processing instructions, schemas
and other metadata. The latest proposals for XML query
languages, including Lorel [GMW99], Quilt [CRF00],
XQuery [CRF00], and the XML Query Algebra [FFM01]
all omit some of the data from XML documents. The
DTD, entities, entity references, and notations are not
accessible through any of these languages, and Lorel also
ignores comments and processing instructions. Each item
of data, however, may provide important information for
managing parts of the database.

XQuery and the XML Query Algebra are based on the
XML Query Data Model, which assumes that the data is
validated against an XML Schema. If there is no schema
explicitly associated with a document, then a default
schema is used. They incorporate datatypes as defined in
the XML Schema [BiM00], but the schema associated
with a document is not accessible to an application (unless
the XML form of the schema is explicitly stored by the
application as XML data, and the association of the
document to the schema is preserved by the application).
As discussed in Section 2, an XML database having a rich
collection of DTDs must be able to access DTD
information.

 VLDB Submission #284, Salminen & Tompa, Page 8 of 12

Also following Section 2, it is important to be able to
test the equivalence of documents or their parts, and also
test the equivalence of DTDs [RTW96]. However,
equivalence comparison capabilities are limited in the
proposed query languages. Not only do the models not
encompass all data from XML documents, but also there
are only limited ways for testing equivalence. The XML
Query Data Model includes one equality operator to test
node identity and another to test equality of node values.
Semantics for the equality of node values is not yet
defined, but we note that in an XML database there is a
need for multiple forms of value equivalences. For
example, before adding a new document to the database
we might want to find out if the same document is already
in the database. Various applications may wish interpret
the “same” in different ways: some of which may
correspond to the model’s meaning and some requiring
testing equivalence with respect to some view that may
ignore differences in various components of the document
structure or enterprise data. A query language that
supports application-dependent choices for testing
equivalence, for example by ensuring that equivalence
can be tested with respect to an external view, would
benefit the management of a large collection of XML data
and DTDs.

4.2 Transformations

In traditional databases the most important group of
operations consists of queries. In structured document
management environments transformations are typically
at least as important as queries that retrieve a subset of
data. Hence the DML should include flexible means to
specify transformations for various needs [TaT01].

At some level, there is no clear distinction between
queries and transformations, which has led to extensive
discussions surrounding the roles of XQuery and XSLT
and whether the efforts in one of these directions should
be abandoned in favour of the other
(http://www.xml.org/xml-dev/). Nevertheless, in a
traditional database query we specify the data we wish to
retrieve, and the form of the result is of secondary
interest, often determined largely by the data model or by
the system. In contrast, a transformation specification is
primarily concerned with the form of the result and
secondarily includes criteria to include or omit various
parts. Transformations are needed, for example, for the
following purposes:

Rendering. Flexible rendering capabilities are not
important in databases where XML is primarily used for
data exchange between applications and the database is an
archive of transactions. In the rare occasions when the
data is presented to a human reader, some simple
predefined external format may be appropriate. However,
such limited control is not satisfactory for many
applications.

Because presentation media for documents are diverse
and new media are continuously being developed, there
must be flexible means to specify how to render XML on
various types of media. The specification may require first
a transformation of the content, and then the attachment
of layout information. For example, displaying the content
of an HTML page on a small screen of a mobile device
may require removal of images, partitioning the page into
clusters suitable to the small screen, and adding some
style information. The XML database system should
provide capabilities both for persistent storage of
specifications for rendering, such as XSL style sheets
[ABC00] together with XSLT transformation descriptions
[Cla99] and for dynamic production of external
presentations.

Integration support. An XML database system must
include capabilities to import and export data between the
database and other systems. This typically requires some
transformation of the data.

Schema evolution. In Section 2, we discussed the
problem of multiple DTDs in XML document production
environments. Because changes in DTDs are quite
common, there is often a need to transform existing data
to correspond to a new DTD.

Views . In all databases, view definition capability is an
important means to provide data independence in the
presence of database growth and restructuring, to allow
data be seen in different ways by different applications,
and to provide security for hidden data. The complexity
and evolving nature of XML databases makes a view
definition mechanism critical to a system’s usability.

Whether defining a virtual or materialized view, a
view definition typically hides part of the database. The
DDL of an XML database system should allow the hiding
of the physical structure of XML documents, specific
types of documents or links, specific elements or
attributes in documents, all comments and processing
instructions in documents, style sheets, or a subset of
metadata. However, in addition to removal of data, an
XML view specification will typically include other
transformations, for example, to change element and
attribute names or change the order or hierarchical
organization of elements. Whereas SQL and other
database systems specify views through their query
languages, it may be far more appropriate in an XML
database system to base view definitions on a
transformation language.

4.3 Update

As for other database systems, the update operations for
an XML database include insertion, deletion, and
replacement. The data affected can be a whole document,
part of a document, a file, a URI, a style sheet, or any
other unit. Furthermore the affected component may be
either basic data or metadata, such as a DTD, a set of

 VLDB Submission #284, Salminen & Tompa, Page 9 of 12

RDF descriptions for resources within the database or
outside it, or a set of links. The DML must provide
mechanisms for applications to distinguish updates that
cause the creation of new documents from those that
create new versions or new variants of existing document
parts.

An application may activate an update by specifying a
transformation that is to persist in the store. In many
environments various users in different roles maintain the
content of structured document repositories through a
complicated process in which documents are developed
gradually and collaboratively. For example, during the
development of an operation and maintenance manual for
a machine, the content production may include:

• an engineer inserting pieces by writing directly to the
repository or by uploading from a word processor,

• a technical writer inserting pieces by modifying an
earlier “model” manual,

• a technical writer updating a preliminary text written
by an engineer,

• an editor updating a part to polish the text,
• a translator to convert the text to another language,

and
• an engineer updating a part to correct the text before

approving it.
Such processes rely on XML editors and support for
workflow management, which should be integrated with
XML database systems, as is common in content
management systems such as Chrystal’s Astoria
(http://www.chrystal.com), Interleaf’s Information
Manager (http://www.interleaf.com), and Open Text’s
Livelink (http://www.opentext.com).

An XML database may contain various forms of
reference: entity references, intra-document IDREFs, and
inter-document links, where the links can be embedded
HTML-like links or richer XLink-type links. The
requirement of referential integrity is an important goal
for an XML database, restricting updates such that all
entity references, IDREFs, and links to documents within
the database have existing targets. Traditional
mechanisms to disallow or to cascade updates that would
otherwise violate referential integrity must be supported.

A major concern in updating traditional databases has
been transaction management. Database systems include
capabilities with their DMLs for applications to specify
the scope of each transaction. In XML database systems,
an XML document is a natural unit for specifying a
transaction, and thus the DML should include a mode in
which an application request is presented to the database
system in the form of an XML document. Examples of
XML-based “languages” to express transactions common
to various business sectors are being continuously
introduced (see, for example, [Cov01]).

5. Desired administrative capabilities
One of the most characteristic features of the data on the
Web is the lack of centralized control. XML emerged in
this environment to support information distribution and
data integration. To be able to manage XML information
assets in the intranets and extranets of organizations,
however, systematic ways to control the information and
its accessibility is needed. This requires an XML database
system to provide support for the specification of
administrative and user roles, specification of
authorization for data, and specification of the metadata
needed to control, use, and preserve the information.

5.1 Administrative roles

Database administration tasks are often divided into two
roles: data administrator and database administrator. The
data administrator is a person making strategic and policy
decisions regarding the data of the organization. An XML
data administrator in an extranet environment must also
negotiate with other parties outside the enterprise to
establish common rules for sharing and distributing data
over the extranet and common interpretations for the
metadata vocabularies. These tasks impose further
reliance on effective management of metadata. The
database administrator is a technical person who provides
necessary technical knowledge and support for
implementing the decisions of the data administrators.
Tasks of the database administrator include defining the
database schemas and corresponding security and
integrity checks, defining backup and recovery
procedures, liaising with users, monitoring performance,
and responding to changing requirements. All of these
functions are needed to manage an XML database.

Legal and historic records stored as documents must
be accessible in their original form for decades. Thus, for
an XML database it is useful to specify a third
administrative role: the document administrator. The
document administrator is responsible for record-keeping
and archiving, as is typically provided by records
managers in many organizations. A central task of the
document administrator is to decide, in collaboration with
the data administrator and the database administrator,
which strategies to adopt for preserving digital documents
throughout changes to hardware and software, to design
the metadata needed to assure full evidentiality and long-
term accessibility of the information assets, and to plan
the responsibilities to update the metadata [BeS01,
Mur98, HeR98, CGM00].

5.2 User roles and access rights

One of the tasks of a database administrator has been
granting of authorization to data. An XML database
including both data and metadata for a variety of purposes
and diverse users needs role-based access control
[SCF96]. Definition of role hierarchies, the hierarchic

 VLDB Submission #284, Salminen & Tompa, Page 10 of 12

structure of XML documents, and hierarchic document
containers allow the specification of very fine-grained
authorization. The challenge for XML database systems is
to support such fine-grained access control in very large
database environments with very many users, each
shifting among many possible roles.

6. Conclusion
Database systems were designed to manage large bodies
of information about one enterprise at a time and to
provide integrity for the information despite many users
sharing the data and changes in technology. More recently
XML emerged as a universal metalanguage to be used as
a common format for information in various application
areas. In many environments collections of XML
documents will be carriers of large bodies of information
related to a particular enterprise or crossing enterprise
boundaries. The information must be securely accessible,
often for a long time, despite continuing changes both in
technology and in participating enterprises, and despite
heterogeneity in the user community.

The special characteristics of XML data cause
problems when adapting database management principles
and systems to XML data. In this paper we have discussed
these characteristics and derived a set of desired features
for XML database management systems. We addressed
some of the major requirements for appropriate data
definition, data manipulation, and database administration
and demonstrated the complexity of the area.

The purpose of the paper is to initiate discussion of the
requirements for XML databases, to offer a context in
which to evaluate current and future solutions, and to
encourage the development of proper models and systems
for XML database management. A well-defined, general-
purpose XML database system cannot be implemented
before database researchers and developers understand the
needs of document management in addition to the needs
of more traditional database applications. We look
forward to innovative solutions being developed to
address the problems identified, including problems of
equivalence, versions, and variants for XML data.

Acknowledgements

Ideas for this paper have arisen from many sources, and
we particularly thank members of the Database Research
Group at the University of Waterloo and of the inSGML
project at the University of Jyväskylä, as well as
colleagues at Open Text Corporation. We gratefully
acknowledge the financial support provided by the
Academy of Finland (under Project 48989), the
University of Waterloo, the Natural Science and
Engineering Research Council of Canada, and Bell
University Labs.

References
 [ABC00] S. Adler, A. Berglund, J. Caruso, S. Deach,

P. Grosso, E. Gutentag, A. Milowski, S. Parnell, J.
Richman, and S. Zilles (Eds.). Extensible Stylesheet
Language (XSL) Version 1.0, W3C Candidate
Recommendation 21 November 2000. http:
//www.w3.org/ TR/2000/CR-xsl-20001121/.

[ABC98] V. Apparao, S. Byrne, M. Champion, S.
Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R.
Sutor, C. Wilson and L. Wood (Eds.). Document
Object Model (DOM) Level 1 Specification Version
1.0, W3C Recommendation 1 October, 1998.
http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001/.

[BeS01] D. Bearman and K. Sochats. Metadata
requirements for evidence, http://www.lis.pitt.edu/
~nhprc/BACartic.html, retrieved Feb. 24, 2001.

[BiM00] B.V. Biron and A. Malhotra (Eds.). XM L
Schema Part 2: Datatypes, W3C Candidate
Recommendation 24 October 2000. http://www.
w3.org/TR/2000/CR-xmlschema -2-20001024/.

[Boy00] J. Boyer (Ed.). Canonical XML Version 1.0,
W3C Candidate Recommendation, 12 December 2000.
http://www.w3.org/TR/2000/CR-xml-c14n-20001212/.

[BHL99] T. Bray, D., Hollander, and A. Layman
(Eds.). Namespaces in XML, World Wide Web
Consortium, 14 January 1999. http://www.w3.org/TR/
1999/REC-xml-names-19990114/.

[BPS00] T. Bray, J. Paoli, C. M. Sperberg-McQueen,
and E. Maler (Eds.). Extensible Markup Language
(XML) 1.0 (Second Edition), W3C Recommendation
6 October 2000. http://www.w3.org/TR/2000/REC-
xml-20001006/.

[BHL99] T. Bray, D. Hollander, and A. Layman
(Eds.). Namespaces in XML, World Wide Web
Consortium 14 January 1999. http://www.w3.org/TR/
1999/REC-xml-names-19990114/.

[BrG00] D. Brickley and R.V. Guha (Eds.). Resource
Description Framework (RDF) Schema Specification
1.0, W3C Candidate Recommendation, 27 March
2000. http://www.w3.org/TR/2000/CR-rdf-schema -
20000327/.

[BCD98] L. J. Brown, M. P. Consens, I. J. Davis, C.
R. Palmer, and F. W. Tompa. A structured text ADT
for object-relational databases. Theory and Practice of
Object Systems 4(4) (1998), 227-244.

[CFM01] D. Chamberlin, P. Fankhauser, M.
Marchiori, and J. Robie. XML Query Requirements,
W3C Working Draft 15 February 2001. http://www.
w3.org/TR/2001/WD-xmlquery-req-20010215/.

 VLDB Submission #284, Salminen & Tompa, Page 11 of 12

[CFR01] D. Chamberlin, D. Florescu, J. Robie, J.
Siméon, and M. Stefanescu (Eds.). XQuery: A Query
Language for XML, W3C Working Draft, 15 February
2001. http://www.w3.org/TR/2001/WD-xquery -
20010215/.

[CRF00] D. Chamberlin, J. Robie, and D. Florescu.
Quilt: An XML Query Language for heterogeneous
data sources. WebDB (Informal Proceedings) 2000,
pp. 53-62.

[Cla99] J. Clark (Ed.). XSL Transformations
(XSLT) Version 1.0, W3C Recommendation, 16
November 1999. http://www.w3.org/TR/1999/REC-
xslt-19991116.

[ClD99] J. Clark and S. DeRose. XML Path
Language (XPath),Version 1.0 W3C Recommendation
16 November 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116

[CoW97] J. Coleman and D. Willis. SGML as a
framework for digital preservation and access, The
Commission on Preservation & Access, July 1997.

[Cov01] R. Cover (Ed.). The XML Cover Pages.
http://www.oasis -open.org/cover/, retrieved Feb. 24,
2001.

[CoT01] J. Cowan and R. Tobin (Eds.). XML
Information Set, W3C Working Draft 2 February
2001. http://www.w3.org/TR/xml-infoset/.

[CGM00] A. Crespo and H. Garcia-Molina. Modeling
archival repositories. Proc. Fourth European Conf. on
Digital Libraries (ECDL). September, 2000.

[DMO00] S. DeRose, E. Maler, and D. Orchard (Eds.).
XML Linking Language (XLink) Version 1.0, W3C
Proposed Recommendation, 20 December 2000. http:
//www.w3.org/TR/2000/PR-xlink-20001220/.

[Fah99] S. Fahrenholz. SGML for electronic
publishing at a technical society – Expectations meets
reality. Markup Languages: Theory and Practice 1(2)
(Spring 1999), 1-30.

[Fal00] D.C. Fallside (Ed.). XML Schema Part 0:
Primer, W3C Candidate Recommendation 24 October
2000. http://www.w3.org/TR/2000/CR-xmlschema-0-
20001024/.

[FFM01] P. Fankhauser, M. Fernández, A. Malhotra,
M. Rys, J. Siméon, and P. Wadler (Eds.). The XML
Query Algebra, W3C Working Draft, 15 February
2001. http://www.w3.org/TR/2001/WD-query-alge-
bra-20010215/.

[FeR01] M. Fernández and J. Robie (Eds.). XML
Query Data Model, W3C Working Draft 15 February
2001. http://www.w3.org/TR/2001/WD-query-data-
model-20010215/.

[Gol90] C.F. Goldfarb. The SGML Handbook .
Oxford University Press, Oxford, UK (1990).

[GMW99] R. Goldman, J. McHugh, and J. Widow.
From semistructured data to XML: Migrating the Lore
model and query language. WebDB (Informal
Proceedings) 1999, pp. 25-30.

[HeR98] A.R. Heminger and S.B. Robertson. Digital
Rosetta Stone: A conceptual model for maintaining
long-term access to digital documents. Proc. 31st
Annual Hawaii International Conference on System
Sciences (1998).

[KaT01] A. Karjalainen and P. Tyrväinen. Defining
genres and their features for studying information
reuse: Preliminary findings. To appear in Proc. of
IRMA 2001, Information Resources Management
Association International Conference, Toronto, May
20 – 23, 2001.

[LaS99] O. Lassila and R. R. Swick (Eds.). Resource
Description Framework (RDF) Model and Syntax
Specification, W3C Recommendation 22 February
1999. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

[LeC00] D. Lee and W. W. Chu, Comparative
analysis of six XML schema languages. ACM
SIGMOD Record 29 (3) (2000), 76-87.

[LLW00] A. Le Hors, P. Le Hégaret, L. Wood, G.
Nicol, J. Robie, M. Champion, and S. Byrne (Eds.).
Document Object Model (DOM) Level 2 Core
Specification Version 1.0, W3C Recommendation 13
November, 2000. http://www.w3.org/TR/2000/REC-
DOM-Level-2-Core-20001113

[Mai98] D. Maier. Database desiderata for an XML
query language. QL’98 – The Query Language Work-
shop, W3C, Boston (December 1998).

 [Mur98] L. D. Murphy. Digital document metadata in
organizations: roles, analytical approaches, and future
research directions. Proc. 31st Annual Hawaii Interna-
tional Conf. on System Sciences (1998), 267-276.

[RTW96] D. R. Raymond, F. W. Tompa, and D.
Wood. From data representation to data model: meta-
semantic issues in the evolution of SGML. Computer
Standards & Interfaces 18 (1996), 25-36.

[SLT00] A. Salminen, V. Lyytikäinen, P. Tiitinen,
and O. Mustajärvi. SGML for E-Governance: The case
of the Finnish Parliament. Proc. 11th International
Workshop on Data and Expert Systems Applications
(2000), 349-353.

[SCF96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein,
and C. E. Youman. Role-based access control models.
Computer (February 1996), 38-47.

 VLDB Submission #284, Salminen & Tompa, Page 12 of 12

[TaT01] X. Tang and F. W. Tompa. Approaches towards
developing transformation languages for structured
documents. In preparation, February 2001.

[TBM00] H. S. Thompson, D. Beech, M. Maloney,
and N. Mendelsohn (Eds.). XML Schema Part 1:
Structures, W3C Candidate Recommendation 24
October 2000. http://www.w3.org/TR/2000/CR-
xmlschema-1-0001024/.

Appendix
The XML Information Set (Infoset) [CoT01] is the most
central of the four models even though it is still a work in
progress. The specification has been in the Working Draft
phase since May 1999. It is intended to provide a set of
definitions for use in other specifications that need to refer
to the useful information in an XML document. The
specification draft describes the information in an XML
document as a set consisting of information items of
various types. For each type, a set of properties is defined.
The properties describe the information accessible from
an information item of the corresponding type.

The XPath Data Model [ClD99] is included in the
XML Path Language (XPath) specification. The model
defines an XML document as a tree containing nodes,
describes the nodes, their relationships, and a string value
for each node. The purpose of the XPath Specification is
to offer a common syntax and semantics for addressing
parts of an XML document in other specifications,
initially for XSLT and XPointer specifications. There are
no formal dependencies between the XPath and Infoset
models. The XPath specification, however, describes in a
non-normative appendix how the nodes in the XPath data
model can be derived from the information items
provided by the XML Information Set.

The Document Object Model (DOM) [ABC98,
LLW00] is an application program interface for valid
HTML and well-formed XML documents. Thus it is not
itself a data model, but instead it defines an object model
for documents: the logical structure of documents and the
way a document is accessed and manipulated. DOM is
intended to provide a standard programming interface that
can be used in a wide variety of environments and
applications, with any programming language.
Implementations are provided for Java and ECMAScript.
The DOM Level 2 specification consists of five parts:
Core, Views, Events, Style, and Traversal and Range. The
underlying data model for XML documents is included in
the DOM Level 2 Core Specification [LLW00], which
builds on the DOM Level 1 Specification [ABC98]. The
DOM Level 2 Specification defines structural
isomorphism between two DOM implementations with
respect to the XML Information Set: for a given document
the implementations have to create the “same structure
model” in accordance with the XML Infoset. However,

the precise meaning of this requirement has not been
specified.

The XML Query Data Model [FeR01] is part of the
W3C activity for specifying an XML query language. It
is a work in progress and serves as the foundation for the
XML Query Algebra [FFM01]. The Query Data Model is
intended to define formally the information contained in
the input to an XML Query processor so that a query can
be evaluated against a database instance. An instance of
the Query Data Model is logically derived from an
instance of the XML Infoset after validation against an
XML Schema. Thus it is based on the XML Information
Set, but it requires support for XML Schema types, for
representing collections of documents and collections of
simple and complex values, and for references within an
XML document and from one XML document to another.
Such an instance is called a post-schema-validated
information set, or “PSV Infoset.”

