SyncML Sync Protocol 1 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

SyncML Sync Protocol, version 1.0

Abstract

This specification defines synchronization protocol between a SyncML client and server in form of message
sequence charts. It specifies how to use the SyncML Representation protocol so that interoperating SyncML
client and server solutions are accomplished.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 2 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

Consortium

The following companies are sponsors in the SyncML initiative:
Ericsson

IBM

Lotus

Motorola

Nokia

Palm, Inc.

Matsushita Communications Industrial Co.

Psion

Starfish Software

Revision History

Revision | Date Comments
0.9 2000-05-31 0.9 release
1.0a 2000-08-31 Authentication procedures added, busy signaling

generalized, multiple message per package functionality
specified, Update command renamed to Replace, Alert codes
modified, editorial changes.

1.0b 2000-11-07 Sync Anchors chapter updated, error cases fixed, slow sync
chapter fixed, the sync alert chapter updated, examples
updated

1.0 2000-12-07 The candidate version for the final release. The

authentication example fixed. The device capabilities and the
requirement for Get operation changed. Binary example
updated. Examples updated to match with changes in the
DevInf and MetInf specifications

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 3 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

Copyright Notice

Copyright (c) Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software (2000).

All Rights Reserved.

Implementation of all or part of any Specification may require licenses under third party
intellectual property rights, including without limitation, patent rights (such a third party may
or may not be a Supporter). The Sponsors of the Specification are not responsible and shall
not be held responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN ARE PROVIDED ON
AN "AS IS" BASIS WITHOUT WARRANTY OF ANY KIND AND ERICSSON, IBM, LOTUS,
MATSUSHITA COMMUNICATION INDUSTRIAL CO. LTD, MOTOROLA, NOKIA, PALM
INC., PSION, STARFISH SOFTWARE AND ALL OTHER SYNCML SPONSORS
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ERICSSON, IBM,
LOTUS, MATSUSHITA COMMUNICATION INDUSTRIAL CO., LTD, MOTOROLA, NOKIA,
PALM INC., PSION, STARFISH SOFTWARE OR ANY OTHER SYNCML SPONSOR BE
LIABLE TO ANY PARTY FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF
USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR DIRECT, INDIRECT, SPECIAL
OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY
KIND IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that
are made.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf

SyncML

Table of Contents

4 of 60 Pages
Version 1.0

2000-12-07

(1 TRy o esaTe) P 7|
(.1 SYNCML FrameWorK.............ooouieeeeeeeieeeeeeeeeeeeeeeeeeeeeeenn. 7|
(.2 DEVICE ROIES ..o 7|
R S 8|
(.4 Symbols and CONVENTIONS.cooueeeeeeeieeieeeeeeeseeeereeeeerseeeeesnns 9
N.4.1 MSC NOAUON ...eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaane 9
R Protocol FUNAAmMeENtalS.............ccieeevueeeiiiiisneeeiiiissseerssssssseesssssssseesssnns 10|
P.1 Change Log INformationccceeuuuueeeeeeeeeeeeeeeeeciiaaaaannn, 10
P.1.1 MUltiple deViCesccoueeeieeueiieeiicieeeeeceeeeeeeaana 10
R.2 Usage of SYNC ANCROISccceeeeeeeeiiiiiiiieeeeeeeeeeeeeaaeannn, 10
P.2.1 Sync Anchors for Databasesccccceeeeeeeeieiseiierienernns 10
P.2.2 Sync Anchors forData femscooeeeeeeevveeneann. 11|
P.3 ID Mappingof Data HemS............ccooeummmeeeeiiieeeeeeeeeeeciiaaaann 12
R.3.1 Caching of Map Operationscccceeeeseiiecirieisiienees 12
P4 CoNflict RESOIULION.iieieiieiie it eeeieieiesieeieseeeeeesaeeesaeneeens 13|
P8 SECUIMY ..o eeeeaeeeanens 13|
N 14
P.6.1 Device and Service Addressingccccueeeeeeeunnn..... 14
P.6.2 Database ADAressing..........cccccueeeeeeeuueieeeiecineeeiecinnannns 14|
P.6.3 Addressing of Data temS.oooiiiiiiieiiiiiieiieiieiiiieieeas 14|
P.7 Exchange of Device Capabilitiescccccoouveeeeeeeennaaaannn 15|
P.8 Device Memory Management...............uuueeeeeeeeeeeeeeeeaaaaaenn, 15|
P.9 Multiple Messages in Packagecccooeeeeueereeeecunnnaaannn.. 16|
R.10 Sync without Separate Initializationcccoeeeveeeeeeeeene.... 17
P.10.1 Robustness and Security Considerations 17
PA1 BUSY SIOGNAINGceieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeannene 17
P.11.1 Busy Status from Server............cooooooeeeeeeeeceeeeeeennnnn 17
P.11.2 Result Alert from Client..........cccccooveeeiueeeeeeeieeeeennn.. 18]
B AUthenticationccoueceeeiiiicceeee e e e e e e e 20
B.1 Authentication ChallenNge.........coecuiiieeiiiieiiesieiieieeiesseiiesaeeeens 20
B.2 AUNOMZAON.oooeiieeeeeeeeeeeeeeeeeee e 20|
B.3 Server Layer Authenticationcceeeuiieeeieeeeeeeeinaaaannn 20|
B.4 Authentication of Database Layer...............ccccouveeeeeccuunnneann..... 21|
B.5 Authentication EXamPIESoooowooeeeeeieeeeeeeeeeeeeeeeeaeea. 21
B.5.1 Basic authentication with a challengeccccueeeune.... 21
B.5.2 MD5 digest access authentication with a challenge......22|
é SyNc INItIAliZAtionccccuueeeiiiiiiiiiiiiciieneeeee e ieeseciisnnnseseeeeeesssannnns 25|

Starfish Software (1999, 2000) All Rights Reserved.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

SyncML Sync Protocol

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf

SyncML
#.1 Initialization Requirements for Clientccccccocooeeeueeeenn..... 26
#.1.1 Example of Sync Initialization Package from Client...... 27
#.2 Initialization Requirements for Server.............ccocoovevevecee..... 28
U.2.1 Example of Sync Initialization Package from Server.....30
B3 Error Case BENAVIOIScc..eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaann 32
“.3.1 No Packages from Server..........coouueeeeeeeeeeeeeeennnen. 32
“.3.2 No Initialization Completion from Client 32|
¥.3.3 Initialization Failurecccooocuieceiieeeececcianaannn 32|
TWO-WaAY SYNC ... 33
6.1 Client Modifications t0 SEIVEr............coooeueeeeeeeeeeeeeeeeeeeeevaannn 33
65.1.1 Example of Sending Modifications to Server 35
6.2 Server Modifications to Client...............ccoueeeeeeeoeeeeeeeaaann.. 36
65.2.1 Example of Sending Modifications to Client................. 37
5.3 Data Update Status from Clent.............coooeeeeeeeeeeeieereeerseneenss 38
5.3.1 Example of Data Update Status to Server-.................... 39
6.4 Map Acknowledgement from Server............ccccccueeeeeeeecenn..... 40
65.4.1 Example of Map Acknowledge..............cccccouueceeeennn..... 40
B.5 SIOW SYNC..uuiiiiiiiiieeeeeceeeeeeee e aeeeaaaaann 41|
b.6 Error Case Behaviorsccccceeeuuuuueeiieeeeeieecciiiiiiiaaeaeeaann, 41
b.6.1 No Packages from Server after Initialization................. 41
65.6.2 No Data Update Status from Client..........c..couueunn..... 41|
65.6.3 No Data Map Acknowledge from Server....................... 41|
5.6.4 Errors with Defined Error Codesocooveieieieiiieieennne.. 42|
One-Way Sync from Client OnlY.......ccceceeiicieeiiisneeiisseeressseesssssesssanes 43|
B.1 Client Modifications t0 Server...............ooocueeeeeeecueeeeeeeeaaaann.. 43|
B.2 Status frOM SEIVEI.. ... eeeeeeeeeeeeaeaenns 43|
6.3 Refresh Sync from Client Onlycccouvvveveeuneneeeeernrnaaann.. 44|
6.4 Error Cases Behavior SO 44
B.4.1 No Packages from Server after Initialization................. 44
6.4.2 Errors with Defined Error COdescccceeeeeeerseeierienneens 44|
One-Way Sync from Server onlyccveecciiiinnmeeeeeeiiiisiisisnnnsesees 45|
7.1 SynC Alert t0 SEIrVer........cccouuiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeea 45
7.2 Server Modifications t0 Clientocoiiiiiiiiiiiiiiiieiiiiee e 46
7.3 Data Update Status from Clent.........coccuieeiiieriiieiiieiiieiesneane. 46|
7.4 Map Acknowledge from SErvVer.........coeeeueeeeeeeeeeeeeeeeeaann.. 46|
7.5 Refresh Sync from Server ONlYccccoeeeeeeeeeeeeeeaaann... 46|
.6 Ermor Cases ... 46
[7.6.1 No Packages from Server.................ccccoeeevvvuunnnnnecnn... 46
[7.6.2 No Data Update Status from Client............................... 46|
[7.6.3 No Map Ack from Server......cooueceieeeeiieiieeiiiiiiierieneeans 46|

5 of 60 Pages
Version 1.0

2000-12-07

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf

SyncML

[7.6.4 Errors with Defined Error Codes...........ccccoeeuueveeeeecnnn... 47|

B Server Alerted SYNC..........uueeeeeiiieeeeeeeeeceeeeeeee e e e eeecccemeee e e e eeeeeeeeennne 48
oy = s SUUUT TR 48

B.2 Error Cases BENAVIONcooeeeieeeeeeeeeeeeeeeeeeeeieeeeeseeeeesseneeens 49

B.2.1 No Packages from ClHeNntccoueveeeeeeeeeeveeeerrenncnss 49

B.2.2 Errors with Defined Error Codesccccoueeeeeeennnr..... 49|

3] TOIMINOIOGYuuueeeieeiiiiiiiiiiiinnerreeeriissssssssssssssseereassssssssssnssseeeesssssssssnnn 50|
B. 1 DefiNitiONS........eveiieeeiiiieeieiieeee e 50|

D.2 ADDreviationsS...........cc.ooeeeieuiiieeiiiiiiieeeeeieeeeeeeeee e 50|

no R T ey 52|
i1 APPENAICES ...eeieeiiiiiieeiiisnereeeeeersssessssannseseeeessssessssssnnssseesssssmmsmsnns 53|
11.1 Protocol Valuesooouiiiiiiiiiiiiiiiiiiiiiiiceiiiiea 53

(P2 AN (=Y o o Yo [TP 53

(1.3 Conformance ReQUINEMENTS.ooeueeeeeeeeeeeieeeeeeeereeeerseeeeans 54

11.3.1 Conformance Requirements for SyncML Server 54

11.3.2 Conformance Requirements for SyncML Client............ 54/

1.4 Examples........... SO 55

N1.4.1 WBXML EXample.............cccooouuummreieeeiiiiieeciiiaaaannn 55

11.4.2 Example of Sync without Separate Initialization 58|

6 of 60 Pages
Version 1.0

2000-12-07

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 7 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

1 Introduction

The purpose of this specification is to define a synchronization protocol using the SyncML
Representation protocol This protocol is called the SyncML Sync Protocol. This specification
defines the protocol for different sync procedures, which can occur between a SyncML client and a
SyncML server, in the form of message sequence charts (MSC's). The specification covers the most
useful and common synchronization cases (Chapters E}Eb

11 SyncML Framework

This specification can be implemented by using the SyncML interface from the SyncML Framework

(See Figure 1). Not all the features of the SyncML Interface are required to comply with this
specification.

Bpp A
SyncML
$ Framework
Sync : it App B
Engine applicatienfvnd.syncml :
Objects SyncML [Fy
Syne < o Adapter | 5= .| Sync
Server L Client
Agent Agent

S TS S

(e.g., HTTP/ W5P | OBEX)

Figure 1 SyncML Framework

The application "A" depicts a networked service that provides data synchronization service for other
applications, in this case application "B", on some networked device. The service and device are
connected over some common network transport, such as HTTP.

In the figure above, the 'Sync Engine' functionality is completely placed onto the SyncML server side
even if some SyncML client implementations may in practice provide some sync engine
functionality, too. The 'Sync Server Agent' and the 'Sync Client Agent' use the protocol defined in
this specification and the representation protocol [1] offered by the SyncML interface ('SyncML I/F")
[2] to communicate with each other.

1.2 Device Roles

Figure 2]depicts a synchronization example in which a mobile phone acts as a SyncML client and a
server acts as a SyncML server. The SyncML client sends SyncML message including the data
modifications made in the client to the SyncML server. The server synchronizes the data (including

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 8 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

possible additions, replaces, and deletions) within the SyncML messages with data stored in the
server. After that, the SyncML server returns its modifications back to the SyncML client.

SyncML client SyncML server

%00 g
=Ll

>

(CC \\%j SyncML message, client modifications
Q

SyncML message, server modifications

=
L %

Figure 2 Synchronization Example with Mobile Phone and Server

The example presented the figure above is very simple. However, this example describes the roles
of the devices in this specification. That is:

SyncML Client — This is the device that contains a sync client agent and that sends first its
modifications to the server. The client must also be able to receive responses from the SyncML
server. Although the SyncML client has always the role to send its modifications first, in some cases
the server may have a role to initiate synchronization. The SyncML client is typically a mobile
phone, PC, or PDA device.

SyncML Server — This is the device, which contains a sync server agent and sync engine, and
which usually waits that the SyncML client starts synchronization and sends the clients modification
to the server. The server is responsible for processing the sync analysis when it has received the
client modifications. In addition, it may be able to initiate synchronization if unsolicited commands
from the server to the client are supported on the transport protocol level. Typically, the SyncML
server is a server device or PC.

1.3 Sync Types

This specification defines seven different sync types. These are introduced in

Table 1 SyncML Sync Types

Sync Scenario Description Reference

Two-way sync A normal sync type in which the client and the server exchange ChapterEl
information about modified data in these devices. The client sends
the modifications first.

Slow sync A form of two-way sync in which all items are compared with each Chapter
other on a field-by-field basis. In practise, this means that the client
sends all its data from a database to the server and the server does
the sync analysis (field-by-field) for this data and the data in the

server.
One-way sync A sync type in which the client sends its modifications to the server ChapterEl
from client only but the server does not send its modifications back to the client.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

9 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0
SynchL 2000-12-07
Refresh sync A sync type in which the client sends all its data from a database to Chapter
from client only the server (i.e., exports). The server is expected to replace all data in
the target database with the data sent by the client.
One-way sync A sync type in which the client gets all modifications from the server ChapterlZl
from server only but the client does not send its modifications to the server.
Refresh sync A sync type in which the server sends all its data from a database to | Chapter[7.5]
from server only the client. The client is expected to replace all data in the target
database with the data sent by the server.
Server Alerted A sync type in which the server to alerts the client to perform sync. Chapterlgl
Sync That is, the server informs the client to starts a specific type of sync
with the server.
1.4 Symbols and conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this
document are to be interoperated as described in [RFC 2119].

Any reference to components of the Device Information DTD or XML snipets are specified in this

type face.

1.4.1

MSC Notation

Notation used in the message sequence charts:

Box — Indicates the start of a procedure or an internal process in a device

Hexagon — Indicates a condition that is needed to start the transaction below this hexagon

Arrow — Represents a message, or transaction

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 10 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

2 Protocol Fundamentals
In this chapter, the common features and requirements for all sync types are defined.

21 Change Log Information

This protocol requires that devices (the client and server) are able to keep track, of changes that
have happened between synchronizations. l.e., they are responsible for maintaining the change log
information about the modifications associated with data items of a database. The types of the
modifications can be e.g., replace, addition, and deletion. This protocol does not specify in which
format this change log information is maintained inside devices. However, when synchronization is
started, the devices MUST be able to specify, which data items have changed. To specify the
changed data items, the unique identifiers are used (See also Chapter R.3). To indicate the type of a
modification, the different operations (e.g., Replace) are used.

2.1.1 Multiple devices

If a device synchronizes with multiple devices, the change log information MUST be able to indicate
all modifications related to a previous synchronization with each device.

2.2 Usage of Sync Anchors

2.21 Sync Anchors for Databases

To enable sanity checks of synchronization, this protocol uses sync anchors (See
associated with databases (e.g., a calendar database). There are two sync anchors, Last and Next
(See Meta Information DTD [3]), which are always sent at the initialization of sync. The Last sync
anchor describes the last event (e.g., time) when the database was synchronized from the point of
sending device and the Next sync anchor describes the current event of sync from the point of
sending device. Thus, both the client and the server send their own anchors to each other. The sync
anchors are sent within the Meta information of an Alert operation by using the Meta Information
DTD as defined by the SyncML Initiative. The receiving device MUST echo the Next sync anchor
back to the transmitting device in the Status for the Alert command (Data of the Item element inside
Status).

The utilization of sync anchors is implementation specific but in order to enable the utilization, the
Next sync anchor of another device needs to be stored until the next synchronization. The SyncML
server MUST store the Next sync anchor sent by the client to enable this utilization.

If the device stores the Next sync anchor, it is able to compare during the next synchronization
whether the sync anchor is the same as the Last sync anchor sent by another device. If they are
matching, the device is able to conclude that no failures have happened since last sync. If they are
not matching, the device can request a special action from another device (e.g., slow sync).

The stored sync anchors must not be updated before the synchronization session is finished.

2.2.1.1 Example of Database Sync Anchor Usage

In this example, a sync client and server synchronize twice (sync sessions #1 and #2) with each
other. After the sync session #1, the persistent memory of the sync client is reset. Because of that,

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

11 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML

2000-12-07

the database anchors do not match at the sync session #2, the sync server notifies this, and it

initiates the slow sync with the client.

The sync session #1 is started at 10:10:10 AM on the 10™ of October 2001. The previous
synchronization (before the sync session #1) was started at 09:09:09 AM on the 9" of October
2001. At this synchronization session, the slow sync is not initiated because the sync anchors
match. l.e., the sync server has the sync event (09:09:09 AM on the 9" of October, 2001).

The sync session #2 is started at 11:11:11 AM on the 11™ of October 2001. Because the memory of
the sync client was reset after the sync session #2, the sync server initiates the slow sync.

In the figure below, both the sync sessions are depicted. Only the initialization phases and the client

sync anchors are shown in the figure.

SyncML Client SyncML Server Fmmmmmmmmmmmmeo

The Sync Server

i has stored the client

Sync Session #1

| sync event
1 (09:09:09 AM,

Pkg #1: Last (20010909T090909Z), Next(20011010T101010Z)

Pkg #2: OK

<

1 9/9/2001).

Sync Session #1 completed, the sync server updates the sync anchor.

The persistent storage of the client is reset.

| The Sync Server
1 has stored the client

Sync Session #2 | sync event
1 (10:10:10 AM,

1 10/10/2001).
Pkg #1: Last (Empty’), Next(20011111T1111112) e

> | The sent and the 1

Pkg #2: Refresh required ('508') | stored anchors 1

1 do not match. H

< L 2

I I

Figure 3 Example of Sync Anchor Usage

2.2.2 Sync Anchors for Data Iltems

This protocol does not specify the functionality to transfer the sync anchors associated with
individual data items. If this functionality is desired, it MUST be provided inside the data items if it is
included. An example is the Sequence Number property of vCalendar, the electronic calendaring

and scheduling exchange format [5].

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 12 of 60 Pages
http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0
SyncVL 2000-12-07

2.3 ID Mapping of Data Iltems

This protocol is based on the principle that the client and the server can have their own ID's for data
items in their databases. These ID's MAY or MAY NOT match with each other. Because the ID's
can be different, the server MUST maintain the ID mapping table for items. That is, the server
knows which client ID (LUID) and which server ID (GUID) points to the same data item.

Figure 4|shows an example of an ID mapping table after synchronization. In this example the
mapping table in the server is depicted as a separate from the actual database.

Client Device Server Device
Client Database: Server Database:
LUID Data GUID Data
11 Car 1010101 Car
22 Bike 2121212 Bike
33 Truck 3232323 Truck
44 Shoes 4343434 Shoes
Server Mapping Table:
GUID LUID
1010101 11
2121212 22
3232323 33
4343434 44

Figure 4 Example: ID Mapping of Data ltems

The LUID's are always assigned by the client device. This means that even if the server adds an
item to the client device, the client assigns a LUID for this item. In this case, the client returns the
LUID of the new item to the server. The Map operation is used for this. After the Map operation is
sent by the client, the server is able to update its mapping table with the client LUID.

When a server is adding a new item to a client, it must not send its actual GUID if the size of the
actual GUID is exceeding the maximum size of the temporary GUID defined by the client. If size of
the actual GUID’s exceeds the maximum size, the server MUST use a smaller temporary GUID
when adding an item to the client. The maximum size of the temporary GUID is defined in the
device information document of the client.

If the server has modified an existing item (i.e., an item which is on both the devices), the server
MUST identify the item by using the client LUID for this item, when the modification (e.g., replace or
deletion) is synchronized with the client. In the case of the client modifications, items are also
identified with LUID's, when the modifications are sent to the server. The server can map a LUID to
its own GUID by utilizing the mapping table.

2.3.1 Caching of Map Operations

After a SyncML server has requested one or more additions to be done by the SyncML client, and
the client has completed these additions to its database and allocated LUID's for them, the client

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 13 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

has a possibility to cache the Map operations associated with these LUID's. The client MAY cache
the Map operations, if the server has explicitly indicated that it does not require a response to its
sync message. However, the client is always allowed to send the Map operations back to the server
immediately after adding the items to the client database. This is the case even if the server has
indicated that it does not require a response.

If the map items are cached, the Map operations are sent back to the server at the beginning of a
subsequent synchronization session (in Pkg #3 from the client to the server). That is, the server
MUST receive the Map operations before it is able to process any client updates related to the items
with which the Map operations are associated.

If the SyncML server has the control of a transport protocol (e.g., acting as a OBEX client), it MUST
always request a response to the Sync command, which it has sent to the client. Thus, the server
MUST NOT disconnect before it has got a response to the Sync command from the client.

2.4 Conflict Resolution

Conflicts, which happen because of modifications on the same items on the server and the client
databases, are in general resolved by a sync engine SW on the server device. This protocol with
the SyncML Representation protocol provides the functionality to notify the SyncML client about the
resolved conflicts.

Although the SyncML server is in general assumed to include the sync engine functionality, the
possibility that the client would also provide some sync engine functionality is not excluded. In this
case, the client MAY also resolve conflicts. Then, the server only returns back to the client a
notification that a conflict or conflicts have happened and the client can resolve the conflicts.

There are multiple policies to resolve the conflicts and the SyncML Representation protocol
provides the status codes (See Chapter 13 in [1]) for some common policies. Thus, if the sync
engine of the server resolves a conflict, it can send information about the conflict and how the
conflict was resolved. This notification happens by using the Status elements. The example below
depicts a case that the server sends a status to the client.
<Status>

<MsgRef>1</MsgRef>

<CmdRef>2</CmdRef >

<Cmd>Replace</Cmd>

<SourceRef>1212</SourceRef>

<Data>208</Data> <!-- Conflict, originator wins -->
</Statuss>

The administration, and how the conflict resolution policy is configured, is out of the scope of this
protocol and the SyncML Representation protocol.

2.5 Security

This protocol requires the support for the basic authentication and the MD5 digest access
authentication on the server layer (i.e., in SyncHdr). Both the sync client and the server can
challenge for the authentication and the device receiving the authentication challenge must be able
to send the authorization credentials back.

The authentication procedure used by this protocol is defined in Chapter EI

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 14 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

2.6 Addressing

2.6.1 Device and Service Addressing

The device or service addressing within the SyncML SyncHdr element is done by using the URI
scheme defined in the SyncML representation specification. Devices connected to the Internet
constantly, MAY refer to the URI-based addressing. E.g., the source would be:

<Source>

<LocURI>http://www.syncml.org/sync-server</LocURI>
</Source>

Devices, which are, for example, connected temporarily, MAY prefer to identify themselves with an
own identification mechanism. E.g., the Source element of a mobile phone device could be:

<Source>
<LOCURI>IMEI:493005100592800</LocURI>
</Source>

The addressing scheme on the transport level (e.g., HTTP) does not match with the device or server
address, if this type of scheme is used.

2.6.1.1 Usage of RespURI and Re-direction Status Codes

This protocol does not require the support of the RespURI element. Either the support of the re-
direction status codes (3XX) is not required.

2.6.2 Database Addressing

The database addressing within the SyncML operations is done by using the URI scheme defined in
the SyncML Representation protocol. Absolute or relative URI's can be used for the server and
client databases. E.g., the source elements for a server database in these two cases can look like:

<Syncs>. ..
<Target>
<LocURI>./calendar/james bond</LocURI>
</Target>
...</Sync>

<Sync>
<Target>
<LocURI>http://www.syncml.org/sync-server/calendar/james bond</LocURI>
</Target>
...</Sync>

2.6.3 Addressing of Data Items

The addressing of data items within the SyncML Item elements is done by using the URI-based
scheme defined in the SyncML representation specification. Relative URI's can be used. E.g., the
source element for one item can look like:

<Item>. ..
<Source>
<LocURI>101</LocURI>
</Source>
...</Item>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 15 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

2.7 Exchange of Device Capabilities

This protocol provides the functionality exchange the device capabilities during the initialization (See
Chapter Eb The exchange can be requested by the sync client or the sync server.

The sync client MUST send its device information to the server when the first synchronization is
done with a server or when the static device information has been updated in the client. The client
MUST also be able to transmit its device information if it is asked by the server. The client SHOULD
also support the receiving of the server device information.

The sync server MUST be able to send its device information if requested by the client. The server
MUST support the functionality of receiving and processing the client device information when sent
by the client or requested by the server itself.

Implementation consideration. The exchange of the device information can require that a quite large
amount of data is transferred over the air. Thus, the devices should avoid requesting the exchange
at every times when sync is initialized. In addition, the devices should consider whether they need
to send all device specific data if it is clear that another device cannot utilize it. E.g., if the client
indicates that it does not support the vCard3.0 content format, the server SHOULD NOT send the
supported properties of vCard3.0 if it supports it.

2.8 Device Memory Management

This protocol with the Meta Information DTD provides possibility to specify the dynamic memory
capabilities for databases of a device or for persistent storage on a device. The capabilities specify
how much memory there is left for usage. The dynamic capabilities can be specified every time
when the synchronization is done. The static memory capabilities are exchanged when the sync
initialization is done (See Chapter R.7]and Chapter).

Although the sending of persistent memory capabilities is optional for both the sync clients and
servers, the sync clients SHOULD send those and the sync servers MAY.

The usage of different types of memory capabilities is dependent on the persistent storage model
on a device. Below there is an example how the dynamic memory capabilities of a calendar
database on a device are represented, when the Sync command is sent.

<Sync>
<CmdID>1</CmdID>
<Target><LocURI>./calendar/james_bond</LocURI></Target>
<Source><LocURI>. /dev-calendar</LocURI></Source>
<Meta>
<Mem xmlns='syncml:metinf'>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81l</Freelds>
<!--Number of free records in Calendar database-->
</Mem>
</Meta>
<Replace>

.</Rep1ace>
;)éync>
The database-specific memory elements in the Meta element of the Sync command MUST be

associated with the source database specified in the Source element of the Sync command. Thus,
the database is specified inside the Meta element anymore.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 16 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

2.9 Multiple Messages in Package

This protocol provides the functionality to transfer one SyncML package in multiple SyncML
messages. This may be necessary if one SyncML package is too large to be transferred in one
SyncML message. This limitation may be caused e.g., by the transport protocol or by the limitations
of a small footprint device.

If a SyncML package is transferred in multiple SyncML messages, the last message in the package
MUST include the Final element (See SyncML Representation protocol.). Other messages
belonging to the package MUST NOT include the Final element.

The device, which receives the SyncML package containing multiple messages, MUST be able to
ask more messages. This happens by sending an Alert command with a specific alert code, 222
back to the originator of the package. However, after receiving the message containing the Final
element, the Alert command MUST NOT be used anymore.

The receiver of a package may start to send its next package at the same time when asking more
messages from the originator if this makes sense. Thus, in Chapters 3-7, it is specified which
commands or elements are allowed to be sent before receiving the final message belonging to a
package.

If a device receives a message in which the Final flag is missing and a Sync element for a database
is included, the device MUST be able to handle the case that in the next message, there is another
Sync element for the same database.

Below, there is depicted an example that the sync client is sending Package #3 in multiple
messages (2 messages) and the server also sends Package #4 in multiple messages (2
messages).

SyncML Client SyncML Server
Pkg #3, Msg #1: Status for Init, Some of client modifications
g
Pkg #4, Msg #1: Status for client mod's, Alert for next msg
¢
Pkg #3, Msg #2: Rest of client mod's, Alert for next msg
g
Pkg #4, Msg #2: Status for client mod's, Server mod's
¢
Pkg #5, Msg #1: Status for server mod's, (Map operation)
g
I I

Figure 5 Example of Sending Multiple Messages in a Package

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 17 of 60 Pages
http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
2000-12-07

SyncML

210 Sync without Separate Initialization

Synchronization can be started without a separate initialization (See the initialization in Chapter E[)
This means that the initialization is done simultaneously with sync. This can be done to decrease
the number of SyncML messages to be sent over the air.

If the sync is done without the initialization, the Alert command(s) (from the client) in Packet #1 is
sent within Packet #3, in which the Sync command(s) are also placed. Also, the Alert command(s)
(from Server) in Packet #2 is sent within Packet #4, in which the Sync command(s) are also placed.

The sync server MUST be able to handle both the cases; sync with a separate initialization or sync
without a separate initialization.

See the example of this in Appendices.

2.10.1 Robustness and Security Considerations

If the client implementation decides to use sync without a separate initialization, the following
considerations should be taken into account:

- The client sends its modifications to the server before the server gets the sync anchors from
the client. Because of this, the client may need to send all data again if the server has a
need to request a slow sync.

- Server sync anchor are not received before sending the client modifications. Thus, if the
client needs to request a slow sync, earlier data, which was sent in Package #3 to the
server, was unnecessarily sent and all data needs to be sent to server.

- The client sends its modifications to the server before there is any possibility for the server to
send its credentials (if required) to the client. l.e., the client cannot be sure whether it is
communicating with the correct server.

211 Busy Signaling

If the server is aﬁle to receive the data from the client but it is not able to process the request(s) at a
reasonable time™ after receiving the modifications from the client, the server MUST send information
about that to the client. This happens by sending the Busy Status package back to the client.

After the client has received a busy signal from the server, the client MAY ask for the sync results
later or start the synchronization from the beginning. If the client starts the synchronization from the
beginning its 'Last' sync anchor MUST not be updated.

If the server has sent the busy status to the client and it does not get a request from the client (i.e.,
Retry Alert), the server MUST assume that the client has stopped the synchronization and start he
synchronization from the beginning. The server MUST NOT update its 'Last' sync anchor. The
server MUST NOT either update the client Next sync anchor.

2.11.1 Busy Status from Server

Informing the client that the server is busy happens by sending the Busy Status package to the
client. This can be sent before any package is completely received. The Busy Status package

! This time is dependent e.g. on the transport protocol transferring SyncML messages.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 18 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

MUST NOT be used to return status information related any individual data items or command
which are in SyncBody of the client request.

The requirements for the elements within the Busy Status package are:

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'.
e The value of the VerProto element MUST be 'SyncML/1.0'.
e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

e The Target element MUST be used to identify the target device.
e The Source element MUST be used to identify the source device and service.
2. The Status element for the SyncHdr MUST be included in SyncBody.

e The status code (101, in progress) MUST be returned within the Status for the command
sent by the client. The status is returned for the SyncHdr command.

3. The Final element MUST NOT be used for the message.

2.11.1.1 Example of Busy Status

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target >
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>101l</Data> <!--Statuscode for Busy-->
</Status>
</SyncBody>
</SyncML>

2.11.2 Result Alert from Client

The result alert is sent to ask results to the last message which was sent to the server. This is done
by sending a Result Alert package from the client to the server. A message within this package has
the following requirements.

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'".
e The value of the VerProto element MUST be 'SyncML/1.0'.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 19 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

e The Target element MUST be used to identify the target device and service.
e The Source element MUST be used to identify the source device.

2. The Alert element MUST be included in SyncBody. There are the following requirements for this
Alert element.

e CmdID is required.
e The ltem element is used to specify the server and the client device.
e The Data element is used to include the Alert code. The alert code is '221' (See

3. The Final element MUST NOT be used for the message.

If the server is still busy, when it receives this Result Alert from the client, it MUST again return the
Busy Status with the '101' status code back to client. The status code is associated with the
SyncHdr and the Alert command sent by the client.

2.11.2.1 Example of Result Alert

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</SyncHdr>
<SyncBody>
<Alert>
<CmdID>1</CmdID>
<Data>221</Data>
<Item>
<Target><LocURI>./contacts/james_bond</LocURI></Targets>
<Source><LocURI>. /dev-contacts</LocURI></Source>
</Item>
</Alert>
</SyncBody>
</SyncML>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 20 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

3 Authentication

In this chapter, the authentication procedures are defined for the basic and MD5 digest access
authentication. Both of them MUST be supported by the devices conforming to this specification.

3.1 Authentication Challenge

If the response code to a request (message or command) is 401 (‘Unauthorized') or 407
(Authentication required), the request requires authentication. In this case, the Status command to
the request MUST include a Chal element (See Representation protocol spec). The Chal contains a
challenge applicable to the requested resource. The device MAY repeat the request with a suitable
Cred element (See Representation protocol). If the request already included the Cred element, then
the 401 response indicates that authorization has been refused for those credentials.

Both, the sync client and the sync server can challenge for authentication.

If the 401 response (i.e., Status) contains the same challenge as the prior response, and the user
agent has already attempted authentication at least once, then the user SHOULD be presented the
entity that was given in the response, since that entity might include relevant diagnostic information.

If the response code to a request is 212 (‘Authentication accepted'), no further authentication is
needed for the remainder of the synchronization session. In the case of the MD5 digest access
authentication, the Chal element can however be returned. Then, the next nonce in Chal MUST
used for the digest when the next sync session is started.

If a request includes security credentials and the response code to the request is 200, the same
credentials MUST be sent within the next request. If the Chal element is included and the MD5
digest access authentication is required, a new digest must be created by using the next nonce, no
further authentication is needed for the remainder of the synchronization session. In the case of the
MD5 digest access authentication, the Chal element can however be returned. The next nonce in
Chal MUST used when the next request is sent.

3.2 Authorization

The Cred element MUST be included in requests (message or command), which are sent after
receiving the 401 or 407 response if the request is repeated. In addition, it can be sent in the first
request from a device if the authentication is pre-configured to be required. The content of the Cred
element is specified in [1]. The authentication type is dependent on the challenge (See the previous
chapter) or the pre-configuration.

3.3 Server Layer Authentication

When the authentication is considered, this protocol mandates only the support for the
authentication on the server layer (in the SyncHdr element). |.e., the authentication of the server
layer MUST be supported by the device complying with this specification.

The authentication on the server layer is accomplished by using the Cred element in SyncHdr and
the Status command associated with SyncHdr. Within the Status command, the challenge for the
authentication is carried as defined earlier. The authentication can happen both directions, i.e., the
sync client can authenticate itself to the sync server and the sync server can authenticate itself to
the client.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 21 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

3.4 Authentication of Database Layer

The authentication of the database layer SHOULD be supported by the device complying with this
specification. The authentication on the database layer is accomplished by using the Cred element
in the Alert and Sync commands (See the Representation Protocol.) and the Status command
associated with these commands. Within the Status command, the challenge for the authentication
is carried as defined earlier. The authentication can happen both directions, i.e., the sync client can
authenticate itself to the sync server and the sync server can authenticate itself to the client (Alert
and Sync command are sent both directions).

3.5 Authentication Examples

3.5.1 Basic authentication with a challenge

At this example, the client tries to initiate sync with the server without any credentials (Pkg #1). The
server challenges the client (Pkg #2) for the server layer authentication. The client must send Pkg
#1 again with the credentials. The server accepts the credentials and the session is authenticated
(Pkg #2). In the example, commands in SyncBody are not shown although in practise, they would
be there.

Pkg #1 from Client

<SyncML>

<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Sources>

</SyncHdr>

<SyncBody>

</SyncBody>
</SyncML>

Pkg #2 from Server

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target >
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef><CmdRef >0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>
<Meta>
<Type xmlns='syncml:metinf's>syncml:auth-basic</Type>
<Format xmlns='syncml:metinf's>b64</Formats>
</Meta>
</Chal>
<Data>407</Data> <!--Credentials missing-->
</Status>

</SyncBody>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 22 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

</SyncML>

Pkg #1 (with credentials) from Client

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
<Cred>
<Meta><Type xmlns='syncml:metinf's>syncml:auth-basic</Type></Meta>
<Data>Qndly2UyOk9oQmVoYXZl</Data> <!—base64 formatting of "userid:password"-->
</Creds>
</SyncHdr>
<SyncBody>

</SyncBody>
</SyncML>

Pkg #2 from Server

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target >
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef><CmdRef >0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Authenticated for session-->
</Status>

</SyncBody>
</SyncML>

3.5.2 MDS5 digest access authentication with a challenge

At this example, the client tries to initiate sync with the server without any credentials (Pkg #1). The
server challenges the client (Pkg #2) for the server layer authentication. The authentication type | is
now the MD5 digest access authentication. The client must send Pkg #1 again with the credentials.
The server accepts the credentials and the session is authenticated (Pkg #2). Also, the server
sends the next nonce to the client, which the client must use when the next sync session is started.
In the example, commands in SyncBody are not shown although in practise, they would be there.

Pkg #1 from Client

<SyncML>
<SyncHdr>

<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Sources>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 23 of 60 Pages

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
SyncVL 2000-12-07
</SyncHdr>
<SyncBody>
.'</SyncBody>
</SyncML>

Pkg #2 from Server

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/l.O</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target >
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Chals>
<Meta>
<Type xmlns='syncml:metinf’>syncml:auth-md5</Type>
<Format xmlns=’syncml:metinf’>bé64</Format>
<NextNonce xmlns='syncml:metinf’>Tm9uY2U=</NextNonce>
</Meta>
</Chals>
<Data>407</Data> <!--Credentials missing-->
</Status>

</SyncBody>
</SyncML>

Pkg #1 (with credentials) from Client

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Sources>
<Cred>
<Meta><Type xmlns='syncml:metinf's>syncml:auth-md5</Type></Meta>
<Data>NTI20TJhMDAWN] YXxODkwYmQ3NWUxN2RhN2ZmYmJ1Mzk=</Data>
<!— Base64 coded MD5 digest of "Bruce2:0hBehave:Nonce" -->
</Creds>
</SyncHdr>
<SyncBody>

</SyncBody>
</SyncML>

Pkg #2 from Server

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 24 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

<Target><LocURI>IMEI:493005100592800</LocURI></Target >
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Chal>
<Meta>
<Type xmlns='syncml:metinf’>syncml:auth-md5</Type>
<Format xmlns=’'syncml:metinf’>bé64</Format>
<NextNonce xmlns='syncml:metinf’>LG31ZQhhdmKNHg==</NextNonce>

<!—This nonce is used at the next session.-->
</Meta>
</Chal>
<Data>212</Data> <!—Authenticated for session-->
</Status>
</SyncBody>

</SyncML>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 25 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

4 Sync Initialization

The sync initialization is required that the actual synchronization (See Chapters E} i.e., the sync
commands, can also be transmitted and processed. Prior to the sync initialization, the SyncML
server may alert the client to trigger synchronization with it (See Chapter E} but this does not
remove the need for the initialization. The sync initialization has the following purposes:

e To process the authentication between the client and the server on the SyncML level.

e To indicate which databases are desired to be synchronized and which protocol type is
used.

e To enable the exchange of service and device capabilities.
The two first ones are done by using the Alert command of the SyncML Representation protocol.
These must be supported by the client and the server.

The exchange of service capabilities is done by utilizing the Put and Get commands of the SyncML
Representation protocol and the Device Information DTD (See also Chapter .

The initialization procedure is depicted in the figure below. Some parts of the procedure (some
responses) can be included in the actual synchronization messages if it is necessary.

User SyncML Client SyncML Server

I I I
< Client and server configured properly to enable communication with each other >

Sync order

Pkg #1: Client Initialization package to server

Pkg #2: Server Initialization package to client

<

Sync will continue according for the sync type(s) defined in the Alert commands.

Pkg #3: Sync package including the completition of the Sync
initialization.

>
BN I

Figure 6 MSC of Synchronization Initialization

The arrows in all figures in this document represent SyncML packages, which can include one or
more messages. The package flow presented above is one SyncML session that means that all
messages have the same SyncML session ID.

The purpose and the requirements for each of the packages in the figure above are considered in
the next sections.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 26 of 60 Pages
http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
SyncVL 2000-12-07

4.1 Initialization Requirements for Client

As described in the previous chapter, the client needs to inform the server which databases it wants
to synchronize and which type synchronization is desired. Optionally, the client can also include the
authentication information and the service capabilities information into this initialization.

The databases, which are desired to be synchronized, are indicated in the separate Alert
commands. l.e., for each database, a separate Alert command MUST be included in the SyncBody.
In addition, the Alert command is used to exchange the sync anchors.

The synchronization type is indicated in the Alert command. See the alert codes in Alert Codes

The authentication information, if it is included, MUST be placed inside the Cred element in the
SyncHdr. Either the Basic or the MD5 Digest credential type can be used.

The service capabilities can be sent by using the Put command in the SyncBody element. The client
MUST include service and device information, which is applicable from the Device Information DTD,
in the data to be sent to the server. The client can also ask the service capabilities of the server.
The Get command is used for this operation.

The detailed requirements for the sync initialization package (Pkg #1 in from the client to
the server are:
4. Requirements for the elements within the SyncHdr element.

e The value of the VerDTD element MUST be '1.0'".

e The VerProto element MUST be included to specify the sync protocol and the version of
the protocol. The value MUST be 'SyncML/1.0' when complying with this specification.

e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

e The Target element MUST be used to identify the target device and service.
e The Source element MUST be used to identify the source device.
e The Cred element MUST be included if the authentication is needed.

5. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and
the following requirements exist.

e CmdID is required.
e The response SHOULD be required for the Alert command.

e The Data element is used to include the Alert code. The alert code is one of the codes

used at the initialization. See the alert codes in Alert Codes
e Target in the Item element is used to specify the target database.
e Source in the Item element is used to specify the source database.

e The sync anchors of the client MUST be included to specify the previous and current (Last
and Next) sync anchors (See also Chapter[2.2.1). The sync anchors are carried inside the
Meta element in the Item element.

6. If the service capabilities are sent from the client to the server, the following requirements for the
Put command in the SyncBody exist.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 27 of 60 Pages
http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
2000-12-07

SyncML

e CmdID is required.

e The Type element of the Metalnf DTD MUST be included in the Meta element of the Put
command to indicate that the type of the data is the type of the Device Information DTD.

e The Source element in the Item element MUST have a value './devinf10'.
e The Data element is used to carry the device and service information data.

7. If the service capabilities are requested from the server, the following requirements for the Get
command in the SyncBody exist.

e CmdID is required.

o The Type element of the Metalnf DTD MUST be included in the Meta element of the Get
command to indicate that the type of the data is the type of the Device Information DTD.

e The Target element in the Item element MUST have a value "./devinf10'".

8. The Final element MUST be used for the message, which is the last in this package.

41.1 Example of Sync Initialization Package from Client

<SyncML>
<SyncHdr>

<VerDTD>1.0</VerDTD>

<VerProto>SyncML/l.O</VerProto>

<SessionID>1</SessionID>

<MsgID>1</MsgID>

<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>

<Source><LocURI>IMEI:493005100592800</LocURI></Sources>

<Cred> <!--The authentication is optional.-->
<Meta><Type xmlns='syncml:metinf's>syncml:auth-basic</Type></Metas>
<Data>QnJd1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of "userid:password"-->

</Cred>
<Meta> <!--The Meta is now used to indicate the maximum SyncML message size, which
client can receive.-->
<MaxMsgSize xmlns='syncml:metinf'>5000</MaxMsgSizes>
</Meta>
</SyncHdr>
<SyncBody>
<Alerts>
<CmdID>1</CmdID>
<Data>200</Data> <!-- 200 = TWO_WAY ALERT -->
<Item>

<Target><LocURI>./contacts/james_bond</LocURI></Targets>
<Source><LocURI>. /dev-contacts</LocURI></Source>

<Meta>
<Anchor xmlns='syncml:metinf's>
<Last>234</Last>
<Next>276</Next>
</Anchor>
</Meta>
</Item>
</Alert>
<Put>
<CmdID>2</CmdID>
<Meta><Type xmlns='syncml:metinf's>application/vnd.syncml-devinf+xml</Type></Meta>
<Item>
<Source><LocURI>. /devinfl0</LocURI></Sources>
<Data>

<DevInf xmlns='syncml:devinf's>
<Man>Big Factory, Ltd.</Man>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 28 of 60 Pages
http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
SyncVL 2000-12-07

<Mod>4119</Mod>
<OEM>Jane's phones</OEM>
<FwV>2.0e</FwV>
<SwV>2.0</SwV>
<HwV>1.22I</HwWV>
<DevId>1218182THD000001-2</DevId>
<DevTyp>phone</DevTyp>
<DataStore>
<SourceRef>./contacts</SourceRef>
<DisplayName>Phonebook</DisplayName>
<MaxGUIDSize>32</MaxGUIDSize>
<Rx-Prefs>
<CTType>text/x-vcard </CTType>
<VerCT>2.1</VerCT>
</Rx-Pref>
<Tx-Prefs>
<CTType>text/x-vcard</CTType>
<VerCT>2.1</VerCT>
</Tx-Pref>
</DataStores>
<CTCap>
<CTType>text/x-vcard</CTType>
<PropName>BEGIN</PropName >
<ValEnum>VCARD</ValEnums>
<PropName>END< /PropName >
<ValEnum>VCARD</ValEnums>
<PropName>VERSION</PropName>
<ValEnum>2.1l</ValEnum>
<PropName>N</PropName >
<PropName>TEL</PropName >
<ParamName>VOICE</ParamName>
<ParamName>CELL</ParamName>
</CTCap>
<SyncCap>
<SyncType>01</SyncType>
<SyncType>02</SyncType>
</SyncCap>
</DevInfs>
</Data>
</Item>
</Put>
<Get>
<CmdID>3</CmdID>
<Meta><Type xmlns='syncml:metinf'sapplication/vnd.syncml-devinf+xml</Type></Meta>
<Item>
<Target><LocURI>./devinfl0</LocURI></Target>
</Item>
</Get>
<Final/>
</SyncBody>
</SyncML>

4.2 Initialization Requirements for Server

When the server has received the Initialization package from the client, it completes the initialization
phase by responding to the client from the server perspective. To complete the initialization, the
server sends its authentication information, sync anchors, and device information back to the client.
Also, the server MUST accept the sync type.

The detailed requirements for the sync initialization package (Pkg #2 in Figure 4) from the server to
the client are:

1. Requirements for the elements within the SyncHdr element.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 29 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

The value of the VerDTD element MUST be '1.0".

The VerProto element MUST be included to specify the sync protocol and the version of
the protocol. The value MUST be 'SyncML/1.0' when complying with this specification.

Session ID MUST be included to indicate the ID of a sync session.

MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

The Target element MUST be used to identify the target device and service.
The Source element MUST be used to identify the source device.

The Cred element MUST be included if the authentication is needed.

2. The Status MUST be returned for the Alert command sent by the client if the client requested the
response. This can be sent before Package #1 is completely received (See Chapter .

If the client is not authenticated to use the service, the sync type is wrong (e.g., slow sync
needed), or some other error occurs, the server MUST return an error for that.

The next sync anchor of the client MUST be included in the Data element of ltem (See
.2.1).

The CmdID element inside the Status MUST NOT be used. This rule applies for all status
elements used by this protocol.

3. If the client sent the device information to the server, the server MUST be able to retrieve them
and the Status MUST be returned for that command. This can be sent before Package #1 is
completely received.

4. If the client requested the device information of the server, the Results element MUST be
returned. This can be sent before Package #1 is completely received.

The Type element of the Metalnf DTD MUST be included in the Meta element in the
Results element to indicate that the type of the data is the type of the Device Information
DTD.

The Source element in the Item element MUST have a value './devinf10'.

The Data element is used to carry the device and service information of the server.

5. The Alert element(s) for each database to be synchronized MUST be included in SyncBody and
the following requirements exist.

CmdID is required.
The response SHOULD be required for the Sync command.

The Data element is used to include the alert code. If this is different that the alert code
sent by the client, the client SHOULD follow this when synchronization is continued.

Target is used to specify the target database.
Source is used to specify the source database.

The sync anchors of the server MUST be included to specify the previous and current
(Last and Next) sync anchors of the server (See also Chapter

6. If the service capabilities were not asked by the client, the server MAY send them to the client by
using the Put command. The following requirements for the Put command in the SyncBody

exist.

CmdID is required.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 30 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

o The Type element of the Metalnf DTD MUST be included in the Meta element of the Put
command to indicate that the type of the data is the type of the Device Information DTD.

e The Source element in the Item element MUST have a value './devinf10'".
e The Data element is used to carry the device and service information data of the server.

7. If the client did not send its service capabilities and the server needs to receive them, the server
can request those by using the Get command. The following requirements for the Get command
in the SyncBody exist.

e CmdID is required.

o The Type element of the Metalnf DTD MUST be included in the Meta element of the Get
command to indicate that the type of the data is the type of the Device Information DTD.

e The Target element in the Item element MUST have a value "./devinf10'".
8. The Final element MUST be used for the message, which is the last in this package.

To complete the sync initialization from the client side, the client MUST respond to the commands
(Alert, possible Put and Get) sent by the server. The Status elements and the Result element
associated with the commands can be returned in the first package occurring in actual
synchronization (Refer Package #3 in Two-way synchronization and One-way synchronizations.

4.2.1 Example of Sync Initialization Package from Server

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LOCURI>IMEI:493005100592800</LOCURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
<Cred> <!--The authentication is optional.-->
<Meta><Type xmlns='syncml:metinf's>syncml:auth-basic</Type></Metas>
<Data>QnJd1lY2UyOk9oQmVoYXZl</Data> <!--base64 formatting of "userid:password"-->
</Cred>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session--»>
</Status>
<Status>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./contacts/james bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->
<Item>
<Data><Anchor xmlns='syncml:metinf'><Next>276</Next></Anchor></Data>
</Item>
</Status>
<Status>
<MsgRef>1</MsgRef><CmdRef>2</CmdRef ><Cmd>Put</Cmd>
<SourceRef>./devinfl0</SourceRef>
<Data>200</Data> <!--Statuscode for OK-->
</Status>
<Results>
<MsgRef>1</MsgRef><CmdRef>3</CmdRef>
<Meta><Type xmlns='syncml:metinf'sapplication/vnd.syncml-devinf+xml</Type></Meta>
<Item>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 31 of 60 Pages

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

<Source><LocURI>devinfl0</LocURI></Sources>
<Data>
<DevInf xmlns='syncml:devinf's>
<Man>Small Factory, Ltd.</Man>
<Mod>Tiny Server</Mod>
<OEM>Tiny Shop</OEM>
<DevId>485749KR</DevId>
<DevTyp>Server</DevTyp>
<DataStore>
<SourceRef>./contacts</SourceRef>
<DisplayName>Addressbook</DisplayName>
<Rx-Prefs>
<CTType>text/x-vcard </CTType>
<VerCT>2.1</VerCT>
</Rx-Pref>
<Rx>
<CTType>text/vcard </CTType>
<VerCT>3.0</VerCT>
</Rx>
<Tx-Prefs>
<CTType>text/x-vcard</CTType>
<VerCT>2.1</VerCT>
</Tx-Pref>
<Tx>
<CTType>text/vcard</CTType>
<VerCT>3.0</VerCT>
</Tx>
</DataStores>
<CTCap>
<CTType>text/x-vcard</CTType>
<PropName>BEGIN</PropName >
<ValEnum>VCARD</ValEnums>
<PropName>END< /PropName >
<ValEnum>VCARD</ValEnums>
<PropName>VERSION</PropName>
<ValEnum>2.1l</ValEnum>
<PropName>N</PropName >
<PropName>TEL</PropName>
<ParamName>VOICE</ParamName>
<ParamName>CELL</ParamName>
<CTType>text/vcard</CTType>
<PropName>BEGIN</PropName >
<ValEnum>VCARD</ValEnums>
<PropName>END< /PropName >
<ValEnum>VCARD</ValEnums>
<PropName>VERSION</PropName >
<ValEnum>3.0</ValEnum>
<PropName>N</PropName >
<PropName>TEL</PropName>
<ParamName>VOICE</ParamName>
<ParamName>FAX</ParamName>
<ParamName>CELL</ParamName>
<CTType>text/vcard</CTType>
<PropName>BEGIN</PropName >
<ValEnum>VCARD</ValEnum>
<PropName>END< /PropName >
<ValEnum>VCARD</ValEnum>
<PropName>VERSION</PropName >
<ValEnum>3.0</ValEnum>
<PropName>N</PropName >
<PropName>TEL</PropName >
<ParamName>VOICE</ParamName>
<ParamName>FAX</ParamName >
<ParamName>CELL</ParamName>
</CTCap>
<SyncCap>
<SyncType>01</SyncType>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 32 of 60 Pages

http://www.syncml.org/docs/syncml protocol v10 20001207.pdf Version 1.0
SynclL 2000-12-07
<SyncType>02</SyncType>
<SyncType>07</SyncType>
</SyncCap>
</DevInf>
</Data>
</Item>
</Results>
<Alert>
<CmdID>1</CmdID>
<Data>201</Data> <!-- 201 = TWO_WAY ALERT -->
<Item>

<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>. /contacts/james bond</LocURI></Source>
<Meta>
<Anchor xmlns='syncml:metinf'>
<Last>200005021T081812Z </Lasts>
<Next>200005022T093223Z </Next>
</Anchor>
</Meta>
</Item>
</Alert>
<Final/>
</SyncBody>
</SyncML>

4.3 Error Case Behaviors

In this chapter, the recommended behaviors are defined in the cases of different error types, which
can occur during the sync initialization.

4.3.1 No Packages from Server

If the client has sent its sync initialization package to the server and it does not get any complete
response to it, the client MUST assume that the server has not received the sync initialization
package of the client. The client MUST send its sync initialization package again later.

4.3.2 No Initialization Completion from Client

If the server has sent its sync initialization package to the client and it does not get any complete
response to it (Refer Pkg #3), the server MUST assume that the client has not received the sync
initialization package of the server. The server can drop the session and the sync initialization
MUST be started from the beginning when synchronization is started at the next time.

4.3.3 Initialization Failure

If the initialization fails and a defined error code [1]]is sent, the devices MUST act according that
error type.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 33 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

5 Two-Way Sync

Two-way sync is a normal synchronization type in which the client and the server are required to
exchange information about the modified data in these devices. The client is always the device
which first sends the modifications. According to the information from the client, the server
processes the synchronization request and the data from the client is compared and unified with the
data in the server. After that, the server sends its modified data to the client device, which is then
able to update its database with the data from the server.

In there is depicted the MSC of the client initiated two-way sync scenario.

User SyncML Client SyncML Server

[[[
< Client and server have processed the sync initialization for two-way sync. >

Client device prepares the data needed to be sent to the server.
Pkg #3: Sync package from client to server
>
Server processes sync analysis.
Pkg #4: Status and Sync package
<
Client makes data update for its databases.
Pkg #5: Data Update Status package to server
>
Pkg #6: Map Acknowledgement to client
Sync result <
]
I I

Figure 7 MSC of Two-Way Sync

The arrows in all figures in this document represent SyncML packages, which can include one or
more messages. The package flow presented above is one SyncML session that means that all
messages have the same SyncML session ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of the packages in the figure above are considered in
the next sections.

Note. If the sync is done without a separate initialization (See Chapter , the number of a
package in the figure may not describe the actual atomic number of a package in a synchronization
session.

5.1 Client Modifications to Server

To enable sync, the client needs to inform the server about all client data modifications, which have
happened since the previous sync package with modifications has been sent from the client to the

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 34 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

serverf](Refer to the sync package, Pkg #3 in E_rg;:;?j Any client modification, which is done after
sending this package, MUST be reported to the during the next sync session. It is not
allowed to put them inside subsequent packages from the client to the server. The requirements for
the sync package from the client to the server are following.

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'".

e The VerProto element MUST be included to specify the sync protocol and the version of
the protocol. The value MUST be 'SyncML/1.0' when complying with this specification.

e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

e The Target element MUST be used to identify the target device and service.
e The Source element MUST be used to identify the source device.

2. The Status MUST be returned for the Alert command sent by the client if requested by the
server. This can be sent before Package #2 is completely received.

o [f the server is not authenticated to use the service, the sync type is wrong (e.g., slow sync
needed), or some other error occurs, the client MUST return an error for that.

e The next sync anchor of the server MUST be included in the Data element of Item (See
R.2.1).

3. If the server sent the device information to the client, the client SHOULD process the transmitted
device information and the Status MUST be returned for that command if requested by the
server. This can be sent before Package #2 is completely received.

4. If the server requested the device information of the client, the Results element MUST be
returned. This can be sent before Package #2 is completely received.

e The Type element of the Metalnf DTD MUST be included in the Meta element in the
Results element to indicate that the type of the data is the type of the Device Information
DTD.

e The Source element in the Results element MUST have a value './devinf10'".

e The Data element MUST be used to carry the device and service information of the client.
5. The Sync element MUST be included in SyncBody and the following requirements exist.

e CmdID is required.

e The response SHOULD be required for the Sync command.

e Target is used to specify the target database.

e Source is used to specify the source database.

e The free memory SHOULD be specified inside the Meta element. The free memory can be
either the free memory amount in the source database or the free memory amount on the
client device (See Chapter . This information can only be sent at the first message
belonging this package.

2 These modifications include also modifications which have happened during the previous sync session after
the client has sent its modifications to the server.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 35 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

6. If there are modifications in the client, therg are following requirements for the operational
elements (e.g., Replace, Delete, and Add®) within the Sync element.

e CmdID is required.
e The response SHOULD be required for all these operations.

e The Source element MUST be included to indicate the LUID (See of the data
item within the ltem element.

e The Type element of the Metalnf DTD MUST be included in the Meta element to indicate
the type of the data item (E.g., MIME type). The Meta element inside an operation or
inside an item can be used.

e Data element MUST be used to carry data itself if the operation is not a deletion.

7. The Final element MUST be used for the message, which is the last in this package. After the
server has received the final message of the package, it can complete the sync analysis and
send its modifications back to client.

5.1.1 Example of Sending Modifications to Server

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>IMEI:493005100592800</TargetRef >
<SourceRef> http://www.syncml.org/sync-server </SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->
</Status>
<Status>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRefs>./dev-contacts</TargetRef>
<SourceRef>./contacts/james bond</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
<Item>
<Data>
<Anchor xmlns='syncml:metinf'><Next>200005022T093223Z </Next></Anchor>
</Data>
</Item>
</Status>
<Sync>
<CmdID>1</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Sources>
<Meta>
<Mem xmlng='syncml:metinf'>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81l</Freelds>

% It is not required that the SyncML clients support the Add operation when sending modifications. They may
use the Replace operation for additions and then, the receiving device must make addition if the UID of an
object does not exist.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 36 of 60 Pages

http://www.syncml.org/docs/syncml protocol v10 20001207.pdf Version 1.0
SyncML 2000-12-07
<!--Number of free records in Calendar database-->
</Mem>
</Metas>
<Replace>
<CmdID>2</CmdID>
<Meta><Type xmlns='syncml:metinf's>text/x-vcard</Type></Metas>
<Item>
<Source><LocURI>1012</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
</Sync>
<Final/>
</SyncBody>
</SyncML>

5.2 Server Modifications to Client
The sync package (Refer Pkg #4 in to the client has the following purposes:

e Toinform the client about the results of sync analysis.

e Toinform about all data modifications, which have happened in the server since the
previous time when the server has sent the modifications to the client.

Any server modifications, which are done after sending this package, MUST be reported to the
client during the next sync session. It is not allowed to put them inside subsequent packages from
the server to the client.

The requirements for messages within this sync package are following.

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'.
e The value of the VerProto element MUST be 'SyncML/1.0'.
e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

o The Target element MUST be used to identify the target device.
e The Source element MUST be used to identify the source device and service.

2. The Status element MUST be included in SyncBody if requested by the client. It is now used to
indicate the general status of the sync analysis and the status information related to data items
sent by the client (e.g., a conflict has happened.). Status information for data items can be sent
before Package #3 is completely received.

3. The Sync element MUST be included in SyncBody, if earlier there were no occurred errors,
which could prevent the server to process the sync analysis and to send its modifications back
to the client. For the Sync element, there are the following requirements.

e CmdID is required.

e The response can be required for the Sync command. (See the Caching of Map Item,

Chapter[2.3.1)

o Target is used to specify the target database.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 37 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

e Source is used to specify the source database.

4. If there is any modification in the server after the previous sync, there are following requirements
for the operational elements (e.g., Replace, Delete, and Add*) within the Sync element.

e CmdID is required.
o The response can be required for these operations.

e Source MUST be used to define the temporary GUID (See of the data item in
the server if the operation is an addition. If the operation is not an addition, Source MUST
NOT be included.

e Target MUST be used to define the LUID (See [Definitions) of the data item if the operation
is not an addition. If the operation is an addition, Target MUST NOT be included.

¢ The Data element inside Item is used to include the data itself if the operation is not a
deletion.

e The Type element of the Metalnf DTD MUST be included in the Meta element to indicate
the type of the data item (E.g., MIME type). The Meta element inside an operation or
inside an item can be used.

5. The Final element MUST be used for the message, which is the last in this package.

5.21 Example of Sending Modifications to Client

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>2</MsgID>
<Target><LOCURI>IMEI:493005100592800</LOCURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>

<Data>200</Data>
</Status>
<Status><!--This is a status for the client modifications to the server.-->

<MsgRef>2</MsgRef><CmdRef>1</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./contacts/james bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Status>
<MsgRef>2</MsgRef><CmdRef>2</CmdRef><Cmd>Replace</Cmd>
<SourceRef>1012</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Sync>
<CmdID>1</CmdID>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james bond</LocURI></Sources>
<Replace>
<CmdID>2</CmdID>

* It is not required that the devices support the Add operation. They may use the Replace operation for
additions and then, the receiving device must make addition if the UID of an object does not exist.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 38 of 60 Pages
http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
2000-12-07

SyncML

<Meta><Type xmlns='syncml:metinf's>text/x-vcard</type></Metas>
<Item>
<Target><LocURI>1023</LocURI></Target>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
<Add>
<CmdID>3</CmdID>
<Meta><Type xmlns='syncml:metinf's>text/x-vcard</type></Metas>
<Item>
<Source><LocURI>10536681</LocURI></Sources>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Add>
</Sync>
<Final/>
</SyncBody>
</SyncML>

5.3 Data Update Status from Client

The data update status package from the client to the server is needed to transport the information
about the result of the data update on the client side. In addition, it is used to indicate the LUID's of
the new data items, which have been added in the client, i.e., the Map operation for mapping LUID's
and temporary GUID's is sent to the server.

Note. This package MAY NOT be sent if the server has indicated that it does not require a response
to its last package to the client. If the client decides that it does not send this message, it MUST be
able to cache the Map operations until the next synchronization will happen, when these Map
operations can be sent to the server (See also Chapter . However, the client is always allowed
to send this Data Update Status package to the server, even if the server has not requested a
response.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'.
e The value of the VerProto element MUST be 'SyncML/1.0'.
e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the client to the server.

e The Target element MUST be used to identify the target device and service.
e The Source element MUST be used to identify the source device.

2. The Status element MUST be in SyncBody if requested by the server. It is used to indicate the
results of data update in the client. Also, the status information related to the individual data
items is transferred to the server. The status information for data items can be sent before
Package #4 is completely received.

3. The Map element MUST be included in the SyncBody element if the client has processed any
server additions to its database. For each database being synchronized, a separate Map
operation or operations MUST be sent if any additions to a database is carried out. This
command can be sent before Package #4 is completely received.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 39 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML

e CmdID is required.
e The Source and Target elements are required in the Map element.

e The response is required to the Map operation.

2000-12-07

e The client has to return the client side IDs, i.e., LUID's and the server side IDs (temporary

GUID's) for the data items within Mapltem elements.
4. The Final element MUST be used for the message, which is the last in this package.

5.3.1 Example of Data Update Status to Server

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/l.O</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Sources>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>2</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>IMEI:493005100592800</TargetRef>
<SourceRef> http://www.syncml.org/sync-server </SourceRefs>
<Data>200</Data>
</Status>
<Status>
<MsgRef>2</MsgRef><CmdRef>1</CmdRef><Cmd>Sync</Cmd>
<TargetRefs>./dev-contacts</TargetRef>
<SourceRef>./contacts/james bond</SourceRef>
<Data>200</Data>
</Status>
<Status>
<MsgRef>2</MsgRef><CmdRef>2</CmdRef><Cmd>Replace</Cmd>
<TargetRef>1023</TargetRef>
<Data>200</Data>
</Status>
<Status>
<MsgRef>2</MsgRef><CmdRef>3</CmdRef ><Cmd>Add</Cmd>
<SourceRef>10536681</SourceRef>
<Data>200</Data>
</Status>
<Map>
<CmdID>1</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Sources>
<MapItem>
<Target><LocURI>10536681</LocURI></Target>
<Source><LocURI>1024</LocURI></Sources>
</MapItem>
</Map>
<Final/>
</SyncBody>
</SyncML>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 40 of 60 Pages
http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
2000-12-07

SyncML

5.4 Map Acknowledgement from Server

The Map Acknowledgement from the server to the client is needed to inform the client that the
server has received the mapping information of the data items. This acknowledgement is not sent
back to the client if there were no Map operations in last package from the client to the server.

The messages in this package have the following requirements.

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'.
e The value of the VerProto element MUST be 'SyncML/1.0'.
e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

e The Target element MUST be used to identify the target device.
e The Source element MUST be used to identify the source device and service.
e The response MUST NOT be required for this message.

2. The Status element(s) MUST be included in SyncBody. It is now used to indicate the status of
the Map operation(s). This or these can be sent before Package #5 is completely received.

3. The Final element MUST be used for the message, which is the last in this package.

5.41 Example of Map Acknowledge

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>3</MsgID>
<Target><LocURI>IMEI:493005100592800</LocURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>3</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>200</Data>
</Status>
<Status>
<MsgRef>3</MsgRef><CmdRef>1</CmdRef ><Cmd>Map</Cmd>
<TargetRef>./contacts/james bond </TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data>
</Status>
<Final/>
</SyncBody>
</SyncML>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 41 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

5.5 Slow Sync

The slow sync can be desired for many reasons, e.g., the client or the server has lost its change log
information, the LUID's have wrapped around in the client, or the sync anchors mismatch. The slow
sync is a form of the two-way synchronization in which all items in one or more databases are
compared with each other on a field-by-field basis. In practise, the slow sync means that the client
sends all its data in a database to the server and the server does the sync analysis (field-by-field)
for this data and the data in the server. After the sync analysis, the server returns all needed
modifications back to the client. Also, the client returns the Map items for all data items, which were
added by the server.

Because of many reasons to process the slow sync, it can be either the client or the server, which
indicates a need for this. If the client does this, it specifies in the Alert command that the sync type
is the slow sync. The Alert command MAY be the same as at the sync initialization or the similar
Alert command MAY be included when Package #3 is sent. The value of the Alert code is 201.

If there is a need for the server to initiate the slow sync, it happens by including the Alert operation
with the 201 alert code. This alert operation MUST be the Alert operation at the Sync Initialization
(Refer Package #2). After the client has received the status and the Alert operation for the slow
sync, sync can be thought to start as if the client were initiating the slow sync in Package #3.
However, the client MUST NOT include the Alert command anymore if it was the server, which
alerted the slow sync.

If the client or the server needs to initiate the slow sync after receiving the alert for the normal
synchronization, they need to send back an error status for that Alert in addition the slow sync alert.
The error code, which is used in this case, MUST be 508 (Refresh required).

If the devices are synchronizing with each other at the first time, the slow sync MUST be initiated.

5.6 Error Case Behaviors

In this chapter, the recommended behaviors are defined in the cases of different error types.

5.6.1 No Packages from Server after Initialization

If the client has sent its modifications to the server and it does not get the status associated with
those modifications, the client MUST assume that the server has not received those client
modifications. At the next time when synchronization is started, the modifications, to which the
status was not received, MUST be sent to the server again.

5.6.2 No Data Update Status from Client

If the server has sent its modifications to the client and it does not get the status associated with
those server modifications, the server MUST assume that the client has not received those server
modifications. Thus, at the next time when synchronization is started, the server modifications in
addition to new ones MUST be sent to the client.

5.6.3 No Data Map Acknowledge from Server

If the client has sent the Map operation(s) and it does not get any complete response to it, the client
SHOULD assume that the server has not received the Map operation(s). Thus, the client SHOULD
try to send the Map operation(s) again or at the next time when synchronization is started.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 42 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

5.6.4 Errors with Defined Error Codes
If the device receives a defined error code it MUST act according that error type.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 43 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

6 One-Way Sync from Client Only

The one-way sync from the client only is the sync type in which the client sends all modifications to
the server but the server does not send its modifications back to the client. Thus, after this type of
sync, the server includes all modified data from the client but the client does not know about
modifications in the server. In there is depicted the MSC for this scenario.

User SyncML Client SyncML Server

[[[
<Client and server have processed the sync initialization for one-way sync from client>

| | |
Client device prepares the data needed to be sent to the server.

Pkg #3: Sync package from client to server
g
Server processes sync analysis.
Pkg #4: Status package
Syncresult | g
“—
I I

Figure 8 MSC of One-Way Sync from Client only

The package flow presented above is one SyncML session that means that all messages have the
same SyncML session ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of package in the figure above are considered in the
next sections.

Note. If the sync is done without a separate initialization (See Chapter P.10), the number of a
package in the figure may not describe the actual atomic number of a package in a synchronization
session.

6.1 Client Modifications to Server

To initiate the sync, the client needs to inform the server about all client data modifications, which
have happened since the previous sync®(Refer to the sync package, Pkg #3 in Figure 8). Any client
modification, which is done after sending this package, MUST be reported to the server during the
next sync session. It is not allowed to put them inside subsequent packages from the client to the
server. The requirements for the sync package from the client to the server are the same as in

Chapter

6.2 Status from Server

The Status package (Refer Pkg #4) has a purpose of informing the client about the results of sync
analysis. The requirements for the status package are following.

® These modifications include also modifications which have happened during the previous sync session after
the client has sent its modifications to the server.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 44 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'.
e The value of the VerProto element MUST be 'SyncML/1.0'.
e Session ID MUST be included to indicate the ID of a sync session.

o MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

e Final MUST be used for the message, which is the last in this package.
e The Target element MUST be used to identify the target device.
e The Source element MUST be used to identify the source device and service.

2. The Status element MUST be included in SyncBody if requested by the client. It is now used to
indicate the general status of the sync analysis and the status information related to data items
sent by the client if this is necessary (e.g., a conflict has happened.). The status information for
data items can be sent before Package #1 is completely received.

6.3 Refresh Sync from Client Only

The 'refresh sync from client only' is a synchronization type in which the client sends all its data from
a database to the server (i.e., exports). The server is expected to replace all data in the target
database with the data sent by the client. l.e., this means that the client overwrites all data in the
server database.

This refresh sync is treated as a special case of the 'one-way sync from client only'. The only
differences between this case and the normal 'one-way sync from client only' are:

1. At the initialization, the sync type (Alert code) MUST be used to indicate that the 'one-way refresh
sync from client only' is required. The Alert code is 203.

2. In Package #3, the Sync element (Pkg #3) from the client to the server is required to include all
data from the source database (client database).

6.4 Error Cases Behavior
In this chapter, the recommended behaviors of devices are defined in the cases of different error
types.

6.4.1 No Packages from Server after Initialization
See Chapter

6.4.2 Errors with Defined Error Codes
See Chapter

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 45 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

7 One-Way Sync from Server only

This sync type is the case in which the client gets all modifications from the server but the client
does not send its modifications to the server. Thus, after this type of sync, the client includes all
modified data from the server but the server does not know about modifications in the client. In
there is depicted the MSC for this scenario.

User SyncML Client SyncML Server

I I I
@ient and server have processed the sync initialization for one-way sync from server. >

Pkg #3: Sync Alert from client to server
>
Server processes sync analysis.
Pkg #4: Sync package
<
Client makes data update for its databases.
Pkg #5: Data Update Status package to server
>
Pkg #6: Map Acknowledge to client
Sync result
‘—
I I

Figure 9 MSC of Sync from Server Only

The package flow presented above is one SyncML session that means that all messages have the
same SyncML session ID. The Session ID is same as used at the initialization.

The purpose and the requirements for each of package in the figure above are considered in the
next sections.

Note. If the sync is done without a separate initialization (See Chapter , the number of a
package in the figure may not describe the actual atomic number of a package in a synchronization
session.

7.1 Sync Alert to Server

The sync package (Pkg #3 in Figure 9) is very much similar to the package #3 in the two-way sync
but any client modifications are not ever sent to server and the server is only asked to send its
modifications to the client. The only difference from the requirements defined in Chapter b.1]is:

1. Any client modifications are not included into the Sync element. It must be empty.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 46 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

7.2 Server Modifications to Client
See Chapter

7.3 Data Update Status from Client
See Chapter

7.4 Map Acknowledge from Server
See Chapter

7.5 Refresh Sync from Server Only

The 'refresh sync from server only' is a synchronization type in which the server sends all its data
from a database to the client. The client is expected to replace all data in the target database with
the data sent by the server. l.e., this means that the server overwrites all data in the client database.

This refresh sync is treated as a special case of the 'one-way sync from server only'. The
differences between this case and the normal 'one-way sync from server only' are:
1. At the Sync Initialization (See Chapter , the value for the Alert code is 205.

2. In the Server Modifications package to the client (See Chapter , the Sync element is required
to include all data from the source database.

3. The client MUST store all data items to its database (i.e., overwrites old data) and the client
MUST return the map items for all stored data items back to the server.

7.6 Error Cases

In this chapter, the recommended behaviors of devices are defined in the cases of different error
types.

7.6.1 No Packages from Server

If the client has sent the empty sync command to the server, it does not get any complete response
to it (new modifications), the client SHOULD drop the SyncML session and try to get the
modifications later by starting the sync from the beginning.

7.6.2 No Data Update Status from Client

See Chapter

7.6.3 No Map Ack from Server
See Chapter

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 47 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

7.6.4 Errors with Defined Error Codes
See Chapter

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 48 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

8 Server Alerted Sync

This sync case is intended to provide a possibility for the server to alert the client to perform sync.
That is, the server informs the client to starts sync with the server. When the server alerts the client,
it also tells it which type of sync is initiated. Figure 10]shows the MSC, how sync is alerted by the
server.

User SyncML Client SyncML Server User

I I I I
< Client and server configured properly to enable communication with each other >

Sync order

.]
Pkg #0: Sync Alert to Client

«<

Sync will continue according the sync type which is indicated by the Alert message.

< Synchronization is completed. >

Sync result

|
I I

Figure 10 MSC of Server Alerted Sync

In the server alerted sync, the sent packages are the same as in any sync types except the alert
message, which is sent from the server to client.

The package flow presented above is one SyncML session that means that all messages have the
same SyncML session ID. The same Session ID used here MUST also be used at the
synchronization initialization.

8.1 Sync Alert

The sync alert is sent from the server when the server wants the client to start synchronization. This
message MUST indicate which type of sync the server wants. The requirements for the elements
within this sync alert package are:

1. Requirements for the elements within the SyncHdr element.
e The value of the VerDTD element MUST be '1.0'.
e The value of the VerProto element MUST be 'SyncML/1.0'.
e Session ID MUST be included to indicate the ID of a sync session.

e MsglD MUST be used to unambiguously identify the message belonging a sync session
and traveling from the server to the client.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 49 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

e The Target element MUST be used to identify the target device.

e The Source element MUST be used to identify the source device.

e The Cred element MUST be included if the authentication is needed.
2. The Alert element MUST be included in SyncBody.

e CmdID is required.

e The response SHOULD be required for the Alert command.

e The Item element SHOULD include the target database. Note, if this is the alert for the first
time sync, the target database may not be included but the sync client determines it
according the meta information sent within the alert.

e The Item element MUST BE used to specify the source database.

e Within the ltem element, the Type element of the Metalnf DTD MUST be included in the
Meta element to indicate the type of the data (e.g., MIME type) to be synchronized.

e The Data element is used to include the Alert code. The alert code is one of the alert
codes used by the server (Values 206-210.). See the alert codes in Alert Codes

3. Final MUST be used for the message, which is the last in this package.

When the client receives this message, it continues according to the sync type indicated by the Alert
element. The status element is also included in the first package from the client to the server. If the
error occurs, the error status is returned and the defined error codes are used.

8.2 Error Cases Behavior

In this chapter, the recommended behaviors of devices are defined in the cases of different error
types.

8.2.1 No Packages from Client

If the server has sent an alert to the client and it does not get any complete response to, the server
MUST try to alert the client later.

8.2.2 Errors with Defined Error Codes

See Chapter

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 50 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

9 Terminology

9.1 Definitions

Client Modification — A modification of an item, which occurs in a client database before the
modification is synchronized to the server database.

GUID (Global Unique Identifier) — A number assigned to an object in a database. GUID values are
never reused. Note that in practice, numbers do not have to be unique forever, they MUST only be
unique as long as they exist in some mapping table (also see LUID).

LUID (Locally Unique Identifier) — A number assigned to an object in a database. LUID values are
only unique locally, i.e., to a particular SyncML client database, but MAY be present on other
SyncML client databases. In this protocol, the SyncML client device assigns to each object a locally
unique, non-reusable identifier, or LUID. They are unique per device and per application.

Request — A message or a command sent from a device to another.

Server Modification — A modification of an item, which occurs in the server database before the
modification is synchronized to the client database.

Slow Synchronization — When a data set is synchronized for the first time, or state relating to the
synchronization has been lost, the whole data set MUST be copied from one device to the other.
Since this can be a time-consuming operation, this is known as slow synchronization.

Synchronization Anchor — A string representing a synchronization event. The format of the string
will typically be either a sequence number or an ISO 8601-formatted extended representation, basic
format date/time stamp.

Synchronization Engine — The portion of a SyncML server that can analyze a data set and
modifications to that data set made by both SyncML server and SyncML client. The synchronization
engine will implement policies to enable the detection and resolution of conflicting changes.

Temporary GUID — A temporary number assigned by the server to an object in a database (See
also GUID.). Temporary GUID values are valid till the map operation for the items, with which the
temporary GUIDs are associated, has been received from the client. After that the temporary GUID
can be erased.

9.2 Abbreviations
DTD Document Type Definition
GUID Global Unique IDentifier
HTTP HyperText Transfer Protocol
IMEI International Mobile Equipment Identifier
LUID Local Unique Identifier
MSC Message Sequence Chart
MSG Message
OBEX OBject Exchange protocol

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 51 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SyncML 2000-12-07

WSP Wireless Session Protocol
XML Extensible Markup Language

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML

SyncML Sync Protocol 52 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

2000-12-07

10 References

[1]
[2]
[3]
[4]
[3]

SyncML Representation Protocol Specification
SyncML Reference Toolkit Manual

Meta Information Specification and DTD
Device Information Specification and DTD

The Internet Mail Consortium, vCalendar - The Electronic Calendaring and Scheduling
Exchange Format, Version 1.0, September 1996.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML

SyncML Sync Protocol

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf

53 of 60 Pages

Version 1.0

11 Appendices

11.1

Protocol Values

2000-12-07

Here are listed all protocol values (string values), which can be used in the VerProto element. The
protocol version 1.0 is used by the implementations complying with this specification

VerProto Codes

Description

SyncML/1.0

Indicates that this SyncML message uses the sync
protocol defined by the SyncML Initiative.

11.2 Alert Codes

Here are listed all Alert codes and values, which are used in the Type element of Meta when the
Alert command is sent.

Alert Code Value

Name

Description

Alert Codes used for user alerts

100 DISPLAY Show. The Data element type contains content
information that should be processed and displayed
through the user agent.

101-150 - Reserved for future SyncML usage.

Alert Codes used at the synchronization initialization

200 TWO-WAY Specifies a client-initiated, two-way sync.

201 SLOW SYNC Specifies a client-initiated, two-way slow-sync.

202 ONE-WAY FROM Specifies the client-initiated, one-way only sync from the
CLIENT client to the server.

203 REFRESH FROM Specifies the client-initiated, refresh operation for the one-
CLIENT way only sync from the client to the server.

204 ONE-WAY FROM Specifies the client-initiated, one-way only sync from the
SERVER server to the client.

205 REFRESH FROM Specifies the client-initiated, refresh operation of the one-
SERVER way only sync from the server to the client.

Alert Codes used by the server when alerting the sync.

SERVER BY SERVER

206 TWO-WAY BY SERVER Specifies a server-initiated, two-way sync.

207 ONE-WAY FROM Specifies the server-initiated, one-way only sync from the
CLIENT BY SERVER client to the server.

208 REFRESH FROM Specifies the server-initiated, refresh operation for the
CLIENT BY SERVER one-way only sync from the client to the server.

209 ONE-WAY FROM Specifies the server-initiated, one-way only sync from the

server to the client.

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 54 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SynchiL 2000-12-07

210 REFRESH FROM Specifies the server-initiated, refresh operation of the one-
SERVER BY SERVER way only sync from the server to the client.

211-220 - Reserved for future SyncML usage.
Special Alert Codes
221 RESULT ALERT Specifies a request for sync results.
222 NEXT MESSAGE Specifies a request for the next message in the package.
223-250 - Reserved for future SyncML usage.

11.3 Conformance Requirements
This section defines static conformance requirements for SyncML servers and client conforming to
this specification. Also, the requirements for supporting SyncML commands are defined.

11.3.1 Conformance Requirements for SyncML Server

Table 2 Sync type conformance requirements for devices acting as SyncML server

Sync Type Reference Status
Support of 'two-way sync' Chapter El MUST
Support of 'slow two-way sync' Chapter ESI MUST
Support of 'one-way sync from client only' Chapter El MAY
Support of 'refresh sync from client only' Chapter MAY
Support of 'one-way sync from server only' Chapter IZ| MAY
Support of 'refresh sync from server only' Chapter Ir_Sl MAY
Support of 'sync alert' Chapter MAY

11.3.2 Conformance Requirements for SyncML Client

Table 3 Sync type conformance requirements for devices acting as SyncML client

Sync Type Reference Status
Support of 'two-way sync' Chapter El MUST
Support of 'slow two-way sync' Chapter @ MUST
Support of 'one-way sync from client only' Chapter El MAY
Support of 'refresh sync from client only' Chapter MAY
Support of 'one-way sync from server only' Chapter |Z| MAY
Support of 'refresh sync from server only' Chapter IE] MAY
Support of 'sync alert’ Chapter MAY

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf

55 of 60 Pages

Version 1.0

SyncML

11.4 Examples
11.4.1 WBXML Example

2000-12-07

Here is an example of Package #3 (as defined in) in tokenized form (numbers in hexadecimal). This
example uses opaque data and inline strings. The example also assumes that the character

encoding is UTF-8.

02 00 00 6A 1D " -" II/II II/II LESTNA NS \ LA N oL ANRS Y LA II/II II/II

L LA WS LA A A <04 Ilyll nmpnooman

vMPML N mQm wowowQu o fuom/u wgs #N7 6D 6C 71 C3 03 "1" ", wg" 01 72 C3 OA "S" "y" "n"

memowMMoMLM ow/wowiw o ow wowgw 01 65 C3 01 "1" 01 5B C3 01 "2" 01 6E 57 C3 20 "h" "t" "t" "p"

n : n n / n n / n n s n n dll n a n n l n n . n n dll n a n n t n n a n n s n llyll n nll n c n n . n n o) n n rll n gll n / n n s n

e WpM mym owlw menw wgw 0l 01 67 57 C3 12 "IN MMM MEM WIM M0 mINW NS ngn owgnowgn o mgn o ngw

n2m o wimw wgomw mgmw wgnw nwgn Q01 01 01 6B 69 4B C3 01 "1™ 01 5C C3 01 "1"™ 01 4C C3 01 "O" 01 4A

C3 07 "§" my" wp" tem WHY vgn o Mpn Q1 6F C3 12 "IN MMM ME" MIM Wit wQn ngnomgn g owgn owgn

|l9|l |l2|l lllll IIOII |l9|l |l4|l |l8|l Ol 68 C3 20 llhll lltll lltll llpll n : n ll/ll ll/ll IISII lldll llall lllll n . n

ndr omanm omgnm omgn mgm o my" nwpt o ngnomomomgn o npnonmgmom/mwomgn mgn mpnouwygnonwln o mgn o owgn 0] 4F C3 3

npm o momw wo" 01 01 69 4B C3 01 "2" Q01 5C C3 01 "1"™ 01 4C C3 01 "1"™ 01 4A C3 05 "A" mlm nen

"rtovg" 01 6F C3 QE ".M M\M ngm men Myt momongw omgmowln owen wpn ondw ugn wpn 01 68 C3 0A

II.II ll/ll IICII llall lllll llell llnll lldll llall llrll Ol 4F C3 03 |l2|l IIOII IIOII Ol 54 4F OO 02 4A C3 11

mMowQMoMQM o wQU o MQU MEW o WQN WM WDN WTH o NQW WG WMo wDW oW w3w o wzw 0] 00 00 01 01 01 6A

4B C3 01 "3" 01 6E 57 C3 QA "." "/u wgn wgn wlw men wpn wgn wgnw vyt 01 01 67 57 C3 OE "."

ll\ll lldll llell IIVII n_n IICII llall lllll llell llnll lldll llall llrll Ol 01 60 4B C3 01 |l4|l Ol 5A OO 02 4D

03 "EM e MM MEM M/Wowgl o Ww_n oMy Wow o dgn o wlnowen wpwondw ngn wpn 99 01 00 00 01 54 67 57

c3 02 "2" "g" 01 01 4F C3 02 04 "C" "pA" wpm "™ 01 01 01 01 12 01 01 01

In an expanded and annotated form:

Token Stream Description

02 Version number - WBXML v1.2

00 FPI for DTD in string table

00 index into string table for
the identifier

6A Charset is UTF-8

1D String table length

YV -TE T \CE <Z VU W RV UL T -//SYNCML//DTD SyncML 1.0//EN

A - L A s LA LA U G ML e A LA A A A

"N

6D <SyncML>

6C <SyncHdr>

71 <VerDTD>

C3 Opaque data follows

03 Length of opaque data

lllll n n IIOII String '1.0'

01 </VerDTD>

72 <VerProto>

C3 Opaque data follows

0A Length of opaque data

n S n llyll llnll n c n IIMII IILII n / n n l n n . n n O n String 1 SynCML/l . O 1

01 </VerProto>

65 <SessionID>

C3 Opagque data follows

01 Length of opaque data

" String '1'

01 </SessionID>

5B <MsgID>

C3 Opagque data follows

01 Length of opaque data

"2n String '2'

01 </MsgID>

6E <Target>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co.,
Starfish Software (1999, 2000) All Rights Re

LTD, Motorola, Nokia, Palm, Inc., Psion,
served.

SyncML Sync Protocol 56 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SynchiL 2000-12-07
57 <LocURI>
C3 Opagque data follows
20 Length of opaque data
"hromgm owgn owpn o womowm/wonm/uwomgnongm owgn o nwjnomo momgm ngn String
lltll llall IISII llyll llnll IICII n . n lloll llrll llgll ll/ll IISII llell llrll lhttp://www.datasync .org/servl
AR e L et!'!
01 </LocURI>
01 </Target >
67 <Source>
57 <LocURI>
C3 Opagque data follows
12 Length of opaque data
S VS K P =SS T A - T X String 'IMEI:1564469210948"
IIOII |I9|I |I4|I |I8|I
01 </LocURI>
01 </Sources>
01 </SyncHdr>
6B <SyncBody>
69 <Status>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
" String '1'
01 </CmdID>
5C <MsgRef >
C3 Opaque data follows
01 Length of opaque data
" String '1'
01 </MsgRef >
4C <CmdRef >
C3 Opagque data follows
01 Length of opaque data
o String '0'
01 </CmdRef >
4A <Cmd >
C3 Opagque data follows
07 Length of opaque data
NG Mymompnm mgn wpmongn nwpn String 'SyncHdr'
01 </Cmd>
6F <TargetRef>
C3 Opagque data follows
12 Length of opaque data
S VS K P =SS T O - T X String 'IMEI:1564469210948"
IIOII |I9|I |I4|I |I8|I
01 </TargetRef >
68 <SourceRef >
C3 Opagque data follows
20 Length of opaque data
"hromgm owgn owpn o womowm/won/uwomgnongm o wgn o nwgnomomongm ngn String
lltll llall IISII llyll llnll IICII n . n lloll llrll llgll ll/ll IISII llell llrll lhttp://www.datasync .org/servl
tynomlmomen mgn et!'!
01 </LocURI>
4F <Data>
C3 Opagque data follows
3 Length of opaque data
m2m o mom o m"o" String '200'
01 </Data>
01 </Status>
69 <Status>
4B <CmdID>
C3 Opagque data follows
01 Length of opaque data
"2n String '2'
01 </CmdID>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,
Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

57 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0

SynchiL 2000-12-07
5C <MsgRef >
C3 Opagque data follows
01 Length of opaque data
" String '1'
01 </MsgRef >
4C <CmdRef >
C3 Opagque data follows
01 Length of opaque data
" String '0'
01 </CmdRef >
4A <Cmd>
C3 Opaque data follows
05 Length of opaque data
AN mlm omenm mpn o ngn String 'Alert'
01 </Cmd>
6F <TargetRef>
C3 Opaque data follows
0E Length of opaque data
n . n ll\ll lldll llell llvll n_n llcll llall lllll llell llnll lldll llall llrll String 1 .\dev_calendarl
01 </TargetRef >
68 <SourceRef>
C3 Opaque data follows
0A Length of opaque data
n . n ll/ll llcll llall lllll llell llnll lldll llall llrll String 1 ./calendarl
01 </LocURI>
4F <Data>
C3 Opagque data follows
03 Length of opaque data
|I2|l llOll llOll String I2OOI
01 </Data>
54 <Item>
4F <Data>
00 Switch codepage
01 Codepage 01 (MetInf)
4A <Next>
C3 Opagque data follows
11 Length of opaque data
|I2|l llOll llOll llOll llOll |I5|l llOll |I2|l |I2|l llTll llOll |I9|l |I3|l |I2|l String I2000O5022T093223Z 1
m2m o nw3mowzn
01 </Next>
00 Switch codepage
00 Codepage 00
01 </Data>
01 </Item>
01 </Status>
6A <Sync>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
"3n String '3
01 </CmdID>
6E <Target>
57 <LocURI>
C3 Opaque data follows
0A Length of opaque data
n . n ll/ll llcll llall lllll llell llnll lldll llall llrll String 1 ./calendarl
01 </LocURI>
01 </Target >
67 <Source>
57 <LocURI>
C3 Opagque data follows
0E Length of opaque data
n . n ll\ll lldll llell llvll n_n llcll llall lllll llell llnll lldll llall llrll String 1 .\dev_calendarl

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co.,

LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

58 of 60 Pages

http://www.syncml.org/docs/syncml_protocol v10 20001207.pdf Version 1.0
SynchiL 2000-12-07
01 </LocURI>
01 </Source>
60 <Replace>
4B <CmdID>
C3 Opaque data follows
01 Length of opaque data
"4n String '4'
01 </CmdID>
5A <Meta>
00 Codepage switch
01 Codepage 01 (MetInf)
4D <Type>
03 Inline string follows
nEmomem o mxm o owgnow/momgmom_momgnomgm o mgn o nlmn o mgm o mpm ongn String 'text/x-vcalendar'
llall llrll OO
01 </Type>
00 Codepage switch
00 Codepage 00
01 </Meta>
54 <Item>
67 <Source>
57 <LocURI>
C3 Opagque data follows
02 Length of opaque data
"2n o nen String '26'"
01 </LocURI>
01 </Source>
4F <Data>
C3 Opagque data follows
02 Length of opaque data
04 Legnth of string table
RO S PR Actual data
01 </Data>
01 </Item>
01 </Replace>
01 </Sync>
12 <Final>
01 </Final>
01 </SyncBody>
01 </SyncML>

11.4.2 Example of Sync without Separate Initialization

Here is shown an example, how the client starts sync without a separate sync initialization. Only two
packets are shown here (combination of Packages #1 and #3 and the combination of Packages #2
and #4). Package #5 and #6 can follow as defined in the specification.

Combination of Package #1 and #3

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>

<Target><LocURI>http://www.syncml.org/sync-server</LocURI></Target>
<Source><LocURI>IMEI:493005100592800</LocURI></Sources>

<Cred> <!--The authentication is optional.-->

<Meta><Type xmlns='syncml:metinf's>syncml:auth-basic</Type></Metas>
<Data>QnJ1Y2UyOk9oQmVoYXZl</Data> <!--base64 formatting of "userid:password"-->

</Cred>
</SyncHdr>

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co.,

LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol 59 of 60 Pages

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf Version 1.0
SyncML
<SyncBody>
<Alert>
<CmdID>1</CmdID>
<Data>20</Data> <!-- 200 = TWO WAY ALERT -->
<Item>

<Target><LocURI>./contacts/james bond</LocURI></Target>
<Source><LocURI>. /dev-contacts</LocURI></Sources
<Meta>
<Anchor xmlns='syncml:metinf's>
<Last>234</Last>
<Next>276</Next>
</Anchors>
</Meta>
</Item>
</Alert>
<Sync>
<CmdID>2</CmdID>
<Target><LocURI>./contacts/james_bond</LocURI></Target>
<Source><LocURI>./dev-contacts</LocURI></Sources>
<Meta>
<Mem xmlns='syncml:metinf'>
<FreeMem>8100</FreeMem>
<!--Free memory (bytes) in Calendar database on a device -->
<FreeId>81l</Freelds>
<!--Number of free records in Calendar database-->
</Mem>
</Meta>
<Replace>
<CmdID>3</CmdID>
<Meta><Type xmlns='syncml:metinf's>text/x-vcard</Type></Metas>
<Item>
<Source><LocURI>1012</LocURI></Sources>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
</Sync>
<Final/>
</SyncBody>
</SyncML>

Combination of Package #2 and #4

<SyncML>
<SyncHdr>
<VerDTD>1.0</VerDTD>
<VerProto>SyncML/1.0</VerProto>
<SessionID>1</SessionID>
<MsgID>1</MsgID>
<Target><LOCURI>IMEI:493005100592800</LOCURI></Target>
<Source><LocURI>http://www.syncml.org/sync-server</LocURI></Source>
</SyncHdr>
<SyncBody>
<Status>
<MsgRef>1</MsgRef><CmdRef>0</CmdRef ><Cmd>SyncHdr</Cmd>
<TargetRef>http://www.syncml.org/sync-server</TargetRef >
<SourceRef>IMEI:493005100592800</SourceRef>
<Data>212</Data> <!--Statuscode for OK, authenticated for session-->
</Status>
<Status>
<MsgRef>1</MsgRef><CmdRef>1</CmdRef><Cmd>Alert</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for OK--»>
<Item>
<Data><Anchor xmlns='syncml:metinf'><Next>276</Next></Anchor></Data>

2000-12-07

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

SyncML Sync Protocol

http://www.syncml.org/docs/syncml|_protocol v10 20001207.pdf

SyncML

</Item>
</Statuss>
<Status>
<MsgRef>1</MsgRef><CmdRef>2</CmdRef><Cmd>Sync</Cmd>
<TargetRef>./contacts/james_bond</TargetRef>
<SourceRef>./dev-contacts</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Statuss>
<Status>
<MsgRef>1</MsgRef><CmdRef>3</CmdRef><Cmd>Replace</Cmd>
<SourceRef>1012</SourceRef>
<Data>200</Data> <!--Statuscode for Success-->
</Status>
<Alert>
<CmdID>1</CmdID>
<Data>200</Data> <!-- 200 = TWO_WAY ALERT -->
<Item>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>. /contacts/james bond</LocURI></Source>
<Meta>
<Anchor xmlns='syncml:metinf's>
<Last>200005021T081812Z </Lasts>
<Next>200005022T093223Z </Next>
</Anchor>
</Meta>
</Item>
</Alert>
<Sync>
<CmdID>2</CmdID>
<Target><LocURI>./dev-contacts</LocURI></Target>
<Source><LocURI>./contacts/james bond</LocURI></Sources>
<Replace>
<CmdID>3</CmdID>
<Meta><Type xmlns='syncml:metinf's>text/x-vcard</Type></Metas>
<Item>
<Target><LocURI>1023</LocURI></Target>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Replace>
<Add>
<CmdID>4</CmdID>
<Meta><Type xmlns='syncml:metinf's>text/x-vcard</Type></Meta>
<Item>
<Source><LocURI>10536681</LocURI></Source>
<Data><!--The vCard data would be placed here.--></Data>
</Item>
</Add>
</Sync>
<Final/>
</SyncBody>
</SyncML>

60 of 60 Pages
Version 1.0

2000-12-07

Copyright © Ericsson, IBM, Lotus, Matsushita Communication Industrial Co., LTD, Motorola, Nokia, Palm, Inc., Psion,

Starfish Software (1999, 2000) All Rights Reserved.

	Consortium
	Revision History
	Table of Contents
	Introduction
	SyncML Framework
	Device Roles
	Sync Types
	Symbols and conventions
	MSC Notation

	Protocol Fundamentals
	Change Log Information
	Multiple devices

	Usage of Sync Anchors
	Sync Anchors for Databases
	Example of Database Sync Anchor Usage

	Sync Anchors for Data Items

	ID Mapping of Data Items
	Caching of Map Operations

	Conflict Resolution
	Security
	Addressing
	Device and Service Addressing
	Usage of RespURI and Re-direction Status Codes

	Database Addressing
	Addressing of Data Items

	Exchange of Device Capabilities
	Device Memory Management
	Multiple Messages in Package
	Sync without Separate Initialization
	Robustness and Security Considerations

	Busy Signaling
	Busy Status from Server
	Example of Busy Status

	Result Alert from Client
	Example of Result Alert

	Authentication
	Authentication Challenge
	Authorization
	Server Layer Authentication
	Authentication of Database Layer
	Authentication Examples
	Basic authentication with a challenge
	MD5 digest access authentication with a challenge

	Sync Initialization
	Initialization Requirements for Client
	Example of Sync Initialization Package from Client

	Initialization Requirements for Server
	Example of Sync Initialization Package from Server

	Error Case Behaviors
	No Packages from Server
	No Initialization Completion from Client
	Initialization Failure

	Two-Way Sync
	Client Modifications to Server
	Example of Sending Modifications to Server

	Server Modifications to Client
	Example of Sending Modifications to Client

	Data Update Status from Client
	Example of Data Update Status to Server

	Map Acknowledgement from Server
	Example of Map Acknowledge

	Slow Sync
	Error Case Behaviors
	No Packages from Server after Initialization
	No Data Update Status from Client
	No Data Map Acknowledge from Server
	Errors with Defined Error Codes

	One-Way Sync from Client Only
	Client Modifications to Server
	Status from Server
	Refresh Sync from Client Only
	Error Cases Behavior
	No Packages from Server after Initialization
	Errors with Defined Error Codes

	One-Way Sync from Server only
	Sync Alert to Server
	Server Modifications to Client
	Data Update Status from Client
	Map Acknowledge from Server
	Refresh Sync from Server Only
	Error Cases
	No Packages from Server
	No Data Update Status from Client
	No Map Ack from Server
	Errors with Defined Error Codes

	Server Alerted Sync
	Sync Alert
	Error Cases Behavior
	No Packages from Client
	Errors with Defined Error Codes

	Terminology
	Definitions
	Abbreviations

	References
	Appendices
	Protocol Values
	Alert Codes
	Conformance Requirements
	Conformance Requirements for SyncML Server
	Conformance Requirements for SyncML Client

	Examples
	WBXML Example
	Example of Sync without Separate Initialization

