
swiftML design rules
Technical Specification

Table of contents
swiftML design rules ...1

Table of contents.. 1
1. Introduction... 2
2. Mapping rules from UML to swiftML ... 2
3. DTD and Schema design rules .. 21
4. Naming Conventions and Taxonomy .. 26
5. Character set... 26
6. swiftML Namespace ... 26
7. Versioning... 26
A. Appendix A: Example .. 27
B. Appendix B: Naming conventions and taxonomy scheme ... 31
C. Appendix C Character Sets ... 34
D. Appendix D XML Namespace.. 36
E. General Rules on SwiftID and Traceability Links... 39

1. Introduction
Last year, the SWIFT Board approved the adoption of XML as the preferred syntax for SWIFTStandards.
XML is a technical standard defined by W3C (the World Wode Web Consortium) and leaves a lot of freedom
for the exact way it is used in a particular application. Therefore, merely stating that we are going to use
XML is not sufficient, we must also explain HOW we will use XML.
The use of XML by SWIFT is part of the overall approach for the development of SWIFTStandards. This
development focuses on the correct definition of a business standard using modelling techniques1. The
resulting business standard is captured in UML (Unified Modelling Language2) and is stored in an electronic
repository, the “SWIFTStandards Repository”3. Business messages are defined in UML class diagrams and
XML is then used as a physical representation (i.e. the syntax) of the defined business messages. A set of
XML design rules, called swiftML, define in a very detailed and strict way how this physical XML
representation is derived from the business message in the UML class diagram.
This document explains these XML design rules.

2. Mapping rules from UML to swiftML

2.1 General mapping rules
Mapping rules from UML to swiftML are governed by the following design choices:
• swiftML representation to be as structured as possible:

• Business information is expressed as XML elements/values;
• Metadata information is expressed as XML attributes. XML attributes are not to be conveyed ‘on the wire’ in the XML

instance, unless required to remove ambiguity.
• Even though we have XML-schemas in mind, the design rules currently focus on the generation of

traditional DTDs.
• swiftML element tag names should be readable.
• Names in UML should be reused in swiftML as much as possible.
• swiftML elements are derived from the UML representation of a business message. They can only be

derived from UML-classes, UML-roles or UML-attributes.
• Each swiftML element must be traceable to the corresponding UML model element.

2.2 swiftML elements
Any swiftML element shall have the following structure:

<swiftMLTag elementID=”xxx” [roleID=”yyy”] type=”zzz” version=”aaa” >

2.2.1 swiftMLTag

swiftMLTag is assigned according to following rules:
For a swiftML element derived from a class:
• the name of the class
For a swiftML element derived from a role:
• the name of the role

1 This approach is called SWIFTStandards Modelling. You can find more information on this approach in the
SWIFTStandards White Paper on www.swift.com.
2 You can find more information about UML on the Object Management Group website at: http://www.omg.org/uml
3 You can find more information on this repository in the SWIFTStandards White Paper on www.swift.com.

For a swiftML element derived from an attribute:
• the name of the attribute

2.2.2 elementID

elementID links the swiftML element to its corresponding business meaning in the SWIFTStandards
Repository.
This approach facilitates implementation and testing since it offers an easier way to implement / check /
validate the same classes cross-message/scenario.
elementID is assigned according to following rules:
For a swiftML element derived from a class:
• the swiftID of the class if this class does not have a refinement Traceability link;
• the swiftID of the element that it is found by following the complete chain of refinement Traceability links

starting from the class, if this class has a refinement Traceability link.
Refinement Traceability link, for a class:

• is modeled as a dependency relationship from this class toward the class which is refined;
• with stereotype4 set as <<refine>>.
For a swiftML element derived from a role:
• the swiftID of the class which is the end of the aggregation if this class does not have a refinement

Traceability link;
• the swiftID of the element that it is found by following the complete chain of refinement Traceability links

starting from the class which is the end of the aggregation if this class has a refinement Traceability link.
Remark:

• If the class at the end of the aggregation is specialised the DTD will specify that the elementID can be
the swiftID of the base class or the swiftID of one of the specialised classes (taking into account the
refinement Traceability links for all considered base and specialised classes).

For a swiftML element derived from an attribute:
• the swiftID of the attribute if this attribute does not have a refinement Traceability link;
• the swiftID of the element that it is found by following the complete chain of refinement Traceability links

starting from the attribute if this attribute has a refinement Traceability link.
Refinement Traceability link, for an attribute:

• is modeled as a dependency relationship from this attribute toward the attribute which is refined;
• with stereotype set as <<refine>>.

ElementID is:
• S.W.I.F.T. owned, maintained and issued
• unique
• opaque
• fixed length (8 characters), alphanumeric (lower case and upper case)
• machine generated, but machine independent
Since this code is S.W.I.F.T. proprietary, it clearly distinguishes a swiftML element from any other XML
repository element. Hence it is logical that a third party cannot assign a elementID to a proprietary created
XML element.
As two roles with the same class will have the same elementID, a roleID is introduced.

2.2.3 roleID

roleID links the swiftML element to the UML-role of the corresponding business element in the business
message defined in the SWIFTStandards Repository.
roleID is assigned according to following rules:
For a swiftML element derived from a class:

This swiftML element has no roleID.
For a swiftML element derived from a role:
• the swiftID of the role if this role does not have a refinement Traceability link;

4 Stereotypes are one of the extension mechanisms used to extend the semantics of the metamodel.

• the swiftID of the refined role if this role has a refinement Traceability link.
Refinement Traceability link, for a role:

• is modeled as a dependency relationship from this aggregation toward the role which is refined;
• with stereotype set as <<refine>>.
For a swiftML element derived from an attribute:

This swiftML element has no roleID.
RoleID is
• S.W.I.F.T. owned, maintained and issued
• unique
• opaque
• fixed length (8 characters), alphanumeric (lower case and upper case)
• machine generated, but machine independent

2.2.4 type

type links the swiftML element to the UML-type of the corresponding business element in the business
message defined in the SWIFTStandards Repository.

In the DTD

In the DTD, type is assigned according to following rules:
For a swiftML element derived from a class:
• the swiftID of the class
For a swiftML element derived from a role:
• the swiftID of the class which is the end of the aggregation
For a swiftML element derived from an attribute:
• the name of the type of the attribute if this type is a primitive type
• the swiftID of the class by which the type of the attribute is defined if this type is no primitive type

In the corresponding instance

In the swiftML instance, in case of ambiguity, the selected “type” MUST also be specified.
There are occasions whereby an elementID together with its roleID still do not offer in swiftML an
unambiguous interpretation in the corresponding XML instance. This is due to the fact that inheritance can
create ambiguity in the swiftML instance since not all elements preceding or following in a hierarchy of
elements are mentioned in swiftML. In other words, the type swiftML attribute is required only to remove
ambiguity on a swiftML instance, in those cases whereby there are multiple usages of a same swiftML
element defined in the corresponding DTD.
This can for instance be the case when in UML a class has several specialisations, or an attribute has
several primitive datatypes, or with XOR constructs (see further). In those cases, it is necessary to explicitly
indicate which usage of that swiftML element is meant. This is achieved by introducing this ‘type’ attribute
that contains the elementID of the logical class to which this swiftML element applies.

Example of the usage of the ID:

Acct
Balance

class Acct ID=ABCD0001
role Balance ID=ABCD0002

class Payment ID=ABCD0003
class CashAcct ID=ABCD0004
role CreditAcct ID=ABCD0005
role DebitAcct ID=ABCD0006
role Balance ID=ABCD0007
role AcctID ID=ABCD0008

CashAcct
Balance : Float
AcctID : String

<<refine>> Payment
<<message>>

+CreditAcct

+DebitAcct

<Payment elementID="ABCD0003" type="ABCD0003">
 <CreditAcct elementID="ABCD0001" roleID="ABCD0005" type="ABCD0004">
 <Balance elementID="ABCD0002" type="float">1000</Balance>
 <AcctID elementID="ABCD0008" type="string">124-56789-1</AcctID>
 </CreditAcct>
 <DebitAcct elementID="ABCD0001" roleID="ABCD0006" type="ABCD0004">
 <Balance elementID="ABCD0002" type="float">1550</Balance>
 <AcctID elementID="ABCD0008" type="string">125-56789-1</AcctID>
 </DebitAcct>
</Payment>

DTD:
<!ELEMENT NetProceed (Quantity, Allocated, ProcessedDate>

<!ATTLIST NetProceed elementID CDATA #FIXED “1”
type CDATA #FIXED “ABCD0008”
version CDATA #FIXED “1.0”>

<!ELEMENT Quantity (#PCDATA)>
<!ATTLIST Quantity elementID CDATA #FIXED “ABCD0002”

type CDATA #FIXED “integer”
version CDATA #FIXED “1.0”>

<!ELEMENT Allocated (#PCDATA)>
<!ATTLIST Allocated elementID CDATA #FIXED “ABCD0003”

type CDATA #FIXED “boolean”
version CDATA #FIXED “1.0”>

<!ELEMENT ProcessedDate (#PCDATA)>
<!ATTLIST ProcessedDate elementID CDATA #FIXED “ABCD0004”

type CDATA #FIXED “date”
version CDATA #FIXED “1.0”>

Although it does not appear on the drawing, there is a “refine” traceability link between the attribute Balance
of class CashAcct and the attribute Balance of class Acct.
For more information on traceability and how it is applied with the elementID, roleID and type, see
traceability .

2.2.5 version

version contains the public version number of the swiftML tag. See versioning
version is assigned according to following rules:
For a swiftML element derived from a class:
• the public version of the element that is used to define the elementID of the class
For a swiftML element derived from a role:
• the public version of the element that is used to define the elementID of the role
For a swiftML element derived from an attribute:
• the public version of the element that is used to define the elementID of the attribute

2.3 Specific mapping rules
All model elements, defined accordingly to the SWIFTStandards methodology, are based on following UML
structures. Hence, by defining the conversion rules from those structures into swiftML we can convert any
UML model into its corresponding swiftML DTD and instance.
Roles and attributes in UML are considered the same in swiftML; they map into XML elements.
Classes do not map into XML elements, except for when they become the root element of the DTD.

2.3.1 Primitive data types

• swiftML primitive data types are encoded as defined by W3C, defined at
http://www.w3.org/TR/xmlschema-2/#dt-encoding. If roles are polymorphic because they have multiple
primitive datatypes, use the “type” attribute for those XML elements that need to specify the primitive
datatype. We will then use the same codes as defined for XML-schema primitive datatypes. This means
that the primitive datatypes do not need to be defined in the swiftStandards Repository (SSR).

UML Name XML Name Description
String string Set of finite sequences of UTF-8 characters
Boolean boolean Has the value space of boolean constants “True” or

“False”
Integer integer Corresponds to 32 bits integer type
BigDecimal decimal Arbitrary precision decimal numbers
Float float Corresponds to IEEE single-precision 32 bits floating

point type
Double double Corresponds to IEEE double-precision 64 bits floating

point type
Long long Corresponds to 64 bits integer type
Date date Corresponds to a date. See ISO 8601.

2.3.2 Class

UML XML instance
Class name with a role Role becomes an element
Class name without a role When it is the root element, then class name

becomes the element name.
When it is NOT the root element, then the class
name becomes the element name AND “_role”
is added.

A

Instance:
<A>

DTD:
<!ELEMENT A>
<!ATTLIST A elementID CDATA #FIXED “ID of class A”

type CDATA #FIXED “ID of class A”
version CDATA #FIXED “1.0”

>

http://www.w3.org/TR/xmlschema-2/#dt-encoding

2.3.3 Simple composition

• A parent-child relationship between two classes is expressed by a role;
• The parent-class maps to a swiftML element with its name as the tag;
• The child-class maps to a swiftML element with its role as the tag.

UML swiftML instance
Parent class swiftML element with class name as tag
Child class swiftML element with role name as tag. This

element is contained within the parent element

A

B

+role1

Instance:
<A>

<role1>
</role1>

DTD:
<!ELEMENT A (role1)>
<!ATTLIST A elementID CDATA #FIXED “ID of class A”

type CDATA #FIXED “ID of class A”
version CDATA #FIXED “1.0”

>
<!ELEMENT role1 (#PCDATA)>
<!ATTLIST role1 elementID CDATA #FIXED “ID of class B”

roleID CDATA #FIXED “ID of role1”
type CDATA #FIXED “ID of class B”
version CDATA #FIXED “1.0”

>

2.3.4 Class attributes
• A class can also contain attributes;
• A class attribute is described using a name and a type;
• The derived swiftML instance only considers UML roles and UML attributes equivalent as far as the

swiftML tags are concerned. The XML attributes are different;
• The first swiftML child elements within its parents are the attributes, followed by the roles.

UML swiftML instance
Class containing attributes Attributes become nested swiftML elements.

<att1>data</att1>
<att2>data</att2>

DTD:
<!ELEMENT B (att1,att2)>
<!ATTLIST B elementID CDATA #FIXED "ID of class B"

type CDATA #FIXED “ID of class B”
version CDATA #FIXED "1.0"

>
<!ELEMENT att1 (#PCDATA)>
<!ATTLIST att1 elementID CDATA #FIXED "ID of att1"

type CDATA #FIXED “ID of class C”
version CDATA #FIXED "1.0"

>
<!ELEMENT att2 (#PCDATA)>
<!ATTLIST att2 elementID CDATA #FIXED "ID of class A"

roleID CDATA #FIXED "ID of att2"
type CDATA #FIXED “ID of class A”
version CDATA #FIXED "1.0"

>

B
att1 : C

A+att2

2.3.5 Composition of vectorial attributes (Collections)

• The cardinality expresses the number of occurrences of elements. In most cases the cardinality is 1, in
which case it is omitted; else it is represented as a range e.g 0..* .

• Use a range-cardinality to express a collection of elements, which can be represented either as a
collection of attributes or roles. In the example below, C contains a collection of As expressed as
attributes (att3) and a collection of Bs expressed as roles (att4).

• A container element is added. It wraps each collection. Its name is derived from the name of the role.
The rule is to append an underscore character to the name of the role (e.g. att3_ and att4_). The
container does not have any existence in the data dictionary (it will not have any elementID associated
with it), and its name is derived from the name of the role or the attribute.

• To a certain extent XML DTDs can validate the cardinality.

Cardinality Description DTD representation
1 Exactly one A
0..1 Optional A?
0..* Any number of occurrences A*
1..* At least one A+
1..4 From 1 to 4 Not directly supported with DTD.

C
att3[0..*] : A

B

0..*0..*

+att4

<C>
<att3_>

<att3>data</att3>
<att3>data</att3>

</att3_>
<att4_>

<att4>data</att4>
<att4>data</att4>

</att4_>
</C>

DTD:
<!ELEMENT C (att3_,att4_)>
<!ATTLIST C elementID CDATA #FIXED “ID of class C”

type CDATA #FIXED “ID of class C”
version CDATA #FIXED “1.0”

>
<!ELEMENT att3_ (att3*)>
<!ELEMENT att4_ (att4*)>
<!ELEMENT att3 (#PCDATA)>
<!ATTLIST att3 elementID CDATA #FIXED “ID of att3”

type CDATA #FIXED “ID of A”
version CDATA #FIXED “1.0”

>
<!ELEMENT att4 (#PCDATA)>
<!ATTLIST att4 elementID CDATA #FIXED “ID of class B”

roleID CDATA #FIXED “ID of att4”
type CDATA #FIXED “ID of class B”

version CDATA #FIXED “1.0”
>

2.3.6 Enumerations

• An enumerated value is constrained within a list of possible values.
• Enumerations are represented in the model as a type (e.g. E) with all the possible values listed as

attributes (e.g. value1, value2, value3).
• The swiftML representation of an enumerated value contains the chosen value.
• The DTD cannot validate whether one of the enumerated values in the model has actually been used in

the instance since DTD do not allow for validation of the actual data5.

UML swiftML instance
Class contains an enumeration of possible
values

swiftML element contains the chosen value

D
E

value1
value2
value3

<<enumeration>>

+att5

<D>
<att5>

value2
</att5>

</D>

DTD:
<!ELEMENT D (att5)>
<!ATTLIST D elementID CDATA #FIXED “ID of class D”

type CDATA #FIXED “ID of class D”
version CDATA #FIXED “1.0”

>
<!ELEMENT att5 (#PCDATA)>
<!ATTLIST att5 elementID CDATA #FIXED “ID of class E”

type CDATA #FIXED “ID of class E”
roleID CDATA #FIXED “ID of att5”
version CDATA #FIXED “1.0”>

5 An alternative could have been to represent enumerations as XML attributes, which DTD can validate
(i.e.ATTLIST); however this is against one of the design principles, which is to separate business data from meta-data.

2.3.7 Inheritance

It is possible to re-use business elements by specializing existing elements. This process has impacts on
element order and on generated DTDs. Both issues are described below.

Element order

• In the example below the business element H contains an attribute att1. The business element I, which
re-uses H, contains att2 and att1; the latter attribute is inherited from H. The business element J, which
re-uses I, contains att3, att2 and att1; the last two attributes being inherited from I respectively H.

I
att2 : T2

J
att3 : T3

H
att1 : T1

C+role1

<C>
<role1 elementID=’ID_of_H’ type=’ID_of_H’>

<att1>data</att1>
</role1>

</C>

or
<C>

<role1 elementID=’ID_of_I’ type=’ID_of_I’>
<att1>data</att1>
<att2>data</att2>

</role1>
</C>

or
<C>

<role1 elementID=’ID_of_J’ type=’ID_of_J’>
<att1>data</att1>
<att2>data</att2>
<att3>data</att3>

</role1>
</C>

DTD:
<!ELEMENT C (role1)>

<!ATTLIST C elementID CDATA #FIXED "ID_of_C"
type CDATA #FIXED “ID_of_C”
version CDATA #FIXED "1.0"

>
<!ELEMENT role1 (att1,(att2,att3?)?)>
<!ATTLIST role1 elementID (ID_of_I|ID_of_J|ID_of_H) #REQUIRED

roleID CDATA #FIXED “ID_of_role1”
type (ID_of_I|ID_of_J|ID_of_H) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT att3 (#PCDATA)>
<!ATTLIST att3 elementID CDATA #FIXED "ID_of_att3"

type CDATA #FIXED “ID_of_T3”
version CDATA #FIXED "1.0"

>
<!ELEMENT att2 (#PCDATA)>
<!ATTLIST att2 elementID CDATA #FIXED "ID_of_att2"

type CDATA #FIXED “ID_of_T2”
version CDATA #FIXED "1.0"

>
<!ELEMENT att1 (#PCDATA)>
<!ATTLIST att1 elementID CDATA #FIXED "ID_of_att1"

type CDATA #FIXED “ID_of_T1”
version CDATA #FIXED "1.0"

>

Notes:
• Inherited attributes appear first;
• Inheritance is cumulative: always add attributes, never remove them;
• It is an error to redefine an attribute that already exists in a base class.

Virtual containment

• Suppose an element A has been specialized as an element B;
• This means that a container C, containing A, can also contain B, as B “is-a” A;

B
att2

C A
att1

+role1

<C>
<role1 elementID=”ID_of_B” type=”ID_of_B”>

<att1>data</att1>
<att2>data</att2>

</role1>
</C>

DTD:
<!ELEMENT C (role1)>
<!ATTLIST C elementID CDATA #FIXED "ID_of_C"

type CDATA #FIXED “ID of class C”
version CDATA #FIXED "1.0"

>

<!ELEMENT role1 (att1,att2?)>
<!ATTLIST role1 elementID (ID_of_A|ID_of_B) #REQUIRED roleID CDATA #FIXED
“ID_of_role1”

type (ID_of_A|ID_of_B) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT att1 (#PCDATA)>
<!ATTLIST att1 elementID CDATA #FIXED "ID_of_A"

type CDATA #FIXED “ID_of_the_type_of_att1”
version CDATA #FIXED "1.0"

>
<!ELEMENT att2 (#PCDATA)>
<!ATTLIST att2 elementID CDATA #FIXED "ID_of_B"

type CDATA #FIXED “ID_of_the_type_of_att2”
version CDATA #FIXED "1.0"

>

2.3.8 Enumerated types

Basic pattern

• In most cases a role is played by an element of a given type. However there are business needs to allow
for a role to be played by more than one type.

• In the example below, two different types can play role1: either Name or Address.
• In the swiftML representation, an swiftML attribute is introduced to express the actual type.
• The DTD enumerates all the possible values this type can take.

H
Name

I
Address

C

G
<<abstract>>

+role1

<C>
<role1 elementID="ID_of_H" type="ID_of_H">

<Name>data</Name>
</role1>

</C>

or

<C>
<role1 elementID="ID_of_I" type="ID_of_I">

<Address>data</Address>
</role1>

</C>

DTD:
<!ELEMENT C (role1)>
<!ATTLIST C elementID CDATA #FIXED "ID of C"

type CDATA #FIXED “ID of C”
version CDATA #FIXED "1.0"

>
<!ELEMENT role1 (Name|Address)>
<!ATTLIST role1 elementID (ID_of_I|ID_of_H) #REQUIRED

roleID CDATA #FIXED “ID of role1”
type (ID_of_I|ID_of_H) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT Name (#PCDATA)>
<!ATTLIST Name elementID CDATA #FIXED "ID of Name"

type CDATA #FIXED “ID of type of Name”
version CDATA #FIXED "1.0"

<!ELEMENT Address (#PCDATA)>
<!ATTLIST Address elementID CDATA #FIXED "ID of Address"

type CDATA #FIXED “ID of the type of Address”
version CDATA #FIXED "1.0"

Re-use pattern

I
Address

G
<<abstract>>

H
Name

A

B
<<abstract>>

+role1

C
Identifier : String

<A>
<role1 elementID="ID_of_C" type="ID_of_C">

<Identifier>data</Identifier>
</role1>

or
<A>

<role1 elementID="ID_of_I" type="ID_of_I">
<Address>data</Address>

</role1>

or
<A>

<role1 elementID="ID_of_H" type="ID_of_H">
<Name>data</Name>

</role1>

DTD
<!ELEMENT A (role1)>
<!ATTLIST A elementID CDATA #FIXED "ID of A"

type CDATA #FIXED “ID of A”
version CDATA #FIXED "1.0"

>
<!ELEMENT role1 (Identifier|Address|Name)>
<!ATTLIST role1 elementID (ID_of_C|ID_of_I|ID_of_H) #REQUIRED

roleID CDATA #FIXED "ID of role1"

type (ID_of_C|ID_of_I|ID_of_H) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT Identifier (#PCDATA)>
<!ATTLIST Identifier elementID CDATA #FIXED "ID of Identifier"

type CDATA #FIXED “String”
version CDATA #FIXED "1.0"

>
<!ELEMENT Name (#PCDATA)>
<!ATTLIST Name elementID CDATA #FIXED "ID of Name"

type CDATA #FIXED “ID of the type of Name”
version CDATA #FIXED "1.0"

>
<!ELEMENT Address (#PCDATA)>
<!ATTLIST Address elementID CDATA #FIXED "ID of Address"

type CDATA #FIXED “ID of the type of Address”
version CDATA #FIXED "1.0"

>

2.3.9 Enumerated roles

G
<<inv>> r1 xor r2

H
+r1 +r2

<G>
<r1>data</r1>

</G>

or

<G>
<r2>data</r2>

</G>

DTD:
<!ELEMENT G (r1|r2)>
<!ATTLIST G elementID CDATA #FIXED “ID of class G”

type CDATA #FIXED “ID of class G”
version CDATA #FIXED “1.0”

>
<!ELEMENT r1 (#PCDATA)>
<!ATTLIST r1 elementID CDATA #FIXED “ID of class H”

roleID CDATA #FIXED “ID of r1”
type CDATA #FIXED “ID of class H”
version CDATA #FIXED “1.0”

>
<!ELEMENT r2 (#PCDATA)>
<!ATTLIST r2 elementID CDATA #FIXED “ID of class H”

roleID CDATA #FIXED “ID of r2”
type CDATA #FIXED “ID of class H”
version CDATA #FIXED “1.0”

>

3. DTD and Schema design rules
3.1 Common design rules and usage
• Should only be used to validate the message (though this validation is limited if we compare with pure

software validation)
• Should not be used to document the message
• Should not replace the UML model.
• Should provide meta-information that enriches each instance in memory in order to be used by the

customer/programmer.

3.2 DTD design rules
• DTD do not make a distinction between Type and Role => Role names must be unique in a message.
• Enumerations as attributes cannot be used.
• In case of a name clash in a DTD (for instance 2 UML roles have the same name but for different

classes), the only way to resolve this with DTD is to decrease the level of validation in the DTD. In other
words, the DTD in such a case will not describe the properties but instead use the “ANY” code word with
ELEMENT in the DTD. Rationale being that a DTD constraint should be solved at DTD level, and thus
decoupled from the model.

• Since swiftML attributes hold meta-information, the DTD describes all the possible attributes using an
attribute list, noted ATTLIST.

• ENTITIES could be used to put some additional information about the structure of the message. In
some of the patterns, part of the structure can be lost when converting into swiftML. Suppose following
pattern:

H
Name

I
Address

C

G
<<abstract>>

+role1

The above pattern would normally result in the generation of a DTD that does not contain ENTITIES.

Without entities (see also pattern “basic pattern of enumerated types”):
<!ELEMENT C (role1)>
<!ATTLIST C elementID CDATA #FIXED "ID of class C"

type CDATA #FIXED “ID of class C”
version CDATA #FIXED "1.0"

>
<!ELEMENT role1 (Name|Address)>
<!ATTLIST role1 elementID CDATA ID_of_I|ID_of_H) #REQUIRED

roleID CDATA #FIXED “ID of role1”
type (ID_of_I|ID_of_H) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT Name (#PCDATA)>
<!ATTLIST Name elementID CDATA #FIXED "ID of Name"

type CDATA #FIXED “ID of the type of Name”
version CDATA #FIXED "1.0"

<!ELEMENT Address (#PCDATA)>
<!ATTLIST Address elementID CDATA #FIXED "ID of Address"

type CDATA #FIXED “ID of the type of Address”
version CDATA #FIXED "1.0"

With ENTITIES, it would look as follows:
With entities:
<!ELEMENT C (role1)>
<!ATTLIST C elementID CDATA #FIXED "ID of class C"

type CDATA #FIXED “ID of class C”
version CDATA #FIXED "1.0"

>
<!ENTITY % _H_ "Name">
<!ENTITY % _I_ "Address">

<!ELEMENT role1 (%_H_;|%_I_;)>
<!ATTLIST role1 elementID (ID_of_I|ID_of_H) #REQUIRED roleID CDATA #FIXED “ID
of role1”

type (ID_of_I|ID_of_H) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT H (%_H_)>
<!ATTLIST H elementID CDATA #FIXED "ID of class H"

type CDATA #FIXED “ID of class H”
version CDATA #FIXED "1.0"

>

<!ELEMENT I (%_I_)>
<!ATTLIST I elementID CDATA #FIXED "ID of class I"

type CDATA #FIXED “ID of class I”
version CDATA #FIXED "1.0"

>

<!ELEMENT Name (#PCDATA)>
<!ATTLIST Name elementID CDATA #FIXED "ID of Name"

type CDATA #FIXED “ID of the type of Name”
version CDATA #FIXED "1.0"

<!ELEMENT Address (#PCDATA)>
<!ATTLIST Address elementID CDATA #FIXED "ID of Address"

type CDATA #FIXED “ID of the type of Address”
version CDATA #FIXED "1.0"

It is important to note that the swiftML instance will not differ whether the DTD uses ENTITIES or not.

Advantages of using ENTITIES:
• The complete pattern is shown in the DTD.
• Demonstrates reusable elements.

Disadvantages of using ENTITIES:
• Complexifies the DTD without adding any validation restrictions.
• Duplication of information. This information is already in the model. The elementID and roleID

reference it. One of the design rules of these ID’s was to demonstrate reusability of the elements.
Hence there is no need to repeat that information in the DTD.

• DTD do not allow combining #PCDATA in a choice production.
(per http://www.w3.org/TR/REC-xml#dt-parentchild). Hence the following is not allowed:
 <!ELEMENT A (#PCDATA|B)>
This is solved by describing a mixed contents (http://www.w3.org/TR/REC-xml#NT-Mixed) using the
Keen closure, which is allowed:
 <!ELEMENT A (#PCDATA|B)*>
Obviously using the Keen closure relaxes validation; but this better than the worst alternative:
 <!ELEMENT A (ANY)>
This problem occurs when intrinsic business types are used in enumerated types.

Suppose following example:
<!ELEMENT Buyer (#PCDATA)>
<!ELEMENT Seller (#PCDATA)>
<!ELEMENT Other (Name, Address)>
<!ELEMENT Party (#PCDATA|#PCDATA|(Name, Address))
However, the last line is not allowed. Instead we must generate:
<!ELEMENT Party (#PCDATA|(Name, Address))*>

• Resolving ambiguous content models.
Consider the following:
<!ELEMENT role1 ((attr1, attr2) | (attr1, att3))>.
This is an ambiguous representation. Indeed, when attr1 is encountered, the parser still does not know
whether the first or the second choice was taken.
This is resolved by externalising ‘attr1’ of the XOR.
<!ELEMENT role1 (attr1, (attr2 | attr3))>

A more specific case:
<!ELEMENT role1 (attr1 | (attr1, attr2) | (attr1, attr2, attr3))
This is resolved as follows:
<!ELEMENT role1 (att1, (att2, att3?)?)>
meaning att1 is optionally followed by att2. If att2 is present, it is optionally followed by att3.

3.3 swiftML Schema Design rules

3.3.1 General constraints

• Equivalence cannot be used (DTD cannot handle multiple names for the same tag)
• Order=all cannot be used (DTD’s expect a fixed order of elements)

3.3.2 Primitive Datatypes

The following table gives the correspondence between the primitive data types as defined in UML and the
same as generated in swiftML. swiftML primitive data types are encoded as defined by W3C, defined at
http://www.w3.org/TR/xmlschema-2/#dt-encoding.

http:///
http://www.w3.org/TR/REC-xml#NT-Mixed
http://www.w3.org/TR/xmlschema-2/#dt-encoding

Table 4 - Correspondence between UML and XML primitive data types:

UML Name XML Name Description
String string Set of finite sequences of UTF-8 characters
Boolean boolean Has the value space of boolean constants “True” or

“False”
Integer integer Corresponds to 32 bits integer type
BigDecimal decimal Arbitrary precision decimal numbers
Float float Corresponds to IEEE single-precision 32 bits floating

point type
Double double Corresponds to IEEE double-precision 64 bits floating

point type
Long long Corresponds to 64 bits integer type
Date date Corresponds to a date. See ISO 8601.

Rest TBD when the XML Schema specification will be approved by W3C.

3.4 DTD vs. Schema
When S.W.I.F.T. will adopt swiftML schema’s, it is prerogative that the same swiftML instance can be
validated both through DTD’s and Schema’s. Hence all constraints in either the DTD specification or the
XML Schema specification that would create such incompatibility should not be supported.
Where required, meta-information that is supported in XML Schema should be added to the DTD in a
manner and naming that is easily convertible to Schema’s.

3.5 Granularity of DTDs or Schemas

3.5.1 Assumptions

• We don’t foresee modular DTDs to be included in user-defined DTDs. Other organizations don’t need
granular DTDs for re-use and integration in custom DTDs

• We don’t need granular DTDs for message validation (against simplicity and performance)

3.5.2 Requirements

• DTD/Schema must be independent of the network. Hence there is, at least, a DTD/Schema for the
Network header and a DTD/Schema for the Business payload.

• Users need to re-use swiftML elements
• Reflect the concept of a single data dictionary

3.5.3 Solution

There is one DTD per message.

3.6 swiftML optimisation
 For technical reasons, it might be necessary to optimise the swiftML structures. Examples are:
• Reducing the swiftML nesting levels

For example instead of
<Buyer>

<BIC>ABNANL2A</BIC>
</Buyer>

we use
<Buyer>ABNANL2A</Buyer>

• Shorter swiftML tags than their UML equivalent.

These types of optimisation will be done in the model.

4. Naming Conventions and Taxonomy
See Naming Conventions appendix

5. Character set
S.W.I.F.T. Standards recommends using UTF-8 as the (default) character encoding mechanism, for the
following reasons:
• It has the most efficient method of character representation:

• It is the shortest method to represent the characters which are currently the most commonly used in a financial environment
(ASCII and EBCDIC characters)

• It can still represent almost any known character
• It is interoperable with many other encoding schemes through (automatable) conversion algorithms.
Example:
<?xml version=”1.0” encoding=”UTF-8”?>
For a more detailed technical background, see Character Sets appendix.

6. swiftML Namespace
A UML namespace does NOT necessarily correspond to an swiftML namespace.
The swiftML repository will be maintained in one XML namespace called ‘sw’.
Example:
<sw:PmtsAcct>123-456789-0</sw:PmtsAcct>
For a more detailed technical background, see XML Namespace Appendix.

7. Versioning
There are two types of versions. This chapter only discusses the public version, i.e. the version known to the
outside world.
All elements belonging to the swiftML repository have a version. This version is specified in the DTD through
the swiftML attribute version.
Example:
All DTD’s will also have a version number, as per the XML specification v1.0 from W3C.

A. Appendix A: Example
A.1 Snippet of a hypothetical Notice of Execution
A.1.1.1 Instance

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE NoticeOfExecution SYSTEM “NoticeOfExecution.dtd”>

<NoticeOfExecution>
<MsgFunction>NewMessage </MsgFunction>
<SendersMsgRef>

<RefNbr>gstpa12345</RefNbr>
</SendersMsgRef>
<Buyer>

<PartyId>ABNANL2A</PartyId>
<TradingCapacityIndicator>PRINCIPAL</TradingCapacityIndicator>

</Buyer>
<Seller>

<PartyId>DEUTDEFF</PartyId>
</Seller>
<ExecutedTradeDetails>

<FinInstrQty elementID='ABCD2008' type='DCBA0013'>
<FaceAmt>102</FaceAmt>

</FinInstrQty>
<TradeDate>20000427</TradeDate>
<RequestedSettlementDate>20000428</RequestedSettlementDate >
<DealPrice elementID='ABCD2000' type='57A817C1'>

<ActualPrice>
<CcyCode>EUR</CcyCode>
<Value>20000</Value>

</ActualPrice>
</DealPrice>

</ExecutedTradeDetails>
</NoticeOfExecution>

A.1.2 DTD

<!ELEMENT NoticeOfExecution
(MsgFunction,SendersMsgRef,TrackingRef?,CommonRef?,RelatedRef?,BasketRef?,Origin
atorOfMsg?,Buyer,Seller,ExecutedTradeDetails,FI_Id?)>
<!ATTLIST NoticeOfExecution elementID CDATA #FIXED "ABCD1000"

version CDATA #FIXED "1.0"
>
<!ELEMENT MsgFunction (#PCDATA)>
<!ATTLIST MsgFunction elementID CDATA #FIXED "ABCD1001"

type CDATA #FIXED "string"
version CDATA #FIXED "1.0"

>
<!ELEMENT SendersMsgRef (RefNbr)>
<!ATTLIST SendersMsgRef elementID CDATA #FIXED "ABCD1055"

roleID CDATA #FIXED "ABCD1002"
type CDATA #FIXED "DCBA1001"
version CDATA #FIXED "1.0"

>

<!ELEMENT TrackingRef (RefNbr)>
<!ATTLIST TrackingRef elementID CDATA #FIXED "ABCD1056"

roleID CDATA #FIXED "ABCD1003"
type CDATA #FIXED "DCBA1001"
version CDATA #FIXED "1.0"

>
<!ELEMENT CommonRef (RefNbr)>
<!ATTLIST CommonRef elementID CDATA #FIXED "ABCD1057"

roleID CDATA #FIXED "ABCD1004"
type CDATA #FIXED "DCBA1001"
version CDATA #FIXED "1.0"

>
<!ELEMENT BasketRef (RefNbr)>
<!ATTLIST BasketRef elementID CDATA #FIXED "ABCD1058"

roleID CDATA #FIXED "ABCD1005"
type CDATA #FIXED "DCBA1001"
version CDATA #FIXED "1.0"

>
<!ELEMENT RefNbr (#PCDATA)>
<!ATTLIST RefNbr elementID CDATA #FIXED "ABCD1007"

type CDATA #FIXED "string"
version CDATA #FIXED "1.0"

>
<!ELEMENT OriginatorOfMsg (PartyId)>
<!ATTLIST OriginatorOfMsg elementID CDATA #FIXED "ABCD1059"

roleID CDATA #FIXED "ABCD1006"
type CDATA #FIXED "DCBA0009"
version CDATA #FIXED "1.0"

>
<!ELEMENT PartyId (#PCDATA)>
<!ATTLIST PartyId elementID CDATA #FIXED "ABCD1008"

type CDATA #FIXED "string"
version CDATA #FIXED "1.0"

>
<!ELEMENT Buyer (PartyId,TradingCapacityIndicator?)>
<!ATTLIST Buyer elementID CDATA #FIXED "ABCD1060"

roleID CDATA #FIXED "ABCD1010"
type CDATA #FIXED "DCBA0010"
version CDATA #FIXED "1.0"

>
<!ELEMENT Seller (PartyId,TradingCapacityIndicator?)>
<!ATTLIST Seller elementID CDATA #FIXED "ABCD1061"

roleID CDATA #FIXED "ABCD1011"
type CDATA #FIXED "DCBA0010"
version CDATA #FIXED "1.0"

>
<!ELEMENT TradingCapacityIndicator (#PCDATA)>
<!ATTLIST TradingCapacityIndicator elementID CDATA #FIXED "ABCD1012"

type CDATA #FIXED ”string”
version CDATA #FIXED "1.0"

>
<!ELEMENT ExecutedTradeDetails (FinInstrQty,TradeDate,
RequestedSettlementDate,DealPrice)>
<!ATTLIST ExecutedTradeDetails elementID CDATA #FIXED "ABCD1013"

type CDATA #FIXED "DCBA0012"
version CDATA #FIXED "1.0"

>
<!ELEMENT FinInstrQty (Unit|FaceAmt|CurrentFace)>

<!ATTLIST FinInstrQty elementID (ABCD2008|ABCD2009|ABCD2010) #REQUIRED
roleID CDATA #FIXED "ABCD1015"

type (DCBA0013|DCBA0012|DCBA0011) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT Unit (#PCDATA)>
<!ATTLIST Unit elementID CDATA #FIXED "ABCD1016"

type CDATA #FIXED “integer”
version CDATA #FIXED "1.0"

>
<!ELEMENT FaceAmt (#PCDATA)>
<!ATTLIST FaceAmt elementID CDATA #FIXED "ABCD1017"

type CDATA #FIXED “float”
version CDATA #FIXED "1.0"

>
<!ELEMENT CurrentFace (#PCDATA)>
<!ATTLIST CurrentFace elementID CDATA #FIXED "ABCD1018"

type CDATA #FIXED “float”
version CDATA #FIXED "1.0"

>
<!ELEMENT TradeDate (#PCDATA)>
<!ATTLIST TradeDate elementID CDATA #FIXED "ABCD2001"

roleID CDATA #FIXED "ABCD1020"
type CDATA #FIXED "date"
version CDATA #FIXED "1.0"

>
<!ELEMENT RequestedSettlementDate (#PCDATA)>
<!ATTLIST RequestedSettlementDate elementID CDATA #FIXED "ABCD1063"

roleID CDATA #FIXED "ABCD1021"
type CDATA #FIXED "date"
version CDATA #FIXED "1.0"

>
<!ELEMENT DealPrice (PctPrice|ActualPrice)>
<!ATTLIST DealPrice elementID (ABCD2000|EEFA30F9) #REQUIRED

roleID CDATA #FIXED "ABCD1030"
type (57A817C1|EEFA30F9) #REQUIRED
version CDATA #FIXED "1.0"

>
<!ELEMENT PctPrice (#PCDATA)>
<!ATTLIST PctPrice elementID CDATA #FIXED "ABCD1031"

type CDATA #FIXED “float”
version CDATA #FIXED "1.0"

>
<!ELEMENT ActualPrice (CcyCode,Value)>
<!ATTLIST ActualPrice elementID CDATA #FIXED "ABCD1032"

type CDATA #FIXED "DCBA0015"
version CDATA #FIXED "1.0"

>
<!ELEMENT CcyCode (#PCDATA)>
<!ATTLIST CcyCode elementID CDATA #FIXED "ABCD1033"

type CDATA #FIXED ”string”
version CDATA #FIXED "1.0"

>
<!ELEMENT Value (#PCDATA)>
<!ATTLIST Value elementID CDATA #FIXED "ABCD1034"

type CDATA #FIXED “float”
version CDATA #FIXED "1.0"

>

B. Appendix B: Naming conventions and taxonomy
scheme
B.1 Introduction
The purpose of this document is to explain the methodology to be used when generating meaningful swiftML
tags. It provides the general principles of classification of swiftML tags for NextGen standards.
It is very important to have a structure in place to ‘control’ the way data elements are tagged.

It will allow us to keep swiftML as condensed as possible
It will limit a proliferation of different usages by different developers
It provides a way to easily trace and manage a swiftML (and UML) repository which is based on
meaningful tags.

B.2 Constraints / Assumptions
• To have as much as possible a one to one mapping between UML names and swiftML tags.
• To use normalised names: to abide to the tagging constraints imposed by the W3C XML specification

v1.0., C++ and Java
• To have one namespace that will contain all business elements covered by S.W.I.F.T.
• To have no elements that can be expressed in swiftML and cannot be expressed in UML.
• To have business information which is expressed as swiftML elements/values and meta data information

which is expressed as swiftML attributes.
• To have DTD’s and Schema’s that support inheritance. Consequently, attributes and aggregates can be

reused or overridden.

B.3 Naming rules
As already stated, the purpose is to have a straightforward mapping from UML names to swiftML names.
Hence, all below rules apply for UML names as well as swiftML names.

B.3.1 General rules

Use the English vocabulary.
Abide to the (character) restrictions described in swiftML for naming elements:
• All names must start with an alphabetic character, ‘_’, or ‘:’
• All characters following the first characters may be alphabetic characters, numeric characters, “.”, ‘-‘, ‘_’

or ‘:’.
Apply camel case convention:
• Names for elements and attributes may be made up of multiple words each consisting of alphanumeric

characters.
• Each word starts with a capital letter.
• All white spaces between words are removed.

B.3.2 Well-known acronyms

• Use commonly used and well-known acronyms as-is, i.e. capitalised
• ISIN
• IBAN

• BIC
• ISO
• FI (Financial Institution)

• Separate the abbreviation from the rest of the tag using the underscore ‘_”
Example: <ISO_NetProceed>

B.3.3 Collections

In swiftML, instances of collections are separated by using the plural of the word of given to the collection. In
case a plural is required, an ‘_’ is added (E.g. Accounts becomes Acct_)

B.3.4 Reusable words

Frequently used names will be abbreviated using following table:
(Non-exhaustive list)
Account Acct
Amount Amt
Average Avg
Condition Cond
Currency Ccy
Description Desc
Financial Fin
Frequency Freq
Identifier / Identification Id
Information Info
Instrument Instr
Maximum Max
Minimum Min
Narrative Narr
Number Nbr
Percentage Pct
Physical Phys
Qualifier Qual
Quantity Qty
Reference Ref
Request Req
Transaction Tran
…

B.3.5 Order of the words in a name

B.3.5.1 When a tag consists of multiple words, following hierarchy must be followed, with increasing
priority.
Level 1: when one of the below words is used, they must be the last word of the tag
• Acct
• Amt
• Ccy
• Date
• Party
• Qty

• Status

Level 2: when one of the below words is used, they must be the last word of the tag
• ID
• Code
• Narr
• Ref
Examples:
<ValueDate>
<ValueDateCode>

B.3.5.2 Avoid ‘Of’, ‘In’, ‘The’,…

AVOID BETTER
QtyOfFinInstr FinInstrQty
…

B.4 Additional requirements
A next step is to force designers to apply above rules software-wise when creating new data-elements.
A new requirement could be (cf. Word) to perform a ‘grammar’ check to abide to the above rules. This
requirement is needed
• to ensure a consistent generation of data dictionary elements
• to have a better performing query engine

C. Appendix C Character Sets
XML specification v1.0 supports Unicode.
Unicode includes a number of different encoding schemes, which are named according to the number of
bytes they need (E.g. UCS-2 which is identical to Unicode, UCS-4, etc)
ISO10646 is more sophisticated. Using mapping schemes called UCS Transformation Formats (UTF), ISO
10646 allows for a variable number of bytes to be used.
The XML processor has to recognise following character sets in the encoding declaration:
• UTF-8 and UTF-16
• ISO10646-UCS-2 and -4
• ISO8859-1 to –9
• ISO2022-JP
• Shift-JIS
• EUC-JP
The default value supported by XML parsers is UTF-8.

C.1 Requirements
• To be as interoperable as possible with character sets used in programming languages, platforms,….
• We should endeavour to keep the swiftML representation as short as possible to save space and

bandwidth.
• To support as many different (types of) characters as possible (e.g. Arabic, Chinese, Cyrillic, symbols)
This means a trade-off has to be found between these last two requirements. In other words, we must
choose the alternative that defines in the most efficient and uniform way the currently defined characters.
It should be noted that it is also possible in XML to declare entities that contain different character sets or
encoding schemes than the rest of the document. This would mean however, that the application behind the
XML parser has to be capable of supporting those different encoding schemes or character sets as well. So
for simplicity reasons one supported character set/encoding scheme is preferred.

C.2 Main alternative character sets / encoding schemes
Only the most appropriate alternatives will be discussed.

C.2.1 ISO8859

Each ISO 8859 variant is tailored for a specific (Western) language.
Only one byte per character is used.
Does not support exotic character sets.

C.2.2 UCS-2 and UCS-4

Any character is represented using two respectively four bytes.
They both support (almost) any character known (e.g. Arabic, Chinese, etc.)

C.2.3 UTF-8

UTF-8 has a variable length character representation, depending on the character set that needs to be
represented. UTF-8 is an encoding mechanism that can represent (due to its variable length) almost any
known character. The idea here is to represent the most commonly used characters as short as possible:
• One byte each for the ASCII charset, also known as the ‘basic Latin’ block in Unicode. This is better than

UTF-16, UCS-2, UCS-4, Unicode, and equivalent to ASCII.

• Two bytes each for charsets such as (but not limited to) Latin-1, Latin Extended-A and B, the IPA
extensions, spacing modifier letters, combining diacritical marks, Greek, Cyrillic, Armenian, Hebrew and
Arabic. These characters are represented using the same length as Unicode, UTF-16 and UCS-2

• Three bytes each to cover the vast majority of the rest of the Unicode character set. This is worse than
UTF-16.

• Four bytes to potentially cover more characters than all the previous ranges put together, but it is
currently nearly unused. This is no worse than UTF-16.

UTF-8 has no byte order ambiguity compared to multi-byte encoding schemes and for many purposes, can
be treated simply as a string of bytes (e.g. for string searches)
Conversion from UCS-2, UCS-4 and UTF-16 to UTF-8 can be automated without conversion tables (i.e. only
conversion rules).
Mostly used by C-programmers.

C.2.4 UTF-16

Mostly used by Java programmers.
Any character is represented using two bytes.
Supports (almost) any known character set.

D. Appendix D XML Namespace
D.1 Introduction
The last step in NG business modelling is the conversion from the business messages at the logical layer
(represented in UML) into a physical representation, in casu XML messages. One of the chapters in the
design rules for mapping from UML to XML is the naming of tags both in UML and XML. Within this context,
the usage of XML namespaces has to be clearly defined.
A rule of thumb is to re-use as much as possible the names used in the logical model to tag names in XML.
The way namespaces are used in XML influences the way tags are named in XML. It is however very
important to understand what XML namespaces are and what they were designed for. Only then we will be
able to determine the appropriate usage.

D.2 XML namespace characteristics
It provides a syntax to associate qualified names with URIs, thereby allowing certain names to be
universalised.
Namespaces are partitions; they are NOT hierarchical. Consequently, the problem of reusability of elements
that is neatly solved in UML with packages cannot be solved in XML using namespaces.
Using namespaces increase the processor / parser overhead (although this impact seems minimal
compared to e.g. complexity of the tree).
Namespaces cannot be nested in XML. In UML however, this is possible. Hence, a method has to be found
to convert a nested namespace in UML into a single namespace in XML.
Using namespaces may lengthen in some cases the messages unnecessarily, since when using multiple
namespaces within a document, all namespaces will have to be defined (even if you would have a default
namespace).
There is currently a lack of conforming applications.

D.3 When should XML namespaces be used
Namespaces can be used to differentiate data dictionaries. (For this purpose, a data dictionary is a
representation of a business realm owned by one registration authority). This differentiation is necessary to
avoid name clashes. Name clashes can (or should) only occur when a document is using elements assigned
by different authorities which are not taking into account each others dictionary when assigning names.
The purpose of a namespace is to ensure the uniqueness of an element outside the business realm of that
namespace. In other words, to ensure cross-boundary business interoperability between the known
business realm and the unknown business realm.
The same reasoning applies to reusable elements since they imply a common business realm. Hence
different namespaces should only be used in case of clearly distinct business realms (i.e. partitioned
business realms). One owner of two dictionaries with overlapping business should define the names of both
dictionaries as if there was only one dictionary and thus one namespace.

D.4 When should XML namespaces not be used
Namespaces should not be used to solve name clashes within the same business realm. In this case,
different names should be assigned (since they have a different business meaning).
Namespaces should not be used to resolve Data Dictionary management issues (see also further).

D.5 Case study: one business realm, many namespaces
Suppose we adopt as rule to map each UMLpackage (whatever its granularity) into its own XML
namespace. Hence one can divide elements into two main categories and therefore two types of
namespaces:

• reusable elements belonging to a global namespace (i.e. elements that have the same behaviour
throughout the different businesses, common elements)

• specific elements (i.e. elements that cannot be reused outside of that namespace)
Experience has taught us that it is extremely difficult to define the boundaries (i.e. its granularity) of a
specific package and as such a specific namespace. If the boundary cannot be clearly identified (which will
be the case with most boundaries since the business is a ‘living thing’), the multiple namespaces will have to
be managed:
• we can move elements from the global to the specific namespace or vice-versa, or
• we can make elements pertain to multiple namespaces, or
• we can have multiple namespaces in one document.
This makes the usefulness of a global namespace questionable:

D.5.1 It may add confusion to the user

Reusing elements from other namespaces may be confusing.
Example:
Suppose a payments account has been defined in the GSTPA namespace <GSTPA:PaymentsAccount>. If
this element would be used in a payments environment, the user might wonder why this specifically refers to
GSTPA).

D.5.2 Moves but does not remove DD management

Part of the management of data elements is now moved (not solved) to the level of namespaces. Managing
multiple namespaces won’t be an easy task.
It is easy to put an element in a specific namespace when one is sure that this element’s behaviour is typical
to that namespace, and knowing up front that it will behave differently in another namespace. However, what
is the rule if you don’t know (yet) whether this behaviour is unique? Does one put that element in a specific
namespace, or in the global namespace (= common).
Continuing on previous example, one might decide to move “PaymentsAccount” to the common namespace,
or to add the same element in the “Payments” namespace.
So how does one know up front that an element will always behave in the same way? This ignorance may
result in having to manipulate where the element belongs, i.e. managing the namespaces. So instead of
removing the aspect of DD management, it is simply moved.
All of the above can be reworded into one question: What is the level of granularity of the business to use
different namespaces?

D.5.3 Requires criteria on the granularity of namespaces

What are the conditions to have a separate namespace?
A different market?
A different market infrastructure?
A different market practice?
Technical vs. business elements?
Throughput issues (verbose and non-verbose elements)?
Etc…

D.6 Case Study: One S.W.I.F.T. namespace
Having one namespace means any element defined in the business data dictionary will have a unique
meaning. This means business experts will have to agree upon the exact usage and definition cross-market
of each element. In other words, if a business element has a different usage in a different market, a different
name has to be given to that element. Therefore, since any business element is unambiguously defined, it
will be valid within any business that is covered by the data dictionary, and will thus not require a different
namespace in XML to make it cross-market unique.
Having only one namespace could flatten and hide the concept of reusable elements and packages at
syntax level. However, since all XML messages and elements are based on models, this becomes a non-

issue. Moreover, through the use of XML Schemas and RDF, it will be possible to define type hierarchies
that enable the creation of new elements that have a traceable relationship with an existing and well-known
element.

D.7 Open issues
• None

D.8 Recommendations
The standards department will adopt the use of one business data dictionary and the use of one (default)
namespace.

E. General Rules on SwiftID and Traceability Links
E.1 Traceability follow-up obeys to the following rules:
1. only “refine” traceability links are followed
2. Recursion: i.e. when an element reached via a traceability link also has an outgoing traceability link, this

link is followed further.
3. Putting many outgoing “refine” traceability links on a single element is not allowed.
4. Cycle protection: i.e. the Standards Workstation stops following traceability link as soon as it detects that

an outgoing link goes to an element it has already explored.
5. Layers independence: the DTD-implementation doesn’t take into account the existence of methodology

layers. It’s only based on the existence of traceability links.
6. Independence regarding other relations: e.g. if the class, endpoint of a traceability link, is specialised this

specialisation is ignored. In other words: the implementation only follows traceability links.
7. The generation of the DTD is always started at the technical layer, which implies that – at least for the

message itself – a technical class must be created. Each technical element MUST have a traceability
link to the logical layer.

E.2 Example

E.3 Class Diagram

Trad ing CapIndL ist

PRIN : String
AGEN : Stri ng
CPRN : String
CAGN : Stri ng
BAGN : Stri ng
PRAG : Stri ng

<<enumeration>>

TradingParty

TradingCapacity
(from Business)

ExecutedTradeDetails
(from Business)

+Buyer

+Seller

TradingParty
TradingCapacity : TradingCapIndList

TradeDetails
PricePrecision : Integer
ExecutedQty : Qty

+Buyer

<<refine>>

+Seller

NoticeOfExecution
<<Message>>

+ExecutedTradeDetails

Qty

AMOR
actualQty : Integer

TradingParty = 1
TradingCapacity=2

ExecutedTradeDetails=3

TradingParty=4
TradingCapacity=5

NoticeOfExecution = 6

TradeDetails=7
PricePrecision=8
ExecutedQty=9

Qty=10

AMOR=11
actualQty=12

ExecutedTradeDetails=13

Buyer=14
Seller=15
Buyer=14
Seller=15

Buyer=16
Seller=17

TradingCapIndList=18

<<refine>>
<<refine>>

E.4 XML

<?xml version="1.0"?>
<NoticeOfExecution elementID="6">
 <ExecutedTradeDetails roleID="13" elementID="7" type=”7”>
 <PricePrecision roleID="8" elementID=”8” type="integer">1</PricePrecision>
 <ExecutedQty elementID="911" roleID="9 type=”11">

<actualQty roleID="12" elementID="12” type=”integer">21</actualQty>
 </ExecutedQty>
 <Buyer roleID="16" elementID="1" type=”4”>

<TradingCapacity roleID="2" elementID="2” type=”18">PRIN</TradingCapacity>
 </Buyer>
 <Seller roleID="17" elementID="1" type=”4”>

<TradingCapacity roleID="2" elementID="2” type=”18">PRAG</TradingCapacity>
 </Seller>
 </ExecutedTradeDetails>
 </NoticeOfExecution>

	swiftML design rules
	Table of contents
	1. Introduction
	2. Mapping rules from UML to swiftML
	2.1 General mapping rules
	2.2 swiftML elements
	2.2.1 swiftMLTag
	2.2.2 elementID
	2.2.3 roleID
	2.2.4 type
	In the DTD
	In the corresponding instance

	2.2.5 version

	2.3 Specific mapping rules
	2.3.1 Primitive data types
	2.3.2 Class
	2.3.3 Simple composition
	2.3.4 Class attributes
	2.3.5 Composition of vectorial attributes (Collections)
	2.3.6 Enumerations
	2.3.7 Inheritance
	Element order
	Virtual containment

	2.3.8 Enumerated types
	Basic pattern
	Re-use pattern

	2.3.9 Enumerated roles

	3. DTD and Schema design rules
	3.1 Common design rules and usage
	3.2 DTD design rules
	3.3 swiftML Schema Design rules
	3.3.1 General constraints
	3.3.2 Primitive Datatypes

	3.4 DTD vs. Schema
	3.5 Granularity of DTDs or Schemas
	3.5.1 Assumptions
	3.5.2 Requirements
	3.5.3 Solution

	3.6 swiftML optimisation

	4. Naming Conventions and Taxonomy
	5. Character set
	6. swiftML Namespace
	7. Versioning
	A. Appendix A: Example
	A.1 Snippet of a hypothetical Notice of Execution
	
	A.1.1.1 Instance

	A.1.2 DTD

	B. Appendix B: Naming conventions and taxonomy scheme
	B.1 Introduction
	B.2 Constraints / Assumptions
	B.3 Naming rules
	B.3.1 General rules
	B.3.2 Well-known acronyms
	B.3.3 Collections
	B.3.4 Reusable words
	B.3.5 Order of the words in a name
	B.3.5.1 When a tag consists of multiple words, following hierarchy must be followed, with increasing priority.
	B.3.5.2 Avoid ‘Of’, ‘In’, ‘The’,…

	B.4 Additional requirements

	C. Appendix C Character Sets
	C.1 Requirements
	C.2 Main alternative character sets / encoding schemes
	C.2.1 ISO8859
	C.2.2 UCS-2 and UCS-4
	C.2.3 UTF-8
	C.2.4 UTF-16

	D. Appendix D XML Namespace
	D.1 Introduction
	D.2 XML namespace characteristics
	D.3 When should XML namespaces be used
	D.4 When should XML namespaces not be used
	D.5 Case study: one business realm, many namespaces
	D.5.1 It may add confusion to the user
	D.5.2 Moves but does not remove DD management
	D.5.3 Requires criteria on the granularity of namespaces

	D.6 Case Study: One S.W.I.F.T. namespace
	D.7 Open issues
	D.8 Recommendations

	E. General Rules on SwiftID and Traceability Links
	E.1 Traceability follow-up obeys to the following rules:
	E.2 Example
	E.3 Class Diagram
	E.4 XML

