
901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638

Sun Microsystems, Inc.

1.512.434.1511

Sun
™

Open Net Environment

(Sun ONE) Software

Architecture

An Open Architecture for Interoperable, Smart
Web Services



Please

Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark

in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Jini, Java, Java Card, Java TV, JavaServer Pages, Java Community Process, EJB, JDBC, JMX, JSP, J2ME,

J2EE, J2SE, Enterprise JavaBeans, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and

other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the

U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)

and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et

la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Jini, Java, Java Card, Java TV, JavaServer Pages, Java Community Process, EJB, JDBC, JMX, JSP, J2ME, J2EE,

J2SE, Enterprise JavaBeans, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc.

aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques

déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une

architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.



Introduction

The Internet has had a profound impact on user expectations. Not too long ago, a

computer user was a highly trained individual. Businesses trained their users to be

experts in one or two specific applications. A Web user, though, is an entirely

different breed. A business doesn’t have the luxury of training their Web users. Web

applications must be intuitive. Or perhaps it’s more appropriate to say that Web

applications must be invisible. A Web user simply uses the Web to read e-mail, find

directions, pay bills, approve an expense request, and more. The user doesn’t view

these activities as executing applications. The user is simply using services that are

available on the Web. The user wants to be able to access these services from a wide

variety of client devices, such as desktop systems, PDAs, mobile phones, and in-car

computers. Furthermore, the user wants these services to understand and act

differently according to the context of the situation. Who am I? Where am I? What

time is it? Am I acting as an employee or an individual?

These new user expectations are causing businesses to change the way they build

application systems. Rather than building large, monolithic application systems or

desktop-oriented client/server applications, businesses are starting to build

applications using a service-oriented application design. Application software is

being broken down into its constituent parts--into smaller, more modular application

components or services. These application services make use of infrastructure

software that has also been decomposed into discrete system services. All of these

discrete services can be deployed across any number of physical machines that are

connected to the Internet. This modular service approach gives businesses great

flexibility in system design. By reassembling a few services into a new configuration,

a business can create a new business service.

Services

An application service represents some type of user or business activity, such as

reading e-mail, getting a stock quote, authorizing a credit purchase, and procuring

materials. A system service represents system infrastructure and management

functionality, such as storage, security, transactions, messaging, and fault recovery.

A service exhibits the following characteristics:

■ A service provides a interface that can be called from another program.

■ A service is registered and can be located through a service registry.
1



Service-oriented systems are not a new concept. Popular service-oriented systems

include ONC RPC, DCE, COM, CORBA, RMI, and Jini™ technologies. Although all

of these systems have a lot going for them, they all require special protocols for

communication. A COM client must use COM protocols to speak to a COM service.

A Jini client must use Jini protocols to speak to a Jini service. Unfortunately, these

special protocols aren’t pervasive on the Web, and firewalls routinely block

communication. So now, a new type of service-oriented system is evolving: Web

services.

Web Services

A Web service represents a unit of business, application, or system functionality that

can be accessed over the Web. Web services are applicable to any type of Web

environment, be it Internet, intranet, or extranet, with a focus on business-to-

consumer, business-to-business, department-to-department, or peer-to-peer

communication. A Web service consumer could be a human user accessing the

service through a desktop or wireless browser; it could be an application program;

or it could be another Web service.

A Web service exhibits the following characteristics:

■ A Web service is accessible over the Web.

■ A Web service exposes an XML interface.

■ A Web service is registered and can be located through a Web service registry.

■ Web services communicate using XML messages over standard Web protocols.

■ Web services support loosely-coupled connections between systems.

Perhaps what is most intriguing about Web services is that it doesn’t matter what

technologies are used to build them. Because Web services communicate over

standard Web protocols using XML interfaces and XML messages, all Web services

environments can interoperate — at least in theory.
2 Sun Open Net Environment (Sun ONE) Software Architecture



What Businesses Want

Since the advent of the Web in 1994, businesses have been using the Internet to get

closer to their stakeholders: shareholders, employees, customers, and partners. They

have been using the Internet to automate supply chains and improve business

process efficiency. Electronic business is no longer a future direction; it has become

the norm. Now businesses are intrigued by the Web services approach to Internet

computing. The Web services computing model promises even better cross-business

integration, improved efficiency, and closer customer relationships.

But in order to make the Web services model palatable, businesses must be able to

leverage existing application assets and expose them as Web services. Businesses

want tools and technologies that will reduce the cost, risk, and complexity of

moving to this new model.

Web Services Technologies

A variety of technologies that support Web services is starting to appear. The leading

candidates include UDDI, WSDL, SOAP, and ebXML. Currently, these technologies

are not available as supported products, but they are maturing quickly.

■ The UDDI (Universal Description Discovery and Interoperability) initiative is an

industry consortium lead by Accenture, Ariba, Commerce One, Compaq, Edifecs,

Fujitsu, HP, I2, IBM, Intel, Microsoft, Oracle, SAP, Sun Microsystems, and

VeriSign. More than 130 companies have joined the UDDI initiative. The group is

developing specifications for a universal, Web-based business directory called the

UDDI Business Registry. At the time of this writing, the UDDI V1 specification is

available, and the UDDI Business Registry is undergoing beta testing. Ariba, IBM,

and Microsoft jointly operate the UDDI Business Registry. IBM has released an

open source UDDI for Java™ technology developer toolkit through the IBM

developerWorks Open Source Zone.

■ WSDL (Web Services Description Language) is technology developed by Ariba,

IBM, and Microsoft. It specifies a common XML framework for describing a Web

service. At this time, IBM has released a WSDL for Java technology developer

toolkit through IBM alphaWorks.
3



■ SOAP (Simple Object Access Protocol) is technology developed by

DevelopMentor, IBM, Lotus, Microsoft, and Userland. SOAP provides an

extensible XML messaging protocol and also supports an RPC programming

model. A number of SOAP implementations are available. The two most popular

implementations are an open source Java technology implementation from the

Apache Software Foundation and a Microsoft implementation within the .NET

SDK. These two implementations are fairly stable, although interoperability

problems between the implementations continue to plague developers.

■ An extended variant of SOAP, called SOAP Messages with Attachments, has been

developed by HP and Microsoft. Microsoft BizTalk Server 2000 uses SOAP

Messages with Attachments, so this technology is included in a supported

product. The W3C (World Wide Web Consortium) recently formed an XML

Protocol Working Group to develop a standard XML messaging protocol (XP).

The SOAP developers submitted the SOAP specification to the W3C, who are

using it as a starting point for the XP effort. SOAP Messages with Attachments

has also been submitted to the W3C. Details of W3C work in progress are not

available to the public.

■ ebXML (Electronic Business XML) is a B2B XML framework being developed by

the ebXML Initiative. The ebXML Initiative is a joint project of UN/CEFACT (the

United Nations body for Trade Facilitation and Electronic Business) and OASIS

(Organization for the Advancement of Structured Information Standards). The

ebXML membership includes representatives from more than 2000 businesses,

governments, institutions, standards bodies, and individuals from around the

world.

■ ebXML is a complete B2B framework that enables business collaboration through

the sharing of Web-based business services. The framework supports the

definition and execution of B2B business processes expressed as choreographed

sequences of business service exchanges. The framework includes specifications

for a Message Service, Collaborative Partner Agreements, Core Components,

Business Process Methodology, and Registry and Repository. A proof-of-concept

interoperability demonstration was presented in October 2000. Participants

included Ajuba Solutions, Cisco, Extol, Fujitsu, IBM, IPNet, Netfish, NTT,

Savvion, Sterling Commerce, Sun Microsystems, TIE, Viquity, WebMethods, XML

Global, and XML Solutions. The ebXML specifications are scheduled to be

published by May 2001.
4 Sun Open Net Environment (Sun ONE) Software Architecture



The Developer’s Dilemma

Although these technologies are rapidly maturing, nascent Web services developers

are pretty much left to their own devices to figure out how to make Web services

work. There are no guidelines to help put all of these technologies and standards

into perspective. They can use a context-sensitive XML editor to manually define a

Web service interface, or generate one using a SOAP or WSDL toolkit. But how do

developers associate a new Web service interface with an existing application or

service? And how do they assemble multiple discrete Web services into a composite

business service? Interoperability between vendor implementations is still

challenging if not impossible. The vision of seamless assembly and integration of

distributed, heterogeneous Web services is still a distant dream.

Shared Context

The issue is a matter of shared context. Context refers to the things that a Web

service needs to know about the service consumer to provide a customized,

personalized experience. Context refers to such things as the identity of the

consumer, the location of the consumer, and any privacy constraints associated with

the consumer information. If a number of services are aggregated to create a

composite business service, these services somehow need to share this context.

Take for example shared user identity. A Web service that offers a personalized

experience maintains information about the identity of each user. When an

individual uses that service, she identifies herself to that service. Sometimes the

service determines her identity automatically from a cookie maintained on her

system. Sometimes she has to enter a user ID and password. Consider for a moment

how many user IDs and passwords you have to remember for all of the Web sites

you visit. Consider how many more cookies you have stored on your system.

Consider how many businesses maintain their own database of private information

about you.

This discussion has no doubt raised your hackles about privacy and security issues.

It also points out a significant challenge facing Web services technology. There are no

standards that allow Web sites to share something as simple as user identity. There

are, in fact, no standards to represent user identity. There are no standards that

ensure user privacy. How can the seamless integration of Web services occur if these

services can’t safely share identity as well as other situational context?
5



Before the vision of transparent, dynamic interaction of widely distributed,

heterogeneous Web services can be achieved, this issue of shared context must be

solved. Shared context raises some fairly sensitive issues. The solution can’t come

from a single vendor. It cannot be proprietary. The solution must be open and

interoperable. It must work with any Web service. And the solution must ensure the

security and privacy of individual information.

What Developers Want

So where does this leave the developer? Obviously developers aren’t going to sit

back and wait for new standards to be developed. They need to start building Web

services today. But they want help. They want to understand how all the different

Web services technologies work together. They want guidelines to help ensure that

Web services are interoperable. And they want to be able to build "smart" Web

services.

Smart Web Services

A smart Web service is a Web service that can understand situational context and

share that context with other services. It produces dynamic results based on who,

what, when, where, and why it was called. A smart Web service can be aware of a

number of situational circumstances, such as:

■ The service consumer’s identity, whether it be an individual, a business, or

another Web service

■ The role that the consumer is using at the time it invokes the service

■ Preferences that the consumer may have defined for this type of service

■ The security policies associated with the consumer of this service

■ The privacy policies associated with the consumer

■ The business policies associated with the consumer of this service

■ The physical location of the consumer

■ The type of client device being used to invoke the service

■ Any past history associated with the consumer of this service or related services

■ Any service level agreements that exist between the consumer and this service

provider
6 Sun Open Net Environment (Sun ONE) Software Architecture



For example, let’s say you invoke a smart restaurant finder service to help you select

a restaurant. The smart restaurant finder wants to make a recommendation based on

where you are, what you like, where you ate last, and whom you’re with. It makes a

big difference if you’re going out with your children or with an important

prospective client. So the smart restaurant finder considers your identity, your

preferences, your history, and your role.

As another example, let’s imagine that there’s a power emergency in California. The

electric company broadcasts a Stage III emergency electrical supply shortage alert to

all power consumers. This notification would launch an energy conservation service,

if available, at all consumer sites. In a business facility, the energy conservation

service would automatically reduce power utilization by adjusting thermostats and

switching off lights according to predefined policies based on parameters, such as

time of day and day of the week. Some of these predefined policies might be

superseded by situational parameters such as a temporary service level agreement

that’s in effect during a particular production run. In a home, the energy

conservation service could adjust the thermostat, switch off lights, and impose a

volume governor on your teenager’s stereo. But the smart Web service also

considers who is physically present in the home. For example, the smart service

knows that the baby is sleeping upstairs, and therefore doesn’t adjust the thermostat

for the upstairs heating zone.

As a final example, let’s consider an order fulfillment process. Imagine that a

customer has ordered six different items. At the time of the order, you promised the

customer that the goods would be shipped within two days. But as your

procurement service places the order with your contract suppliers, it determines that

there is a supply constraint on one of the items that will prevent you from shipping

the entire order as promised. Your standard policy in a situation like this is to send

partial shipments, but this policy eats away at your profit line. What’s most irritating

is that even if you send multiple shipments, many times they all arrive on the same

day, and the customer may not care if the goods arrive today or tomorrow. You’re

looking for an alternative that saves you money and yet still keeps the customer

happy.

Rather than automatically sending the goods in multiple shipments, a smart Web

service would determine a course of action by considering the customer profile and

past history, and by weighing the profit impact of expediting the missing

components or reshuffling factory work orders. The service may also take into

consideration other parameters such as cost of inventory, cost of space, estimated

shipping charges, and expected delivery times. The smart Web service might send an

inquiry to the customer by e-mail, SMS message, automated voice response message,

return fax, or some other delivery mechanism as defined in the customer profile--

requesting a decision:

1. Please accept this coupon for your inconvenience; the goods will be shipped

when the order is complete, which is currently estimated to take five days.

2. Ship the order in pieces as they become available.
7



Making Web Services Smarter

Anyone can build context-sensitive Web services. Certainly there are many Web sites

today that offer highly customized content based on who you are and your past

history with the site. But context-sensitivity is only one half of the problem. A smart

service must also be able to share context with other services. Unfortunately, there

are no standards or conventions for representing this context. Every site that

provides a personalized experience maintains identity and history information in a

proprietary format.

What’s needed is a new set of standards, an XML framework, to represent contextual

information. What’s also needed is an open architecture that defines how services

use this information and assures service interoperability.

An Open Architecture for Interoperable,
Smart Web Services

Sun has defined an open software architecture to support interoperable, smart Web

services. The Sun™ Open Net Environment (Sun ONE) software architecture

addresses important issues such as privacy, security, and identity. It defines practices

and conventions to support situational context, such as client device type and user

location. And it supports systems that can span multiple networks, including the

traditional Web, the wireless Web, and the home network. The architecture is

designed to ensure that smart Web services, developed using any tool, running on

any platform, can seamlessly interoperate.

The Sun ONE architecture is based on a recommended set of open and pervasive

standards, technologies, and protocols. While defining the architecture, Sun

identified some new standards that are needed to complete the architecture. Sun will

collaborate with other companies to foster the development of these new standards

through appropriate standards bodies and industry initiatives, such as W3C, OASIS,

IETF, UDDI, ebXML, and the Java Community Process
™

Program. In particular, Sun

will work with others to foster the development of new standards to support shared

context.
8 Sun Open Net Environment (Sun ONE) Software Architecture



Core Standards and Technologies

At its essence, the Sun ONE software architecture is based on XML, Java technology,

and LDAP. Sun’s technical philosophy is to use common, pervasive technologies, to

use what is available, and to not reinvent the wheel. The core standards used within

the architecture are:

■ XML standards and initiatives, including the core W3C XML recommendations

(XML, DOM, XML Namespaces, XSLT, XPath, XLink, and XPointer); the

development community XML parser, SAX; presentation formats (XHTML, WML,

and VoiceXML); XML schema systems (DTD, XML Schema, RELAX, and the

emerging TREX specification); XML messaging systems (the emerging W3C XML

Protocol, SOAP, and ebXML Message Service); XML registries and repositories

(UDDI Business Registry, ebXML Registry and Repository, and OASIS xml.org);

XML service description languages (WSDL); XML management information

interchange frameworks (DMTF CIM and WBEM); B2B XML frameworks (ebXML

Collaborative Partner Agreement, ebXML Business Process Methodology, and

ebXML Core Components); and XML security systems (XML Signature, XML

Encryption, and the emerging OASIS security services effort).

■ Java technologies, including the Java platforms (Java 2 Platform Enterprise

Edition (J2EE
™

), Java 2 Platform Standard Edition (J2SE
™

) Java 2 Platform Micro

Edition (J2ME
™

), the Mobile Information Device Profile, and Java Card
™

API), Java

Servlet and JavaServer Pages™ (JSP
™

) software, the Java API for database access

(JDBC), and the Java APIs for XML (Java API for XML Processing, Java API for

XML Data Binding, Java API for XML Registries, and Java API for XML

Messaging).

■ Infrastructure standards, such as HTTP, SLL, and LDAP.

Sun ONE Software Architecture

The Sun ONE software architecture is a living system, and it will continue to grow

as new technologies appear that might enhance the environment. The illustration in

Figure 1 presents a high-level functional overview of the major components of a Web

services architecture.

Across the top of the illustration is a box entitled Service Creation and Assembly.

This part of the architecture represents the tools used to develop systems based on

the Web services model. A Web service is often made up of a number of discrete

service components that instantiate various bits of content, business logic, and

applications. Therefore, the service development process involves two distinct steps.
9



The first step involves creating the discrete services, which the Sun ONE software

architecture refers to as micro services. The second step involves assembling the

micro services into composite services, or macro services. Developers create micro

services using integrated development environments, code generators, XML editors,

and authoring tools. (More information about the micro service development model

appears later in this paper.) Service assemblers use business process modeling tools,

workflow tools, and other types of glue tools to assemble macro services.

Assemblers also use policy tools to define business rules, security policies, and

context-sensitive policies that can dynamically change the macro service process at

runtime. Once the services are tested and complete, the services are ready to be

deployed to the deployment platform, and the policies and rules can be deployed to

an open directory. Management tools provide facilities to deploy and manage the

service environment.

The box under the service creation and assembly box in the illustration in Figure 1

represents the deployed services, consisting of business services (macro services)

and service components (micro services). Micro services can be assembled,

configured, and reconfigured into any number of macro services.
10 Sun Open Net Environment (Sun ONE) Software Architecture



The remainder of the illustration in Figure 1 represents the Sun ONE software

deployment architecture. Working from right to left, the diagram depicts service

consumers interacting with a service interface. The service interface provides basic

connection, location, discovery, and communication functionality. This part of the

architecture includes all types of user and business portals that enable Web users,

wireless users, voice users, and external business systems to invoke services. The

service interface directs each request to the appropriate Web service.

Macro services and micro services execute within some type of service container. A

service container provides a runtime environment for the service and provides

persistence and state management services for the service. The service container

runs on a service platform, which provides access to databases, directories, and

messaging services. The service platform resides on an operating system or virtual

machine, providing access to hardware, storage, and networks. Note that a Web

service can be deployed on any type of platform or intelligent device.

The process management facilities work in concert with the service container to

manage service workflow and event processing. The service integration facilities use

the underlying service platform to access other Web services and resources such as

databases, files, directories, and legacy applications.

Adding Smarts to the System

The illustration in Figure 2 shows an enhanced Web services architecture, which

includes additional functionality to support context sensitivity. Smart policy

coordinates activities according to policies associated with identity, context, and

roles. Smart delivery can aggregate, customize, and personalize service results based

on context. Smart process uses context to affect business service workflow. Smart

management ensures privacy, security, and access rights based on the specific

situation as defined by the context.
11



Web Services Processing Model

Figure 3 shows a conceptual overview of the processing model based on the smart

Web services architecture.

Preparing a Service

The smart management facilities manage, monitor, and maintain a Web service.

These facilities

■ Ensure that the service is properly registered and locatable through one or more

service registries

■ Ensure that appropriate pay-per-use or subscription agreements are in place and

properly executed

■ Coordinate the provisioning of a service, and ensure that the service performs

according to a minimum quality of service as determined by service level

agreements or other criteria
12 Sun Open Net Environment (Sun ONE) Software Architecture



■ Obtain management and runtime policies from the smart policy facilities.

The smart policy facilities. manage and interface with the various directories and

repositories that contain the policies and business rules that affect service

processing.

Processing a Service Request

A service request can come in through any type of delivery channel. The smart

delivery facilities determine the current context of the request, record information

such as location, role, and time, and pass the request to the service.

Service Workflow

The smart process facilities manage the choreography of a macro service. Based on

the contextual assignments and the policies and business rules defined for the

service, the smart process facilities ensure that the appropriate micro services or

external services are invoked in the proper sequence. The services use the

integration and resource access engines to invoke other services and to access

databases, files, legacy applications, and other resources.
13



Delivering a Service Response

When processing is complete, the smart delivery facilities tailor the response for the

consumer using personalization and contextual sensitivity engines. The final

response is delivered back to the user through the appropriate delivery channel.

Standards Backplane

The illustration in Figure 4 shows the Web services architecture overlaid with many

of the standards and technologies that provide the foundation for the Sun ONE

software architecture. Not all of these standards are required in every case. The

standards are provided as a guideline and an aid for interoperability.

Smart Delivery

Smart delivery supports a variety of clients using a number of device-specific

presentation formats, including HTML, XHTML, WML, and VoiceXML.

■ The Hypertext Markup Language (HTML) is the most commonly used technology

for presenting electronic information to users.
14 Sun Open Net Environment (Sun ONE) Software Architecture



■ XHTML is an XML-compliant variant of HTML. HTML and XHTML are efforts of

the W3C.

■ The Wireless Markup Language (WML) is the presentation format used on many

WAP-compliant wireless devices such as mobile phones. WML is an effort of the

WAP Forum, which has recently adopted a subset of XHTML as a follow-on to

WML.

■ VoiceXML allows for the creation of audio dialogs that feature synthesized

speech, digitized audio, recognition of spoken and DTMF key input, recording of

spoken input, telephony, and mixed-initiative conversations. Its major goal is to

bring the advantages of Web-based development and content delivery to

interactive voice response applications. VoiceXML is a joint effort of the

VoiceXML Forum and the W3C.

Smart delivery also manages content transformation, generally using XML and

XSLT. The Extensible Markup Language (XML) is a platform- and language-neutral

data representation format, and it forms the underpinning for every important effort

focused on Web services and electronic business. Applications manipulate XML

using either DOM or SAX. The Document Object Model (DOM) is a platform- and

language-neutral API that allows programs to dynamically access and update the

content, structure, and style of XML and HTML documents. DOM provides in-

memory, tree-structured access to XML data so that the entire structure of a

document is accessible for reading and writing. The Simple API for XML (SAX)

provides an event-based serial XML parser. Extensible Stylesheet Language

Transformations (XSLT) is a language for programming the transformation of XML

documents to a variety of formats, such as XHTML, WML, VoiceXML, other XML

documents, or to other data formats. XML, DOM, and XSLT are work efforts of the

W3C. SAX is a collaborative effort by the members of the XML-DEV discussion

group.

A Web service exposes an XML interface, which is implemented using an XML

messaging protocol such as SOAP, ebXML Message Service (ebXML MS), or the

emerging W3C XP. An XML schema language, such as Document Type Definition

(DTD), XML Schema, RELAX, or the emerging TREX specification, describes the

format of the XML message. The message schema should be registered in a schema

registry such as xml.org. The Web service can be described using a Web service

description language, such as WSDL, and the service can be registered in the UDDI

Business Registry and/or in the ebXML Registry and Repository.

Service Container

The service container provides the runtime environment for Web services. The type

of service container used depends on the type of platform being used to host the

services. The Sun ONE software architecture provides recommendations for both

servers and devices.
15



The recommended service container on a server is a J2EE application server. J2EE

technology-based services can be implemented as servlets, JSP pages, or Enterprise

JavaBeans
™

(EJB
™

) components. Currently, J2EE application servers transparently

manage much of the deployment and execution complexity associated with Web

services. As the Web provides more context information for requests as well as

information about the services that are available, the J2EE container will play a

fundamental role in transparently using this information to configure and customize

Web services. Instead of requiring complex programming by the developer, the J2EE

container will extend its existing declarative approach to automate the development

and deployment of smart Web services. This declarative approach has already been

applied to the areas of resource management, transaction management, state

management, and security. J2EE declarative programming significantly reduces the

complexity of Web service development.

The recommended service container on a device is J2ME technology, which provides

a deployment platform for Web services on consumer devices such as wireless

phones, PDAs, televisions, automotive information systems, and a wide variety of

other consumer and embedded devices. A J2ME device is defined in a profile, which

includes a Java virtual machine and a collection of APIs that provide access to the

capabilities of the underlying device. Profiles provide the necessary abstractions

allowing transparent deployment of services and content across an extremely wide

variety of networks and device types. Technologies currently available include the

Mobile Information Device Profile (MIDP) for wireless phones and PDAs, and the

Java TV
™

API for broadcast televisions, set-tops, and personal video recorders. These

platforms provide application models that enable services to access the unique

features of the device, including storage, user interface, and personalization services.

Smart Management

Traditionally, system and network management has been implemented using a large,

distributed application, where special agent software from a system management

software vendor is installed on each resource to be managed, and a central server

made by the same company connects to each agent and manages the resource.

Although most management agents conform to the Simple Network Management

Protocol (SNMP) standard, most management systems encourage a homogeneous

management infrastructure to reap the most benefit. This approach has led to large,

expensive-to-deploy system management frameworks that lock customers into one

vendor for all aspects of management.

Today, system management is undergoing a transition to Web services based on

industry-wide standards, which will enable a new generation of system

management solutions that are modular and interoperable. In this new model the

proprietary agents are replaced by agents designed to use open standards such as

XML and HTTP, and the central server is replaced by Web services that use these

standards to interact with the agents.
16 Sun Open Net Environment (Sun ONE) Software Architecture



In this model, system and network equipment will provide management agents for

their devices, and a wide variety of companies will compete with modular, Web

services targeting specific aspects of management. So instead of customers being

locked into a single vendor, they will be able to go to best-of-breed vendors for each

aspect of management.

The standard for this model is called the Common Information Model (CIM).

Defined in the Distributed Management Task Force (DMTF), a standards body

focused on distributed management, CIM provides a similar role for system

management that ebXML does for business to business transactions. CIM defines the

schema and protocol standards that enable the design of Web services that are able

to work independently of the underlying design of the other services and agents

with which they interact. For example, CIM defines the standard XML objects for

accessing basic server information over a network, and many of these objects are

already implemented in volume server operating platforms such as the Solaris
™

Operating Environment and Windows 2000.

This model brings about two important aspects for the world of open, smart Web

services:

1. Web services will be managed by this model. Developers can instrument a Web

service using the Java Management extensions (JMX
™

) API and create standard

interfaces for managing the deployment, health, and performance of the service.

The CIM standard enables this work to be done by the people who are in the best

position to optimally implement these features — the developers. As Web services

are deployed, Web-based management services will be able to use these same

standards to discover these services and manage them through their agents.

2. .As a well-defined service, companies will be able to outsource aspects of their

system and network management to third-party management service providers

(MSPs) who can perform those same tasks over the network. Since these services

are modular, customers can determine on a case-by-case basis which parts of

management they want to retain in-house, and which parts they would like to

outsource.

Smart Process

The smart process facilities enable context-sensitive service choreography. Context-

based smart processing can change the outcome of a macro Web service by

dynamically altering the choreographed sequences of micro Web service invocations

based on the context of the request, such as geography, jurisdiction, or the maturity

of the business relationship.
17



In an ebXML environment, a B2B business process is expressed as a choreographed

sequence of business service exchanges. Each basic service exchange is referred to as

a business transaction. A business service is typically a high-level service, such as an

ordering service or a billing service. But behind the scenes, that one business service

is recursively composed of a number of lower level services, such as a product look-

up service, a pricing service, and a currency conversion service.

The Transaction Authority Markup Language (XAML) provides an alternate

method to choreograph business services. The XAML initiative is sponsored by

Bowstreet, HP, IBM, Oracle, and Sun Microsystems. XAML defines a set of XML

message formats and interaction models, and enables the coordination and

processing of business-level transactions that span multiple parties across the

Internet.

Smart Policy

A Web service can use a policy engine to dynamically adapt processing and/or

results according to rules that consider user identity, authorization levels, and other

contextual information. The context-oriented standards have yet to be defined, but a

number of standards and proposals exist in relation to security. User and policy

information is maintained in an open directory accessed using LDAP. Kerberos and

Public Key Infrastructure (PKI) provide services for authentication, authorization,

and encryption. In addition, the OASIS Security Services Technical Committee is

working to define an XML framework for exchanging authentication and

authorization information so that cross-enterprise transactions can be made more

secure using open technology. This framework will provide a request/response

protocol for accessing authentication and authorization services, encode requests for

and assertions of identity and entitlement in XML form, and supply bindings of the

security messages to various transport and messaging protocols. The OASIS

committee is combining two proposed security specifications: the Security Services

Markup Language (S2ML) and AuthXML. The S2ML specification was written by

Bowstreet, Commerce One, Jamcracker, Netegrity, Sun Microsystems, VeriSign, and

WebMethods. The AuthXML specification was written by an industry consortium

lead by Outlook Technologies.
18 Sun Open Net Environment (Sun ONE) Software Architecture



Web Services Developer Model

Although Web services can be developed in any programming language, the Sun

ONE software architecture is based on the Java platform. The Java platform includes

native support for XML. The Java API for XML Processing (JAXP) provides a Java

interface to DOM, SAX, and XSLT. Additional Java APIs for XML are in various

stages of development through the Java Community Process Program. The Java API

for XML Data Binding (JAXB) binds XML data to Java code. A developer uses JAXB

to compile XML schema information into Java objects. At runtime, JAXB

automatically maps the XML document data to the Java object and vice versa. The

Java API for XML Messaging (JAXM) provides a native Java interface to XML

messaging systems such as ebXML MS, W3C XP, and SOAP. The Java API for XML

Registries (JAXR) provides an interface to XML registries and repositories such as

the ebXML registry/repository and the UDDI Business Registry. A new Java

Specification Request has just been submitted to the JCP to define the Java APIs for

XML-based RPC (JAX/RPC), which would provide direct support for an RPC

programming convention for XML messaging systems, such as SOAP and the

forthcoming W3C XP.

The Anatomy of a Web Service

Figure 5 shows a micro Web service from the developer’s perspective. A Web service

consists of a Web service interface and one or more service components. The Web

service interface manages and manipulates XML messages. The service components

contain the business logic that implements the service. The service components

frequently interact with external resources and services through a variety of

integration services.

Web Services Interface

A Web service communicates by passing XML documents over standard Web

protocols, such as HTTP. The Web service interface implements the code that

produces and consumes these XML messages. The Sun ONE software architecture

recommends three types of XML messaging systems: SOAP, ebXML MS, and the

future W3C XP.
19



■ SOAP is a lightweight, extensible XML messaging protocol. Although SOAP is a

general-purpose XML messaging services, it is particularly attractive for RPC-

style service invocations. A SOAP message is an XML document consisting of a

header and a body. The message data are specified in XML and packaged in the

SOAP body. SOAP supports an RPC programming convention that automatically

binds input and output parameters to XML elements in the SOAP message body.

Since an XML document cannot contain another XML document, a SOAP

message cannot contain a complete XML document, such as a purchase order. The

SOAP protocol also does not support attachments of multimedia files or other

non-XML data. SOAP does not provide a quality of service (QoS) framework.

Java tools for implementing SOAP interfaces are available from the Apache

Software Foundation. The basic SOAP environment can be extended to support a

QoS framework, but no implementations are available at this time.

■ ebXML MS is an XML messaging service designed to support the requirements of

B2B ecommerce. An ebXML message is a multipart/MIME-encapsulated message

that can transport any number of XML documents and non-XML attachments.

ebXML MS does not support an RPC programming convention. ebXML MS

provides a QoS framework that ensures reliable message delivery. The QoS

framework can be extended to support security and transaction semantics. The

ebXML specifications will be available in May 2000.

■ The W3C XP specification is under development. Details of W3C work in progress

are not available to the public.
20 Sun Open Net Environment (Sun ONE) Software Architecture



A Web service interface is implemented as a JSP page or servlet running within a

Web server. The JSP page/servlet receives the XML message and extracts the XML

document. Currently, this process is performed manually. In the future, developers

will be able to use JAXM or JAX/RPC to more efficiently process the XML message.

The JSP page/servlet then takes the XML document and maps the document data

into Java object data. Today, developers can use JAXP to process the XML document.

In the future, the developer will be able to use JAXB to automatically bind the

document to a Java object.

Capturing Context Information

The Web service interface also captures as much context information as is available.

User identity can be captured by retrieving a cookie from the client’s system or

challenging the user for a userid and password. Once the service interface has

determined identity, the service can query its proprietary user history files to

retrieve additional context. Sun is collaborating with partners to foster a standards

effort to define standard frameworks to deal with identity and context. The details of

the context framework have yet to be defined, but it is expected that there will be

standard APIs that the JSP page/servlet would use to obtain user context.

Business Logic

Once the JSP page/servlet has mapped the XML data to Java data and captured the

context, it then performs its usual session-management services and invokes the

business logic. The business logic performs the actual service. The business logic is

implemented as an EJB component, or possibly a servlet for light-duty applications.

The business logic component will interface with a workflow engine that manages

the choreography of the composite business transaction, and with a policy engine

that applies appropriate business rules according to user identity and context.

Standards for this process have yet to be defined. No doubt, ebXML, XAML, and the

OASIS security services will play a role in this process.

Integration Services

The business logic component will need to interface with various resources. The

JDBC
™

APIprovides access to databases; J2EE Connectors and Java message Service

(JMS) provide access to other application systems; and XML messages are used to

interface with other Web services. For the moment, developers will need to construct

XML messages manually using JAXP. In the future, developers will use JAXM or

JAX/RPC to more easily manipulate XML messages.
21



Returning Results

When the business logic component has completed its work, it returns a Java result

object to the JSP page/servlet interface component. The interface maps the results

from the Java object to the output XML document using JAXP or, in the future,

JAXB. The JSP servlet can then use the context to further customize the response

document as appropriate. When ready, the response is returned to the requester.

Summary

The Sun ONE software architecture is designed to help developers be successful

building Web services today. The Web services technologies that are available today

are still rudimentary, but that fact shouldn’t stop developers form venturing into this

exciting new territory. Web services represent the next generation of software. This

architecture provides a guideline to help developers put the myriad XML standards,

technologies, and initiatives in perspective. The developer model provides a

foundation for development efforts, indicating which technologies and APIs should

be used for each facet of a Web service. Sun will continue to provide tools,

technologies, specifications, and advice to promote the Web services model of

computing. .
22 Sun Open Net Environment (Sun ONE) Software Architecture



23



Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303

1 (800) 786.7638

1.512.434.1511

http://www.sun.com/software/sunone/

February 2001


	Introduction
	Services
	Web Services
	What Businesses Want
	Web Services Technologies
	The Developer’s Dilemma
	Shared Context
	What Developers Want
	Smart Web Services
	Making Web Services Smarter
	An Open Architecture for Interoperable, Smart Web Services
	Core Standards and Technologies
	Sun ONE Software Architecture
	Adding Smarts to the System
	Web Services Processing Model
	Preparing a Service
	Processing a Service Request
	Service Workflow
	Delivering a Service Response

	Standards Backplane
	Smart Delivery
	Service Container
	Smart Management
	Smart Process
	Smart Policy

	Web Services Developer Model
	The Anatomy of a Web Service
	Web Services Interface
	Capturing Context Information
	Business Logic
	Integration Services
	Returning Results

	Summary
	Sun™ Open Net Environment (Sun ONE) Software Architecture


