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1 Introduction

We present the Systems Biology Markup Language (SBML) Level 1, a description language for simulations
in systems biology. SBML is oriented towards representing biochemical networks common in research on
a number of topics, including cell signaling pathways, metabolic pathways, biochemical reactions, gene
regulation, and many others. A recent conference (Kitano, 2001) highlights the range of topics that fall
under the umbrella of systems biology and are in the domain of the description language defined here.
Many contemporary research initiatives demonstrate the growing popularity of this kind of multidisciplinary
work (e.g., Abbott, 1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik, 2000a,b).

SBML Level 1 is the result of merging modeling-language features from the following simulation systems:
BioSpice (Arkin, 2001), DBSolve (Goryanin, 2001; Goryanin et al., 1999), E-Cell (Tomita et al., 1999,
2001), Gepasi (Mendes, 1997, 2001), Jarnac (Sauro, 2000; Sauro and Fell, 1991), StochSim (Bray et al.,
2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al., 2000, 2001). SBML was developed with
the help of the authors of these packages. As a result of being based on actual working simulation software,
it is a practical and functional description language. Our goal in creating it has been to provide an open
standard that will enable simulation software to exchange models, something that is currently impossible
because there is no standard model exchange language. We expect SBML models to be encoded using XML,
the eXtensible Markup Language (Bosak and Bray, 1999; Bray et al., 1998), and we include here an XML
Schema that defines SBML Level 1.

1.1 Scope and Limitations

SBML Level 1 is meant to support non-spatial biochemical models and the kinds of operations that are
possible in existing analysis/simulation tools. A number of potentially desirable features have been inten-
tionally omitted from the language definition. Future software tools will undoubtedly require the evolution
of SBML; we expect that subsequent releases of SBML (termed levels) will add additional structures and
facilities currently missing from Level 1, once the simulation community gains experience with the current
language definition. In Section 6.1, we discuss extensions that will likely be included in SBML Level 2.

The definition of the model description language presented here does not specify how programs should
communicate or read/write SBML. We assume that for a simulation program to communicate a model
encoded in SBML, the program will have to translate its internal data structures to and from SBML, use a
suitable transmission medium and protocol, etc., but these issues are outside of the scope of this document.

1.2 Notational Conventions

SBML is intended to be a common XML-based format for encoding systems biology models in a simple form
that software tools can use as an exchange format. However, for easier communication to human readers,
we define SBML using a graphical notation based upon UML, the Unified Modeling Language (Eriksson and
Penker, 1998; Oestereich, 1999). This UML-based definition in turn is used to define an XML Schema (Biron
and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) for SBML. There are three main advantages to
using UML as a basis for defining SBML data structures. First, compared to using other notations or a
programming language, the UML visual representations are generally easier to grasp by readers who are not
computer scientists. Second, the visual notation is implementation-neutral: the defined structures can be
encoded in any concrete implementation language—not just XML, but C or Java as well. Third, UML is
a de facto industry standard that is documented in many sources. Readers are therefore more likely to be
familiar with it than other notations.

Our notation and our approach for mapping UML to XML Schemas is explained in a separate docu-
ment (Hucka, 2000). A summary of the essential points is presented in Appendix A, and examples through-
out this document illustrate the approach. We also follow certain naming and typographical conventions
throughout this document. Specifically, the names of data structure attributes or fields begin with a lower-
case letter, and the names of data structures and types begin with an uppercase letter. Keywords (names of
types, XML elements, etc.) are written in a typewriter-style font; for example, Compartment is a type name
and compartment is a field name. Likewise, literal XML examples are also written in a typewriter-style font.
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2 Overview of SBML

The following is an example of a simple, hypothetical biochemical network that can be represented in SBML:

X0 k1X0−−−→ S1

S1 k2S1−−→ X1

S1 k3S1−−→ X2

Broken down into its constituents, this model contains a number of components: reactant species, product
species, reactions, rate laws, and parameters in the rate laws. To analyze or simulate this network, addi-
tional components must be made explicit, including compartments for the species, and units on the various
quantities. The top level of an SBML model definition simply consists of lists of these components:

beginning of model definition
list of unit definitions (optional)
list of compartments
list of species
list of parameters (optional)
list of rules (optional)
list of reactions

end of model definition

The meaning of each component is as follows:

Unit definition: A name for a unit used in the expression of quantities in a model. Units may be supplied
in a number of contexts in an SBML model, and it is convenient to have a facility for both setting
default units and for allowing combinations of units to be given abbreviated names.

Compartment : A container of finite volume for substances. In SBML Level 1, a compartment is primarily
a topological structure with a volume but no geometric qualities.

Specie: A substance or entity that takes part in a reaction. Some example species are ions such as Ca2++

and molecules such as glucose or ATP. The primary qualities associated with a specie in SBML Level 1
are its initial amount and the compartment in which it is located.

Reaction: A statement describing some transformation, transport or binding process that can change the
amount of one or more species. For example, a reaction may describe how certain entities (reactants)
are transformed into certain other entities (products). Reactions have associated rate laws describing
how quickly they take place.

Parameter : A quantity that has a symbolic name. SBML Level 1 provides the ability to define parameters
that are global to a model as well as parameters that are local to a single reaction.

Rule: In SBML, a mathematical expression that is added to the differential equations constructed from the
set of reactions and can be used to set parameter values, establish constraints between quantities, etc.

A software package can read an SBML model description and translate it into its own internal format for
model analysis. For example, a package might provide the ability to simulate the model, by construct-
ing differential equations representing the network and then performing numerical time integration on the
equations to explore the model’s dynamic behavior.

SBML allows models of arbitrary complexity to be represented. Each type of component in a model is
described using a specific type of data structure that organizes the relevant information. The data structures
determine how the resulting model is encoded in XML.
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In the sections that follow, the various constructs in SBML and their uses are described in detail. Section 3
first introduces a few basic structures that are used throughout SBML, then Section 4 provides details on
each of the main components of SBML. Section 5 provides several complete examples of models encoded in
XML using SBML.

3 Preliminary Definitions

This section covers certain constructs that are used repeatedly in the rest of SBML and are useful to discuss
before diving into the details of the components provided in SBML.

3.1 Type SBase

Each of the main components composing an SBML model definition has a specific data type that is derived
directly or indirectly from a single base type called SBase. This inheritance hierarchy is depicted in Figure 1.

SBase

Compartment

Unit

Model

Reaction

Specie

KineticLaw

Parameter

Rule

SpecieConcentrationRule ParameterRule

Model

UnitDefinition

AlgebraicRule

CompartmentVolumeRule

AssignmentRule

SpecieReference

Figure 1: A UML diagram of the inheritance hierarchy of major data types in SBML. Open arrows indicate inheritance,
pointing from inheritors to their parents (Eriksson and Penker, 1998; Oestereich, 1999).

The type SBase is designed to allow a modeler or a software package to attach information to each component
in an SBML model. The definition of SBase is presented in Figure 2. SBase contains two fields, both of which
are optional: notes and annotations. The field notes is a container for XHTML content. It is intended for
recording optional user-visible annotations. Every data object derived directly or indirectly from type SBase
can have a separate value for notes, allowing users considerable freedom for annotating their models. The
second field, annotations, is provided for software-generated annotations. It is a container for arbitrary
data (XML type any) and is intended to store information not intended for human viewing. As with the
user-visible notes field, every data object can have its own annotations value.

In other type definitions presented below, we follow the UML convention of eliding the attributes derived
from a parent type such as SBase. It should be kept in mind that these attributes are always available.

SBase

notes : (XHTML)    {minOccurs="0"} 
annotation : (any)   {minOccurs="0"}

Figure 2: The definition of SBase. Text enclosed in braces next to attribute types (i.e., {minOccurs="1"}) indicates
constraints on the possible attribute values; we use XML Schema language to express constraints since we are primarily
interested in the XML encoding of SBML.
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3.2 Guidelines for the Use of the annotations Field in SBase

The annotations field in the definition of SBase is formally unconstrained in order that software developers
may attach any information they need to different components in an SBML model. However, it is important
that this facility not be misused accidentally. In particular, it is critical that information essential to a
model definition is not stored in annotations. Parameter values, functional dependencies between model
components, etc., should not be recorded as annotations.

Here are examples of the kinds of data that may be appropriately stored in annotations: (a) Information
about graphical layout of model components; (b) application-specific processing instructions that do not
change the essence of a model; (c) bibliographic information pertaining to a given model; and (d) iden-
tification information for cross-referencing components in a model with items in a database. (We expect
to introduce an explicit scheme for recording bibliographic information and making database references in
SBML Level 2, at which time using annotations for these purposes will become unnecessary.)

Different applications may use XML Namespaces (Bray et al., 1999) to specify the intended vocabulary of
a particular annotation. Here is an example of this kind of usage. Suppose that a particular application
wants to annotate data structures in an SBML model definition with screen layout information and a time
stamp. The application developers should choose a URI (Universal Resource Identifier ; Harold and Means
2001; W3C 2000a) reference that uniquely identifies the vocabulary that the application will use for such
annotations, and a prefix string to be used in the annotations. For illustration purposes, let us say the URI
reference is “http://www.mysim.org/ns” and the prefix is mysim. An example of an annotation might then
be as follows:

...
<annotations xmlns:mysim="http://www.mysim.org/ns">

<mysim:nodecolors mysim:bgcolor="green" mysim:fgcolor="white"/>
<mysim:timestamp>2000-12-18 18:31 PST</mysim:timestamp>

</annotations>
...

The namespace prefix mysim is used to qualify the XML elements mysim:nodecolors and mysim:timestamp;
presumably these symbols have meaning to the application. This example places the XML Namespace
information on annotations itself rather than on a higher-level enclosing construct or the enclosing document
level, but other placements would be valid as well (Bray et al., 1999).

The use of XML Namespaces permits multiple applications to place annotations on XML elements of a model
without risking interference or element name collisions. Annotations stored by different simulation packages
can thus coexist in the same model definition. Although XML Namespace names (“http://www.mysim.org/”
in the example above) must be URIs references, an XML Namespace name is not required to be directly us-
able in the sense of identifying an actual, retrieval document or resource on the Internet (Bray et al., 1999).
The name is simply intended to enable unique identification of constructs, and using URIs is a common
and simple way of creating a unique name string. For the convenience of the simulation tools developer
community, we reserve certain namespace names for use with annotations in SBML. These reserved names
are listed in Table 1.

http://www.sbml.org/2001/ns/biospice
http://www.sbml.org/2001/ns/dbsolve
http://www.sbml.org/2001/ns/ecell
http://www.sbml.org/2001/ns/gepasi
http://www.sbml.org/2001/ns/jarnac
http://www.sbml.org/2001/ns/jdesigner
http://www.sbml.org/2001/ns/stochsim
http://www.sbml.org/2001/ns/vcell

Table 1: Reserved XML Namespace names in SBML Level 1.
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Note that the namespaces being referred to here are XML Namespaces specifically in the context of the
annotations field on SBase. The namespace issue here is unrelated to the namespaces discussed in Sec-
tion 3.4 below in the context of SName and symbols in SBML.

3.3 Type SName

The type SName is used in many places in SBML for expressing names of components in a model. SName is
is a data type derived from the basic XML type string, but with restrictions about the types of characters
permitted and the sequence in which they may appear. Its definition is shown in Figure 3.

letter ::= ’a’..’z’,’A’..’Z’
digit ::= ’0’..’9’
SName ::= { ’_’ } letter { letter | ’_’ | digit }

Figure 3: The definition of the type SName, expressed in conventional Backus-Naur Form (Naur, 1960). The meta symbols
{ and } signify “zero or more times” the items they enclose. Note that although XML permits the use of Unicode
characters (Unicode Consortium, 1996), SBML limits the allowable characters in SName to plain ASCII text characters for
compatibility with existing simulation software.

The need to define a constrained data type for names stems from the fact that many existing simulation
packages allow only a limited set of characters in symbol names. SBML codifies this limitation in the form
of a lowest-common-denominator data type (SName), to prevent the creation of models with symbol names
that might confuse some simulation software packages. This is important for facilitating model exchange
between tools.

3.4 Component Names and Namespaces in SBML

A biochemical network model can contain a large number of named components representing different parts
of a model. This leads to a problem in deciding the scope of a symbol: in what contexts does a given symbol
X represent the same thing? The approaches used in existing simulation packages tend to fall into two
categories that we may call global and local. The global approach places all symbols into a single global
namespace, so that a symbol X represents the same thing wherever it appears in a given model definition.
The local approach places symbols in different namespaces depending on the context, where the context may
be, for example, individual rate laws. The latter approach means that a user may use the same symbol X
in different rate laws and have each instance represent a different quantity.

The fact that different simulation programs may use different rules for name resolution poses a problem for
the exchange of models between simulation tools. Without careful consideration, a model written out in
SBML format by one program may be misinterpreted by another program. SBML must therefore include a
specific set of rules for treating symbols and namespaces.

The namespace rules in SBML Level 1 are relatively straightforward and are intended to avoid this problem
with a minimum of requirements on the implementation of software tools:

• All model-level component names (compartments, species, reactions, parameters, parameter rules, and
units) reside in the same global namespace. This means, for example, that a reaction and a specie
definition cannot both have the same name.

• Each reaction definition (see Section 4.7) establishes a private local namespace for parameter names.
Within the definition of a given reaction, parameter names introduced in that reaction override
(shadow) identical names in the global namespace.

• Certain names in SBML Level 1 are reserved or otherwise have special meaning. Table 2 on the
following page lists these reserved names. They are comprised of predefined mathematical functions,
certain operators (present and expected in the future), and rate law functions. In order to prevent
name collisions, these reserved names cannot be used as names for any component of a model.
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abs cos hillr not ppbr tan ucii umar usii volume
acos exp isouur or sin umai ucir umi usir xor
and floor log ordbbr sqr umar ucti unii uuci
asin hilli log10 ordbur sqrt uai uctr unir uucr
atan hillmmr massi ordubr substance ualii uhmi uuhr uui
ceil hillmr massr pow time uar uhmr umr uur

Table 2: The reserved names in SBML Level 1.

The set of rules above can enable software packages using either local or global namespaces to exchange
SBML model definitions. In particular, software environments using local namespaces internally should be
able to accept SBML model definitions without needing to change component names. Environments using
a global namespace internally can perform a simple manipulation of the names of elements within reaction
definitions to avoid name collisions. (An example approach for the latter would be the following: when
receiving an SBML-encoded model, prefix each name inside each reaction with a string constructed from the
reaction’s name; when writing an SBML-encoded model, strip off the prefix.)

The namespace rules described here provide a clean transition path to future levels of SBML, when submodels
are introduced (Section 6.1). Submodels will provide the ability to compose one model from a collection of
other models. This capability will have to be built on top of SBML Level 1’s namespace organization. A
straightforward approach to handling namespaces is to make each submodel’s space be private. The rules
governing namespaces within a submodel can simply be the Level 1 namespace rule described here, with
each submodel having its own (to itself, global) namespace.

3.5 Formulas

Formulas in SBML Level 1 are expressed in text string form. They are used in the definitions of kinetic laws
(Section 4.7.2) and in rules (Section 4.6). The formula strings are interpreted as expressions that evaluate
to a floating-point value of type double. The formula strings may contain operators, function calls, and
symbols. Table 3 presents the precedence rules for the different entities that may appear in formula strings.
All operators in formulas return double values.

Tokens Operation Class Precedence Associates

name symbol reference operand 8 n/a
(expression) expression grouping operand 8 n/a
f (...) function call prefix 8 left
− negation unary 6 right
^ power binary 5 left
∗ multiplication binary 4 left
/ division binary 4 left
+ addition binary 3 left
− subtraction binary 3 left

Table 3: A table of the expression operators available in SBML. In the Class column, “operand” implies the construct is
an operand, “prefix” implies the operation is applied to the following arguments, “unary” implies there is one argument,
and “binary” implies there are two arguments. The values in the Precedence column show how the order of different
types of operation are determined. For example, the expression a ∗ b+ c is evaluated as (a ∗ b) + c because the * operator
has higher precedence. The Associates column shows how the order of similar precedence operations is determined; for
example, a − b + c is evaluated as (a − b) + c because the + and − operators are left-associative. The precedence and
associativity rules are taken from the C programming language (Harbison and Steele, 1995), except for the symbol ^, which
is used in C for a different purpose.
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The function call syntax consists of a function name, followed by optional white space, followed by an opening
parenthesis token (‘(’), followed by a sequence of zero or more arguments separated by commas, followed
by a closing parenthesis (‘)’) token. The function name must be chosen from one of the functions available
in SBML. Table 6 in Appendix C lists the basic mathematical functions that are defined in SBML at this
time, while Table 7 lists a large number of common rate law functions defined in SBML. The names of these
predefined functions are reserved and make up the bulk of the list of names in Table 2 on the page before.

A program parsing a formula in an SBML model should assume that name tokens other than function
names are names of parameters, parameter rules, compartments or species. When a specie name occurs in a
formula, it represents the concentration (i.e., substance/volume) of the specie. When a compartment name
occurs in a formula, it represents the volume of the compartment. The units of substance and volume are
determined from the built-in substance and volume of Table 5 on page 10.

Readers may wonder why mathematical formulas in SBML are not expressed using MathML (W3C, 2000b),
an XML-based mathematical formula language. Although using MathML would be more in the spirit of
using XML and would in some ways be a more forward-looking choice, it would require simulation software
to use fairly complex parsers to read and write the resulting SBML. Most contemporary systems biology
simulation software simply represent mathematical formulas using text strings. To keep SBML Level 1 simple
and compatible with known simulation software, we chose to represent formulas as strings. This does not
preclude a later level of SBML from introducing the ability to use MathML as an extension.

4 SBML Components

In this section, we define each of the major data structures in SBML. To provide illustrations of their use,
we give partial XML encodings of SBML model components, but we leave full XML examples to Section 5.

4.1 Models

The Model structure is the highest-level construct in an SBML data stream or document. It defines a
grouping of components—the list of compartments, species, reactions, parameters, rules and unit definitions
that define a given model. Only one component of type Model is allowed per instance of an SBML document
or data stream, although it does not necessarily need to represent a single biological entity. The UML
definition of the Model structure is shown in Figure 4.

name : SName    {use="optional"} 
unitDefinition : UnitDefinition[0..*] 
compartment : Compartment[1..*] 
specie : Specie[1..*] 
parameter : Parameter[0..*] 
rule : Rule[0..*] 
reaction : Reaction[1..*]

Model

Figure 4: The definition of Model. Additional fields are inherited from SBase.

A model must contain at least one Specie, one Reaction and one Compartment data element, but SBML
does not impose restrictions on the total number of these. A Model data object may optionally have
lists of UnitDefinition, Parameter and Rule components (they are optional because the lists in fields
unitDefinition, compartment, and rule are permitted to have zero length). It may also have an optional
name field that can be used to give the model a name. The name must be a text string conforming to the
syntax permitted by the SName data type described in Section 3.3.

In the XML encoding of an SBML model, the lists of species, reactions, compartments, and optional unit
definitions, parameters and rules, are translated into lists of XML elements that each have headings of the
form listOf s, where the blank is replaced by the name of the component type (e.g., “Reaction”).
The resulting XML data object has the form illustrated by the following skeletal model:
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<model name="My_Model">
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartments>

...
</listOfCompartments>
<listOfSpecies>

...
</listOfSpecies>
<listOfParameters>

...
</listOfParameters>
<listOfRules>

...
</listOfRules>
<listOfReactions>

...
</listOfReactions>

</model>

Readers may wonder about the motivations for the listOf s notation. A simpler approach to creating
the lists of components would be to place them all directly at the top level under <model> ... </model>.
We chose instead to group them within XML elements named after listOf s, because we believe
this helps organize the components and makes visual reading of model definitions easier.

4.2 Unit Definitions

Units may be supplied in a number of contexts in an SBML model. A facility for defining units is convenient
to have so that combinations of units can be given abbreviated names. This is the motivation behind the
UnitDefinition data structure, whose definition is shown in Figure 5.

kind : UnitKind 
exponent : integer    {use="default" value="1"} 
scale : integer    {use="default" value="1"} 

name : SName 
unit : Unit[0..*]

UnitDefinition Unit

Figure 5: The definition of UnitDefinition.

A unit definition consists of a name field of type SName and an optional list of structures of type Unit.
The approach to defining units in SBML is compositional; for example, meter second−2 is constructed by
combining a Unit-type element representing meter with a Unit-type element representing second−2. The
Unit data structure has a kind field whose value must be taken from UnitKind, an enumeration of SI
units. The possible values of UnitKind are listed in Table 4 on the next page. The exponent field on Unit
represents an exponent on the unit. Its default value is “1” (one). In the example just mentioned, second−2

is obtained by using kind="second" and exponent="-2". Finally, the scale field in Unit is an integer
attribute that scales the unit. For example, a unit that has a kind value of “gram” and a scale value of
“−3” signifies 10−3 ∗ gram, or milligrams.

Unit combinations are constructed by listing several Unit structures inside a UnitDefinition-type structure.
The following example illustrates the definition of an abbreviation named “mmls” for the units mmol l−1 s−1:

<listOfUnitDefinitions>
<unitDefinition name="mmls">

<listOfUnits>
<unit kind="mole" scale="-3"/>
<unit kind="litre" exponent="-1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>
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ampere farad joule lumen ohm steradian
becquerel gram katal lux pascal tesla
candela gray kelvin meter radian volt
celsius henry kilogram metre second watt
coulomb hertz liter mole siemens weber
dimensionless item litre newton sievert

Table 4: The possible values of kind in a UnitKind structure. All are names of base or derived SI units, ex-
cept for “dimensionless” and “item”, which are SBML additions important for handling certain common cases.
“Dimensionless” is intended for cases where a quantity does not have units, and “item” is needed in certain con-
texts to express such things as “N items” (e.g., “100 molecules”). Strictly speaking, “celsius” should be capitalized;
however, for simplicity, SBML requires that the values of UnitKind be treated in a case-insensitive manner by software
reading and writing SBML. Also, note that the gram and liter/litre are not strictly part of SI (Taylor, 1995); however, they
are so useful in SBML’s areas of application that they are included in the UnitKind enumeration of unit names. (The
standard SI unit of mass is in fact the kilogram, and volume is defined in terms of cubic meters.)

Many of the components in a model refer to quantities that have associated units. SMBL Level 1 has three
predefined quantity types: amount of substance, time, and volume. SBML defines default units and scales
for these quantities. The defaults are summarized in Table 5.

Name Allowable Units Default Units Default Scale

substance moles or no. of molecules moles 1
time seconds seconds 1
volume liters liters 1

Table 5: SBML’s built-in quantities and their default scale values. The names in the left-hand column are reserved. These
names may be used wherever units may be supplied in a model component.

Wherever unit specifications are permitted in a model (for example, for the volume in a compartment), the
relevant built-in name from Table 5 may be used. Such usage signifies that the units to be used for the quan-
tity should be the designated defaults. A model may change the default scales by reassigning the keywords
“substance”, “time”, and “volume” in a unit definition. This takes advantage of the UnitDefinition
structure’s facility for defining scales on units. The following example changes the default units of volume
to be milliliters:

<model>
...
<listOfUnitDefinitions>

<unitDefinition name="volume">
<listOfUnits>

<unit kind="liters" scale="-3"/>
</listOfUnits>

</unitDefinition>
</listOfUnitDefinitions>
...

</model>

If the definition above appeared in a model, the volume scale on all components that did not explicitly use
different units would be changed to milliliters.

The list of unit definitions in a Model-type structure is the only place where new units can be defined. The
new unit names may be used anywhere in a model where unit specifications are permitted. The various
components of a model, such as reaction parameters and rules, can only use the base units from Table 4, the
global unit definitions in the model, or the three predefined keywords “substance”, “time”, and “volume”.
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4.3 Compartments

A Compartment represents a bounded container in which species are located. The definition of Compartment
is shown in Figure 6.

name : SName 
volume : double   {use="default" value="1"} 
units : SName   {use="optional"} 
outside : SName   {use="optional"}

Compartment

Figure 6: The definition of Compartment. Fields inherited from SBase are omitted here but are assumed.

A Compartment data object has a name field of type SName. A compartment also has a floating-point field
called volume, representing the total volume of the compartment in the default units of volume. (See
Table 5 on the page before.) This enables concentrations of species to be calculated in the absence of
geometry information. The volume field is optional and defaults to a value of “1” (one).

The units of volume may be explicitly set using the optional field units in Compartment; the named units
must be either one of the base units from Table 4 on the preceding page, the built-in default named volume,
or a new unit defined by a unit definition in the enclosing model. If absent, the units default to the value
set by the built-in volume of Table 5.

The optional field outside of type SName can be used to express containment relationships between compart-
ments. If present, the value of outside for a given compartment should be the name of the compartment
enclosing it, or in other words, the compartment that is “outside” of it. This facility can be used to model
cell membranes. For example, to express that a compartment named B has a membrane that is modeled as
another compartment M, which in turn is located within another compartment A, one would write:

<model>
...
<listOfCompartments>

<compartment name="A"/>
<compartment name="M" outside="A"/>
<compartment name="B" outside="M"/>

</listOfCompartments>
...

</model>

In the absence of a value for outside, compartment definitions in SBML Level 1 do not have any implied
spatial relationships between each other. Thus, compartments may be adjacent to each other or have other
spatial relationships. For many modeling applications, the transfer of substances described by the reactions
in a model sufficiently express the relationships between the compartments. (SBML Level 1 currently does
not provide for spatial characteristics aside from compartment volume and containment. As discussed in
Section 6.1, we expect that SBML Level 2 will introduce the ability to define geometries and spatial qualities.)

In an XML data stream containing an SBML model, compartments are listed inside an XML element called
listOfCompartments within a Model-type data structure. (See the discussion of Model in Section 4.1.) The
following example illustrates two compartments in an abbreviated SBML example of a model definition:

<model>
...
<listOfCompartments>

<compartment name="cytosol" volume="2.5"/>
<compartment name="mitochondria" volume="0.3"/>

</listOfCompartments>
...

</model>
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4.4 Species

The term species refers to entities that take part in reactions. These include simple ions (e.g., protons, cal-
cium), simple molecules (e.g., glucose, ATP), and large molecules (e.g., RNA, polysaccharides, and proteins).
The Specie data structure is intended to represent these entities. Its definition is shown in Figure 7.

name : SName 
compartment : SName 
initialAmount : double 
units : SName    {use="optional"} 
boundaryCondition : boolean    {use="default" value="false"} 
charge : integer    {use="optional"}

Specie

Figure 7: The definition of Specie. As usual, fields inherited from SBase are omitted here but are assumed.

Specie has a name field of type SName. The field compartment, also of type SName, is used to identify
the compartment in which the specie is located. The field initialAmount, of type double, is used to set
the initial amount of the specie in the named compartment. The units of the substance quantity may be
explicitly set using the optional field units. The value assigned to units must be chosen from one of the
following possibilities: one of base unit names from Table 4 on page 10, the name “volume”, or a new unit
name defined by a unit definition in the enclosing model. If absent, the units default to the value set by the
built-in “substance” of Table 5 on page 10.

The optional boolean field boundaryCondition determines whether the amount of the specie is fixed or
variable over the course of a simulation. boundaryCondition defaults to a value of “false”, indicating that
by default, the amount is not fixed. The optional field charge is an integer indicating the charge on the
species (in terms of electrons, not the SI unit Coulombs). This may be useful when the specie involved is a
charged ion such as calcium (Ca2++).

The following example shows two specie definitions within an abbreviated SBML model definition. The
example shows that species are listed under the heading listOfSpecies in the model:

<model>
...
<listOfSpecies>

<specie name="Glucose" compartment="cell" initialAmount="4"/>
<specie name="Glucose_6_P" compartment="cell" initialAmount="0.75"/>

</listOfSpecies>
...

</model>

Note that the compartment’s name is used instead of an identifier, because simulation systems typically
enable users to locate species using compartment names rather than machine-generated identifiers. Since
a compartment’s name must be unique among all the compartments in a model (see the discussion of
namespaces in Section 3.4), there is no danger of ambiguity and no compelling reason to introduce identifiers
on compartments.

4.5 Parameters

A Parameter structure is used to associate a symbol with a floating-point value so that the symbol can be
used in formulas in place of the value. The definition of Parameter is shown in Figure 8 on the following
page.

Parameter has a name field of type SName. This name represents the symbol. The field value determines the
value (of type double) assigned to the symbol. The units of the parameter value are specified by the field
units. The value assigned to units must be chosen from one of the following possibilities: one of base unit
names from Table 4 on page 10; one of the three names “substance”, “time”, or “volume” (see Table 5);
or the name of a new unit defined in the list of unit definitions in the enclosing Model structure.
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name : SName 
value : double 
units : SName   {use="optional"}

Parameter

Figure 8: The definition of Parameter.

Parameters are used in two places in SBML: in lists of parameters defined at the top level in a Model-type
structure, and within individual reaction definitions. Parameters defined at the top level are global to the
whole model; parameters that are defined within a reaction are local to the particular reaction and (within
that reaction) override any global parameters having the same names. (See Section 3.4 for further details.)

The following is an example of parameters defined at the Model level:

<model>
...
<listOfSpecies>

...
</listOfSpecies>
<listOfParameters>

<parameter name="Km1" value="2.3" units="second"/>
<parameter name="Km2" value="10.7" units="second"/>

</listOfParameters>
<listOfReactions>

...
</listOfReactions>
...

</model>

An example of a full model that uses parameters is presented in Section 5.3.

4.6 Rules

In SBML, rules provide a way to create constraints on variables for cases in which the constraints cannot
be expressed using the reaction components (Section 4.7). There are two orthogonal dimensions by which
rules can be described. First, there are three different possible functional forms, corresponding to the
following three general cases (where x and y are variables, f is some arbitrary function, and P is a vector of
parameters):

Case 1, left-hand side is zero: 0 = f(x, P )
Case 2, left-hand side is a scalar: x = f(P )
Case 3, left-hand side is a rate-of-change: dx/dt = f(x, P )

The second dimension concerns the role of the variable x in the equations above: x can be the name of a
compartment (to set its volume), the name of a specie (to set its concentration), or a parameter name (to
set its value).

The approach taken to covering these cases in SBML is to define an abstract Rule structure that contains
just one field, formula, to hold the right-hand side expression, then to derive subtypes of Rule that add
fields to cover the various cases above. Figure 9 on the following page gives the definitions of Rule and
the subtypes derived from it. The figure shows that AlgebraicRule is defined directly from Rule, whereas
CompartmentVolumeRule, SpecieConcentrationRule, and ParameterRule are all derived from an interme-
diate abstract structure called AssignmentRule.

The type field introduced in AssignmentRule is an enumeration of type RuleType that determines whether
a rule falls into category 2 or 3 in the list of cases above. In SBML Level 1, the enumeration has two possible
values: “scalar” and “rate”. The former means that the expression has a scalar value on the left-hand side
[i.e., x = f(x, P ), as in case 2 in the list above]; the latter means that the expression has a rate of change
differential on the left-hand side (as in case 3 in the list above). Future releases of SBML may add to the
possible values of RuleType.
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AlgebraicRule AssignmentRule

type : RuleType   {use="default" value="scalar"}

SpecieConcentrationRule

specie : SName

ParameterRule

name : SName 
units : SName   {use="optional"}

Rule

formula : string

CompartmentVolumeRule

compartment : SName

Figure 9: The definition of Rule and derived types.

4.6.1 AlgebraicRule

The rule type AlgebraicRule is used to express equations whose left-hand sides are zero. AlgebraicRule
does not add any fields to the basic Rule; its role is simply to distinguish this case from the other cases.

4.6.2 SpeciesConcentrationRule

The SpeciesConcentrationRule structure adds one field, specie, to the basic AssignmentRule type. The
field specie has type SName and is used to identify the specie affected by the rule. The effect of the rule
depends on the value of type: if the value is “scalar”, the rule sets the referenced specie’s concentration to
the value determined by the formula; if the value is “rate”, the rule sets the rate of change of the specie’s
concentration to the value determined by the formula. The units are in terms of substance/volume, where
the substance units are those that are declared on the referenced Specie element, and the volume units are
those declared on the compartment element that contains the Specie.

4.6.3 CompartmentVolumeRule

The CompartmentRule structure adds one field, compartment, to the basic AssignmentRule type. The field
compartment has type SName and is used to identify the compartment affected by the assignment. The effect
of the rule depends on the value of type: if the type is “scalar”, the rule sets the referenced compartment’s
volume to the volume determined by the formula; if the type is “rate”, the rule sets the rate of change of
the compartment’s volume to the volume determined by the formula.

4.6.4 ParameterRule

The ParameterRule structure adds two fields, name and units, to the basic AssignmentRule type. The
name attribute has type SName and identifies the parameter. The units field acts in the same way as in the
case of the Parameter structure (Section 4.5). The value assigned to units must be chosen from one of the
following possibilities: one of base unit names from table 4; one of the three names “substance”, “time”,
or “volume” (see Table 5); or the name of a new unit defined in the list of unit definitions in the enclosing
model structure. The effect of this rule is to give a value to a parameter that can be used in subsequent
formulas. This parameter has the value returned by the expression in the formula attribute.

4.6.5 Guidelines for Evaluating Rules

Rules of type “scalar” should be evaluated first in the order given in the SBML model definition, followed
by the rules of type “rate” in the order given. Following this, the “rate” type rules can be evaluated any
number of times before the “scalar” type rules are re-evaluated.
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4.6.6 Example of Rule Use

The following is an example use of rules:

<model>
...
<listOfRules>

<parameterRule name="k" formula="k3/k2"/>
<specieConcentrationRule specie="s2" formula="k * t/(1 + k)"/>
<compartmentVolumeRule compartment="A" formula="0.10 * t"/>

</listOfRules>
...

</model>

4.7 Reactions

A reaction represents some transformation, transport or binding process, typically a chemical reaction, that
can change the amount of one or more species. The Reaction type is defined in Figure 10.

specie : SName 
stoichiometry : integer   {use="default" value="1"} 
denominator : integer   {use="default" value="1"}

formula : string 
parameter : Parameter[0..*] 
timeUnits : SName   {use="optional"} 
substanceUnits : SName   {use="optional"} 

name : SName 
reactant : SpecieReference[1..*] 
product : SpecieReference[1..*] 
kineticLaw : KineticLaw   {minOccurs="0"} 
reversible : boolean   {use="default" value="true"} 
fast : boolean   {use="default" value="false"}

Reaction

SpecieReference KineticLaw

Figure 10: The definitions of Reaction, KineticLaw and SpecieReference.

In SBML, reactions are defined using lists of reactant species, products, and their stoichiometries, and by
parameter values for separately-defined kinetic laws. These various quantities are recorded in the fields
reactant, product, and kineticLaw. Both reactant and product are references to species implemented
using lists of SpecieReference structures (defined in Section 4.7.1 below). The SpecieReference structure
contains fields for recording the names of species and their stoichiometries. kineticLaw is an optional field
of type KineticLaw (defined in Section 4.7.2 below), used to provide a mathematical formula describing the
rate of the reaction.

In addition to these fields, the Reaction structure also has a boolean field, reversible, that indicates
whether the reaction is reversible. The field is optional, and if left unspecified in a model, it defaults to
a value of “true”. Information about reversibility is useful in certain kinds of structural analyses such as
elementary mode analysis.

The field fast is another boolean attribute in the Reaction data structure; a value of “true” signifies
that the given reaction is a “fast” one. This may be relevant when computing equilibrium concentrations of
rapidly equilibrating reactions. Simulation/analysis packages may chose to use this information to reduce the
number of ODEs required and thereby optimize such computations. The default value of fast is “false”.
(A simulator/analysis package that has no facilities for dealing with fast reactions can ignore this attribute.
In theory, if the choice of which reactions are fast is correctly made, then a simulation performed with them
should give the same results as a simulation performed without fast reactions. However, currently there
appears to be no single unambiguous method for designating which reactions should be considered fast, and
some users may designate a reaction as fast when in fact it is not. Caveat developer.)
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4.7.1 SpecieReference

Each unique specie involved in a reaction is listed once in a model, in a list contained in the specie field
of the Model data structure discussed in Section 4.1. Lists of products and reactants in Reaction type
structures refer to those species. The connection between the products and reactants in a reaction definition
and the specie names listed in the enclosing Model definition is achieved using the SpecieReference type
data structure defined in Figure 10 on the preceding page.

The field specie of type SName in SpecieReference must refer to the name of a specie defined in the enclosing
Model-type structure. The two fields stoichiometry and denominator together set the stoichiometry value
for a specie in a reaction. Both are integers, and both have default values of “1” (one). The use of these
separate terms allows a simulator to employ rational arithmetic computations on the stoichiometry matrix,
potentially reducing round-off errors and other problems during computations. Such computations are
particularly important when working with large matrices and calculating such things as elementary modes.

The following is a simple example of a specie reference in a list of reactants within a reaction named “J1”:

<model>
...
<listOfReactions>

<reaction name="J1">
<listOfReactants>

<specieReference specie="X0" stoichiometry="2"/>
</listOfReactants>
...

</reaction>
...

</listOfReactions>
...

</model>

4.7.2 KineticLaw

A kineticLaw structure describes the rate of the enclosing reaction. The use of a KineticLaw structure in
a Reaction component is optional; however, in general there is no useful default that can be substituted in
place of a missing kinetic law definition in a reaction.

The field formula, of type string, expresses the rate in substance/time units. (Section 3.5 discusses
formulas.) The optional fields substanceUnits and timeUnits determine the units of substance and time.
If not set, the units are taken from the defaults defined by the built-in “substance” and “time” of Table 5
on page 10.

A KineticLaw type structure can contain zero or more Parameter structures (Section 4.5) that define symbols
that can be used in the formula string. As discussed in Section 3.4, reactions introduce local namespaces
for parameter names. Within a KineticLaw structure inside a reaction definition, a parameter whose name
is identical to a global parameter defined in the enclosing Model-type structure takes precedence over that
global parameter.

The following is an example of a Reaction structure that defines the reaction J1 : X0 −→ S1; k1X0. It
demonstrates the use of specie references and the KineticLaw structure:

<model>
...
<listOfReactions>

<reaction name="J1">
<listOfReactants>

<specieReference specie="X0" stoichiometry="1"/>
</listOfReactants>
<listOfProducts>

<specieReference specie="S1" stoichiometry="1"/>
</listOfProducts>
<kineticLaw formula="k1*X0">

<listOfParameters>
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<parameter name="k1" value="0"/>
</listOfParameters>

</kineticLaw>
</reaction>

</listOfReactions>
...

</model>

5 Examples of Full Models Encoded in XML Using SBML

In this section, we present several examples of complete models encoded in XML using SBML Level 1. Our
approach to translating the UML-based structure definitions presented in the previous sections is described
elsewhere (Hucka, 2000). Appendix B gives the full listing of an XML Schema corresponding to SBML
Level 1.

5.1 A Simple Example Application of SBML

Consider the following hypothetical branched system:

X0 k1X0−−−→ S1

S1 k2S1−−→ X1

S1 k3S1−−→ X2

The following is the main portion of an XML document that encodes the model shown above:

<sbml level="1" version="1">
<model name="Branch">

<notes>
<body xmlns="http://www.w3.org/1999/xhtml">

<p>Simple branch system.</p>
<p>The reaction looks like this:</p>
<p>reaction-1: X0 -> S1; k1*X0;</p>
<p>reaction-2: S1 -> X1; k2*S1;</p>
<p>reaction-3: S1 -> X2; k3*S1;</p>

</body>
</notes>
<listOfCompartments>

<compartment name="compartmentOne" volume="1"/>
</listOfCompartments>
<listOfSpecies>

<specie name="S1" initialAmount="0" compartment="compartmentOne"
boundaryCondition="false"/>

<specie name="X0" initialAmount="0" compartment="compartmentOne"
boundaryCondition="true"/>

<specie name="X1" initialAmount="0" compartment="compartmentOne"
boundaryCondition="true"/>

<specie name="X2" initialAmount="0" compartment="compartmentOne"
boundaryCondition="true"/>

</listOfSpecies>
<listOfReactions>

<reaction name="reaction_1" reversible="false">
<listOfReactants>

<specieReference specie="X0" stoichiometry="1"/>
</listOfReactants>
<listOfProducts>

<specieReference specie="S1" stoichiometry="1"/>
</listOfProducts>
<kineticLaw formula="k1 * X0">

<listOfParameters>
<parameter name="k1" value="0"/>

</listOfParameters>
</kineticLaw>
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</reaction>
<reaction name="reaction_2" reversible="false">

<listOfReactants>
<specieReference specie="S1" stoichiometry="1"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="X1" stoichiometry="1"/>
</listOfProducts>
<kineticLaw formula="k2 * S1">

<listOfParameters>
<parameter name="k2" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction name="reaction_3" reversible="false">

<listOfReactants>
<specieReference specie="S1" stoichiometry="1"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="X2" stoichiometry="1"/>
</listOfProducts>
<kineticLaw formula="k3 * S1">

<listOfParameters>
<parameter name="k3" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
</listOfReactions>

</model>
</sbml>

The XML encoding shown above is quite straightforward. The outermost container is a tag, <smbl>, that
identifies the contents as being Systems Biology Markup Language. The attributes level and version
indicate that the content is formatted according to version 1 of the Level 1 definition of SBML. The version
attribute is present in case SBML Level 1 must be revised in the future to correct errors.

The next-inner container is a single <model> element that serves as the highest-level object in the model.
The model has a name, “Branch”. The model contains one compartment, four species, and three reactions.
The elements in the <listOfReactants> and <listOfProducts> in each reaction refer to the names of
elements listed in the <listOfSpecies>. The correspondences between the various elements is explicitly
stated by the <specieReference> elements.

The model includes a <notes> annotation that summarizes the model in text form, with formatting based on
XHTML. This may be useful for a software package that is able to read such annotations and, for example,
render them in HTML in a graphical user interface.

5.2 Simple Use of Units Feature in a Model

The following model uses the units features of SBML Level 1. In this model, the default value of substance
is changed in the list of unit definitions to be mole units with a scale factor of −3, or millimoles. This sets
the default substance units in the model; components can override this scale locally. The volume and time
built-ins are left to their defaults, ensuring that volume is in liters and time is in seconds. The result is
that, in this model, kinetic law formulas define rates in millimoles per second and the specie symbols in
them represent concentration values in millimoles per liter. All the specie elements set the initial amount
of every given specie to 1 millimole. The parameters Vm and Km are defined to be in millimoles per liter per
second, and milliMolar, respectively.

<sbml level="1" version="1">
<model>

<listOfUnitDefinitions>
<unitDefinition name="substance">

<listOfUnits>
<unit kind="mole" scale="-3"/>

</listOfUnits>
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</unitDefinition>
<unitDefinition name="mls">

<listOfUnits>
<unit kind="mole" scale="-3"/>
<unit kind="liter" exponent="-1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>
<listOfCompartments>

<compartment name="cell"/>
</listOfCompartments>
<listOfSpecies>

<specie name="x0" compartment="cell" initialAmount="1"/>
<specie name="x1" compartment="cell" initialAmount="1"/>
<specie name="s1" compartment="cell" initialAmount="1"/>
<specie name="s2" compartment="cell" initialAmount="1"/>

</listOfSpecies>
<listOfParameters>

<parameter name="vm" value="2" units="mls"/>
<parameter name="km" value="2"/>

</listOfParameters>
<listOfReactions>

<reaction name="v1">
<listOfReactants>

<specieReference specie="x0"/>
</listOfReactants>
<listOfProducts>

<specieReference specie="s1"/>
</listOfProducts>
<kineticLaw formula="(vm * s1)/(km + s1)"/>

</reaction>
<reaction name="v2">

<listOfReactants>
<specieReference specie="s1"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="s2"/>
</listOfProducts>
<kineticLaw formula="(vm * s2)/(km + s2)"/>

</reaction>
<reaction name="v3">

<listOfReactants>
<specieReference specie="s2"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="x1"/>
</listOfProducts>
<kineticLaw formula="(vm * s1)/(km + s1)"/>

</reaction>
</listOfReactions>

</model>
</sbml>

5.3 A Simple Example Application Using Rules

The following model represents the pathway X0 → S1 → S2 → X1, where S1 → S2 is a fast reaction. The
reaction S1 → S2 is not modeled explicitly; instead, the effect of the reaction is encapsulated in rules.

<sbml level="1" version="1">
<model>

<listOfCompartments>
<compartment name="cell" volume="1"/>

</listOfCompartments>
<listOfSpecies>

<specie name="s1" compartment="cell" initialAmount="4"/>
<specie name="s2" compartment="cell" initialAmount="2"/>
<specie name="x0" compartment="cell" initialAmount="1"/>
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<specie name="x1" compartment="cell" initialAmount="0"/>
</listOfSpecies>
<listOfParameters>

<parameter name="k1" value="1.2"/>
<parameter name="k2" value="1000"/>
<parameter name="k3" value="3000"/>
<parameter name="k4" value="4.5"/>

</listOfParameters>
<listOfRules>

<parameterRule name="t" formula="s1 + s2"/>
<parameterRule name="k" formula="k3/k2"/>
<specieConcentrationRule specie="s2" formula="k * t/(1 + k)"/>
<specieConcentrationRule specie="s1" formula="t - s2"/>

</listOfRules>
<listOfReactions>

<reaction name="j1">
<listOfReactants>

<specieReference specie="x0"/>
</listOfReactants>
<listOfProducts>

<specieReference specie="s1"/>
</listOfProducts>
<kineticLaw formula="k1 * x0"/>

</reaction>
<reaction name="j3">

<listOfReactants>
<specieReference specie="s2"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="x1"/>
</listOfProducts>
<kineticLaw formula="k4 * s2"/>

</reaction>
</listOfReactions>

</model>
</sbml>

6 Discussion

The volume of data now emerging from molecular biotechnology leave little doubt that extensive computer-
based modeling, simulation and analysis will be critical to understanding and interpreting the data (Abbott,
1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik, 2000a). This has lead to an explosion in the
development of computer tools by many research groups across the world. The explosive rate of progress is
exciting, but the rapid growth of the field is accompanied by problems and pressing needs.

One problem is that simulation models and results often cannot be directly compared, shared or re-used,
because the tools developed by different groups often are not compatible with each other. As the field
of systems biology matures, researchers increasingly need to communicate their results as computational
models rather than box-and-arrow diagrams. They also need to reuse published and curated models as
library components in order to succeed with large-scale efforts (e.g., the Alliance for Cellular Signaling;
Gilman, 2000; Smaglik, 2000a). These needs require that models implemented in one software package be
portable to other software packages, to maximize public understanding and to allow building up libraries of
curated computational models.

We offer SBML to the systems biology community as a suggested format for exchanging models between
simulation/analysis tools. SBML is an open model representation language oriented specifically towards
representing biochemical network models. SBML Level 1 provides the most basic facilities that are necessary
for expressing these kinds of models in terms of compartments, species, reactions, parameters, rules and units.

Our vision for SBML is to create an open standard that will enable simulation software to exchange models.
SBML is not static; we continue to develop and experiment with it, and we interact with other groups who
seek to develop similar markup languages. We plan on continuing to evolve SBML with the help of the
systems biology community to make SBML increasingly more powerful, flexible and useful.
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6.1 Future Enhancements to SBML: Level 2 and Beyond

As mentioned above, SBML Level 1 is intended to provide the most basic foundations for modeling bio-
chemical networks. A number of significant capabilities are lacking from Level 1; these will be introduced in
higher-level definitions of SBML. The following summarizes additional features that will likely be included
in SBML Level 2:

• Arrays. This will enable the creation of arrays of components (species, reactions, compartments and
submodels).

• Connections. This will be a mechanism for describing the connections between items in an array.
For example, it should be possible to create a 2-D array of compartments and then a 3-D array
of reactions which transport species between the compartments, where the third dimension is the
connections between the compartments. Two possible ways of describing a connection scheme are: (1)
sparse/explicit, simply listing the relative co-coordinates of connected objects for patterns of points;
(2) algebraic, where a conditional equation describes whether two objects are connected.

• Database Interoperability. In order to store models in a database, it will be necessary to add additional
header information that provides information about authors, version numbers, revision dates, etc.

• Geometry. We will develop a scheme for representing the 3-D structure of compartments.

• Submodels. This will enable a large model to be built up out of instances of other models. It will also
allow the reuse of model components and the creation of several instances of the same model.

• Component Identification. This will enable components to be described using some stable universal
identification scheme.

• References. This will enable literature/authors to be cited for any component.

• Diagrams. This feature will allow components to be annotated with data to enable the display of the
model in a diagram. It will also enable multistate representations.

6.2 Relationships to Other Efforts

There are a number of ongoing efforts with similar goals as those of SBML. Many of them are oriented more
specifically toward describing protein sequences, genes and related entities for database storage and search.
These are generally not intended to be computational models, in the sense that they do not describe entities
and behavioral rules in such a way that a simulation package could “run” the models.

The effort perhaps closest in spirit to SBML is CellMLTM (Physiome Sciences, 2001). CellML is an XML-
based markup language designed for storing and exchanging computer-based biological models. It includes
facilities for representing model structure, mathematics and additional information for database storage and
search. Models are described in terms of networks of connections between discrete components, where a
component is a functional unit that may correspond to a physical compartment or simply a convenient mod-
eling abstraction. Components contain variables and connections contain mappings between the variables
of connected components. CellML provides facilities for grouping components and specifying the kinds of
relationships that may exist between components. It also uses MathML (W3C, 2000b) for expressing math-
ematical relationships between components and provides the ability to use ECMAScript (formerly known as
JavaScript) to define functions.

The constructs in CellML tend to be at a more abstract and general level than those in SBML Level 1, and
describes the structure and underlying mathematics of cellular models in a very general way. By contrast,
SBML is closer to the internal object model used in model analysis software. Because SBML Level 1 is being
developed in the context of interacting with a number of existing simulation packages, it is a more concrete
language than CellML and may be better suited to its purpose of enabling interoperability with existing
simulation tools. However, CellML offers viable alternative ideas and the developers of SBML and CellML
are actively engaged in ensuring that the two representations can be translated between each other.
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6.3 Tracking the XML Schema Standard

One of the problems in attempting to define an XML Schema for SBML is that, at the time of this writing,
the XML Schema specification (Biron and Malhotra, 2000; Thompson et al., 2000) has not actually been
finalized. This has been another motivation for defining SBML in terms of abstract data structures in a
UML-based notation rather than directly as an XML Schema.

The moving-target status of the XML Schema standard definition requires that we plan to update the
Schema corresponding to SBML. The following is our planned approach for handling changes in the Schema
standard:

1. The definition of SBML Level 1 in this document is independent of XML Schema. Therefore, the
definition of SBML Level 1 expressed here can remain the same regardless of what happens to the
exact form of XML Schema. Among other benefits, this allows developers to leave their programs’
internal data structures unchanged in the face of possible revisions in the Schema standard.

2. In Appendix B, we provide an XML Schema corresponding to SBML Level 1 that has been created
using the current definition of XML Schema from the W3C Organization (Biron and Malhotra, 2000;
Thompson et al., 2000).

3. Whenever the definition of XML Schema is updated by the W3C in the future, we will issue a revised
version of the XML Schema for SBML Level 1 that conform to the updated standard. We will leave
the previous versions still available for reference. The updated XML Schemas for SBML Level 1 will be
identical to the previous versions except where changes in XML Schema force a change in the definition
of the Schema for SBML Level 1.

6.4 Availability

The SBML Level 1 definition, the XML Schema corresponding to SBML Level 1, and other related documents
are openly available from the Caltech ERATO web site, http://www.cds.caltech.edu/erato/.
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Appendix

A Summary of Notation

The definitive explanation for the notation used in this document can be found in the companion notation
document (Hucka, 2000). Here we briefly summarize some of the main components of the notations used in
describing SBML.

Within the definitions of the various object classes introduced in this document, the following types of
expressions are used many times:

field1 : float
field2 : integer[0..*]
field3 : (XHTML)
field4 : float {use = "default" value = "0.0"}

The symbols field1, field2, etc., represents fields in a data structure. The colon immediately after the
name separates the name of the attribute from the type of data that it stores.

More complex specifications use square brackets ([]) just after a type name. This is used to indicate that
the field contains a list of elements. Specifically, the notation [0..*] signifies a list containing zero or more
elements; the notation [1..*] signifies a list containing at least one element; and so on. The approach used
here to translate from a list form into XML is, first, create a subelement named listOf s, where the
blank indicates the capitalized name of the field, and then put a list of elements named after the field as the
content of the listOf s element.

A field whose type is shown in parentheses is implemented as as an XML subelement rather than an XML
attribute. The parentheses indicate that the type refers to the type of the subelement value.

Expressions in curly braces ({}) shown after an attribute type indicate additional constraints placed on
the field. We express constraints using XML Schema language. In the examples above, the expression
{use="default" value="0.0"} indicates that the field field4 is optional and that it has a default value
of 0.0.

B XML Schema for SBML

The following is an XML Schema definition for the Systems Biology Markup Language. Example applications
of this XML Schema are presented in Section 5.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

<xsd:annotation>
<xsd:documentation>
File name : sbml.xsd
Author : Daniel Lucio, James Schaff, Andrew Finney, Michael Hucka
Description : XML Schema for the Systems Biology Markup Language
Organization: Caltech ERATO Kitano
Version : 1
Modified : 2001-03-02 22:29 PST

</xsd:documentation>
</xsd:annotation>
<!-- SName -->
<xsd:simpleType name="SName">

<xsd:annotation>
<xsd:documentation>

SName type used for expressing
names of components in a model

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*"/>

</xsd:restriction>
</xsd:simpleType>
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<!-- SBase -->
<xsd:complexType name="SBase" abstract="true">

<xsd:annotation>
<xsd:documentation>

Designed to allow a modeler or a pacckage to attach
information to each component.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="notes" minOccurs="0">

<xsd:complexType>
<xsd:sequence>

<xsd:any namespace="http://www.w3.org/1999/xhtml"
processContents="skip" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="annotations" minOccurs="0">

<xsd:complexType>
<xsd:sequence>

<xsd:any processContents="skip" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<!-- LisOfParameter -->
<xsd:element name="listOfParameters">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="parameter" type="Parameter"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- Model -->
<xsd:complexType name="Model">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="listOfUnitDefinitions" minOccurs="0">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="unitDefinition" type="UnitDefinition"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="listOfCompartments">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="compartment" type="Compartment" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="listOfSpecies">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="specie" type="Specie" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element ref="listOfParameters" minOccurs="0"/>
<xsd:element name="listOfRules" minOccurs="0">

<xsd:complexType>
<xsd:choice maxOccurs="unbounded">

<xsd:element name="algebraicRule" type="AlgebraicRule" minOccurs="0"/>
<xsd:element name="compartmentVolumeRule" type="CompartmentVolumeRule"

minOccurs="0"/>
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<xsd:element name="specieConcentrationRule" type="SpecieConcentrationRule"
minOccurs="0"/>

<xsd:element name="parameterRule" type="ParameterRule" minOccurs="0"/>
</xsd:choice>

</xsd:complexType>
</xsd:element>
<xsd:element name="listOfReactions">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="reaction" type="Reaction" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="name" type="SName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- UnitDefinition -->
<xsd:complexType name="UnitDefinition">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="listOfUnits" minOccurs="0">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="unit" type="Unit" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="name" type="SName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- Compartment -->
<xsd:complexType name="Compartment">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="name" type="SName" use="required"/>
<xsd:attribute name="volume" type="xsd:double" use="default" value="1"/>
<xsd:attribute name="units" type="SName" use="optional"/>
<xsd:attribute name="outside" type="SName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- Specie -->
<xsd:complexType name="Specie">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="name" type="SName" use="required"/>
<xsd:attribute name="compartment" type="SName" use="required"/>
<xsd:attribute name="initialAmount" type="xsd:double" use="required"/>
<xsd:attribute name="units" type="SName" use="optional"/>
<xsd:attribute name="boundaryCondition" type="xsd:boolean"

use="default" value="false"/>
<xsd:attribute name="charge" type="xsd:integer" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- Parameter -->
<xsd:complexType name="Parameter">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="name" type="SName" use="required"/>
<xsd:attribute name="value" type="xsd:double" use="required"/>
<xsd:attribute name="units" type="SName" use="optional"/>

</xsd:extension>
</xsd:complexContent>
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</xsd:complexType>
<!-- UnitKind -->
<xsd:simpleType name="UnitKind">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="ampere"/>
<xsd:enumeration value="becquerel"/>
<xsd:enumeration value="candela"/>
<xsd:enumeration value="celsius"/>
<xsd:enumeration value="coulomb"/>
<xsd:enumeration value="dimensionless"/>
<xsd:enumeration value="farad"/>
<xsd:enumeration value="gram"/>
<xsd:enumeration value="gray"/>
<xsd:enumeration value="henry"/>
<xsd:enumeration value="hertz"/>
<xsd:enumeration value="item"/>
<xsd:enumeration value="joule"/>
<xsd:enumeration value="katal"/>
<xsd:enumeration value="kelvin"/>
<xsd:enumeration value="kilogram"/>
<xsd:enumeration value="liter"/>
<xsd:enumeration value="litre"/>
<xsd:enumeration value="lumen"/>
<xsd:enumeration value="lux"/>
<xsd:enumeration value="meter"/>
<xsd:enumeration value="metre"/>
<xsd:enumeration value="mole"/>
<xsd:enumeration value="newton"/>
<xsd:enumeration value="ohm"/>
<xsd:enumeration value="pascal"/>
<xsd:enumeration value="radian"/>
<xsd:enumeration value="second"/>
<xsd:enumeration value="siemens"/>
<xsd:enumeration value="sievert"/>
<xsd:enumeration value="steradian"/>
<xsd:enumeration value="tesla"/>
<xsd:enumeration value="volt"/>
<xsd:enumeration value="watt"/>
<xsd:enumeration value="weber"/>

</xsd:restriction>
</xsd:simpleType>
<!-- Unit -->
<xsd:complexType name="Unit">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="kind" type="UnitKind" use="required"/>
<xsd:attribute name="exponent" type="xsd:integer" use="default" value="1"/>
<xsd:attribute name="scale" type="xsd:integer" use="default" value="1"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- Rule -->
<xsd:simpleType name="RuleType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="scalar"/>
<xsd:enumeration value="rate"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Rule" abstract="true">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:attribute name="formula" type="xsd:string" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="AlgebraicRule">

<xsd:complexContent>
<xsd:extension base="Rule"/>

</xsd:complexContent>
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</xsd:complexType>
<xsd:complexType name="AssignmentRule" abstract="true">

<xsd:complexContent>
<xsd:extension base="Rule">

<xsd:attribute name="type" type="RuleType" use="default" value="scalar"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="CompartmentVolumeRule">

<xsd:complexContent>
<xsd:extension base="AssignmentRule">

<xsd:attribute name="compartment" type="SName" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="SpecieConcentrationRule">

<xsd:complexContent>
<xsd:extension base="AssignmentRule">

<xsd:attribute name="specie" type="SName" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ParameterRule">

<xsd:complexContent>
<xsd:extension base="AssignmentRule">

<xsd:attribute name="name" type="SName" use="required"/>
<xsd:attribute name="units" type="SName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- Reaction -->
<xsd:element name="specieReference">

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="SBase">
<xsd:attribute name="specie" type="xsd:string" use="required"/>
<xsd:attribute name="stoichiometry" type="xsd:integer" use="default" value="1"/>
<xsd:attribute name="denominator" type="xsd:integer" use="default" value="1"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="Reaction">

<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element name="listOfReactants">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="specieReference" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="listOfProducts">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="specieReference" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="kineticLaw" type="KineticLaw" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="name" type="SName" use="required"/>
<xsd:attribute name="reversible" type="xsd:boolean" use="default" value="true"/>
<xsd:attribute name="fast" type="xsd:boolean" use="default" value="false"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="KineticLaw">
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<xsd:complexContent>
<xsd:extension base="SBase">

<xsd:sequence>
<xsd:element ref="listOfParameters" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="formula" type="xsd:string" use="required"/>
<xsd:attribute name="timeUnits" type="SName" use="optional"/>
<xsd:attribute name="substanceUnits" type="SName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<!-- Top-level elements allowed in an SBML document. -->
<xsd:complexType name="sbmlDocument">

<xsd:sequence>
<xsd:element name="model" type="Model"/>

</xsd:sequence>
<xsd:attribute name="xmlns"/>
<xsd:attribute name="level" type="xsd:positiveInteger" use="required"/>
<xsd:attribute name="version" type="xsd:positiveInteger" use="required"/>

</xsd:complexType>
<xsd:element name="sbml" type="sbmlDocument"/>
<!-- The end. -->

</xsd:schema>
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C Predefined Functions in SBML

Table 6 lists the basic mathematical functions that are defined in SBML Level 1 at this time.

Argument
Name Args. Formula or Meaning Constraints Result Constraints

abs x absolute value of x
acos x arc cosine of x in radians −1.0 ≤ x ≤ 1.0 0 ≤ acos(x) ≤ π
asin x arc sine of x in radians −1.0 ≤ x ≤ 1.0 −π/2 ≤ asin(x) ≤ π/2
atan x arc tangent of x in radians −π/2 ≤ atan(x) ≤ π/2
ceil x smallest number not less than x

whose value is an exact integer
cos x cosine of x
exp x ex, where e is the base of the nat-

ural logarithm
floor x the largest number not greater

than x whose value is an exact
integer

log x natural logarithm of x x > 0
log10 x base 10 logarithm of x x > 0
pow x, y xy

sqr x x2

sqrt x
√
x x ≥ 0 sqrt(x) ≥ 0

sin x sine of x
tan x tangent of x x 6= nπ2 , for odd integer n

Table 6: Basic mathematical functions defined in SBML.

Table 7 defines the rate law functions available in formula expressions in SBML. These were extracted from
the Gepasi help file (3.21). Segel (1993) provides more information; Hofmeyr and Cornish-Bowden (1997)
provide specific details on the reversible Hill equations.
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Name Arguments Meaning Formula

massi Si, k
Irreversible Mass Action
Kinetics v = k

∏
i Si

massr Si, Pj , k1,
k2

Reversible Mass Action
Kinetics

v = k1

∏
i Si − k2

∏
j Pj

uui S, Vm, Km
Irreversible Simple
Michaelis-Menten

v =
VmS

Km + S

uur
S, P , Vf ,
Vr, Kms,
Kmp

Uni-Uni Reversible
Simple
Michaelis-Menten

v =
Vf

S
Kms

− Vr P
Kmp

1 + S
Kms

+ P
Kmp

uuhr
S, P , Vf ,
Km1, Km2,
Keq

Uni-Uni Reversible
Simple
Michaelis-Menten with
Haldane adjustment

v =

Vf
Km1

(
S − P

Keq

)
1 + S

Km1
+ P

Km2

isouur
S, P , Vf ,
Kms, Kmp,
Kii, Keq

Iso Uni-Uni v =
Vf

(
S − P

Keq

)
S
(

1 + P
Kii

)
+Kms

(
1 + P

Kmp

)
hilli S, V , S0.5, h Hill Kinetics v =

V Sh

Sh0.5 + Sh

hillr
S, P , Vf ,
S0.5, P0.5, h,
Keq

Reversible Hill Kinetics v =

(
Vf

S
S0.5

)(
1− P

SKeq

)(
S
S0.5

+ P
P0.5

)h−1

1 +
(

S
S0.5

+ P
P0.5

)h

hillmr
S, M , P ,
Vf , Keq, k,
h, α

Reversible Hill Kinetics
with One Modifier

v =

(
Vf

S
S0.5

)(
1− P

SKeq

)(
S
S0.5

+ P
P0.5

)h−1

K1 +K2

where

K1 =
(

S

S0.5
+

P

P0.5

)h
, K2 =

1 +
(

M
M0.5

)h
1 + α

(
M
M0.5

)h

hillmmr

S, P , M ,
Vf , Keq, k,
h, a, b, α1,
α2, α12

Reversible Hill Kinetics
with Two Modifiers

v =

(
Vf

S
S0.5

)(
1− P

SKeq

)(
S
S0.5

+ P
P0.5

)h−1

K1 +K2

where

K1 =
(

S

S0.5
+

P

P0.5

)h
,

K2 =
1 +

(
Ma
Ma0.5

)h
+
(

Mb
Mb0.5

)h
[
1 + α1

(
Ma

Ma0.5

)h
+ α2

(
Mb

Mb0.5

)h
+ α1α2α12

(
Ma

Ma0.5

)h(
Mb

Mb0.5

)h]

Table 7: Table of rate law functions in SBML. In all cases, Km > 0, Vx ≥ 0, S ≥ 0 and P ≥ 0.
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Name Arguments Meaning Formula

usii
S, V , Km,
Ki

Substrate Inhibition
Kinetics (Irreversible) v = V

S/Km

1 + S/Km + S2/Ki

usir
S, P , Vf ,
Vr, Kms,
Kmp, Ki

Substrate Inhibition
Kinetics (Reversible) v =

VfS/Kms + VrP/Kmp

1 + S/Kms + P/Kmp + S2/Ki

uai
S, V , Ksa,
Ksc

Substrate Activation v =
V (S/Ksa)2

1 + S/Ksc + (S/Ksa)2 + S/Ksa

ucii
S, V , Km,
Ki

Competitive Inhibition
(Irreversible) v =

V S/Km

1 + S/Km + I/Ki

ucir
S, P , Vf ,
Vr, Kms,
Kmp, Ki

Competitive Inhibition
(Reversible) v =

VfS/Kms − VrP/Kmp

1 + S/Kms + P/Kmp + I/Ki

unii
S, I, V ,
Km, Ki

Noncompetitive
Inhibition (Irreversible) v =

V S/Km

1 + I/Ki + S/Km (1 + I/Ki)

unir
S, P , I, Vf ,
Kms, Kmp,
Ki

Noncompetitive
Inhibition (Reversible) v =

VfS/Kms − VrP/Kmp

1 + I/Ki + (S/Kms + P/Kmp) (1 + I/Ki)

uuci
S, I, V ,
Km, Ki

Uncompetitive
Inhibition (Irreversible) v =

V S/Km

1 + S/Km (1 + I/Ki)

uucr
S, P , I, Vf ,
Vr, Kms,
Kmp, Ki

Uncompetitive
Inhibition (Reversible) v =

VfS/Kms − VrP/Kmp

1 + (S/Kms + P/Kmp) (1 + I/Ki)

umi
S, I, V ,
Km, Kis,
Kic

Mixed Inhibition
Kinetics (Irreversible) v =

V S/Km

1 + I/Kis + S/Km (1 + I/Kic)

umr

S, P, I,
Vf , Vr,
Kms,Kmp,
Kis,Kic

Mixed Inhibition
Kinetics (Reversible) v =

VfS/Kms − VrP/Kmp

1 + I/Kis + (S/Kms + P/Kmp) (1 + I/Kic)

uai
S, Ac, V ,
Km, Ka

Specific Activation
Kinetics - irreversible v =

V S/Km

1 + S/Km +Ka/Ac

uar
S, P , Ac,
Vf , Vr, Kms,
Kmp, Ka

Specific Activation
Kinetics (Reversible) v =

VfS/Kms − VrP/Kmp

1 + S/Kms + P/Kmp +Ka/Ac

ucti
S, Ac, V ,
Km, Ka

Catalytic Activation
(Irreversible) v =

V S/Km

1 +Ka/Ac + S/Km (1 +Ka/Ac)

Table 7: Table of rate law functions in SBML (continued). In all cases, Km > 0, Vx ≥ 0, S ≥ 0 and P ≥ 0.
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Name Arguments Meaning Formula

uctr
S, P , Ac,
Vf , Vr, Kms,
Kmp, Ka

Catalytic
Activation
(Reversible)

v =
VfS/Kms − VrP/Kmp

1 +Ka/Ac + (S/Kms + P/Kmp) (1 +Ka/Ac)

umai
S, Ac, V ,
Km, Kas,
Kac

Mixed Activation
Kinetics
(Irreversible)

v =
V S/Km

1 +Kas/Ac + S/Km (1 +Kac/Ac)

umar

S, P , Ac,
Vf , Vr,
Kms, Kmp,
Kas, Kac

Mixed Activation
Kinetics
(Reversible)

v =
VfS/Kms − VrP/Kmp

1 +Kas/Ac + (S/Kms + P/Kmp) (1 +Kac/Ac)

uhmi
S, M , V ,
Km, Kd, a,
b

General Hyperbolic
Modifier Kinetics
(Irreversible)

v =
V S/Km (1 + bM/(aKd))

1 +M/Kd + S/Km (1 +M/(aKd))

uhmr

S, P , M ,
Vf , Vr,
Kms, Kmp,
Kd, a, b

General Hyperbolic
Modifier Kinetics
(Reversible)

v =
(VfS/Kms − VrP/Kmp) (1 + bM/(aKd))

1 +M/Kd + (S/Kms + P/Kmp) (1 +M/(aKd))

ualii
S, I, V , Ks,
Kii, n, L

Allosteric inhibition
(Irreversible) v =

V (1 + S/Ks)
n−1

L (1 + I/Kii)
n + (1 + S/Ks)

n

ordubr

A, P , Q, Vf ,
Vr, Kma,
Kmq, Kmp,
Kip, Keq

Ordered Uni Bi
Kinetics

v =
Vf (A− PQ/Keq)[

Kma +A (1 + P/Kip)

+ Vf/(VrKeq) (KmqP +KmpQ+ PQ)
]

ordbur

A, B, P , Vf ,
Vr, Kma,
Kmb, Kmp,
Kia, Keq

Ordered Bi Uni
Kinetics

v =
Vf (AB − P/Keq)[

AB +KmaB +KmbA

+ Vf/(VrKeq) (Kmp + P (1 +A/Kia))
]

ordbbr

A, B, P , Q,
Vf , Kma,
Kmb, Kmp,
Kia, Kib,
Kip, Keq

Ordered Bi Bi
Kinetics

v =
Vf (AB − PQ/Keq)

AB (1 + P/Kip) +Kmb(A+Kia) +KmaB +K1

where
K1 = Vf/(VrKeq) (KmqP (1 +A/Kia) +Qk2) ,

K2 = Kmp (1 +KmaB/(KiaKmb) + P (1 +B/Kib))

ppbr

A, B, P , Q,
Vf , Vr,
Kma, Kmb,
Kmp, Kmq,
Kia, Kiq,
Keq

Ping Pong Bi Bi
Kinetics

v =
Vf (AB − PQ/Keq)

AB +KmbA+KmaB (1 +Q/Kiq) +K1

where
K1 = Vf/(VrKeq) (KmqP (1 +A/Kia) +Q(Kmp + P ))

Table 7: Table of rate law functions in SBML (continued). In all cases, Km > 0, Vx ≥ 0, S ≥ 0 and P ≥ 0.
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Symbol Meaning

α Effect of S and P on binding of M (if M < 1, M is inhibitor; if M > 1, M is activator)
A First substrate in two substrate reaction
Ac Activator
B Second substrate in two substrate reaction
I Inhibitor
K1 Forward Rate Constant
K2 Reverse Rate Constant
Ka Activation Constant
Kac Catalytic Activation Constant
Kas Specific Activation Constant
Kd Dissociation constant of the elementary step E +M = EM
Keq Equilibrium Constant
Kii Dissociation constant of the inhibitor from the inactive form of the enzyme
Ki Inhibition constant for the substrate.
Kia Product inhibition constant of A acting on the reverse reaction
Kib Product inhibition constant of B acting on the reverse reaction
Kic Catalytic (noncompetitive) inhibition constant
Kip Product inhibition constant of P acting on the forward reaction
Kiq Product inhibition constant of Q acting on the forward reaction
Kis Specific (competitive) inhibition constant
Km Forward Michaelis-Menten Constant
Kma Concentration of A such that v = Vf/2 (Michaelis constant) at zero P and zero Q
Kmb Concentration of B such that v = Vf/2 (Michaelis constant) at saturating A and zero P
Kmp Concentration of P such that v = −Vr/2 (Michaelis constant) at zero A and B
Kmp Product Michaelis-Menten Constant
Kmq Concentration of Q such that v = −Vr/2 (Michaelis constant) at zero A and saturating P
Kms Substrate Michaelis-Menten Constant
Ks Dissociation constant of the substrate from the active form of the enzyme
Ksa Dissociation constant of substrate-activation site
Ksc Dissociation constant of substrate-active site
L Equilibrium constant between the active and inactive forms of the enzyme
M Modifier
M0.5 Concentration of M that half-saturates its binding site when S = 0, P = 0
P First product in two product reaction
P0.05 Product concent. s.t. v = −Vr/2 when P = M = 0 (Vr is limiting rate of reverse reaction)
Q Second product in two product reaction
S0.05 Irreversible rate laws: Substrate concentration such that v = Vf/2 when P = 0,M = 0
V Forward Maximum Velocity
Vf Forward Maximum Velocity
Vm Forward Maximum Velocity
Vr Reverse Maximum Velocity
a Ratio of dissociation constant of elementary step ES+M = ESM over that of E+M = EM
b Ratio of rate constant of elementary step ESM → EM + P over that of ES → E + P .
h Hill Coefficient
n No. binding sites for substrate & inhibitor (typically the number of monomers in the enzyme)

Table 8: Table of symbols used in Table 7.
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