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1 Introduction

We present a first attempt at specifying a common, model-based description language for systems biology
simulation software. We call this this the Systems Biology Markup Language (SBML). The overall goal is
to develop an open standard that will enable simulation software to communicate and exchange models,
ultimately leading to the ability for researchers to run simulations and analyses across multiple software
packages.

SBML is the result of merging the most obvious modeling-language features of BioSpice, DBSolve, E-Cell,
Gepasi, Jarnac, StochSim, and Virtual Cell. The description language is encoded in XML, the Extensible
Markup Language (Bosak and Bray, 1999; Bray, Paoli and Sperberg-McQueen, 1998). The XML encoding
of the description language can define a file format; however, at this time, we are focusing on using the
XML-based description language as an interchange format for use in communications between programs.

The primary purpose of this document is to serve as a basis for discussion and further development of a
more comprehensive language specification. The final outcome of this process will be an XML Schema
which can be used to communicate model descriptions between simulation packages. Appendix B con-
tains the current version of this schema. As XML Schemas are difficult to read and absorb by human
readers, we define the proposed data structures using a succinct graphical notation based on a subset of
UML, the Unified Modeling Language (Eriksson, 1998; Oestereich, 1999). Our notation is explained in A
Notation for Describing Data Representations Intended for XML Encoding (Hucka, 2000), available online
at ftp://ftp.cds.caltech.edu/pub/caltech-erato/notation/. For the sake of clarity, we ask readers
to use this notation when contributing to discussions about the specification. To facilitate discussions, a
web/FTP site and a group mailing list have been set up for the participating groups. Please see the web
site at http://www.cds.caltech.edu/erato/ for details.

A few assumptions about the form of the language are not necessarily self-evident. In particular,

e We assume that, in order for each simulator program to read and write the model description language,
the program will require native interface code or a stream/file converter. This interface code will have
to translate the simulator’s internal data structures to and from the model description language, as
well as smooth any out small differences in conceptual organization between the simulator’s specific
internal representation and the model description language.

e A zero value is not the same as an empty attribute value. The model description language uses a
number of structures that, in a given object instance, may be empty, depending on whether a given
simulator needs them. Programs that interpret objects expressed in the language must be designed to
pay attention to this distinction.

The XML definition of SBML follows a certain naming convention (Hucka, 2000): the names of object
attributes begin with a lowercase letter and the names of object classes or types begin with an uppercase
letter. In this document, we also follow the convention of writing keywords (names of types, attributes,
elements, etc.) in a typewriter-style font; for example, Compartment is a class name and compartment is an
element name.

Appendix A contains several examples of models encoded in XML using SBML. We use portions of these
models as illustrations throughout the rest of this document.

2 Overview

The representation language is organized around five categories of information: model, compartment, geom-
etry, specie and reaction. Not all of these will be needed by every simulation package; rather, the intent is
to cover the range of data structures needed by the collection of all of the simulators examined so far.

Figure 1 depicts the highest level of organization of the objects in SBML. It shows that all classes are
derived either directly or indirectly from the class Identified. Identified contains attributes id and
simpleNotes and elements notes and annotation. The attribute id has type ID, so that Identified
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Figure 1: A diagram of the highest level of the object class hierarchy. (The notation used in the figures in
this document is summarized in Appendiz E).

objects can be referred to using the XML ID/IDREF mechanism (Biron and Malhotra, 2000). The element
notes can contain XHTML content. The simpleNotes is of type string. Both notes and simpleNotes
are intended to store information meant to be presented to humans. Finally, the element annotation can
contain arbitrary elements and is intended to store information not necessarily intended for human viewing.
All SBML classes are derived from Identified.

In SBML, several classes have attributes of the type Name. The Name type is a XML simple type derived from
the XML string type, and is defined to have following pattern (expressed here in conventional Backus-Naur
Form [BNF)):

Letter ::= ’a’..’z’,’A’..°2Z°
Digit ::= ’0’..’9’
Name ::= Letter | ’_’ { Letter | ’_’ | Digit}

In the following diagrams, we follow the UML convention of omitting the display of the attributes on
subclasses derived from Identified, although it should be understood that these attributes are always
available.

3 Elements of the Systems Biology Markup Language (SBML)

In the sections that follow, we discuss each of the major classes that are derived from Named or Anonymous
in the representational hierarchy.

3.1 Model

The Model class defines a grouping of components; that is, a model does not necessarily represent a single
specific biological entity. There is only one element of type Model per instance of an SBML document or
data stream, and it contains the list of compartments, species and reactions that define a given model. The
UML-based definition of the class is shown in Figure 2.



Model

name : Name {use = “optional” }

compartment[1..*] : Compartment

geometry[0..*] : Geometry

mapping[0..*] : Mapping

specie[1..*] : Specie

parameter[0..*] : Parameter

rule[0..*] : Rule

reaction[1..*] : Reaction

substanceScale : integer { use = “default” value = “1” }
timeScale : integer { use = “default” value = “1” }
volumeScale : integer { use = “default” value = “1” }
lengthScale : integer { use = “default” value = “1” }
substancelsNumberOfMolecules : boolean { use = “default” value = “false” }

Figure 2: A diagram of Model.

The definition shows that there must be at least one specie, one reaction and one compartment in a model;
otherwise, there would be little point in defining the model in the first place. There is no restriction on the
total number of these elements; Appendix A.1 gives an example of a minimal model. In addition, a model
can consist of zero or more Geometry, Mapping, Parameter and Rule elements. Model has an optional name
attribute of type Name.

The following is a skeletal example:

<sbml version="1">
<model>
<listOfCompartments>
</list0fCompartments>

<listOfSpecies>
</listO0fSpecies>

<listOfReactions>
</list0fReactions>
</model>
</sbml>

3.1.1 Units

Model and other classes have attributes for defining the units used. An example that uses this feature is
given in Appendix A.3.

SMBL has several predefined quantity types: time, amount of substance, volume, charge and length. Apart
from amount of substance and charge, these are all restricted to metric units. In all cases, apart from
charge, the scale of the given value can be modified using a power-of-ten multiplier which is an optional
integer attribute. Amount of substance can be expressed in number of molecules, depending on the state of
the substanceIsNumberOfMolecules boolean attribute. Table 1 lists the built-in quantity types and their
associated scale attributes.

All the scale attributes on KineticLaw, Specie and Geometry override those on Model. In various sections
below, these units are combined to define the units involved in formulae.

3.2 Compartments

A Compartment represents a bounded container in which species are located. A diagram of the definition of
Compartment is shown in Figure 3. A Compartment object has a name attribute of type Name.



Default

Type Attribute Name Metric Unit Scale Applicable Elements
substance substanceScale Moles or no. of molecules 1 Model, Specie, KineticLaw
time timeScale Seconds 1 Model, KineticLaw

volume volumeScale litres 1 Model

length lengthScale metres 1076 (u) Model, Geometry

charge no. of electrons 1

Table 1: A table of the built-in quantities in SBML.

The geometric characteristics of a compartment are described using a Geometry element and a Mapping el-
ement. The geometry information is effectively optional, because a Mapping element linking a Compartment
element and a Geometry element may be absent. In such cases, the compartment simply serves as a topo-
logical structure.

For convenience, a compartment has the floating-point attribute volume, representing the total volume of
the compartment in the units of volume defined on the Model. This enables concentrations of species to be
calculated in the absence of geometry specifications. Any Geometry element associated with the compartment
then overrides this value. The volume attribute is optional and defaults to a value of 1.

The following is an example of a Compartment element:

<compartment name="cell" volume="1"/>

Lists of compartments are itemized within the element 1istOfCompartments in a Model object, as in the
following example:

<listOfCompartments>
<compartment name="cytosol" volume="1"/>
<compartment name="mitochondria" volume="0.3"/>
</list0fCompartments>

3.3 Geometry

As shown in the definition of Model in Figure 2, a Model object can contain zero or more Geometry ele-
ments. The Geometry class is intended to provide a means for specifying morphological characteristics of
compartments in simulations. It is defined in Figure 4. Geometry has a name attribute of type Name.

The dimensionality of a compartment can be one, two or three dimensions, and a given compartment can
have an overall physical size. These aspects are determined in an instance of a Geometry element by which
of the three size attributes are given a value: either length (for 1-D), surfaceArea (for 2-D), or volume (for
3-D). Some examples of different dimensionalities are: DNA stretch (1-D); disks in photoreceptors (2-D);
patch of membrane (2-D); cell nucleus (3-D); and dendritic spines (3-D). The size of a compartment may
change over the course of a simulation. The 2-D geometrical information is a boundary specification that
can take the form of a sequence of connected (z,y) coordinates (Point elements) in a global reference frame.
(Each point is connected by a straight line to the next point in the sequence. The last point in the sequence
is connected to the first. This set of lines forms the 2D boundary.)

Compartment

name : Name
volume : float { use = “default” value = “1”}

Figure 3: The Compartment object class definition.



Geometry Point

name : Name x : float
point[0..*] : Point y - float
length : float {use = “optional”}
surfaceArea : float { use = “optional” }
volume : float { use = “optional” }
lengthScale : integer {use = “optional”}

Figure 4: The Geometry object class definition.

All the values on a Geometry element and its associated elements are in length units as defined on the
Geometry element by the lengthScale attribute. If these units are not defined on the Geometry element,
the definition on the enclosing Model is used instead.

3.4 Mapping

A Model element can contain zero or more Mapping elements. A Mapping element maps a Compartment
element to a Geometry element. Thus, Mapping has two name attributes, compartment and geometry.
Mapping is defined in Figure 5.

Mapping

compartment : Name
geometry : Name

Figure 5: The Mapping object class definition.

3.5 Species

Species comprise all entities that take part in reactions. The Specie class is intended to represent these
entities. These include simple ions (e.g., protons, calcium), simple molecules (e.g., glucose, ATP), and large
molecules (e.g., RNA, polysaccharides, and proteins). Figure 6 presents the definition of Specie. Species
has a name of type Name.

Specie

compartment : Name

initialAmount : float

substanceScale : integer {use = “optional” }
substancelsNumberOfMolecules : boolean {use = “optional” }
boundaryCondition : boolean {use = “default” value="false”}
charge : integer {use = “optional” }

Figure 6: The Specie object class definition.

The attribute initialAmount, of type float, is used to set the initial amount of the specie. These are in
the substance units as defined on Specie via the substanceScale and substanceIsNumberOfMolecules
attributes in the way described in the definition of Model above. If these units are not defined on a Specie
object, the definition on the Model element is used instead.

The boolean attribute boundaryCondition determines whether the amount of the specie is fixed or variable
over the course of a simulation. boundaryCondition is optional and defaults to a value of false. The attribute



compartment, of type Name, is used to identify the compartment in which the specie belongs. The integer
attribute charge indicates the charge on the species (in terms of electrons, not the ST unit Coulombs).

The following is an example of a minimal specie element inside a Model:

<specie name="s1" compartment="cell" initialAmount="4"/>

Lists of species are itemized within 1ist0fSpecies inside a Model object, as in the following example:
<listOfSpecies>
<specie name="Glucose" compartment="cell" initialAmount="4"/>

<specie name="Glucose_6_P" compartment="cell" initialAmount="0.75"/>

</listO0fSpecies>

3.6 Parameters

A Parameter element associates a symbol with a float value so that the symbol can be used in formulae in
place of the value. Figure 7 gives the definition of this class. Parameter has a name attribute of type Name.

Parameter Unit
value : float type : UnitKind
scale : integer { use = “optional” } power : integer { use = “default” value = “1” }
unit[0..*] : Unit

Figure 7: The Parameter class definition.

The symbol is set by the name attribute and the value is taken from the value attribute of the Parameter
object. A parameter can be associated with either a model or a reaction. The parameter elements associated
with the model define parameters that are global to the whole model; those that are associated with a reaction
overload the global parameters. (See Section 3.9 for further details.)

The Parameter class has an optional integer attribute called scale. As for the built-in types, the scale
attribute is a power of ten multiplier.

The unit of the parameter value is specified by the set of optional Unit elements contained within the
parameter element. Each unit element has a attribute of type UnitKind. UnitKind is an enumeration
type consisting of the following values: “mole”, “litre”, “second”, “metre”, “gram”, “ampere”, “kelvin”,
“centigrade”, “candela”, “radian”, “streadian”, “hertz”, “newton”, “joule”, “calorie”, “watt”, “coulomb”,
“yolt”, “farad”, “ohm”, “weber”, “tesla”, “henry”, “lumen”, “lux”, “pascal”’, “siemens”, “becquerel”, “gray”.
The attribute type can only have one of the values listed. Finally, the Unit class also has an integer attribute,
power, that represents an exponent modifier to the type value; its default value is 1.

The following is an example of a simple unit element:

<unit type="gram" power="3"/>

The following is a more complex example of a single Parameter element, showing how a symbol, Vm, is
defined to be 3 mM [~! s~

<parameter name="Vm" value="3" scale="-3">
<unit type="mole"/>
<unit type="litre" power="-1"/>
<unit type="second" power="-1"/>
</parameter>

Complex units can be created by placing several unit elements inside a Parameter class object. The use of
derived units can help reduce the number of elements required.



Lists of parameters are itemized on the listOfParameters element within a Model. For example:

<listOfParameters>
<specie name="Kml" value="2.3"/>
<specie name="Km2" value="10.7"/>

</listOfParameters>

An example of a full model that uses parameters is presented in Appendix A.4.

3.7 Rules

A Model object can contain a list of Rule elements. Figure 8 shows the class hierarchy of Rules classes. The
classes CompartmentRule, SpeciesRule and ParameterRule are subtypes of the Rule class. A Rule element
represents a formula of the form x = y. A Rule has a string attribute formula that contains a text string
representing a formula in place of y. Rule elements are evaluated in the order given in the XML stream/file,
however there is no restriction on the order.

Rule

formula : string

SpeciesRule CompartmentRule ParameterRule

name : Name
scale : integer { use = “default” value = “1” }
unit[0..*] : Unit

species : Name compartment : Name

Figure 8: The Rule class definition.

When the simulation application reads the model specification, it will build a set of ordinary differential
equations (ODE). These will be used by the simulator to perform various analyses on the model. The intent
is that rule expressions are an integral part of the ODE expression list and must be evaluated by the simulator
just before the ODE list.

One of the motivations for including rules like this is to be able to express the computation of the equilibrium
concentrations of fast reactions and modeling pH. An example of an XML-encoded model that uses Rule
elements is given in Appendix A.3.

3.7.1 CompartmentRule

The class CompartmentRule has an attribute, compartment, that has type Name and is used to store a
compartment name. CompartmentRule inherits attribute formula, used to store a formula in volume units
that are declared on the referenced compartment element. The effect of the rule is to set the referenced
compartment volume to the volume returned by the formula.

3.7.2 SpeciesRule

The class SpeciesRule has an attribute, species, that has type Name and is used to store a species
name. SpeciesRule inherits the attribute formula, which is used to store a formula in concentration



or substance/volume units. Substance units are those that are declared on the referenced Specie element,
and volume units are those declared on the compartment element that contains the Specie. The effect of
the rule is to set the referenced species concentration to the concentration returned by the formula.

3.7.3 ParameterRule

The class ParameterRule has attributes name, scale and unit. The name attribute has type Name. The
scale and unit operate in the same way as in the Parameter class. The inherited attribute formula contains
a formula in the units defined by the scale attribute and unit elements. The effect of the rule is to create
a new parameter that can be used in subsequent formulae. This parameter has the value returned by the
formula in the formula attribute.

The following is an example of a 1istOfRules element:

<listO0fRules>
<speciesRule species="s2" formula="kx*t/(1+k)"/>
<parameterRule name="t" formula="hx*y"/>
<compartmentRule compartment="cell" formula="zx*t">
</list0fRules>

3.8 Formulae

Two classes, KineticLaw, and Rule have the string attribute formula that contains formulae. The attribute
values are interpreted as expressions that evaluate to a floating-point value.

3.8.1 Operators

All operators in formulae return floating-point values. For boolean operators, 0 is interpreted as “false” and
all other values are interpreted as “true”. The operators available are shown in Table 3.8.1.

Simulators do not have to support the logical operators in the near future. The operators are listed here
simply to reserve the name tokens for the given operation.

Tokens Operator Class Precedence Associates
names names primary 8 n/a
(expression) sub expression primary 8 n/a
f(.) function call prefix 8 left
not, ! logical not unary 7 right
- negation unary 6 right
- power binary 5 left
* multiplication binary 4 left
/ division binary 4 left
+ addition binary 3 left
- subtraction binary 3 left
and, && logical and binary 2 left
or, || logical or binary 1 left
Xor logical exclusive or binary 1 left

Table 2: A table of the expression operators in SBML. In the Class column, “primary” implies the construct
is an operand, “prefix” implies the operation is applied to the following arguments, “unary” implies there
is one argument, and “binary” implies there are two arguments. The values in the Precedence column
show how the order of different types of operation are determined. For example, the expression a*b+c a*b
is evaluated as (a*b)+c because the * operator has higher precedence. The Associates column shows how
the order of similar precedence operations is determined; for example, a - b + c is evaluated as (a - b) +
¢ because the + and - operators are left-associative.



3.8.2 Functions

The function call operator consists of a function name, followed by an opening parenthesis token (‘(’),
followed by a sequence of zero or more arguments separated by commas, followed by a closing parenthesis
(‘)’) token. Table 3 in Appendix C lists the basic math functions that are defined in SBML at this time.
Table 4 in Appendix D lists all the built-in rate law functions.

3.8.3 Symbols

In formulae, the name tokens (other than function names) are the names of either parameters, parameter
rules, compartments or species. For the purposes of this document, we call all of them symbols.

When a species name occurs in a formula, it represents the concentration (substance/volume) of the specie.
The units of the volume are derived from the volumeScale attribute value on the Model element and the
substance units defined for the Specie (see Section 3.5).

When a compartment name occurs in a formula, it represents the volume of the compartment. Again, the
units of this value are derived from the volumeScale attribute value on the Model element.

3.9 Namespaces

The names of elements in SBML are constrained.

An element’s name is given by the value of the name attribute on the element. By default, the name of an
element is unique across all the elements of their element’s class, but independent of all other element names.
For example, reaction names are unique among all reactions in the model, but a reaction can have the same
name as a compartment. This rule establishes a global namespace for each class.

Symbols declared outside a reaction element are treated slightly differently, in that they all have the same
namespace. That is, a symbol is unique among all other symbols but is independent of all other element
names.

The names of parameter elements contained in a reaction element are unique to just the reaction and
override symbol names declared elsewhere. That is, parameter symbols can be defined in one of two names
spaces, a local space confined to particular rate laws, and a global space. The advantage of this approach is
the following. Some simulators currently use a local name space approach when declaring rate laws. This
allows them to use the same symbol (but different instance) in many different rate laws, reducing the burden
on the modeller when collating a set of parameter names. On the other hand, some simulators require
the user to generate unique symbol names for every distinct parameter. To accomodate this approach, we
introduced the global name space. In addition, the global namespace allows sets of rate equations and rules
to share the same parameter symbol (single instance). For example, a particular enzyme might catalyze a
number of different reactions, in which case it would be an advantage to specific a single parameter indicating
the concentration of enzyme that would appear in all the effected rate laws.

3.10 Reactions

A Reaction represents some transformation, transport or binding process, typically a chemical reaction,
that can change the amount of one or more species. Reaction is defined in Figure 9. In this framework,
reactions are defined using lists of reactant species, products, and their stoichiometries, and by parameter
values for separately-defined kinetic laws. Reaction has a boolean attribute, reversible, that has a value
of “false” by default.

The examples in Appendix A clarify how the elements of the Reaction class are intended to be used.

3.10.1 SpeciesReference

An instance of SpeciesReference links a specie to a Reaction. This implies that the reaction will affect
the amount of that specie. The attribute specie, of type Name, in the SpecieReference class in Figure 9 is

10



Reaction

product[1..n] : SpeciesReference

kineticLaw : KineticLaw {minOccurs = “0” }
reactant[1..n] : SpeciesReference

reversible : boolean {use = “default” value = “true”}

KineticLaw

formula : string

substanceScale : integer { use = “optional” }

timeScale : integer { use = “optional” }
substancelsNumberOfMolecules : boolean { use = “optional” }
parameter|[0...n] : Parameter

SpeciesReference

specie : Name
stoicometry : integer { use = “default” value = “1” }
denominator : integer { use = “default” value = “1” }

Figure 9: The Reaction object class definition.

intended to refer to the name of a specie in the species list of the Model. In other words, the species involved in
a reaction are listed once in a Model and the 1istOfReactants and 1ist0fProducts in reactions refer to the
list of species. The instances of SpeciesReference are specieReference elements in the 1istOfReactants
and 1ist0fProducts.

The following is a simple example of a specieReference element:

<specieReference specie="X0" stoichiometry="1"/>

The effective stoichiometry value is created by dividing the stoichiometry attribute value by the denominator
attribute value. The attribute stoichiometry is of type integer and is optional, defaulting to 1. The at-
tribute denominator is of type integer and is optional, defaulting to 1. (This allows the user to employ
rational arithmetic computations on the stoichiometry matrix. This helps to eliminate roundoff errors and
other problems during the computation, especially for large matrices. These computations are particularly
important when calculating things like elementary modes.) Note that the denominator attribute is optional.

If the reaction depends on the reactant binding order, such as in an ordered bi-bi reaction, then the order
in which the substrate and products bind and leave the enzyme is given by the order of the reactants and
products in their respective lists.

3.10.2 KineticLaw

A kineticLaw element describes the rate of the enclosing reaction. The formula, of type string, ex-
presses the rate in substance/time units. The exact units for substance and time used can be given via the
substanceScale, timeScale and substanceIsNumberOfMolecules attributes on KineticLaw in the same
way described in the Model section above. These attributes are optional and the default values are taken
from the Model element.

The KineticLaw element contained in a Reaction element is optional; however, in general there is no default
element that can be substituted in place of a missing kineticLaw element. KineticLaw contains zero or more

11



parameter elements that define symbols that can be used in the formula string. These symbols overload
those defined at the Model level.

The following is a simple example of a KineticLaw element.

<kineticLaw formula="k1*X0">
<listOfParameters>
<parameter name="k1" value="0"/>
</listOfParameters>
</kineticLaw>

3.10.3 An Example of a Complete Reaction Element

The following is an example of a reaction element and defines the reaction

<reaction name="J1">

Ji: X, — S k1 Xo <1istOfRe§ctants> . o
<specieReference specie="X0" stoichiometry="1"/>
</list0fReactants>
<listOfProducts>
<specieReference specie="S1" stoichiometry="1"/>
</1list0fProducts>
<kineticLaw formula="k1x*xX0">
<listOfParameters>

<parameter name="k1" value="0"/>
</list0fParameters>
</kineticLaw>
</reaction>

4 Versions of the Markup Language

The top level element sbml has the integer attribute sbmlVersion which indicates the version number of
the SBML definition with which the XML stream/file complies.

5 Future Enhancements

We are currently considering the following features for future versions of SBML:

e Literature References. This feature will allow the models to be annotated with references to papers
and authors.

e FExplicit references to ODEs. A model should be able to explicitly specify ordinary differential equations
alongside the rules and reactions. One application of this would be to allow the modelling of variable
volume spaces.

o Submodels. This feature will allow the reuse of model libraries and the creation of several instances of
the same model.

e Indices. This feature will allow sets of similar reactions to be defined that transform sets of species. A
Formula string could then include ‘sum’ and ‘product’ functions.

e DNA. This feature will allow DNA to be explicitly modeled.

e Diagrams. This feature will allow elements to be annotated with data to enable the display of the
model in a diagram.

e Multiple state species. This feature will allow species to have multiple states.

6 Your Comments

Please use the group email address (sysbio@caltech.edu) and web site http://www.cds.caltech.edu/erato/
to send us your comments and suggestions.

12



Appendix
A Using the XML Encoding of SBML

In this section, we present an example of translating a model into the systems biology model description
language defined in this document. Our approach to translating the object class definitions presented in the
sections above is described in the companion document, A Notation for Describing Model Representation
Intended for XML Encoding (Hucka, 2000). Appendix B gives the full listing of a preliminary version of an
XML Schema corresponding to SBML, the Systems Biology Markup Language.

A.1 Minimal Model

The following is an example of a model that uses the minimum number of elements and attributes possible
in SBML.

<sbml version="1">
<model>
<listOfCompartments>
<compartment name="x"/>
</1list0fCompartments>
<listOfSpecies>
<specie name="y" compartment="x" initialAmount="1"/>
</listOfSpecies>
<listOfReactions>
<reaction name="x">
<list0fReactants>
<specieReference specie="y"/>
</listOfReactants>
<listOfProducts>
<specieReference specie="y"/>
</1list0fProducts>
</reaction>
</listOfReactions>
</model>
</sbml>

A.2 A Simple Example Application of SBML

The following example is the main portion of an XML document that describes a simple branch system of
the following form:
k1x X0
X0 — S1

k2 x S1
S1 — X1

k3 x S1
S1 — X2

The following is the XML encoding of the above reaction.

<sbml version="1">
<model id="simplemodel" name="Branch">
<notes>
<body xmlns="http://www.w3.org/1999/xhtml">
<p>Simple branch system.</p>
<p>The reaction looks like this:</p>
<p>reaction-1: X0 -> S1; k1*X0;</p>
<p>reaction-2: S1 -> X1; k2*S1;</p>
<p>reaction-3: S1 -> X2; k3*S1;</p>

13



</body>
</notes>
<listOfCompartments>
<compartment name="compartmentOne" volume="1"/>
</list0fCompartments>
<listOfSpecies>
<specie name="S1" initialAmount="0" compartment="compartmentOne"

<spe

<spe

<specie name="X2" initialAmount="0" compartment="compartmentOne"
boundaryCondition="true"/>
</listO0fSpecies>
<listOfReactions>

boundaryCondition="false"/>

cie name="X0" initialAmount="0" compartment="compartmentOne"

boundaryCondition="true"/>

cie name="X1" initialAmount="0" compartment="compartmentOne"

boundaryCondition="true”/>

<reaction name="reaction_1" reversible="false">

</re

<list0fReactants>
<specieReference specie="X0" stoichiometry="1"/>
</listOfReactants>
<listOfProducts>
<specieReference specie="S1" stoichiometry="1"/>
</1list0fProducts>
<kineticLaw formula="k1*X0">
<listOfParameters>
<parameter name="k1" value="0"/>
</list0fParameters>
</kineticLaw>
action>

<reaction name="reaction_2" reversible="false">

</re

<listOfReactants>
<specieReference specie="S1" stoichiometry="1"/>
</listOfReactants>
<list0fProducts>
<specieReference specie="X1" stoichiometry="1"/>
</list0fProducts>
<kineticLaw formula="k2*S1">
<listOfParameters>
<parameter name="k2" value="0"/>
</list0OfParameters>
</kineticLaw>
action>

<reaction name="reaction_3" reversible="false">

</re

<listO0fReactants>
<specieReference specie="S1" stoichiometry="1"/>
</listOfReactants>
<listOfProducts>
<specieReference specie="X2" stoichiometry="1"/>
</1list0fProducts>
<kineticLaw formula="k3*S1">
<listOfParameters>
<parameter name="k3" value="0"/>
</listOfParameters>
</kineticLaw>
action>

</list0fReactions>

</model>

next-inner container is
model in this case cont

The compartment has
these elements and the

The corresponding XML encoding shown above is quite straightforward. The outermost container is a tag,
smbl, that identifies the contents as being systems biology markup language, an application of XML. The
a single model element that serves as the highest-level object in the model. The

ains a single compartment element.

four species associated with it, and three reactions. The correspondence between
three reaction equations in the list above should be fairly obvious. The elements in
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the listOfReactants and listOfProducts refer to the names of elements listed in the 1istOfSpecies.

The lone compartment has no value for volume because the value is irrelevant for this particular simple case
example. Since it is an optional attribute, there is no mention of it in the XML object.

Note that the notes annotation elements of the specie and reaction elements above have been omitted
because they are empty. The XML Schema definition in Appendix B is defined in such a way that these
elements are optional.

A.3 Simple Use of Units Feature in a Model

The following model uses the units features of SBML. In this model, the substanceScale attribute on the
model element has the value -3 that defines all qualities of substance to be defined in 10~3 mole units or
milliMoles. This sets the default units in the model; elements can override this scale locally. The volumeScale
and timeScale attributes are not set, ensuring that volume is in litres and time is in seconds. Thus, by
default in this model, kinetic law formulae define rates in milliMoles per second and the specie symbols in
them represent concentration values in milliMoles per litre. All the specie elements set the initial amount
of the given specie to 1 milliMole.

The parameters Vm and Km are defined to be in milliMoles per Litre per Second and milliMolar respectively.
This scale definition is entirely arbitrary and is not linked by SBML to the built in units described in the
previous paragraph.

<sbml version="1">
<model substanceScale="-3">
<listOfCompartments>
<compartment name="cell"/>
</1list0fCompartments>
<listOfSpecies>
<specie name="x0" compartment="cell" initialAmount="1"/>
<specie name="x1" compartment="cell" initialAmount="1"/>
<specie name="s1" compartment="cell" initialAmount="1"/>
<specie name="s2" compartment="cell" initialAmount="1"/>
</list0fSpecies>
<listOfParameters>
<parameter name="vm" value="2" scale="-3">
<list0fUnits>
<unit type="mole"/>
<unit type="litre" power="-1"/>
<unit type="second" power="-1"/>
</1ist0fUnits>
</parameter>
<parameter name="km" value="2" scale="-3">
<list0fUnits>
<unit type="mole"/>
</1list0fUnits>
</parameter>
</listOfParameters>
<listOfReactions>
<reaction name="v1">
<listO0fReactants>
<specieReference specie="x0"/>
</listO0fReactants>
<listOfProducts>
<specieReference specie="s1"/>
</list0fProducts>
<kineticLaw formula="(vm*sl1)/(km+s1)"/>
</reaction>
<reaction name="v2">
<listOfReactants>
<specieReference specie="s1"/>
</listOfReactants>
<listOfProducts>
<specieReference specie="s2"/>
</1list0fProducts>
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<kineticLaw formula="(vm*s2)/(km+s2)"/>
</reaction>
<reaction name="v3">
<listOfReactants>
<specieReference specie="s2"/>
</1listOfReactants>
<listOfProducts>
<specieReference specie="x1"/>
</list0fProducts>
<kineticLaw formula="(vm*s1)/(km+s1)"/>
</reaction>
</list0fReactions>
</model>
</sbml>

A.4 A Simple Example Application Using Rules

The following model represents the pathway Xg — S; — S — X7, where S; — S5 is a fast reaction. The
reaction S; — S5 is not modeled explicitly; instead, the effect of the reaction is encapsulated in rules.

<sbml version="1">
<model>
<listOfCompartments>
<compartment name="cell" volume="1"/>
</list0fCompartments>
<listOfSpecies>
<specie name="s1" compartment="cell" initialAmount="4"/>
<specie name="s2" compartment="cell" initialAmount="2"/>
<specie name="x0" compartment="cell" initialAmount="1"/>
<specie name="x1" compartment="cell" initialAmount="0"/>
</list0fSpecies>
<listOfParameters>
<parameter name="k1" value="1.2"/>
<parameter name="k2" value="1000"/>
<parameter name="k3" value="3000"/>
<parameter name="k4" value="4.5"/>
</listOfParameters>
<listOfRules>
<parameterRule formula="s1 + s2" name="t"/>
<parameterRule formula="k3/k2" name="k" />
<specieRule formula="k*t/(1+k)" species="s2"/>
<specieRule formula="t-s2" species="s1"/>
</list0fRules>
<listO0fReactions>
<reaction name="j1">
<listOfReactants>
<specieReference specie="x0"/>
</listOfReactants>
<list0fProducts>
<specieReference specie="s1"/>
</1listO0fProducts>
<kineticLaw formula="k1*x0"/>
</reaction>
<reaction name="j3">
<listO0fReactants>
<specieReference specie="s2"/>
</listO0fReactants>
<listOfProducts>
<specieReference specie="x1"/>
</list0fProducts>
<kineticLaw formula="k4*s2"/>
</reaction>
</list0fReactions>
</model>
</sbml>
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B XML Schema for SBML

The following is a first draft of an XML Schema definition for the Systems Biology Markup Language.
Example applications of this XML Schema are presented in Appendix A.

The schema below is well-formed and compiles with the XML Schema standard. However, the use of unique
and keyref elements in this schema has not been fully validated. The other elements have been fully
validated. In practice, the unique and keyref elements may either need to be commented out or will be
ignored, because they are not supported by most XML parsers.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE xsd:schema PUBLIC "-//W3C//DTD XMLSCHEMA 19991216//EN" "" [
<IENTITY % p ’xsd:’>
<IENTITY % s ’:xsd’>]>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<xsd:annotation>
<xsd:documentation>
File name : sbml.xsd
Description : XML Schema for the Systems Biology Markup Language
Organization: Caltech ERATO Kitano
Version : 1
Modified : 2000-09-12 10:58 PDT
</xsd:documentation>
</xsd:annotation>
<!-- Name -->
<xsd:simpleType base="xsd:string" name="Name">
<xsd:pattern value="(_| [a-z] | [A-Z]) (_| [a-z] | [A-Z] | [0-91)*"/>
</xsd:simpleType>
<!-- Identifed -->
<xsd:complexType name="Identified" abstract="true">
<xsd:element name="notes" maxOccurs="1" minOccurs="0">
<xsd:complexType>
<xsd:any namespace="http://www.w3.org/1999/xhtml"
maxOccurs="unbounded" minOccurs="1" processContents="skip"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="annotation" maxOccurs="1" minOccurs="0">
<xsd:complexType>
<xsd:any maxOccurs="*" minOccurs="1" processContents="skip"/>
</xsd:complexType>
</xsd:element>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="simpleNotes" type="xsd:string" use="optional"/>
</xsd:complexType>
<!-- listOfParameters -—>
<xsd:element name="listOfParameters">
<xsd:complexType>
<xsd:element name="parameter" type="Parameter" minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<!--1list0fUnits-->
<xsd:element name="1list0fUnits">
<xsd:complexType>
<xsd:element name="unit" type="Unit" minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<!-- specieReference -->
<xsd:element name="specieReference" type="SpecieReference"
minOccurs="1" maxOccurs="unbounded"/>
<l-- Model -->
<xsd:complexType name="Model" base="Identified" derivedBy="extension">
<xsd:element name="listOfCompartments" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:element name="compartment" type="Compartment"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfGeometries" minOccurs="0" maxOccurs="1">
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<xsd:complexType>
<xsd:element name="geometry" type="Geometry"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfMappings" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:element name="mapping" type="Mapping"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfSpecies" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:element name="specie" type="Specie"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<xsd:element ref="listOfParameters" minOccurs="0" maxOccurs="1"/>
<xsd:element name="listOfRules" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded" minOccurs="1">
<xsd:element name="compartmentRule" type="CompartmentRule"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="specieRule" type="SpecieRule"
minOccurs="0" maxOccurs="1"/>
<xsd:element name="parameterRule" type="ParameterRule"
minOccurs="0" maxOccurs="1"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfReactions" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:element name="reaction" type="Reaction"
minOccurs="1" maxOccurs="unbounded">
<xsd:unique name="parameters">
<xsd:selector>listOfParameters/parameter</xsd:selector>
<xsd:field>@name</xsd:field>
</xsd:unique>
</xsd:element>
</xsd:complexType>
</xsd:element>
<xsd:attribute name="name" type="Name" use="optional"/>
<xsd:attribute name="substanceScale" type="xsd:integer" use="default" value="0"/>
<xsd:attribute name="timeScale" type="xsd:integer" use="default" value="0"/>
<xsd:attribute name="volumeScale" type="xsd:integer" use="default" value="0"/>
<xsd:attribute name="lengthScale" type="xsd:integer" use="default" value="-6"/>
<xsd:attribute name="substancelIsNumberOfMolecules" type="xsd:boolean"
use="default" value="false"/>
</xsd:complexType>
<!-- Compartment -->
<xsd:complexType name="Compartment" base="Identified" derivedBy="extension">
<xsd:attribute name="name" type="Name" use="required"/>
<xsd:attribute name="volume" type="xsd:float" use="default" value="1"/>
</xsd:complexType>
<!-- Geometry -->
<xsd:complexType name="Geometry" base="Identified" derivedBy="extension">
<xsd:element name="listOfPoints" minOccurs="0" maxOccurs="1">
<xsd:complexType>
<xsd:element name="point" type="Point" minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<xsd:attribute name="name" type="Name" use="required"/>
<xsd:attribute name="length" type="xsd:float" use="optional"/>
<xsd:attribute name="surfaceArea" type="xsd:float" use="optional"/>
<xsd:attribute name="volume" type="xsd:float" use="optional"/>
<xsd:attribute name="lengthScale" type="xsd:integer" use="optional"/>
</xsd:complexType>
<xsd:complexType name="Point" base="Identified" derivedBy="extension">
<xsd:attribute name="x" type="xsd:float" use="required"/>
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<xsd:attribute name="y" type="xsd:float" use="required"/>
</xsd:complexType>
<!--Mapping-—>
<xsd:complexType name="Mapping" base="Identified" derivedBy="extension">
<xsd:attribute name="compartment" type="Name" use="required"/>
<xsd:attribute name="geometry" type="Name" use="required"/>
</xsd:complexType>
<l-- Specie -—>
<xsd:complexType name="Specie" base="Identified" derivedBy="extension">
<xsd:attribute name="name" type="Name" use="required"/>
<xsd:attribute name="compartment" type="Name" use="required"/>
<xsd:attribute name="initialAmount" type="xsd:float" use="required"/>
<xsd:attributeGroup ref="substanceUnits"/>
<xsd:attribute name="boundaryCondition" type="xsd:boolean" use="default" value="false"/>
<xsd:attribute name="charge" type="xsd:integer" use="optional"/>
</xsd:complexType>
<!-- Parameter -->
<xsd:complexType name="Parameter" base="Identified" derivedBy="extension">
<xsd:element ref="1ist0fUnits" minOccurs="0" maxOccurs="1"/>
<xsd:attribute name="value" type="xsd:float" use="required"/>
<xsd:attribute name="scale" type="xsd:integer" use="default" value="0"/>
<xsd:attribute name="name" type="Name" use="required"/>
</xsd:complexType>
<xsd:simpleType base="xsd:string" name="UnitKind">
<xsd:enumeration value="mole"/>
<xsd:enumeration value="litre"/>
<xsd:enumeration value="second"/>
<xsd:enumeration value="metre"/>
<xsd:enumeration value="gram"/>
<xsd:enumeration value="ampere"/>
<xsd:enumeration value="kelvin"/>
<xsd:enumeration value="centigrade"/>
<xsd:enumeration value="candela"/>
<xsd:enumeration value="radian"/>
<xsd:enumeration value="streadian"/>
<xsd:enumeration value="hertz"/>
<xsd:enumeration value="newton"/>
<xsd:enumeration value="joule"/>
<xsd:enumeration value="calorie"/>
<xsd:enumeration value="watt"/>
<xsd:enumeration value="coulomb"/>
<xsd:enumeration value="volt"/>
<xsd:enumeration value="farad"/>
<xsd:enumeration value="ohm"/>
<xsd:enumeration value="weber"/>
<xsd:enumeration value="tesla"/>
<xsd:enumeration value="henry"/>
<xsd:enumeration value="lumen"/>
<xsd:enumeration value="lux"/>
<xsd:enumeration value="pascal"/>
<xsd:enumeration value="siemens"/>
<xsd:enumeration value="becquerel"/>
<xsd:enumeration value="gray"/>
</xsd:simpleType>
<xsd:complexType name="Unit" base="Identified" derivedBy="extension">
<xsd:attribute name="type" type="UnitKind" use="required"/>
<xsd:attribute name="power" type="xsd:integer" use="default" value="1"/>
</xsd:complexType>
<!-- Rule -->
<xsd:complexType name="Rule" base="Identified" derivedBy="extension" abstract="true">
<xsd:attribute name="formula" type="xsd:string" use="required"/>
</xsd:complexType>
<xsd:complexType name="CompartmentRule" base="Rule" derivedBy="extension">
<xsd:attribute name="compartment" type="Name" use="required"/>
</xsd:complexType>
<xsd:complexType name="SpecieRule" base="Rule" derivedBy="extension">
<xsd:attribute name="species" type="Name" use="required"/>
</xsd:complexType>
<xsd:complexType name="ParameterRule" base="Rule" derivedBy="extension">
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<xsd:element ref="1list0fUnits" minOccurs="0" maxOccurs="1"/>
<xsd:attribute name="name" type="Name" use="required"/>
<xsd:attribute name="scale" type="xsd:integer" use="default" value="0"/>
</xsd:complexType>
<!-- Reaction -->
<xsd:complexType name="Reaction" base="Identified" derivedBy="extension">
<xsd:element name="listOfReactants" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:element ref="specieReference" minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="listOfProducts" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:element ref="specieReference" minOccurs="1" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="kineticLaw" type="KineticLaw" minOccurs="0" maxOccurs="1"/>
<xsd:attribute name="name" type="Name" use="required"/>
<xsd:attribute name="reversible" type="xsd:boolean" use="default" value="false"/>
</xsd:complexType>
<xsd:complexType name="KineticLaw" base="Identified" derivedBy="extension">
<xsd:element ref="listOfParameters" minOccurs="0" maxOccurs="1"/>
<xsd:attribute name="formula" type="xsd:string" use="required"/>
<xsd:attributeGroup ref="substanceUnits"/>
<xsd:attribute name="timeScale" type="xsd:integer" use="optional"/>
</xsd:complexType>
<xsd:complexType name="SpecieReference" base="Identified" derivedBy="extension">
<xsd:attribute name="specie" type="xsd:string" use="required"/>
<xsd:attribute name="stoichiometry" type="xsd:integer" use="default" value="1"/>
<xsd:attribute name="denominator" type="xsd:integer" use="default" value="1"/>
</xsd:complexType>
<!-- substanceUnits -—>
<xsd:attributeGroup name="substanceUnits">
<xsd:attribute name="substanceScale" type="xsd:integer" use="optional"/>
<xsd:attribute name="substanceIsNumberOfMolecules" type="xsd:boolean" use="optional"/>
</xsd:attributeGroup>
<!-- Top-level elements allowed in an sbml document. -->
<xsd:complexType name="sbmlDocument">
<xsd:element name="model" minOccurs="1" maxOccurs="1" type="Model">
<xsd:unique name="compartments">
<xsd:selector>listOfComparments/compartment</xsd:selector>
<xsd:field>@name</xsd:field>
</xsd:unique>
<xsd:unique name="geometries">
<xsd:selector>listOfGeometries/geometry</xsd:selector>
<xsd:field>@name</xsd:field>
</xsd:unique>
<xsd:unique name="species">
<xsd:selector>list0fSpecies/specie</xsd:selector>
<xsd:field>@name</xsd:field>
</xsd:unique>
<xsd:unique name="reactions">
<xsd:selector>listOfReactions/reaction</xsd:selector>
<xsd:field>@name</xsd:field>
</xsd:unique>
<xsd:unique name="globalSymbols">
<xsd:selector>*/x[self::compartment or self::parameter
or self::species or self::parameterRule]</xsd:selector>
<xsd:field>@name</xsd:field>
</xsd:unique>
<xsd:keyref name="mappingToCompartment" refer="compartments">
<xsd:selector>listOfMappings/mapping</xsd:selector>
<xsd:field>Qcompartment</xsd:field>
</xsd:keyref>
<xsd:keyref name="mappingToGeometry" refer="geometries">
<xsd:selector>listOfMappings/mapping</xsd:selector>
<xsd:field>@geometry</xsd:field>
</xsd:keyref>
<xsd:keyref name="specieToCompartment" refer="compartments">
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<xsd:selector>list0fSpecies/specie</xsd:selector>
<xsd:field>Qcompartment</xsd:field>
</xsd:keyref>
<xsd:keyref name="specieReferenceToSpecie" refer="species">
<xsd:selector>listOfReactions/reaction/*/specieReference</xsd:selector>
<xsd:field>@specie</xsd:field>
</xsd:keyref>
<xsd:keyref name="specieRuleToSpecie" refer="species">
<xsd:selector>1list0fRules/specieRule</xsd:selector>
<xsd:field>@specie</xsd:field>
</xsd:keyref>
<xsd:keyref name="compartmentRuleToComparment" refer="compartment">
<xsd:selector>1listOfRules/compartmentRule</xsd:selector>
<xsd:field>Qcompartment</xsd:field>
</xsd:keyref>
</xsd:element>
<xsd:attribute name="xmlns"/>
<xsd:attribute name="version" type="xsd:positivelnteger" use="required"/>
</xsd:complexType>
<xsd:element name="sbml" type="sbml:sbmlDocument" minOccurs="1" maxOccurs="1"/>
<!-- The end. -->
</xsd:schema>

C Simple Math Functions in SBML

Table 3 defines the simple mathematical functions available for use in formula expressions in SBML.

Argument

Name Args. Formula or Meaning Constraints Result Constraints
abs T absolute value of x
acos T arc cosine of z in radians -1.0<x<1.0 0 <acos(z) <m
asin x arc sine of z in radians -1.0<z2<1.0 —7/2 < acos(z) < w/2
atan T arc tangent of x in radians -1.0<z<1.0 —7/2 < acos(z) < w/2
ceil T smallest number not less than x whose

value is an exact mathematical integer
cos x cosine of x
exp x e” where e is the base of the natural

logrithms
floor T the largest number not greater than x

whose value is an exact integer
log x natural logarithm of x x>0
log10 x base 10 logarithm of x z>0
pow z,y Al
sqr T x?
sqrt x VT x>0 sqri(z) >0
sin x sine of x
tan T tangent of x

Table 3: A table of the simple math functions in SBML.

D Rate law functions in SBML

Table 4 defines the rate law functions available in formula expressions in SBML. These were extracted from
the Gepasi help file (3.21). Segel (1993) provides more information; Hofmeyr and Cornish-Bowden (1997)
provide specific details on the reversible Hill equations. In all cases, Km >0, V, >0, S > 0 and P > 0.

21



E Summary of Notation

The definitive explanation for the notation used in this document can be found in the companion notation
document. Here we briefly summarize some of the main components of the notations used in describing
SBML.

Within the definitions of the various object classes introduced in this document, the following types of
expressions ar used many times:

name : float

name[0..*] : integer

name : (XHTML)

name : float {use = "optional" value = "0.0"}

The symbol name represents an attribute on an object. It indicates the name of a field in which data is
stored in the object. The colon immediately after the name simply separates the name of the attribute from
the type of data that it stores. The examples above show the types float and integer being used.

More complex specifications use square brackets ([]) just after the attribute name. This is used to indicate
that the attribute contains a list of elements. Specifically, the notation [0..*] signifies a list containing zero
or more elements; the notation [1..x*] signifies a list containing at least one element; and so on.

An attribute whose type is shown in parentheses is implemented as as an XML element rather than an XML
attribute. The parenthese indicate that the type refers to the type of the element value. Attributes that are
lists are also implemented as XML elements.

Expressions in curly braces ({}) shown after an attribute type indicate additional constraints placed on
the attribute. We express contraints using XML Schema language. In the examples above, the expression
use="optional" value="0.0" indicates that the attribute is optional and that it has a default value of 0.0.
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Name Arguments | Meaning Formula
. Irreversible Mass Action
massi S;, k Kinetics v="Fk[[,S;
Si, Pj, ki, Reversible Mass Action _ L 4
massr 5 Kinetics v="Fk[[; Si — k2], P
: Irreversible Simple _ VmS
b §, Vm, Km Michaelis-Menten T Km s
S, P, Vy, Uni-Uni Reversible Ve V.-
. IKms "Kmp
uur V., Kms, Simple v = < P
Kmp Michaelis-Menten I+ st Kmp
S, P, Vj, TSJirrlrll—Illenl Reversible v, (S o )
uuhr Kml, Km2, apie . _ Kml Keq
K Michaelis-Menten with v = 17 5 4P
€ Haldane adjustment Kml * Km2
S, P, Vf, Vf (S_KP )
isouur Kms, Kmp, | Iso Uni-Uni v = 4
Ky, Keg S(H%) + Kms (HKLW,)
h
hilli SV, Sos, h | Hill Kinetics v VT
S, PV S P S p "
. 5 VE e (sto.5)<1—m) (s—+P)
hillr So.5, Po.s, h, | Reversible Hill Kinetics v = ;
K s 4 p )"
4 1+ (50.5 + Po.5)
s p s P\t
(Vf So.s) (1 o SKeq) (50.5 + Po.s)
v =
S, M, P L Ky + Ko
. A Reversible Hill Kinetics
where
hillmr Vi Keg: k, with One Modifier u \"
h, g p A" 1+ (MO 5)
Kl = (S— + P—> 5 K2 == . A
0.5 0.5 M
1+o (1\/[0.5)
s p S P\t
(Vf So.s) (1 o SKeq) (50.5 + m)
v =
K+ K,
where ,
SaP7Ma K1:<i+i> 3
hillmmr Vi, Keg, K, Reversible Hill Kinetics Sos  Pos
h, a, b, ay, with Two Modifiers 1 Ma )" s \"
9, O + Mayg .5 + Mbo .5
2, 12

Ma \" My \"
1+aq Mag + o Mby
.5 .5

Ma Mb

h h
T (Ma0_5> (Mb0.5> ]

Table 4: Table of rate law functions in SBML.
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Name Arguments | Meaning Formula
.. S, V, Km, Substrate Inhibition S/Km
usii L . v =
K; Kinetics (Irreversible) 1+ S/Km+ S2/K;
. S, b, Vi, Substrate Inhibition ViS/Kms+ V,.P/Kmp
usir V., Kms, Kineti . v = : 5
Kmp, K; inetics (Reversible) 1+ S/Kms+ P/Kmp+ S2/K;
2
uai f(’ v, Ksa, Substrate Activation v = V(5/Ksa) 5
s¢ 1+ S/Ksc+ (S/Ksa)”+ S/Ksa
.. S, V, Km, Competitive Inhibition VS/Km
ucii . . v =
Ki (Irreversible) 1+S/Km+1/Ki
cir ‘S/v.’ ];;'T‘r/zj; ’ Competitive Inhibition . ViS/Kms — V,.P/Kmp
K;np, Kzz (Reversible) 1+S/Kms+ P/Kmp+I/Ki
nii S, 1,V, Noncompetitive B VS/Km
Km, Ki Inhibition (Irreversible) T IYI/Ki+ S/Km(1+1/Ki)
) S, P, I, Vg, Noncompetitive Vi S/Kms — V.P/Kmp
unir Kms, Kmp, Inhibiti R bl v = - -
Ki nhibition (Reversible) 14+ I/Ki+ (S/Kms+ P/Kmp) (1+I/Ki)
e S, 1,V, Uncompetitive B VS/Km
Km, Ki Inhibition (Irreversible) YT 1Y S/Km (1 + 1/Ki)
S, b, I, Vg, Uncompetitive Vi S/Kms — V.P/Kmp
uucr V., Kms, Inhibiti . = -
Kmp, Ki nhibition (Reversible) 14+ (S/Kms+ P/Kmp) (1 + I/Kji)
. 5 1, V’. Mixed Inhibition VS/Km
umi Km, Kis, Kinetics (I bl v = - -
Kic inetics (Irreversible) 1+I/Kis+ S/Km(1+1/Kic)
S7 P’ I’
Vi, Vi, Mixed Inhibition ViS/Kms —V,.P/Kmp
umr o . v = :
Kms, Kmp, | Kinetics (Reversible) 1+ I/Kis+ (S/Kms+ P/Kmp) (1+ I/Kic)
Kis, Kic
. S, A., V, Specific Activation VS/Km
uai L . v=
Km, Ka Kinetics - irreversible 1+S/Km+ Ka/A,
S’ P7 AC?
Ve, Vi, Specific Activation ViS/Kms — V. P/Kmp
uar L . v =
Kms, Kmp, | Kinetics (Reversible) 1+S/Kms+ P/Kmp+ Ka/A.
Ka
. S, A., V, Catalytic Activation VS/Km
ucti . V=
Km, Ka (Irreversible) 1+ Ka/A.+S/Km(1+ Ka/A.)

Table 4: Table of rate law functions in SBML (continued).
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Name | Arguments | Meaning Formula
S’ P’ AC?
actr Ve, Vo, Catalytic Activation o ViS/Kms — V., P/Kmp
Kms, Kmp, | (Reversible) 1+ Ka/A.+ (S/Kms+ P/Kmp) (1 + Ka/A,)
Ka
S, A., V, Mixed Activation VS/Km
umai Km, Kas, Kinetics v =
Kac (Irreversible) 1+ Kas/Ac + §/Km (1 + Kac/A.)
S’ P? AC?
wmar Vi, Ve, Mixed Activation - ViS/Kms — V,P/Kmp
Kms, Kmp, | Kinetics (Reversible) 1+ Kas/A. + (S/Kms + P/Kmp) (1 + Kac/A.)
Kas, Kac
S, M, V, General Hyperbolic VS/Km (1 +bM/(aKy))
uhmi Km, K4, a, | Modifier Kinetics v = T MK+ STRm (1t M/ (ak
b (Irreversible) +M/Kq+ S/Km(1+ M/(aKq))
S, P, M
T General Hyperbolic
uhmr Vis Vi, Modifier Kyiietics v = (Vy S/ Kms — V. P/ Kmp) (1 + bM/(aKq))
Kms, Kmp, (Reversible) 1+ M/K4+ (S/Kms+ P/Kmp) (1+ M/(aK,))
Kd7 a, b
walii | S+ 1.V, Ks, | Allosteric inhibition e V(1+8/Ks)"!
Ki, n, L (Irreversible) T LA+I/Ki)"+(1+S5/Ks)"
Vi(A— PQ/Keq
A, P,Q,V, v= v Teit
V., Kma, Ordered UniBi Kma + A(1+ P/Kip)
ordubr .
Kmgq, Kmp, | Kinetics
Kip, Keq + Vi /(V.Keq) (KmgP + KmpQ + PQ)}
Vi(AB — P/Keq
B, o / (AB - P/Keq)
ordbur V., Kma, Ordered BiUni {AB + KmaB + KmbA
Kmb, Kmp, | Kinetics
Kia, Keq + Vi /(V.Keq) (Kmp+P(1+A/Kia))}
A B P . Vi (AB — PQ/Keq)
V]: Iém&@’ ~ AB(1+ P/Kip) + Kmb(A+ Kia) + KmaB + K1
ordbbr | Kmb, Kmp, I(glrrclleesiz(i BiBi where .
Kia, Kib, K1 =V;/(V.Keq) (KmgP (1 + A/Kia) + QK2),
Kip, Keq K2 = Kmp(1+ KmaB/(KiaKmb) + P (1 + B/Kib))
ﬁl e ”e Vi (AB — PQ/Keq)
L. | Kma, Kmb, | Ping Pong BiBi AB + KmbA + KmaB (1 + Q/Kig) + K1
PP Kmp, Kmq, | Kinetics where
Kia, Kig, K1 =V;/(V,Keq) (KmgP (14 A/Kia) + Q(Kmp + P))
Keq

Table 4: Table of rate law functions in SBML (continued).
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Symbol Meaning

S
Pi
ki
k1

Kis
Kic
Ka
Kac
Kas
Kd

(=)

7

mb
mp
mq
ip
Kia
Kib
Kia

ARRRROTIES X

Substrate

Product

Rate Constant

Forward Rate Constant

Reverse Rate Constant

Forward Maximum Velocity

Forward Maximum Velocity

Reverse Maximum Velocity

Forward Michaelis-Menten Constant

Substrate Michaelis-Menten Constant

Product Michaelis-Menten Constant

Equilibrium Constant

Isoinhibition Constant

Irreversible rate laws: Substrate concentration such that v = Vy/2 when P =0,M =0
Product concentration s.t. v = —V,./2 when P = M = 0 (V, is limiting rate of reverse
reaction)

Hill Coefficient

Modifier

Factor accounting for effect of S and P on binding of M (if M < 1, M is inhibitor; if M > 1,
M is activator)

Concentration of M that half-saturates its binding site when S =0, P =0

Inhibition constant for the substrate.

Dissociation constant of substrate-active site

Dissociation constant of substrate-activation site

Inhibitor

Activator

Forward Maximum Velocity

Specific (competitive) inhibition constant.

Catalytic (noncompetitive) inhibition constant.

Activation Constant

Catalytic Activation Constant

Specific Activation Constant

Dissociation constant of the elementary step £+ M = EM.

Ratio of dissociation constant of elementary step ES+M = ESM over that of E+M = EM.
Ratio of rate constant of elementary step ESM — EM + P over that of ES — F + P.
Dissociation constant of the substrate from the active form of the enzyme

Dissociation constant of the inhibitor from the inactive form of the enzyme

Equilibrium constant between the active and inactive forms of the enzyme

No. binding sites for substrate & inhibitor (most times the number of monomers in enzyme)
First substrate in two subatrate reaction

Second substrate in two substrate reaction

First product in two product reaction

Second product in two product reaction

Concentration of A such that v = V;/2 (Michaelis constant) at zero P and zero @
Concentration of B such that v = V}/2 (Michaelis constant) at saturating A and zero P
Concentration of P such that v = —V,./2 (Michaelis constant) at zero A and B
Concentration of @ such that v = —V,./2 (Michaelis constant) at zero A and saturating P
Product inhibition constant of P acting on the forward reaction

Product inhibition constant of A acting on the reverse reaction

Product inhibition constant of B acting on the reverse reaction.

Product inhibition constant of A acting on the reverse reaction (Ping-pong)

Product inhibition constant of ) acting on the forward reaction.

Table 5: Table of symbols used in Table 4.
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