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Abstract. Web-based applications greatly increase information avail-
ability and ease of access, which is optimal for public information. The
distribution and sharing by the Web of information that must be accessed
in a selective way requires the definition and enforcement of security
controls, ensuring that information will be accessible only to authorized
entities. Approaches proposed to this end level, independently from the
semantics of the data to be protected and for this reason result limited.
The eXtensible Markup Language (XML), a markup language promoted
by the World Wide Web Consortium (W3C), represents an important
opportunity to solve this problem. We present an access control model
to protect information distributed on the Web that, by exploiting XML’s
own capabilities, allows the definition and enforcement of access restric-
tions directly on the structure and content of XML documents. We also
present a language for the specification of access restrictions that uses
standard notations and concepts and briefly describe a system architec-
ture for access control enforcement based on existing technology.

1 Introduction

An ever-increasing amount of information, both on corporate Intranets and the
global Internet, is being made available in unstructured and semi-structured
form. Semi-structured data sources include collections of textual documents (e.g.,
e-mail messages) and HTML pages managed by Web sites. While these sites are
currently implemented using ad-hoc techniques, it is widely recognized that, in
due time, they will have to be accessible in an integrated and uniform way to
both end users and software application layers. Nevertheless, current techniques
for Web information processing turn out to be rather awkward, due to HTML’s
inherent limitations. HTML provides no clean separation between the structure
and the layout of a document. Moreover, site designers often prepare HTML
pages according to the needs of a particular browser. Therefore, HTML markup
has generally little to do with data semantics.

To overcome this problem, a great effort was put in place to provide semantics-
aware markup techniques without losing the formatting and rendering capabil-
ities of HTML. The main result of this standardization effort is the eXtensible
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Markup Language (XML) [3], a markup meta-language recently standardized
by the World Wide Web Consortium (W3C). While HTML was defined using
only a small and basic part of SGML (Standard Generalized Markup Language:
ISO 8879), XML is a sophisticated subset of SGML, designed to describe data
using arbitrary tags. One of the main goals of XML is to be suitable for the
use on the Web, thus providing a general mechanism for enriching HTML. As
its name implies, extensibility is a key feature of XML; users or applications
are free to declare and use their own tags and attributes. XML focuses on the
description of information structure and content as opposed to its presentation.
Presentation issues are addressed by separate languages: XSL (XML Style Lan-
guage) [19], which is also a W3C standard for expressing how XML-based data
should be rendered; and XLink (XML Linking Language) [7], which is a spec-
ification language to define anchors and links within XML documents. For its
advantages, XML is now accepted in the Web community, and available appli-
cations exploiting this standard include OFX (Open Financial Exchange) [6] to
describe financial transactions, CDF (Channel Data Format) [8] for push tech-
nologies, and OSD (Open Software Distribution) [17] for software distribution
on the Net.

Security is among the main concerns arising in this context. Internet is a
public network, and traditionally there has been little protection against unau-
thorized access to sensitive information and attacks such as intrusion, eavesdrop-
ping, and forgery. Fortunately, the advancement of public-key cryptography has
remedied most of the security problems in communication; in the XML area com-
mercial products are becoming available (such as AlphaWorks’” XML Security
Suite [1]) providing security features such as digital signatures and element-wise
encryption to transactions involving XML data. However, the design of a so-
phisticated access control mechanism to XML information still remains an open
issue, and the need for addressing it is well recognized [15].

The objective of our work is to define and implement an authorization model
for regulating access to XML documents. The rationale for our approach is to
exploit XML’s own capabilities, defining an XML markup for a set of secu-
rity elements describing the protection requirements of XML documents. This
security markup can be used to provide both instance level and schema level
authorizations with the granularity of XML elements. Taken together with a
user’s identification and its associated group memberships, as well as with the
support for both permissions and denials of access, our security markup allows to
easily express different protection requirements with support of exceptions. The
enforcement, of the requirements stated by the authorizations produces a view
on the documents for each requester; the view includes only the information
that the requester is entitled to see. A recursive propagation algorithm is also
presented, which ensures fast on-line computation of such a view on XML doc-
uments requested via an HT'TP connection or a query. The proposed approach,
while powerful enough to define sophisticated access to XML data, makes the
design of a server-side security processor for XML rather straightforward; guide-
lines for design are also provided.



1.1 Related work

Although several projects for supporting authorization-based access control in
the Web have recently been carried out, authorizations and access control mech-
anisms available today are at a preliminary stage [15]. For instance, the Apache
server (www.apache.org) allows the specification of access control lists via a con-
figuration file (access.conf) containing the list of users, hosts (IP addresses), or
host/user pairs, which must be allowed/forbidden connection to the server. Users
are identified by user- and group-names and passwords, to be specified via Unix-
style password files. By specifying a different configuration file for each directory,
it is possible to define authorizations on a directory basis. The specification of
authorizations at the level of single file (i.e., web pages) results awkward, while
it is not possible to specify authorizations on portions of files. The proposal
in [16] specifies authorizations at a fine granularity by considering a Dexter-like
model for referencing portions of a file. However, again, no semantic context
similar to that provided by XML can be supported and the model remains lim-
ited. Other approaches, such as the EIT SHTTP scheme, explicitly represent
authorizations within the documents by using security-related HTML tagging.
While this seems to be the right direction towards the construction of a more
powerful access control mechanism, due to HTML fundamental limitations these
proposals cannot take into full consideration the information structure and se-
mantics. The development of XML represents an important opportunity to solve
this problem. Proposals are under development by both industry and academia,
and commercial products are becoming available which provide security features
around XML. However, these approaches focus on lower level features, such as
encryption and digital signatures [1], or on privacy restrictions on the dissemi-
nation of information collected by the server [14]. At the same time, the security
community is proceeding towards the development of sophisticated access control
models and mechanisms able to support different security requirements and mul-
tiple policies [10]. These proposals have not been conceived for semi-structured
data with their flexible and volatile organization. They are often based on the
use of logic languages, which are not immediately suited to the Internet context,
where simplicity and easy integration with existing technology must be ensured.
Our approach expresses security requirements in syntax, rather than in logic,
leading to a simpler and more efficient evaluation engine that can be smoothly
integrated in an environment for XML information processing. The use of autho-
rization priorities with propagation and overriding, which is an important aspect
of our proposal, may recall approaches made in the context of object-oriented
databases, like [9, 13]. However, the XML data model is not object-oriented [3]
and the hierarchies it considers represent part-of relationships and textual con-
tainment, which require specific techniques different from those applicable to
ISA hierarchies in the object-oriented context.

1.2 OQutline of the paper

The paper is organized as follows. Section 2 illustrates the basic characteristics
of the XML proposal. Section 3 and 4 discuss the subjects and the objects,



<!ELEMENT laboratory (project)*>
<!ELEMENT project (fund,manager*,paper*)>
<!ELEMENT fund (organization,amount)>
<!ELEMENT organization (#PCDATA)>
<!ELEMENT anount (#PCDATA)>
<!ELEMENT mnanager (flname,address)>
<!ELEMENT flname (#PCDATA)>
<!ELEMENT address (#PCDATA)*>
<!ELEMENT paper (title,author—+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (flname,address,e-mail?)>
<!ELEMENT e-mail(#PCDATA)>
<!ATTLIST project name CDATA #REQUIRED
type CDATA #REQUIRED >
<!ATTLIST paper category (public|private) #REQUIRED
pid ID #REQUIRED>
(=

Fig. 1. An example of DTD (a) and the corresponding tree representation (b)

respectively. Section 5 presents the authorization model. Section 6 introduces
the document view produced by the access control system for each requester and
presents an algorithm for efficiently computing such a view. Section 7 addresses
design and implementation issues and sketches the architecture of the security
system. Section 8 gives concluding remarks.

2 Preliminary concepts

XML [3] is a markup language for describing semi-structured information. The
XML document is composed of a sequence of nested elements, each delimited by
a pair of start and end tags (e.g., <project> and </project>) or by an empty
tag. XML documents can be classified into two categories: well-formed and valid.
An XML document is well-formed if it obeys the syntax of XML (e.g., non-empty
tags must be properly nested, each non-empty start tag must correspond to an
end tag). A well-formed document is valid if it conforms to a proper Document
Type Definition (DTD). A DTD is a file (external or included directly in the
XML document) which contains a formal definition of a particular type of XML
document. A DTD may include declarations for elements, attributes, entities,
and notations. Elements are the most important components of an XML docu-
ment. Element declarations in the DTD specify the names of elements and their
content. They also describe sub-elements and their cardinality; with a notation
inspired by extended BNF grammars, “x” indicates zero or more occurrences,
“+” indicates one or more occurrences, “?” indicates zero or one occurrence,
and no label indicates exactly one occurrence. Attributes represent properties
of elements. Attribute declarations specify the attributes of each element, indi-
cating their name, type, and, possibly, default value. Attributes can be marked
as required, implied, or fixed. Attributes marked as required must have an
explicit value for each occurrence of the elements to which they are associated.
Attributes marked as implied are optional. Attributes marked as fixed have a
fixed value indicated at the time of their definition. Entities are used to include
text and/or binary data into a document. Notation declarations specify how
to manage entities including binary data. Entities and notations are important
in the description of the physical structure of an XML document, but are not



considered in this paper, where we concentrate the analysis on the XML logi-
cal description. Our authorization model can be easily extended to cover these
components. Figure 1(a) illustrates an example of DTD for XML documents
describing projects of a laboratory.

XML documents valid according to a DTD obey the structure defined by the
DTD. Intuitively, each DTD is a schema and XML documents valid according
to that DTD are instances of that schema. However, the structure specified by
the DTD is not rigid; two distinct documents of the same schema may widely
differ in the number and structure of elements.

DTDs and XML documents can be modeled graphically as follows. A DTD is
represented as a labeled tree containing a node for each attribute and element in
the DTD. There is an arc between elements and each element/attribute belong-
ing to them, labeled with the cardinality of the relationship. Elements are repre-
sented as circles and attributes as squares. Each XML document is described by
a tree with a node for each element, attribute, and value in the document, and
with an arc between each element and each of its sub-elements/attributes/values
and between each attribute and each of its value(s). Figure 1(b) illustrates the
tree for the DTD in Figure 1(a).

In the remainder of this paper we will use the terms tree and object to denote
either a DTD or an XML document. We will explicitly distinguish them when
necessary.

3 Authorization subjects

The development of an access control system requires the definition of the sub-
jects and objects against which authorizations must be specified and access con-
trol must be enforced. In this section we present the subjects; in Section 4 we
describe the objects.

Usually, subjects can be referred to on the basis of their identities or on the
location from which requests originate. Locations can be expressed with reference
to either their numeric IP address (e.g., 150.100.30.8) or their symbolic name
(e.g., tweety.lab.com). Qur model combines these features. Subjects requesting
access are thus characterized by a triple (user-id,IP-address,sym-address),
where user-id is the identity ! with which the user connected to the server, and
IP-address (sym-address, resp.) is the numeric (symbolic, resp.) identifier of
the machine from which the user connected.

To allow the specification of authorizations applicable to sets of users and/or
to sets of machines, the model also supports user groups and location patterns. A
group is a set of users defined at the server. Groups do not need to be disjoint and
can be nested. A location pattern is an expression identifying a set of physical

! We assume user identities to be local, that is, established and authenticated by the
server, because this is a solution relatively easy to implement securely. Obviously,
in a context where remote identities cannot be forged and can therefore be trusted
by the server (using a Certification Authority, a trusted third party, or any other
secure infrastructure), remote identities could be considered as well.



locations, with reference to either their symbolic or numerical identifiers. Pat-
terns are specified by using the wild card character * instead of a specific name
or number (or sequence of them). For instance, 151.100.*.*, or equivalently
151.100.*, denotes all the machines belonging to network 151.100. Similarly,
*.mil, *.com, and *.it denote all the machines in the Military, Company, and
Italy domains, respectively. If multiple wild card characters appear in a pattern,
their occurrence must be continuous (not interleaved by numbers or names).
Also, consistently with the fact that specificity is left to right in IP addresses
and right to left in symbolic names, wild card characters must appear always as
right-most elements in IP patterns and as left-most elements in symbolic pat-
terns. Intuitively, location patterns are to location addresses what groups are to
users. Given a pair p; and p, of IP patterns (symbolic patterns, resp.), p1 <ip P2
(p1 <sn P2, resp.) only if each component of p; is either the wild card character
or is equal to the corresponding, position wise from left to right (right to left,
resp.), component of ps.

Instead of specifying authorizations with respect to only one of either the
user/group identifier or location identifier, and having the problem of how dif-
ferent authorizations can be combined at access request time, we allow the spec-
ification of authorizations with reference to both user/group and location. This
choice provides more expressiveness (it allows to express the same requirements
as the alternative and more) and provides a natural treatment for different autho-
rizations applicable to the same request. We will elaborate on this in Section 5.
Let UG be a set of user and group identifiers, IP a set of IP patterns, and SN a
set of symbolic name patterns. We define the authorization subject hierarchy as
follows.

Definition 1 (Authorization subject hierarchy). The authorization sub-
ject hierarchy is a hierarchy ASH = (AS, <), where AS = (UG x IP x SN)
and < is a partial order over AS such that V(ug;,ip;, sni), (ug;,ip;, sn;) € AS,
(ugi,ipi, sni) < (ugj,ipj, sn;), if and only if ug; is a member of ug;, ip; <ip ipj,
and sn; <sn SN;.

According to the fact that requests are always submitted by a specific user
(anonymous can also be interpreted as such) from a specific location, subjects
requesting access are always minimal elements of the ASH hierarchy. Authoriza-
tions can instead be specified with reference to any of the elements of ASH.
In particular, authorizations can be specified for users/groups regardless of the
physical location (e.g., (Alice, , *)), for physical locations regardless of the user
identity (e.g., (Public,150.100.30.8,)), or for both (e.g., (Sam, *, *.1ab.com)).
Intuitively, authorizations specified for subject s; € AS are applicable to all
subjects s; such that s; < s;.

4 Authorization objects

A set Obj of Uniform Resource Identifiers (URI) [2] denotes the resources to be
protected. For XML documents, URI’s can be extended with path expressions,



which are used to identify the elements and attributes within a document. In
particular, we adopt the XPath language [20] proposed by the W3C. There
are considerable advantages deriving from the adoption of a standard language.
First, the syntax and semantics of the language are known by potential users
and well-studied. Second, several tools are already available which can be easily
reused to produce a functioning system. We keep at a simplified level the de-
scription of the constructs to express patterns in XPath, and refer to the W3C
proposal [20] for the complete specification of the language.

Definition 2 (Path expression). A path expression on a document tree is a
sequence of element names or predefined functions separated by the character /
(slash): 11 /l2/ ... [l,. Path expressions may terminate with an attribute name
as the last term of the sequence. Attribute names are syntactically distinguished
preceding them with the special character @.

A path expression ly/ls/.../l, on a document tree represents all the at-
tributes or elements named [,, that can be reached by descending the document
tree along the sequence of nodes named [y,1l,,... ,l,, 1. For instance, path ex-
pression /laboratory/project denotes the project elements which are children
of laboratory element. Path expressions may start from the root of the docu-
ment (if the path expression starts with a slash, it is called absolute) or from a
predefined starting point in the document (if the path expression starts with an
element name, it is called relative). The path expression may also contain the op-
erators dot, which represents the current node; double dot, which represents the
parent node; and double slash, which represents an arbitrary descending path.
For instance, path expression /laboratory//flname retrieves all the elements
flname descendants of the document’s root laboratory.

Path expressions may also include functions. These functions serve various
needs, like the extraction of the text contained in an element and the naviga-
tion in the document structure. The language provides a number of predefined
functions, among which: child, that permits to extract the children of a node;
descendant, that returns the descendants of a node; and ancestor, that returns
the ancestors of a node. The name of a function and its arguments are separated
by the character ‘::’.

For instance, expression fund/ancestor: :project returns the project node
which appears as an ancestor of the fund element. The syntax for XPath patterns
also permits to associate conditions with the nodes of a path. The path expres-
sion identifies the nodes that satisfy all the conditions. Conditions greatly enrich
the power of the language, and are a fundamental component in the construction
of a sophisticated authorization mechanism. The conditional expressions used to
represent conditions may operate on the “text” of elements (i.e., the character
data in the elements) or on names and values of attributes. Conditions are distin-
guished from navigation specification by enclosing them within square brackets.
Given a path expression l1/ ... /l,, on the tree of an XML document, a condition
may be defined on any label /;, enclosing in square brackets a separate evaluation
context. The evaluation context contains a predicate that compares the result of



the evaluation of the relative path expression with a constant or another expres-
sion. Conditional expressions may be combined with predefined operators and
and or to build boolean expressions. Multiple conditional expressions appearing
in a given path expression are considered to be anded (i.e., all the conditions must
be satisfied). For instance, expression /laboratory/project[1] selects the first
project child of the laboratory. Expression /laboratory/project[./@name
= "Access Models"]/paper[./@type = "internal"] identifies internal pa-
pers related to the project “Access Models”.

5 Access authorizations

At each server, a set Auth of access authorizations specifies the actions that sub-
jects are allowed (or forbidden) to exercise on the objects stored at the server site.
The object granularity for which authorizations can be specified is the whole ob-
ject for unstructured files, and the single element/attribute for XML documents.
Authorizations can be either positive (permissions) or negative (denials). The
reason for having both positive and negative authorizations is to provide a simple
and effective way to specify authorizations applicable to sets of subjects/objects
with support for exceptions [11,12].

Authorizations specified on an element can be defined as applicable to the
element’s attributes only (local authorizations) or, in a recursive approach, to
its sub-elements and their attributes (recursive authorizations). Local authoriza-
tions on an element apply to the direct attributes of the element but not to those
of its sub-elements. As a complement, recursive authorizations, by propagating
permissions/denials from nodes to their descendants in the tree, represent an
easy way to specify authorizations holding for the whole structured content of
an element (on the whole document if the element is the root). To support ex-
ceptions (e.g., the whole content but a specific element can be read), recursive
propagation from a node applies until stopped by an explicit conflicting (i.e.,
of different sign) authorization on the descendants. Intuitively, authorizations
propagate until overridden by an authorization on a more specific object [10].

Authorizations can be specified on single XML documents (document or in-
stance level authorizations) or on DTDs (DTD or schema level authorizations).
Authorizations specified on a DTD are applicable (through propagated) to all
XML documents that are instances of the DTD. Authorizations at the DTD
level, together with path expressions with conditions, provide an effective way
for specifying authorizations on elements of different documents, possibly in
a content-dependent way. Again, according to the “most specific object takes
precedence” principle, a schema level authorization being propagated to an in-
stance is overridden by possible authorizations specified for the instance. To
address situations where this precedence criteria should not be applied (e.g.,
cases where an authorization on a document should be applicable unless other-
wise stated at the DTD level), we allow users to specify authorizations, either
local or recursive, as weak. Nonweak authorizations have the behavior sketched
above and have priority over authorizations specified for the DTD. Weak autho-



rizations obey the most specific principle within the XML document, but can be
overridden by authorizations at the schema level. Access authorizations can be
defined as follows.

Definition 3 (Access authorization). An access authorization a € Auth is
a 5-tuple of the form: (subject, object, action, sign, type), where:

— subject € AS is the subject to whom the authorization is granted;

— object is either a URI in Obj or is of the form URI:PE, where URI € Obj
and PE is o path expression on the tree of URI;

— action = read is the action on which the authorization is defined;?

— sign € {4, —} is the sign of the authorization;

— type € {L,R,LW,RW} is the type of the authorization (Local, Recursive, Local
Weak, and Recursive Weak, respectively).

Example 1. Consider the XML document http://www.lab.com/CSlab.xml in-
stance of the DTD in Figure 1(a) with URI http://www.lab.com/laboratory.xml.
The following are examples of protection requirements that can be expressed in
our model. For simplicity, in the authorizations we report only the relative URI
(http://www.lab.com/ is the base URI).

Access to private papers is explicitly forbidden to members of the group Foreign.
({Foreign,**) laboratory.xml:/laboratory//paper[./@category="private"],read,—,R)

Information about public papers of CS1ab is publicly accessible, unless otherwise
specified by authorizations at the DTD-level.
({Public,*,*),CSlab.xml:/laboratory//paper[./@category="public"] read,+,RW)

Information about internal projects of CSlab can be accessed by users connected
from host 130.89.56.8 who are members of the group Admin.
({Admin,130.89.56.8,%),CS1ab.xml:project[./@type="internal"] read,+,R)

Users connected from hosts in the it domain can access information about man-
agers of CSlab public projects.
({Public,*,*.it),CSlab.xml:project[./@type="public"]/manager,read,+,W)

The type associated with each authorization on a given object, at the instance
or schema, level, determines the “behavior” of the authorization with respect to
the object structure, that is, whether it propagates down the tree, it is over-
ridden, or it overrides. The enforcement of the authorizations on the document
according to the principles discussed above essentially requires the indication of
whether, for an element/attribute in a document, a positive authorization (+),
a negative authorization (—), or no authorization applies. Since only part of the
authorizations defined on a document may be applicable to all requesters, the
set of authorizations on the elements of a document and the authorization be-
havior along the tree can vary for different requesters. Thus, a first step in access

2 We limit our consideration to read authorizations. The support of other actions,
like write, update, etc., does not complicate the authorization model. However, full
support for such actions in the framework of XML has yet to be defined.



control is the evaluation of the authorizations applicable to the requester. This
may entail the evaluation of the conditions associated with authorizations, but
it does not introduce any complication, since each element/attribute will either
satisfy or not such condition. As a complicating factor, however, several (possibly
conflicting) authorizations on a given element/attribute may be applicable to a
given requester. Different approaches can be used to solve these conflicts [10,
12]. One solution is to consider the authorization with the most specific subject
(“most specific subject takes precedence” principle), where specificity is dictated
by the partial order defined over ASH; other solutions can consider the negative
authorization ( “denials take precedence”), or the positive authorization ( “per-
missions take precedence”), or no authorizations ( “nothing takes precedence”).
Other approaches could also be envisioned, such as, for example, considering
the sign of the authorizations that are in larger number. For simplicity, in our
model we refer to a specific policy and solve conflicts with respect to the “most
specific subject takes precedence” principle and, in cases where conflicts remain
unsolved (the conflicting authorizations have uncomparable subjects), we stay
on the safe side and apply the “denials take precedence” principle. The reason
for this specific choice is that the two principles so combined naturally cover
the intuitive interpretation that one would expect by the specifications [12]. It
is important to note, however, that this specific choice does not restrict in any
way our model, which can support any of the policies discussed. Also, different
policies could be applied to the same server. The only restriction we impose
is that a single policy applies to each specific document. This capability goes
towards the definition of multiple policy systems [11].

6 Requester’s view on documents

The view of a subject on a document depends on the access permissions and
denials specified by the authorizations and their priorities. Such a view can be
computed through a tree labeling process, described next. We will use the term
node (of a document tree) to refer to either an element or an attribute in the
document indiscriminately.

6.1 Document tree labeling

The access authorizations

state whether the subject can, or cannot, access an element/attribute (or set
of them). Intuitively, the analysis of all the authorizations for a subject produces
a sign (plus or minus) on each element and attribute of a document to which some
authorization applies. This unique sign is sufficient to represent the final outcome
of the tree labeling. However, in the process itself it is convenient to associate to
each node more than one sign corresponding to authorizations of different types.
For instance, with respect to a given element, a negative Local authorization and
a positive Recursive authorization can exist; the semantics for this would be that
the whole element’s structured content (with exception of its direct attributes)



Algorithm 81 Compute-view algorithm Procedure label(n,p)

Input: A requester r¢ and an XML document URI /* Determines the final label of node n basing on

Output: The view of the requester rq on the document URI the label of n and that of its parent p *

Method: /* L is local, R is recursive, LW is local weak, RV is /* It uses first.def, which returns the first non null
recursive weak, LD is local DTD-level, RD is recursive (different from ‘e’) element in a sequence */
DTD-level */ 1. initial_label(n)

1. Azml := {a € Auth | rq < subject(a),uri(object(a))=URI 2. Case of

2. Adtd := {a € Auth | rq < subject(a),uri(object(a))=dtd(URD} 2a. n is an attribute do

3. Let » be the root of the tree T corresponding to the LDy := first.def([LDy ,LDp])

document URI if Lin = ‘c’ then Ln := first.def([Ln ,Lp,LDn])

4. initial_label(r) else Ly := firstdef([Ln ,LDy ,RDp,L¥p])

5. Lp := first_def([Lp Rp,LDp ,RDp Lip RWp]) 2b. n is an element do

6. For each c € children(r) do label(c,r) if RWp = ‘e’ then Ry := first.def([Rn Rp])

7. For each ¢ € children(r) do prune(T,c) Rip := first_def([RWy ,R¥p])

Procedure initial_label(n) RDp := first.def([RDn RDp])

Ly = first.def([Ly ,Rp LDy ,RDy Ly ,RWA])

/* It initializes (Lp,Rp,LDpn , RDp, Lip , Rin ). */
/* Variable tn, spaces over those elements according
the value of variable t */
1. For t in {L, R, LW, RW} do
la. A :={a € Azml | typc(a)=t, n € object(a)}
1b. A:= A — {a € A | 3a’ € A, subject(a’) < subject(a)}

For each ¢ € children(n) do label(c,n)

le. If A = 0 then ty := ‘e’

elsif 3a € A s.t. sign(a)=‘—" then tn = ‘=’ Procedure prune(T,n)

) else tp = ‘4’ /* Determines if n has to be removed from T */

2. For t in {LD, R0} do 1. For each ¢ € children(n) do prune(T,c)

2a. A := {a € Adtd | type(a)=t, n € object(a) } 2. ifchildren(n) = @ and L, # ‘+’
2b. A:=A—{a€ A3 € A,subject(a’) < subject(a)} then remove n from T
2¢c. If A = 0 then tp = ‘e’

elsif da € A s.t. sign(a)='—" then tp = ‘—’

else tp 1= ‘4’

Fig. 2. Compute-view algorithm

can be accessed. Such semantics must be taken care of in the context of autho-
rization propagation. In principle, therefore, each element can have associated a
different sign with respect to the local and recursive permissions/denials, at the
instance as well as at the schema level. For this reason, our tree labeling process
associates to each node n a 6-tuple (L,,R,,LD,,RD,,LW,,RW,), whose content
initially reflects the authorizations specified on the node. Each of the elements
in the tuple can assume one of three values: ‘+’ for permission, ‘—’ for denial, and
‘e’ for no authorization. The different elements reflect the sign of the authoriza-
tion of type Local, Recursive, Local for the DTD and Recursive for the DTD, Local
Weak, and Recursive Weak, holding for node n. (Note that both Local Weak and
Recursive Weak for the DTD is missing, since the strength of the authorization
is only used to invert the priority between instance and schema authorizations.)
The interpretation of authorizations with respect to propagation and overriding
(see Section 5) determines the final sign (+ or —) that should be considered
to hold for each element and authorization type. Authorizations of each node
are propagated to its attributes and, if recursive, to its sub-elements, possibly
overridden according to the “most specific object takes precedence” principle,
by which: (1) authorizations on a node take precedence over those on its ances-
tors, and (2) authorizations at the instance level, unless declared as weak, take
precedence over authorizations at the schema level. Hence, the labeling of the
complete document can be obtained by starting from the root and, proceeding
downwards with a preorder visit, updating the 6-tuple of a node n depending
on its values and the values of the 6-tuple of node p parent of n in the tree.
In particular, the value of R,, (RW,, resp.) is set to its current value, if either R,
or RW, is not null (most specific overrides), and to the value of R, (RW, resp.)
propagated down by the parent, otherwise. Schema level authorizations propa-
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Fig. 3. Tree representation of a valid XML document (a) conforming to the DTD in
Figure 1(a) and the view of user Tom (b)

gate in a similar way and the sign RD,, reflecting schema authorizations is set to
the current value of RD,, if not null, and to the value RD, propagated down by
the parent, otherwise. Given this first propagation step, according to the defined
priorities, the sign (+/—) that must hold for the specific element n is the sign
expressed by the first not null value (if any) among: Ly, Ry, LD, RD,,, LW,,, and
RW,,. L,, is updated to such value so that, at the end of the tree visit, L,, contains
the “winning” sign for n. The 6-tuples assigned to attributes are updated in
a similar way with some minor changes due to the fact that: (1) R, RW,, and
RD,, are always null for an attribute (being a terminal element of the tree, no
propagation is possible), and (2) authorizations specified as Local on the node p
parent of the attribute must propagate to the attribute.

Figure 2 illustrates an algorithm, compute-view, enforcing the labeling pro-
cedure described. The algorithm uses function first_def which, given a se-
quence of values on the domain {—, +, e}, returns the first value in the sequence
different from ‘e’. Given a requester r¢ and an XML document URI, the algo-
rithm starts by determining the set of authorizations defined for the document
at the instance level (set Azml in step 1) and at the schema level (set Adtd in
step 2). The initial label of the root r is determined and (since the root has
no parent) its final L, can easily be determined by taking the sign with the
highest priority that is not null, that is, the one coming first (first_def) in
the sequence L, ,R.,LD, ,RD,,LW, ,RW,. Procedure label(c,r) is then called for each
of the children (element or attribute) ¢ of the root to determine the label of c.
Procedure label(n,p) first computes the initial labeling of n by calling procedure
initial label. Step 1 of initial_label computes the initial value of L,,, R,,, LW,,,
and RW,,. For each authorization type ¢t € {L,R,LW,RW}, the set A of authoriza-
tions of type t is determined (Step 1a). Set A is then updated by discarding
authorizations overridden by other authorizations with more specific subjects
(Step 1b). If the resulting set is empty, ¢, (i.e., Ly, Ry, LW,, or RW,, depending
on the value of t) is set to ‘c’. Otherwise, it is set to ‘=’ or ‘4’, according to
whether a negative authorization exists (“denials take precedence”) or does not
exist in A (Step 1c). In a similar way, Step 2 determines the sign of LD, and
RD,,, respectively. Procedure label(n,p) updates the initial label so produced on



the basis of the label of n’s parent p as previously discussed. If n is an element,
the procedure is recursively called for each sub-elements of n.

6.2 Transformation process

As a result of the labeling process, the value of L,, for each node n will contain the
sign, if any, reflecting whether the node can be accessed (‘+’) or not (‘=’). The
value of L,, is equal to ‘e’ in the case where no authorizations have been specified
nor can be derived for n. Value ‘e’ can be interpreted either as a negation or as a
permission, corresponding to the enforcement of the closed and the open policy,
respectively [11]. In the following, we assume the closed policy. Accordingly,
the requester is allowed to access all the elements and attributes whose label is
positive. To preserve the structure of the document, the portion of the document
visible to the requester will also include start and end tags of elements with a
negative or undefined label, which have a descendant with a positive label. The
view on the document can be obtained by pruning from the original document
tree all the subtrees containing only nodes labeled negative or undefined. Figure 2
illustrates a procedure, prune, enforcing the pruning process described.

The pruned document may not be valid with respect to the DTD referenced
by the original XML document. This may happen, for instance, when required
attributes are deleted. To avoid this problem, a loosening transformation is ap-
plied to the DTD. Loosening a DTD simply means to define as optional all
the elements and attributes marked as required in the original DTD. The DTD
loosening prevents users from detecting whether information was hidden by the
security enforcement or simply missing in the original document.

Example 2. Consider the XML document http://www.lab.com/CSlab.xml in
Figure 3(a) and the set Auth of authorizations in Example 1. Consider now a
request to read this document submitted by user Tom, member of group Foreign,
when connected from infosys.bld1l.it (130.100.50.8). Figure 3(b) shows the
view of Tom resulting after the labeling and transformation process.

7 Implementation of the security processor

We are currently implementing a security processor for XML documents based
on the security model described in this paper. The main usage scenario for our
system involves a user requesting a set of XML documents from a remote site,
either through an HTTP request or as the result of a query [4]. Our processor
takes as input a valid XML document requested by the user, together with its
XML Access Control List (XACL) listing the associated access authorizations at
instance level. The processor operation also involves the document’s DTD and
the associated XACL specifying schema level authorizations. The processor out-
put is a valid XML document including only the information the user is allowed
to access. In our system, documents and DTDs are internally represented as ob-
ject trees, according to the Document Object Model (DOM) Level One (Core)



specification [18]. Our security processor computes an on line transformation on
XML documents. Its execution cycle consists of four basic steps.

1. The parsing step consists in the syntax check of the requested document
with respect to the associated DTD and its compilation to obtain an object-
oriented document graph according to the DOM format.

2. The tree labeling step involves the recursive labeling of the DOM tree accord-
ing to the authorizations listed in the XACLs associated to the document
and its DTD (see Section 6.1).

3. The transformation step is a pruning of the DOM tree according to its
labeling (see Section 6.2). Such a pruning is computed by means of a standard
postorder visit to the labeled DOM tree. This pruning preserves the validity
of the document with respect to the loosened version of its original DTD.

4. The unparsing step consists in generating a valid XML document in text
format, simply by unparsing the pruned DOM tree computed by the previous
step.

The resulting XML document, together with the loosened DTD, can then be
transmitted to the user who requested access to the document.

Two main architectural patterns are currently used for XML documents
browsing and querying: server side and client side processing, the former be-
ing more common in association with translation to HTML.

Our access control enforcement is performed on the server side, regardless
of whether other operations (e.g., translation to HTML) are performed by the
server site or by the client module. The XML document computed by the secu-
rity processor execution is transferred to the client as the result of its original
request. In our current design, the security processor is a service component in
the framework of a complete architecture [5]. The reason for this architectural
choice are twofold: first, server-side execution prevents the accidental transfer
to the client of information it is not allowed to see or process; second, it en-
sures the operation and even the presence of security checking to be completely
transparent to remote clients.

8 Conclusions

We have defined an access control model for restricting access to Web documents
that takes into consideration the semi-structured organization of data and their
semantics. The result is an access control system that, while powerful and able to
easily represent different protection requirements, proves simple and of easy in-
tegration with existing applications. Our proposal leaves space for further work.
Issues to be investigated include: the consideration of requests in form of generic
queries, the support for write and update operations on the documents, and the
enforcement of credentials and history- and time-based restrictions on access.
Finally, we intend to prepare in a short time a Web site to demonstrate the
characteristics of our proposal.
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