
Querying Community Web Portals

Greg Karvounarakis Vassilis Christophides Dimitris Plexousakis So�a Alexaki

Institute of Computer Science,

FORTH, Vassilika Vouton, P.O.Box 1385, GR 711 10, Heraklion, Greece

and

Department of Computer Science,

University of Crete, GR 71409, Heraklion, Greece

fgregkar, christop, dp, alexakig@ics.forth.gr

1 Introduction

Information systems such as organizational memories, vertical aggregators, infomediaries, etc. are

expected to play a central role in the 21st-century economy by enabling the development and

maintenance of speci�c communities of interest (e.g., enterprise, professional, trading) on corpo-

rate intranets or the Web [25]. Such Community Web Portals essentially provide the means to

select, classify and access, in a semantically meaningful and ubiquitous way various information

resources (e.g., sites, documents, data) for diverse target audiences (corporate, inter-enterprise,

e-marketplace, etc.). The core Portal component is a Knowledge Catalog holding descriptions, i.e.,

metadata, about the resources available to the community members. To personalize access, Knowl-

edge Catalogs organize and gather community information in a multitude of ways, which are far

more
exible and complex than those provided by conventional (relational or object) databases.

Yet, in commercial software for deploying Community Portals (e.g., Epicentric1, Plumtree2, Au-

tonomy3), querying is still limited to full-text (or attribute-value) retrieval and more advanced

information-seeking needs require navigational access. Furthermore, recent Web standards for

describing resources (see the W3C Metatada Activity4) are completely ignored.

More precisely, the Resource Description Framework (RDF) standard [32, 9] proposed by W3C

intends to facilitate the creation and exchange of resource descriptions between Community Webs.

Due to its
exible model, many content providers (e.g., ABCNews, CNN, Time Inc., New Me-

dia) and Web Portals (e.g., Open Directory5, CNET6, XMLNews7) already adopt RDF [32]. As

1www.epicentric.com
2www.plumtree.com
3www.autonomy.com
4www.w3.org/Metadata
5www.dmoz.org
6home.cnet.com
7www.xmlnews.org

1

a matter of fact, by considering community information as a collection of resources identi�ed by

URIs and by modeling resource descriptions using named properties, RDF enables the provision of

various kinds of metadata (for administration, cataloguing, content rating, site maps, push chan-

nels, etc.) about resources of quite diverse nature (ranging from PDF or Word documents, e-mail

or audio/video �les to HTML pages or XML data). Moreover, to interpret resource descriptions

within or across communities, RDF allows the de�nition of schemas [9] which (a) do not impose a

strict typing on the descriptions (e.g., a resource may be liberally decsribed using properties which

are loosely-coupled with entity classes); (b) permit overlapped descriptions of the same resources

(e.g., by classifying resources to multiple classes, serving di�erent description purposes, which are

not necessarily related by subclass relationships); (c) can be easily extended to meet the needs of

speci�c (sub-)communities (e.g., through specialization of both entity classes and properties).

Strictly speaking, in most Community Web Portals, resources may have quite heterogeneous

descriptions, that can be easily and naturally represented in RDF as directed labeled graphs where

nodes are called resources (or literals) and edges are called properties. Hence, RDF schemas

essentially de�ne vocabularies of labels (for graph nodes and edges) that can be used to describe

and query resources in di�erent application contexts. Both kinds of labels can be organized into

taxonomies carrying inclusion semantics (i.e. class or property subsumption). These modeling

primitives are crucial for supporting multi-purpose descriptions of community resources using

eventually several schemas while preserving the autonomy of description services for di�erent sub-

communities. Note that similar needs are also exhibited in other net-based applications such as

Superimposed Information Systems [20, 34] and LDAP Directory Services [29, 6]. In a nutshell, the

growing number of community resources and the proliferation of description services lead nowadays

to large volumes of RDF resource descriptions and schemas (e.g., the Open Directory Portal of

Netscape comprises arroud 100M of Subject Topics and 700M of indexed URIs). It becomes

evident that browsing such large description bases is a quite cumbersome and time-consuming

task. Unfortunately, this is the only support provided by existing RDF-enabled systems [41]

relying on low-level APIs and �le-based implementations. The question that naturally arises is to

what extent can database technology be used to support declarative access and secondary storage

management for RDF metadata.

Clearly, standard (relational or object) databases [4] are too rigid for capturing the peculiarities

of RDF descriptions and schemas (e.g., RDF classes do not de�ne relation or object types and their

instances may have quite di�erent associated properties). On the other hand, most semistructured

formalisms, such as OEM [40, 39] or UnQL [10], are totally schemaless (allowing arbitrary labels

on edges or nodes but not both). Moreover, semistructured systems o�ering typing features (e.g.,

pattern instantiation) like YAT [16, 17], cannot exploit the RDF class (or property) hierarchies.

Finally, RDF schemas have substantial di�erences from XML DTDs [8] or the more recent XML

Schema proposal [43, 35] (e.g., extension and re�nement of XML element content models is purely

2

syntactic while XML elements may have at most one content model). As a consequence, query

languages proposed for semistructured or XML data (e.g., LOREL [3], StruQL [24], XML-QL [22],

XML-GL [13], Quilt [18])) fail to interpret the semantics of RDF node or edge labels. The same

is true for the languages proposed to query the schema of (relational or object) databases (e.g.,

SchemaSQL [31], XSQL [30], Noodle [38]) as well as for logic-based (F-Logic or Datalog) RDF

query languages (e.g., SiLRI [19], Metalog [36]).

Motivated by the above issues, we propose a new data model and a query language for RDF

descriptions and schemas. Our language, called RQL, relies on a formal graph model that captures

the RDF modeling primitives and permits the interpretation of RDF descriptions by means of one

or more schemas. In this context, RQL adapts the functionality of semistructured query languages

to the peculiarities of RDF but also extends this functionality in order to query RDF schemas. As

a matter of fact, RQL is a generic tool that can be used by diverse applications aiming at building,

accessing and personalizing Community Web Portals. An example of such a Portal created for

Cultural Communities is given in Section 2. Then, we make the following contributions:

� We introduce in Section 3 a graph data model bridging and reconciling RDF Model & Syntax

with Schema speci�cations [32, 9]. The originality of our model lies on the representation of

properties as self-existent individuals, as well as the introduction of a data graph instantiation

mechanism permitting multiple classi�cation of resources. Compared to the current status of

the W3C RDFS recommendation, our model provides a richer type system including several

basic types as well as union types.

� We propose in Section 4 a declarative language, called RQL, to query both RDF descrip-

tions and related schemas. RQL is a typed language following a functional approach (a la

OQL [12]) and supports generalized path expressions featuring variables on both labels for

nodes (i.e., classes) and edges (i.e., properties). The novelty of RQL lies in its ability to

smoothly switch between schema and data querying while exploiting - in a transparent way

- the taxonomies of labels and multiple classi�cation of resources. The functionality and for-

mal interpretation of RQL is given for several classes of useful queries required by di�erent

Portal Applications. To the best of our knowledge, RQL is the �rst language o�ering this

functionality.

� We describe in Section 5 a �rst implementation of RQL on top of an object-relational DBMS

(ORDBMS). We illustrate how RDF descriptions can be represented in a ORDBMS taking

into account the related schemas and sketch how RQL queries are translated into SQL3.

More precisely, we focus on the algebraic rewriting performed by the RQL optimizer to push

the maximum of path expressions evaluation (involving both schema and data querying) to

the underlying ORDBMS.

Finally, Section 6 presents our conclusions and draws directions for further research.

3

2 Example of a Cultural Community Web Portal

In this section, we brie
y recall the main modeling primitives proposed in the Resource Description

Framework (RDF) Model & Syntax and Schema (RDFS) speci�cations [32, 9]. Our presentation

relies on an example of a Portal Catalog created for a Cultural Community. To build this Catalog

we need to describe cultural resources (e.g., MuseumWeb sites, Web pages with exhibited artifacts)

both from a Portal administrator and a museum specialist perspective. The former is essentially

interested in management metadata (e.g., mime-types, �le sizes, modi�cation dates) of resources,

whereas the latter needs to focus more on their semantic description using notions such as Artist,

Artifact, Museum and their possible relationships. These semantic descriptions can be constructed

using existing ontologies (e.g., the International Council of Museums CIDOC Reference Conceptual

Model [23]) or vocabularies (e.g., the Open Directory Topic hierachy8) employed by communities9

and cannot always extracted directly from resources' contents or links.

In the lower part of Figure 1, we can see the descriptions created for two Museum Web sites

(resources &r4 and &r7) and three images of artifacts available on the Web (resources &r2, &r3 and

&r6). For example, &r4 is �rst described as an ExtResource having two properties: title with

value the string \Reina Sophia Museum" and last modified with value the date 2000/06/09.

Then, &r4 is also classi�ed under Museum, in order to capture its semantic relationships with other

Web resources such as artifact images. For instance, we can state that &r2 is of type Painting

and has a property exhibited with value the resource &r4 and a property technique with string

value \oil on canvas". Resource &r2 as well as &r3 and &r6 are also multiple classi�ed under

ExtResource. Finally, in order to interrelate artifact resources, some intermediate resources for

artists (i.e., which are not on the Web) need to be generated, as for instance, &r1 and &r5. More

precisely, &r1 is a resource of type Painter and its URI is given internally by the Portal description

base. Associated with &r1 are: a) two paints properties with values the resources &r2 and &r3;

and b) an fname property with value \Pablo" and an lname property with value \Picasso". Hence,

diverse descriptions of the same Web resources (e.g., &r2 as ExtResource and Museum) are easily

and naturally represented in RDF as directed labeled graphs. The labels for graph nodes (i.e.,

classes or litteral types) and edges (i.e., properties) that can be employed to describe and query

resources are de�ned in RDF schemas.

In the upper part of Figure 1, we can see two such schemas: the �rst (de�ned in the namespace

ns1) intended for museum specialists while the second (de�ned in the namespace ns2) for Portal

administrators. For simplicity, we will hereforth omit the namespaces pre�xing class and property

names. In the former, the property creates, has been de�ned with domain the class Artist and

range the class Artifact. Note that properties serve to represent attributes (or characteristics)

of resources as well as relationships (or roles) between resources and they have unique names.

8www.dmoz.org
9Note that the complexity of semantic descriptions depends on the diversity of resources and the breadth of

community domains of discourse.

4

String

String
String

Integer

String

subPropertyOf (isA)

typeOf (instance)

subClassOf (isA)

creates
&r5

"oil on canvas"

last_modified

"Rodin"

sculpts

"August"

Ext.Resource

r4:www.museum.es

creates
Artist Artifact

Painter Painting

Sculptor Sculpture
material

technique

exhibited

paints

paints"Pablo"

r6:www.artchive.com/crucifixion.jpg

"Picasso"

"oil on canvas"
technique

String
paints

String

r7:www.rodin.fr

title

Date

last_modified
exhibited

Museum

r2:www.museum.es/guernica.jpg

lname

exhibited

file_size

titlemime-type

title

last_modified

r5:www.culture.net#rodin424

r1:www.culture.net#picasso132

2000/02/01

2000/06/09

r3:www.museum.es/woman.qti

technique

ns2:www.oclc.org/schema.rdf

mime-type

lname

fname

ns1:www.icom.com/schema.rdf

P
or

ta
l r

es
ou

rc
e

de
sc

rip
tio

ns
P

or
ta

l S
ch

em
as

fname

lname

fname

"Rodin Museum"

"image/jpeg"

&r3

Museum"
"Reina Sofia&r4

&r1

&r2

&r6 &r7

Figure 1: An example of RDF resource descriptions for a Cultural Portal

Furthermore, both classes and properties can be organized into taxonomies carrying simple in-

clusion semantics (multiple specialization is also supported). For example, the class Painter is a

subclass of Artist while the property paints (or sculpts) re�nes creates. In a nutshell, RDF

properties are decoupled from class de�nitions and by default they are unordered (e.g., there is

no order between the properties fname and lname), optional (e.g., the property material is not

used) and multi-valued (e.g., we have two paints properties) as well as they can be inherited (e.g.,

creates).

A speci�c resource (i.e., node) together with a named property (i.e., edge) and its value (i.e.,

node) form a statement in the RDF jargon. The three parts of a statement are called subject (e.g.,

&r1), predicate (e.g., fname), and object (e.g., \Pablo"). The subject and object should be of a type

compatible (under class specialization) with the domain and range of the predicate used (e.g., &r1

is of type Painter). Although not illustrated in Figure 1, RDF also supports structured values

called containers (i.e., bag, sequence) for grouping statements as well as higher-order statements

(i.e., rei�cation). Finally, both RDF graph schemas and descriptions can be serialized in XML

(see Appendix A for the XML serialization of our example) using various syntaxes.

The
exibility of the RDF/S data model allows us to re�ne Portal schemas and/or enrich

descriptions at any time while it ensures the autonomy of description services for di�erent (sub-)

communities. In this context, a Portal may comprise multi-purpose descriptions of its resources

5

while preserving a conceptually uni�ed view of its Catalog (i.e., through one schema or the union

of all schemas). It becomes clear that RDF modeling primitives are substantially di�erent from

those de�ned in standard (object or relational) database models. More precisely:

� Classes do not de�ne object or relation types: an instance of a class is just a resource URI

without any value/state;

� Resources may belong to di�erent classes not necessarily pairwise related by specialization:

the instances of a class may have associated quite di�erent properties while there is no other

class on which the union of these properties is de�ned;

� Properties may also be re�ned by respecting a minimal set of constraints i.e., domain and

range subclass compatibilities.

Hence, standard database models [4] are far too rigid for managing Catalogs of Community Web

Portals. In addition, less rigid models such as proposed for semistructured or XML databases [1]

also fail to capture the semantics of RDF node or edge labels used in Portal Catalogs. Either they

are completely schemaless, or the structure of RDF descriptions cannot be represented by element

content models (i.e. types) foreseen in XML DTDs or Schemas: due to multiple classi�cation,

resources may have quite irregular structures modeled only through an exception mechanism a la

SGML [28]. Still we want to take bene�t from three decades of research in high-level database

query languages in order to access Portal Catalogs. Then, Portal applications have to specify only

which resources need to be accessed, leaving the task of determining how to e�ciently access them

to the Portal query engine. Our data model and query language for Community Web Portals has

been designed in this respect and it will be presented in the rest of this paper.

3 The RDF Data Model

In this section we present a graph-based model that caters to the peculiarities of the RDF Model

& Syntax and Schema (RDFS) speci�cations [32, 9], repesented respectively by the namespaces

rdf and rdfs. The main objectives of this formal model is to represent properties as self-existent

individuals, and introduce a richer, but still
exible, type system than currently foreseen by the

RDF/S standard.

We assume the existence of the following countably in�nite and pairwise disjoint sets of symbols:

C of Class names, P of Property names, U of Resource URIs as well as a set L of Literal type

names like string, integer, date, etc. Each literal type t 2 L has an associated domain, denoted

dom(t) and dom(L) denotes
S
t2L dom(t) (i.e. rdfs:Literal). Without loss of generality, we

assume that the sets C and P are extended to include as elements the class name Class and

the property name Property respectively. The former captures the root of a class hierarchy (i.e.

rdfs:Class) while the latter the root of a property hierarchy (i.e. rdf:Property) de�ned in

RDF/S [32, 9]. Additionally, P also contains integer labels (f1; 2; : : :g) used as property names

(i.e. rdfs:ContainerMembershipProperties) by the members of container values (i.e. rdfs:Bag,

rdfs:Sequence).

6

Each RDF schema uses a �nite set of class names C � C and property names P � P . Property

types are then de�ned using class names or literal types so that: for each p 2 P domain(p) 2 C

and range(p) 2 C [L. We denote by H = (N;�) a hierarchy of class and property names, where

N = C [P . H is well-formed if � is a smallest partial ordering such that:

� if c 2 C then c � Class;

� if p 2 P then p � Property;

� if p1; p2 2 P and p1 � p2 then domain(p1) � domain(p2) and range(p1) � range(p2).

In this context, RDF data can be atomic values (e.g., strings), resource URIs, and container

values holding query results, namely rdf:Bag (i.e. multi-sets) and rdf:Sequence (i.e. lists). The

notion of sets in RDF is less important. More precisely, the main types foreseen by our model are:

� = �L j �U j f�g j [�] j (1 : � + 2 : � + : : :+ n : �)g

where �L is a literal type in L, f:g is the Bag type, [:] is the Sequence type, (:) is the Alternative
type, and �U is the type for resource URIs (in Section 4, we will see that our query language

treats URIs, i.e. identi�ers, as simple strings). Then, alternatives capture the semantics of union

(or variant) types [11], and they are also ordered (i.e., integer labels play the role of union member

markers). Since there exists a prede�ned ordering of labels for sequences and alternatives, labels

can be omitted (for bags labels are meaningless). Furthermore, all types are mutually exclusive

(e.g. a literal value cannot be also a bag) and no subtyping relation is de�ned in RDF/S. The set

of all type names is denoted by T .

This type system o�ers all the arsenal we need to capture containers with both homogeneous

and heterogeneous member types as well as to interpret RDF schema classes and properties. For

instance, unnamed ordered tuples denoted by [v1; v2; : : : ; vn] (where vi is of some type �i) can be

de�ned as heterogeneous sequences10 of type [(�1 + �2 + : : : + �n)]. Hence, RDF classes can be

seen as unary relations of the type f�Ug while properties as binary relations of type f[�U ; �U]g (for

relationships) or f[�U ; �L]g (for attributes). As we will see in Section 4, RDF containers can be

used to represent n-ary relations (e.g., as a bag of sequences). Finally, assignment of a �nite set

of URIs (of type �U) to each class name11 is captured by a population function � : C ! 2U . The

set of all values forseen by our model is denoted by V .

De�nition 1 The interpretation function [[:]] is de�ned as follows:

� for literal types: [[L]] = dom(L);

� for the Bag type, [[f�g]] = fv1; v2; : : : vng where v1; v2; : : : vn 2 V are values of type � ;

� for the Seq type, [[[�]]] = [v1; v2; : : : vn] where v1; v2; : : : vn 2 V are values of type � ;

� for the Alt type [[(�1 + �2 + : : :+ �n)]] = vi where vi 2 V 1 < i < n is a value of type �i;

� for each class c 2 C, [[c]] = �(c) [f�(c0) j c0 � cg;

� for each property p 2 P , [[p]] = f[v1; v2] j v1 2 [[domain(p)]]; v2 2 [[range(p)]]g [
S
p0�p[[p

0]].

10Observe that, since tuples are ordered, for any two permutations i1; : : : ; in and j1; : : : ; jn of 1; : : : ; n, [i1 :
v1; : : : ; in : vn] is distinct from [j1 : v1; : : : ; jn : vn].

11Note that we consider here a non-disjoint oid assignment to classes due to multiple classi�cation.

7

In the sequel we will use the notation ^[[:]] to distinguish between strict and extended interpre-

tation of classes and properties.

De�nition 2 An RDF schema is a 5-tuple RS = (VS ; ES ; ; �;H), where: VS is the set of nodes

and ES is the set of edges, H is a well-formed hierarchy of class and property names H = (N;�),

� is a labeling function � : VS [ES ! N [T , and is an incidence function : ES ! VS � VS .

The incidence function captures the rdfs:domain and rdfs:range declarations of properties.

Note that the incidence and labeling functions are total in VS [ES and ES respectively. This does

not exclude the case of schema nodes which are not connected through an edge. Additionally, we

impose a unique name assumption on the labels of RS nodes and edges.

De�nition 3 An RDF description base, instance of a schema RS, is a 5-tuple RD = (VD ; ED; ; �; �),

where: VD is a set of nodes and ED is a set of edges, is the incidence function : ED ! VD�VD,

� is a value function � : VD ! V , and � is a labeling function � : VD[ED ! 2N[T which satis�es

the following:

� for each node v in VD, � returns a set of names n 2 C [T where the value of v belongs to

the interpretation of each n: �(v) 2 [[n]];

� for each edge � in ED going from node v to node v0, � returns a property name p 2 P , such

that:

{ if p 2 P n f1; 2; : : :g, the values of v and v0 belong respectively to the interpretation of

the domain and range of p: �(v) 2 [[domain(p)]], �(v0) 2 [[range(p)]];

{ if p 2 f1; 2; : : :g, the values of v and v0 belong respectively to the interpretation of

a BagjSeqjAlt type and their corresponding member types: �(v) 2 [[BagjSeqjAlt(�)]],

�(v0) 2 [[�]].

Note that the labeling function captures the rdf:type declaration associating each RDF data

node with one or more class names.

To conclude this section, we note that our model captures the majority of RDF/S modeling

primitives with the exception of (a) properties having multiple domain de�nitions, since it is

always possible to pre�x these properties with their domain class names; (b) property rei�cation

given that it is not expressible in RDFS. Finally, built-in property types such as rdfs:seeAlso,

rdfs:isDe�nedBy, rdfs:comment, rdfs:label can be easily represented in our model, but due to

space limitations they are not considered in this paper.

4 The RDF Query Language: RQL

RQL is a typed query language relying on a functional approach (a la OQL [12]). It is de�ned by

a set of basic queries and iterators which can be used to build new ones through functional compo-

sition (of side-e�ect free functions) (see Appendix B for the complete syntax and Appendix C for

the typing system). Furthermore, RQL supports generalized path expressions, featuring variables

on labels for both nodes (i.e., classes) and edges (i.e., properties). The novelty of RQL lies in its

8

ability to smoothly combine schema and data path expressions while exploiting - in a transparent

way - the taxonomies of classes and properties as well as multiple classi�cation of resources. As we

will see in the sequel this functionality is required by several Community Web Portal applications

(e.g., simple browsing, personalization, interactive querying, etc.).

To query uniformly nodes and edges either in RDF descriptions or in schemas, RQL blurs the

distinction between schema labels (for classes, properties and types) and resource labels (i.e., URIs

and literal values). In the rest of the paper we consider that both kinds of labels can be treated

as strings and the interpretation of �U is extended as follows: [[�U]] = T [C [P [U . Abusing

notation, we use �UC (�UP) to denote the type of class (property) names in schemas and �UR to

denote only the URIs of resources in description bases.

4.1 Browsing Portals using RQL Basic Queries

The core RQL queries essentially provide the means to access RDF description bases with minimal

knowledge of the employed schema(s). These queries can be used to implement a simple browsing

interface for Community Web Portals. For instance, in Web Portals such as Netscape Open Direc-

tory,12 for each topic (i.e., class) one can navigate to its subtopics (i.e., subclasses) and eventually

discover the resources which are directly classi�ed under them. In this subsection we will see how

the basic RQL queries (see Table 1 for formal de�nitions) can be used to generate such Portal

interfaces, either o�-line (i.e., by materializing the various query results in HTML/XML �les) or

online (by computing query answers on the
y). Up-today this access functionality is supported

by existing RDF-enabled systems [41] using low-level APIs and �le-based implementations.

To warmup readers, we can �nd all the schema classes or properties used in a Portal Catalog

by issuing the following queries:

Class

Property

The top names Class and Property hold all the labels of nodes and edges that can be used

in RDF description graphs. These basic queries will return the URIs of the classes (of type �UC)

and properties (of type �UP) illustrated in the upper part of Figure 1. For a speci�c property we

can �nd its de�nition by applying the corresponding functions domain and range. For instance,

domain(creates) will the class name Artist. To traverse the class/property hierarchies, RQL pro-

vides various functions such as subClassOf (for transitive subclasses) and subClassOf^ (for direct

subclasses). For example, the following query will return the class URIs Painter and Sculptor:

subClassOf^(Artist)

More generally, we can access any collection by just writing its name. This is the case of RDF

classes considered as unary relations as we can see in the following example:

Artist

9

Expression Interpretation

subClassOf(c) fc0 2 C j c0 � cg
subClassOf^(c) fc0 2 C j c0 � c; 6 9c00 2 C; c00 � c&c0 � c00g
p [[p]]
^p [[p]]�

S
p0�p([[p

0]])

col1 intersect col2 [[col1]] \ [[col2]]
count(col) n, if 9i1; : : : ; in; 9vi1 ; : : : ; vin ;

8j; i1 � j � in (j; vj) 2 [[col]]
o in col 9i; 1 � i � count(col); (i; o) 2 [[col]]
seq[n : m] < vn; : : : ; vm > where 9j1; : : : ; jl; 1 � n � m � l;

9v1; : : : ; v(n�1); : : : ; v(m+1); : : : ; vl;8i; 1 � i � l; (ji; vi) 2 [[seq]]

Table 1: Formal Interpretation of the core RQL Queries

This query will return the bag containing the URIs www.culture.net#rodin424 and www.-

culture.net#picasso132 since these resources belong to the extent of Artist. It should be

stressed that, by default, we consider an extended class interpretation. This is motivated by the

fact that class (or property) names can be simply viewed as terms of an RDF schema vocabulary,

and RQL o�ers a term expansion mechanism similar to that of thesauri-based information retrieval

systems [27]. In order to obtain the proper instances of a class (i.e., only the nodes labeled with

the class URI), RQL provides the special operator (\^"). In our example, the result of ^Artist

will be the empty bag. Additionally, we can inspect the cardinality of class extents (or any other

collection) using the count function.

It should be stressed that RQL considers as entry-points to an RDF description base not only

the names of classes but also the names of properties. This is quite useful in several practical cases

where Portal schemas may be composed of a) just property names (e.g., the Dublin Core Metadata

Elements [45]) de�ned on the root class; b) large class hierarchies with only few properties de�ned

between the top classes (e.g., when extending ontology concepts with thesauri terms [5]); or c)

large property hierarchies resulting from the interconnection of several RDF schemas (e.g., when

integrating di�erent Metadata Schemas [21]). Therefore, the labels of nodes may not be available

or users may not be aware of them. Still, RQL allows one to formulate queries as for example:

creates

By considering properties as binary relations, the above query will return the bag of ordered

pairs of resources belonging to the extent of creates (source and target are simple position indices):

source target

www.culture.net#rodin424 www.artchive.com/cruci�xion.jpg

www.culture.net#picasso132 www.museum.es/guernica.jpg

www.culture.net#picasso132 www.museum.es/woman.qti

We can observe that, in the extent of properties we also consider their subproperties (e.g.,

paints and sculpts). We believe that using only few abstract labels (i.e., the top-level classes or

properties in an RDF schema) to query complex descriptions is an original feature of RQL. As

12www.dmoz.org

10

we will show in the sequel, properties are the main building blocks for formulating RQL path

expressions. Common set operators applied to collections of the same type are also supported.

For example, the query:

Sculpture intersect ExtResource

will return a bag with the URI www.artchive.com/crucifixion.jpg, since, according to our

example, it is the only resource classi�ed under both classes. Note that the typing system of RQL

(see Appendix C for the typing system) permits the union of a bag of URIs with a bag of strings

but not between a class and a property extent (unary vs. binary relation).

Besides class or property extents, RQL also allows the manipulation of RDF container values

as Bag and Sequence. More precisely, the Boolean operator in can be used for membership test

in any kind of collection. Additionally, to access a member of a Sequence we can use the operator

\[]" with an appropriate position index (or index range). If the speci�ed member elements do

not exist the query will return an empty sequence.

Finally, RQL supports standard Boolean predicates as =, <, > and like (for string pattern

matching). All operators can be applied on literal values or resource URIs. It should be stressed

that the latter case also covers comparisons between class or property URIs. For example, the

condition \Painter < Artist" will return true since the �rst operand is a subclass of the second

one. Disambiguation is performed in each case by examining the operands (e.g., literal value vs.

URI equality, lexicographical ordering vs. class ordering, etc.).

4.2 Personalizing Portal Access using RQL Filters

In order to personalize access to Community Web Portals, more complex RQL queries are needed.

Portals personalization is actually supported by de�ning information channels to which community

members may subscribe. Channels essentially preselect a collection of the Portal resources related

to a theme, subject or topic (e.g. Museum Web sites) and they are speci�ed using the recent RDF

Site Summary (RSS) schema [7]. An RSS channel is speci�ed by a static RDF/XML document

containing the URIs of the resources along with some administrative metadata (e.g., titles, etc.).

Not surprisingly, we can use RQL to de�ne channels as views over the Portal Catalog and generate

on-demand their contents each time members connect to the Community Portal.

In order to iterate over collections of RDF data (e.g., class or property extents, container

values, etc.) and introduce variables, RQL provides a select-from-where �lter. Given that the

whole description base can be viewed as a collection of nodes/edges, path expressions can be used

in RQL �lters for the traversal of RDF graphs at arbitrary depths. The formal semantics of RQL

�lters and path expressions are given in Table 2. Consider, for instance, the following query:

Q1: Find the resources having a title property.

select X, Y

from fXgtitlefYg

11

In the from clause we use a basic data path expression with the property name title. The node

variablesX and Y take their range restrictions from the source and target values of the title extent.

As we can see in Figure 1, the title property has been de�ned with domain the class ExtResource

but, due to multiple classi�cation, X may be valuated with resources also labeled with any other

class name (e.g., Artifact, Museum, etc.). Yet, in our model X has the unique type �UR, Y the

literal type string, and the Q1 result is of type f[�UR; string]g.

InQ1 we essentially ignore the schema classes labeling the endpoint instances of the properties.

Note that considering properties as entry-points to RDF graphs obviates the need to introduce

more complex path expressions, featuring path variables, (in the style of POQL [2] or Lorel [3])

in order to access property values from a speci�c root entity (e.g., Artifactsfag@P.titleftg).

The select clause de�nes, as usual, a projection over the variables of interest. Moreover, we

can use \select *" to include in the result the values of all variables. This clause will construct

an ordered tuple, whose arity depends on the number of variables. The result of the whole �lter

will be a bag. Thus, the type of the result of Q1 will be f[�UR; string]g. The closure of RQL is

ensured by the basic queries supported for container values (see Table 1).

In order to de�ne a channel with Museum resources available in our Cultural Portal we need to

restrict the source values of the title extent only to resources labeled with the class name Museum.

To achieve this, we can formulate the following query:

Q2: Find the Museum resources and their title.

select X, Y

from MuseumfXg.titlefYg

HereMuseumfXg is also a basic data path expression where X ranges over the resource URIs

in the extent of class Museum. The \." used to concatenate the two path expressions is just a

syntactic shortcut for an implicit join condition between the source values of the title extent and

X . Hence, Q2 is equivalent to the query MuseumfXg; fZgtitlefYg where X = Z. Again X , Z

are of type �UR, Y of type string and the Q2 result will contain all the resources accessible by our

Museum channel and their titles (e.g. the site www.museum.es with title "Reina So�a Museum").

In addition, for each available resource (called item), channels usually provide a textual de-

scription of their information content. This description can also be generated automatically by

appropriate RQL queries. For instance, we can use the names of artists whose artifacts are ex-

hibited in the Museums as descriptions of our channel items. Hence, we need to formulate the

following more complex query:

select Y, Z, V, R

from fXgcreates.exhibitedfYg.titlefZg, fWgfnamefVg, fQglnamefRg

where X = W and X = Q

In the from clause we use three data path expressions. Variable X (Y) ranges over the source

(target) values of the creates (exhibited) property. The condition X = W (X = Q) denotes

an explicit join between the extents of the properties fname (lname) and creates on their source

12

Data Path:
select X

from cfXg
fv j v 2 [[c]]g

select X;Y

from fXgpfY g
f< v1; v2 >j< v1; v2 >2 [[p]]g

select X;Y

from fXg@PfY g
f< v1; v2 >j 9p 2 P;< v1; v2 >2^[[p]]g

Schema path:
select $X
from Classf$Xg

fc j c 2 Cg

select @P
from Propertyf@Pg

fp j p 2 Pg

select $X; $Y
from f$Xgpf$Y g

f< c1; c2 >j c1; c2 2 C; c1 � domain(p);
c2 � range(p)g

select $X; $Y
from f$Xg@Pf$Y g

f< c1; c2 >j 9p 2 P; c1; c2 2 C; c1 � domain(p);
c2 � range(p)g

Mixed path:
select X;Y; $Z; $W
from fX : $ZgpfY : $Wg

f< c1; v1; c2; v2 >j c1; c2 2 C; c1 � domain(p);
v1 2 [[c1]]; c2 � range(p);
v2 2 [[c2]];< v1; v2 >2 [[p]]g

select X;Y; $Z; $W
from fX : $Zg@PfY : $Wg

f< c1; v1; c2; v2 >j 9p 2 P; c1; c2 2 C;

c1 � domain(p); v1 2 [[c1]];
c2 � range(p); v2 2 [[c2]];
< v1; v2 >2^[[p]]g

Table 2: Formal Interpretation of the basic RQL path expressions

values. Since the range of the exhibited property is the class Museum we don't need to further

restrict the labels for the Y values.

Two remarks are noteworthy. First, RQL data path expressions may be liberally composed

using node and edge labels (see Table 3 for formal de�nitions) as for instance Museum:tiltle

(a class and property name) or creates:exhibited (two property names). The \." syntactic

sugaring is used to introduce appropriate join conditions between the left and the right part of

the expression (recall that RDF properties are directed). In the above query, it implies a join

between the extents of creates and exhibited on their target and source values respectively. This

way, RQL captures the existential semantics of navigation in semistructured RDF graphs13: there

exist two paints properties for www.culture.net#picasso132while there is no exhibited property

for www.museum.es/woman.qti (see Figure 1). Observe also that in the extent of creates we also

consider its subproperties paints and sculpts.

Second, due to multiple classi�cation of nodes (e.g., www.museum.es is both a Museum and

ExtResource) we can query paths in a data graph that are not explicitly declared in the schema.

For instance, creates:exhibited:title is not a valid schema path since the domain of the title

property is the class ExtResource and not Museum. Still, we can query the coresponding data

paths in the style of semistructured or XML query languages (e.g., LOREL [3], StruQL [24], XML-

QL [22], XML-GL [13], Quilt [18]). However, as we will see in the next subsection, RQL is also

able to �lter data paths using in a more strict way schema information. Finally, the result of the

previous query can be expressed in the RDF/XML syntax, in order to list the resources of our

MuseumChannel, as follows:

1 <rdf:Bag ID="MuseumChannel">

2 <rdf:li>

3 <rdf:Seq>

13Nested queries featuring existential and universal quanti�cation are also supported.

13

4 <rdf:li rdf:resource = "www.museum.es"/>

5 <rdf:li> "Reina Sofia Museum"</rdf:li>

6 <rdf:li> Pablo </rdf:li>

7 <rdf:li> Picasso </rdf:li>

8 </rdf:Seq>

9 </rdf:li>

10 <rdf:li>

11 <rdf:Seq>

12 <rdf:li rdf:resource = "www.rodin.fr"/>

13 <rdf:li> "Rodin Museum"</rdf:li>

14 <rdf:li> August </rdf:li>

15 <rdf:li> Rodin </rdf:li>

16 </rdf:Seq>

17 </rdf:li>

18 </rdf:Bag>

For reasons of simplicity, in the remainder of the paper, we will present query results using an

internal tabular representation (e.g., as :1NF relations), instead of RDF containers.

4.3 Querying Portal Catalogs with Large Schemas

In the previous subsections we have illustrated how RQL can be used to specify, in a declarative

way, the access functionality actually supported by Portals like Netscape Open Directory. However,

such simple browsing interfaces force the user to navigate through the whole hierarchy of topics

(i.e., classes) in order to �nd resources classi�ed under the leaf topics. It is evident that for large

Portal schemas this is a cumbersome and time consuming task (e.g. the Art hierarchy of the Open

Directory alone contains 20000 subtopics and currently 200000 indexed resources). Clearly, we

also need declarative query support for navigating through the schema taxonomies of classes and

properties. Consider, for instance, the following query:

Q3: Find the resources of a type more speci�c than Painter and more general than Neo-

Impressionist which have created something.

select X, Y

from fX:$ZgcreatesfYg

where $Z <= Painter and $Z >= Neo-Impressionist

In the from clause of Q3 we can see a mixed path expression featuring both data (e.g., X

of type �UR) and schema variables, pre�xed by the symbol $ (e.g., $Z of type �UC), on graph

nodes. The class variable $Z will be valuated to the domain class of the property creates (i.e.,

Artist) and recursively to all of its subclasses (i.e., Painter, Sculptor, or Neo-Impressionist).

Then, the conditions in the where clause will restrict $Z to the classes in the hierarchy having

as superclass Painter and as subclasse Neo-Impressionist14. Naturally, without any restriction

to $Z the whole extent of creates will be returned and $Z will be valuated to the actual classes

14Note than in case of multiple inheritance, several paths in the class hierarchy will be traversed.

14

of its source values. Note that if the class in the where clause is not a valid subclass of the

domain of creates then the query will return an empty bag without accessing the creates extent.

To make this kind of path expressions more compact for class equality (e.g. $Z = Painter),

shortcuts as \fX:PaintergcreatesfYg" are also supported. The formal semantics of RQL mixed

path expressions are given in Table 2.

In other words, RQL extends the notion of generalized path expressions [14, 15, 3] to entire

class (or property) inheritance paths. This is quite useful since resources can be multiply classi�ed

and several properties coming from di�erent class hierarchies may be used for the same resource

descriptions. Still RQL allows one to query properties emanating from resources only according

to a speci�c class hierarchy, as we will see in the next example.

Q4: Find the values of properties emanating from resources of type ExtResource.

select X,Y

from fX:ExtResourceg@PfYg

X Y

www.artchive.com/cruci�xion.jpg \text/jpg"

www.rodin.fr \Rodin Museum"

www.museum.es \Reina Sophia Museum"

www.rodin.fr 2000/06/09

www.museum.es 2000/02/01

Here, the property variables, pre�xed by the symbol @, like @P (of type �UP) are implicity

range restricted to Property. As a matter of fact the mixed path expression in Q4 is a shortcut

of the more complex expression fX : ExtResourceg(Propertyf@Pg)fY g, where the parenthe-

sized expression de�nes an iterator over the Property extent. Then, ExtResource should be the

domain class of @P valuations and X , Y will be range restricted for each successful binding of

@P . The type of X is �UR while that of Y is the union of all the range types of ExtResource

properties. According to the schema of Figure 1, @P will valuated to �le size, title, mime type,

and last modi�ed, while Y will be of type (integer + string + date). In case we want to �lter Y

values in the where, RQL supports appropriate coercions of union types in the style of POQL [2]

or Lorel [3] (see Appendix C).

4.4 Querying Portal Schemas

In this subsection, we focus our attention on querying RDF schemas, regardless of any underlying

instances. The main motivation for this is to use RQL as a high-level language to implement

schema browsing. This is useful when Portal Catalogs use large schemas (e.g. the Open Directory

Topic hierachy) to describe resources. In this context, Portal administrators may not be aware of

all the classes and properties they can use to describe resources while RDF schemas carry infor-

mation which is only implicitly stated (e.g., the polymorphism of domain and range of properties).

Consider for instance the following query:

Q5: Find all the properties which specialize the property creates and may have as domain the

class Painter along with their corresponding domain and range classes.

15

select X; Y

from cfXg:pfY g
f< v1; v2 >j v1 2 [[c]];< v1; v2 >2 [[p]]

select X; Y;Z

from fXgpfY g:qfZg
f< v1; v2; v3 >j< v1; v2 >2 [[p]];< v2; v3 >2 [[q]]g

select $X; $Y; $Z
from f$Xgpf$Y g:qf$Zg

f< c1; c2; c4 >j c1; c2; c3; c4 2 C; c1 � domain(p);
c2 � range(p); c3 � domain(q);
c4 � range(q); c2 = c3g

select X; $C1; Y; $C2; Z; $C4

from fX : $C1gpfY : $C2g:qfZ : $C4g

f< v1; c1; v2; c2; v4; c4 >j c1; c2; c3; c4 2 C; c1 � domain(p);
v1 2^[[c1]]; c2 � range(p); v2 2^[[c2]];
c3 � domain(q); v3 2^[[c3]];
c4 � range(q); v4 2^[[c4]];
< v1; v2 >2 [[p]];< v3; v4 >2 [[q]];
c2 = c4; v2 = v3g

select X; $C1; Y; $C2; Z

from fX : $C1gpfY : $C2g:qfZg

f< v1; c1; v2; c2; v4 >j c1; c2 2 C; c1 � domain(p); v1 2^[[c1]];
c2 � range(p); v2 2^[[c2]];
< v1; v2 >2 [[p]];< v3; v4 >2 [[q]];
v2 = v3g

select X; $C1; Y; $C2; $C4

from fX : $C1gpfY : $C2g:qf$C4g

f< v1; c1; v2; c2; c4 >j c1; c2; c3; c4 2 C; c1 � domain(p);
v1 2^[[c1]]; c2 � range(p); v2^2 [[c2]];
< v1; v2 >2 [[p]]; c3 � domain(q);
c4 � range(q); c2 = c3g

select X; Y; $C4

from fXgpfY g:qf$C4g
f< v1; v2; c4 >j c3; c4 2 C;< v1; v2 >2 [[p]]; c3 � domain(q);

c4 � range(q); v2 2^[[c3]]g

Table 3: Formal Interpretation of RQL Path compositions

select $X, @P, $Y

from f:Painterg@Pf:$Yg

where @P <= creates

@P $Y

creates Artifact

creates Painting

creates Sculpture

paints Painting

The schema path expression in the from clause of Q5 introduces two variables: @P (of type

�UP) ranging over Property, and $Y (of type �UC) ranging over the range class (and its subclasses)

of each @P valuation ($Y <= range(@P)). Furthermore, @P should be a subproperty of creates

for which the domain is Painter or one of its superclasses. This expression is just a shortcut for

f: $Xg@Pf: $Y g where $X = Painter and $X <= domain(@P). Given the schema of Figure 1,

@P will be valuated to the properties creates and paints. Due to class inheritance, creates may

have as range any subclass of Artifact. The same is true for the range classes of paints. The formal

semantics of RQL schema path expressions are given in Table 2.

In cases where an automatic expansion of domain and range classes is not desired, RQL allows

one to obtain only the classes which are directly involved in the de�nition of properties. We can

issue, for instance, the following query:

Q6: For all the classes in the hierachy rooted at Artist �nd the properties and their range

classes which are directly de�ned.

select domain(@P), @P, range(@P)

from Propertyf@Pg

where domain(@P) <= Artist

$X @P $Y

Artist creates Artifact

Artist fname string

Artist lname string

Painter paints Painting

Sculptor sculpts Sculpture

16

Compared to Q5 the result of this query will contain only the classes for which a property is

de�ned, along with its name and range. Note also that the functional nature of RQL allows the

use of functions anywhere in a �lter as long as typing rules are respected: domain(@P) is of type

�UC , as is the class name Artist and range(@P) is of type �UCL (i.e. the URIs of class names

extended to include literal type names).

We conclude this subsection, with a query example illustrating how RQL schema paths can

be composed to perform more complex schema navigations (see Table 3 for formal de�nitions).

Note that this kind of queries cannot be expressed in existing languages with schema querying

capabilities (e.g., SchemaSQL [31], XSQL [30], Noodle [38]).

Q7: What classes can be reached (at one step) from the range of the property creates.

select $Y, @P, $Z

from createsf:$Yg.@Pf:$Zg

$Y @P $Z

Artifact exhibited Museum

Painting exhibited Museum

Sculpture exhibited Museum

Painting technique string

Sculpture material string

In Q7 the \." notation implies a join condition between the range classes of the property

creates and the domain of @P valuations: $Y <= domain(@P). As we can see from the query

result, this join condition will enable us to follow properties which can be applied (i.e. either

directly de�ned of inherited) to any subclass of the creates range.

4.5 Putting it all Together

In the previous subsections we have presented the main RQL path expressions allowing to browse

and �lter description bases with or whithout schema knowledge, or, alternatively to query ex-

clusively the description schemas. As we will see in the sequel, RQL �lters also admit arbitrary

mixtures of di�erent kinds of path expressions (see Table 3 for formal de�nitions). This functional-

ity is required especially when di�erent servers of Portal Catalogs (within or across communities)

need to exchange resource metadata. The following two senarios depict this functionality.

In the �rst, we assume two servers for Portal Catalogs having di�erent schemas (e.g., identi�ed

by two namespaces ns1 and ns2 shown in Figure 1) while sharing the same description base (e.g.,

in the case of sub-communities). Then we can combine schema information from the �rst server

with data information from the second one, as illustrated in the next example:

Q8: Find the resources modi�ed after 2000/01/01 which can be reached by a property applied

to the class Painting and its subclasses.

17

select @R, Y, Z

from (select @P

from f:$Xg@P

where $X <= Painting

)f@Rg.fYglast modi�edfZg

where Z > 2000/01/01

@R Y Z

exhibited www.museum.es 2000/06/09

exhibited www.rodin.fr 2000/02/01

In Q8 the nested query will return all the property names which are used by the �rst server and

satisfy the �ltering conditions (e.g., exhibited, technique). Then, the result of this nested query

will serve to query the description base using the properties known only by the second server (e.g.

last modi�ed). Here, the variable @R (of type �UP) will iterate over the result of the nested query

and the shortcut \." implies the join condition: target(@R) = source(last modified) for each

valuation of @R. In other terms, we will obtain those resources modi�ed after 2000/01/01 for

which there exists an incoming edge with a label (property) that is returned by the nested query.

In the second scenario, the two Portal servers have both di�erent description bases and schemas.

Then one of them can send to the other the following query:

Q9: Tell me everything you know about the resources of the site \www.museum.es".

select X, $Z, @P, Y, $W

from fX:$Zg@PfY:$Wg

where Y like "www.museum.es*" or X like "www.museum.es*"

This query will iterate over all property names (@P). Then for each property it will iterate over

its domain ($Z) and range ($W) classes, and, �nally over the corresponding extents (X , Y).

According to the example of Figure 1 the type of Y is the union (�UC + string + integer+ date)

and the result of Q9 will be the following:

X $Z @P Y $W

www.culture.net#picasso132 Painter paints www.museum.es/guernica.jpg Painting

www.culture.net#picasso132 Painter paints www.museum.es/woman.qti Painting

www.museum.es/guernica.jpg Painting exhibited www.museum.es Museum

www.museum.es/guernica.jpg Painting technique "oil on canvas" string

www.museum.es/woman.qti Painting technique "oil on canvas" string

www.museum.es ExtResource title "Reina Sophia Museum" string

www.museum.es ExtResource last modi�ed 2000/06/09 date

We conclude this section with a brief comparison of RQL to other related proposals, especially

logic-based frameworks for RDF querying. SiLRI [19] proposes some reasoning mechanisms to

query RDF descriptions and schemas using F-logic inference rules. Although powerful, this ap-

proach does not capture the peculiarities of RDF: re�nement of properties is not allowed (since

properties are de�ned within the classes), container values for modeling n-ary relations are not

18

supported (since it relies in a pure object model), while multiple classi�cation of resources to in-

compatible -through \isa"- classes is not possible (due to strict typing). In the opposite direction,

Metalog [36] uses Datalog to model mainly RDF properties as binary predicates, while it suggests

an extension of the RDFS speci�cation with variables and logical connectors (and, or, not, im-

plies). However, storing and querying RDF descriptions with Metalog almost totally disregards

the semantics of classes and properties de�ned in an RDF schema. None of the existing proposals

combines all the functionality we provide with RQL.

5 The RQL Interpreter and RDF Storage System

As we have seen in the previous section, the algebraic interpretation of RQL, relies on a rela-

tional representation of RDF description and schema graphs. Hence, we have implemented RDF

storage and querying on top of an object-relational DBMS (ORDBMS), namely PostgreSQL15.

The architecture of our RDF-enabled DBMS is illustrated in Figure 2. It comprises three main

components: the RDF validator and loader (VRP), the RDF description database (DBMS) and

the query language interpreter (RQL).

5.1 RDF Loader and Relational Representation

We have implemented our Loader as an extension of the Validating RDF Parser (VRP16) for an-

alyzing, validating and processing RDF schemas and descriptions. Unlike existing RDF parsers

(e.g., SiRPAC17), VRP is based on standard compiler generator tools for Java, namely CUP/JFlex

(similar to YACC/LEX). The stream-based parsing support of JFlex and the quick LALR grammar

parsing of CUP ensure a good performance, when processing large volumes of RDF descriptions.

The VRP validation module relies on an internal object representation, separating RDF schemas

from their instances. This representation simpli�es their manipulation while it enables an incre-

mental loading of RDF descriptions and schemas which is crucial for large volumes of RDF data

(e.g., Netscape Open Directory exports 100M of class hierarchies and 700M of resource descrip-

tions). The various loading methods have been implemented as member functions of the related

VRP internal classes and communication with PostgreSQL relies on the JDBC protocol.

The core RDF/S model is represented in PostgreSQL by four tables, namely, Class, Property,

SubClass and SubProperty which capture the class and property-type hierarchies de�ned in an

RDF schema. Then, for every class or property used in a Portal Catalog we create a new table to

store its instances (recall that all names are unique). In other words, our RDF-enabled DBMS relies

on a schema speci�c representation of resource descriptions similar to the attribute-based approach

proposed for storing XML data [26, 44]. This approach ensures better query performances and

smaller database volumes for storing (and indexing) RDF data than others using a monolithic

15www.postgresql.org
16www.ics.forth.gr/proj/isst/RDF
17www.w3.org/RDF/Implementations/SiRPAC

19

sourceuri

L
oa

de
r

A
PI

Class

A
PI

E
ng

in
e

E
va

lu
at

io
n

RQL

Optimizer
Module

Constructor
Graph

DBMS

Pa
rs

er

VRP Model
subClass subPropsuperClass superProp

SubClass SubProperty

VRP

Validator

Pa
rs

er

domainc_name

Artist creates Artifact
range

Painter

Artist

Artist paints

rodin424 rodin424 crucifixion.jpg

target

Property

Painter creates

p_name

creates

Figure 2: The RQL Interpreter and Storage System

table [37, 33] to represent RDF descriptions and schemas under the form of triples (i.e., subject,

object, predicate). Three remarks are noteworthy.

First, unlike XML, RDF graphs contains labels for both graph nodes and edges. Therefore,

we need to generate tables for both properties and classes instances. Second, RDF labels may

be organized in taxonomies through multiple specialization (in opposite to element types de�ned

in XML DTDs or Schemas). This information is captured by the SubClass and SubProperty

tables, while the corresponding instance tables are also connected through the subtable relationship,

supported by PostgreSQL. Third, there is no real need for expensive (due to data fragmentation in

several tables) RQL queries, reconstructing the initially loaded resource descriptions - as in XML

query languages - since there are various ways to serialize RDF graph descriptions in an XML �le

(see Appendix A). As a matter of fact, several variations (similar to [42]) of the above relational

representation are currently studied in order to minimize the number of joins required to evaluate

RQL path expressions.

5.2 RQL Query Processing

The RQL interpreter consists of (a) the parser, analyzing the syntax of queries; (b) the graph

constructor, capturing the semantics of queries in terms of typing (see Appendix C) and inter-

dependencies of involved expressions; and (c) the evaluation engine, accessing RDF descriptions

from the underlying database. Since our implementation relies on a full-
edged ORDBMS like

PostgreSQL, the goal of the RQL optimizer is to push as much as possible query evaluation to

the underlying SQL3 engine. Then pushing selections or reordering joins to evaluate RQL path

expressions is left to PostgreSQL while the evaluation of RQL functions for traversing class and

property hierarchies relies on the existence of appropriate indices (see the last paragraph). The

main di�culty in translating an entire RQL algebraic expression to a single SQL3 query is due

to the fact that most RQL path expressions interleave schema with data querying. Consider for

instance the following query:

select y

from fxgcreatesfy:Paintingg.techniquefzg

where z=\oil on canvas"

20

Select

creates[x,y]

y in ^(Painting)

Select

Select

y=w

z=‘‘oil on canvas’’

subclassOf

y

creates[x,y]

$C=Painting

(range(creates))[$C]

y in ^($C)

SemiJoin

Project Project

Select

y=w

z=‘‘oil on canvas’’

y

y=w

Project

Select
z=‘‘oil on canvas’’

y

SemiJoin

creates[x,y] Painting[p]

y=p

Join JoinJoin

technique[w,z] technique[w,z] technique[w,z]

Figure 3: Example of an RQL query optimization

During the query graph construction, the various shortcuts (e.g., \.") are expanded and

variable dependencies are determined. The algebraic translation of the above query is illustrated

in the left part of Figure 3. Data variables x, y (w, z) iterate over the extent of creates (technique)

while the class variable $C iterates over all the subclasses of the range of creates. The mixed

path expression of our example is translated to a semi-join between the extent of creates and

its permitable domain and range classes (y in ^$C). Since in this query we are interested only

in instances of the class Painting we can omit the second branch of the semi-join and rewrite

the algebraic expression as illustrated in the middle part of Figure 3 (semi-joins can be always

transformed to selections, products/joins and vise-versa). Then the selection implies an existential

condition over the Painting extent. This operation is equivalent to a semi-join over creates and

Painting as illustrated in the right part of Figure 3. The �nal expression can be translated into

an SQL3 query as follows (the * indicates an extended interpretation of tables, according to the

subtable hierarchy):

select X.target

from creates* X, technique* Y, Painting P

where X.target = Y.source and X.target = P.uri and Y.target='oil on canvas'

We conclude this section with one remark concerning the encoding of class and property names.

Recall that schema or mixed RQL path expressions need to recursively traverse a given class (or

property) hierarchy. We can transform such traversal queries into interval queries on a linear

domain, that can be answered e�ciently by standard DBMS index structures (e.g., B-trees). For

this, we need to replace class (or property) names by ids using an appropriate encoding system

(e.g., Dewey, post�x, pre�x, etc.) for which a convenient total order exists between the elements

in the hierarchy. We are currently working on the choice of a such linear representation of node

or edge labels allowing us to e�ciently answer queries that involve di�erent kinds of traversals in

a hierarchy (e.g., an entire subtree, a path from the root, etc.).

21

6 Summary and Future Work

In this paper, we presented a declarative language for querying Portal Catalogs, through a series of

examples of increasing expressiveness requirements and complexity. The novelty of RQL lies in its

ability to smoothly combine schema and data querying, while transparently exploiting taxonomies

of class and property and multiple classi�cation of resources. We believe that we have illustrated

the power of RQL �ltering capabilities (i.e., without any restructuring operators) subsuming semi-

structured and XML query languages [3, 24, 22, 13, 18], as well as schema query languages [31,

30, 38]. RQL can also express the majority18 of queries expressible in the series of languages

presented for querying network directories [29]. A detailed analysis of the evaluation complexity

of the language is an ongoing e�ort. Furthermore, exhaustive performance tests of RQL for

various use cases (as the Open Directory and our home made Cultural Portal) are currently under

elaboration taking into account di�erent variations of our relational representation, as well as,

di�erent encoding schemas for class and property hierarchies. Finally, we are also planning to

study the problem of updates in RDF description bases as well as the restructuring capabilities

(e.g., grouping) of RQL required by various Community Web Portal applications.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann, 1999.

[2] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Sim�eon. Querying
Documents in Object Databases. International Journal on Digital Libraries, 1(1):5{18, April
1997.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query Language
for Semistructured Data. International Journal on Digital Libraries, 1(1):68{88, April 1997.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[5] B. Amann and I. Fundulaki. Integrating Ontologies and Thesauri to Build RDF Schemas.
In ECDL-99: Research and Advanced Technologies for Digital Libraries, Lecture Notes in
Computer Science, pages 234{253, Paris, France, September 1999. Springer-Verlag.

[6] S. Amer-Yahia, H. Jagadish, L. Lakshmanan, and D. Srivastava. On bounding-schemas
for ldap directories. In Proceedings of the International Conference on Extending Database
Technology, volume 1777 of Lecture Notes in Computer Science, pages 287{301, Konstanz,
Germany, March 2000. Springer.

[7] G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis, L. Dodds, J. Eisenzopf, D. Galbraith,
R. Guha, E. Miller, and E. van der Vlist. RSS 1.0 Speci�cation Protocol. Draft, August
2000.

[8] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible markup language (XML) 1.0.
W3C Recommendation, February 1998. Available at http://www.w3.org/TR/REC-xml/.

[9] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Speci�cation
1.0, W3C Candidate Recommendation. Technical Report CR-rdf-schema-20000327, W3C,
Available at http://www.w3.org/TR/rdf-schema, March 27, 2000.

18With the exception of count, we have not yet considered the addition of canonical aggregation operators such
as max, min etc. in RQL.

22

[10] P. Buneman, S.B. Davidson, and D. Suciu. Programming Constructs for Unstructured Data.
In Proceedings of International Workshop on Database Programming Languages, Gubbio,
Italy, 1995.

[11] L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76(2/3):138{
164, 1988.

[12] R.G.G. Cattell and D. Barry. The Object Database Standard ODMG 2.0. Morgan Kaufmann,
1997.

[13] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: a
Graphical Language for Querying and Restructuring XML Documents. In Proceedings of
International World Wide Web Conference, Toronto, Canada, 1999.

[14] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Documents to
Novel Query Facilities. In Proc. of ACM SIGMOD Conf. on Management of Data, pages
313{324, Minneapolis, Minnesota, May 1994.

[15] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized Path
Expressions. In Proc. of ACM SIGMOD Conf. on Management of Data, pages 413{422,
Montreal, Canada, June 1996.

[16] V. Christophides, S. Cluet, and J. Sim�eon. On Wrapping Query Languages and E�cient
XML Integration. In Proceedings of ACM SIGMOD Conf. on Management of Data, Dallas,
TX., May 2000.

[17] S. Cluet, C. Delobel, J. Sim�eon, and K. Smaga. Your Mediators Need Data Conversion! In
Proceedings of ACM SIGMOD Conf. on Management of Data, pages 177{188, Seattle, WA.,
June 1998.

[18] D. Florescu D. Chamberlin, J. Robie. Quilt: An xml query language for heterogeneous data
sources. In WebDB'2000, pages 53{62, Dallas, US., May 2000.

[19] S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service for rdf. In
W3C Query Languages Workshop, Cambridge, Mass., 1998.

[20] L. Delcambre and D. Maier. Models for superimposed information. In ER '99 Workshop on
the World Wide Web and Conceptual Modeling, volume 1727 of Lecture Notes in Computer
Science, pages 264{280, Paris, France, November 1999. Springer.

[21] L. Dempsey and R. Heery. DESIRE: Development of a European Service for Infor-
mation on Research and Education, 1997. http://www.ukoln.ac.uk/metadata/desire/-
overview/rev ti.htm.

[22] A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for
XML. In Proceedings of the 8th International World Wide Web Conference, Toronto, 1999.

[23] M. Doerr and N. Crofts. Electronic organization on diverse data - the role of an objec t
oriented reference model. In Proceedings of 1998 CIDOC Conference, Melbourne, Australia,
October 1998.

[24] M.F. Fernandez, D. Florescu, J. Kang, A.Y. Levy, and D. Suciu. System Demonstration
- Strudel: A Web-site Management System. In Proceedings of ACM SIGMOD Conf. on
Management of Data, Tucson, AZ., May 1997. Exhibition Program.

[25] C. Finkelstein and P. Aiken. Building Corporate Portals using XML. McGraw-Hill, 1999.

[26] D. Florescu and D. Kossmann. A performance evaluation of alternative mapping schemes
for storing xml data in a relational database. Technical Report 3680, INRIA Rocquencourt,
France, May 1999. Available at http://www-caravel.inria.fr/dataFiles/GFSS00.ps.

[27] D.J. Foskett. Theory of clumps. In K. Sparck Jones and P. Willett, editors, Readings in
Information Retrieval, pages 111{134. Morgan Kaufmann, 1997.

[28] ISO. Information Processing-Text and O�ce Systems- Standard Generalized Markup Lan-
guage (SGML). ISO 8879, 1986.

23

[29] H. Jagadish, L. Lakshmanan, T. Milo, D. Srivastava, and D. Vista. Querying network di-
rectories. In Proceedings of ACM SIGMOD Conf. on Management of Data, pages 133{144,
Philadelphia, USA, 1999. ACM Press.

[30] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 393{402, 1992.

[31] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. SchemaSQL - a language for interop-
erability in relational multi-database systems. In Proceedings of International Conference on
Very Large Databases (VLDB), pages 239{250, Bombay, India, September 1996.

[32] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax Spec-
i�cation. Technical report, World Wide Web Consortium, February 1999. Available at
http://www.w3.org/TR/REC-rdf-syntax.

[33] J. Liljegren. Description of an rdf database implementation. Available at http://WWW-
DB.stanford.edu/~melnik/rdf/db-jonas.html.

[34] D. Maier and L. Delcambre. Superimposed information for the internet. In ACM SIGMOD
Workshop on The Web and Databases Philadelphia, Pennsylvania, June 3-4, pages 1{9, 1999.

[35] M. Maloney and A. Malhotra. XML schema part 2: Datatypes. W3C Candidate Recommen-
dation, October 2000. Available at http://www.w3.org/TR/xmlschema-2/.

[36] M. Marchiori and J. Saarela. Query + metadata + logic = metalog. InW3C Query Languages
Workshop, Cambridge, Mass., 1998.

[37] S. Melnik. Storing rdf in a relational database. Available at http://WWW-DB.stanford.edu/-
~melnik/rdf/db.html.

[38] I.S. Mumick and K.A. Ross. Noodle: A Language for Declarative Querying in an Object-
Oriented Database. In Proceedings of International Conference on Deductive and Object-
Oriented Databases (DOOD), pages 360{378, Phoenix, Arizona, December 1993.

[39] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker: A Mediation System
Based on Declarative Speci�cations. In Proceedings of IEEE International Conference on
Data Engineering (ICDE), pages 132{141, New Orleans, LA., February 1996.

[40] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Hetero-
geneous Information Sources. In Proceedings of IEEE International Conference on Data
Engineering (ICDE), pages 251{260, Taipei, Taiwan, March 1995.

[41] Some proposed RDF APIs.
GINF: http://www-db.stanford.edu/~melnik/rdf/api.html,
RADIX: http://www.mailbase.ac.uk/lists/rdf-dev/1999-06/0002.html,
Netscape Communicator: http://lxr.mozilla.org/seamonkey/source/rdf/base/idl/,
RDF for Java: http://www.alphaworks.ibm.com/formula/rdfxml/.

[42] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, and J.F. Naughton. Rela-
tional databases for querying xml documents: Limitations and opportunities. In Proceedings
of International Conference on Very Large Databases (VLDB), pages 302{314, Edinburgh,
Scotland, UK, September 1999. Morgan Kaufmann.

[43] H.S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML schema part 1: Structures.
W3C Candidate Recommendation, October 2000. Available at http://www.w3.org/TR/-
xmlschema-1/.

[44] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The Design and Performance Evaluation of
Alternative XML Storage Strategies. Technical report, CS Dept., Universiy of Wisconsin,
2000. Available at http://www.cs.wisc.edu/niagara/papers/vldb00XML.pdf.

[45] S. Weibel, J. Miller, and R. Daniel. Dublin Core. In OCLC/NCSA metadata workshop report,
1995.

24

A An Example of RDF Descriptions and Schemas

1 <?xml version="1.0"?>
2
3 <rdf:RDF xml:lang="en"
4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:rdfs="http://www.w3.org/TR/2000/CR-rdf-schema-20000327#"
6 xmlns="">
7 <rdfs:Class rdf:ID="Artist"/>
8 <rdfs:Class rdf:ID="Artifact"/>
9 <rdfs:Class rdf:ID="Museum"/>
10 <rdfs:Class rdf:ID="Sculptor">
11 <rdfs:subClassOf rdf:resource="#Artist"/>
12 </rdfs:Class>
13 <rdfs:Class rdf:ID="Painter">
14 <rdfs:subClassOf rdf:resource="#Artist"/>
15 </rdfs:Class>
16 <rdfs:Class rdf:ID="Sculpture">
17 <rdfs:subClassOf rdf:resource="#Artifact"/>
18 </rdfs:Class>
19 <rdfs:Class rdf:ID="Painting">
20 <rdfs:subClassOf rdf:resource="#Artifact"/>
21 </rdfs:Class>
22 <rdfs:Class rdf:ID="ExtResource"/>
23
24 <rdf:Property rdf:ID="creates">
25 <rdfs:domain rdf:resource="#Artist"/>
26 <rdfs:range rdf:resource="#Artifact"/>
27 </rdf:Property>
28 <rdf:Property rdf:ID="paints">
29 <rdfs:domain rdf:resource="#Painter"/>
30 <rdfs:range rdf:resource="#Painting"/>
31 <rdfs:subPropertyOf rdf:resource="#creates"/>
32 </rdf:Property>
33 <rdf:Property rdf:ID="sculpts">
34 <rdfs:domain rdf:resource="#Sculptor"/>
35 <rdfs:range rdf:resource="#Sculpture"/>
36 <rdfs:subPropertyOf rdf:resource="#creates"/>
37 </rdf:Property>
38 <rdf:Property rdf:ID="technique">
39 <rdfs:domain rdf:resource="#Painting"/>
40 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#String"/>
41 </rdf:Property>
42 <rdf:Property rdf:ID="material">
43 <rdfs:domain rdf:resource="#Sculpture"/>
44 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#String"/>
45 </rdf:Property>
46 <rdf:Property rdf:ID="fname">
47 <rdfs:domain rdf:resource="#Artist"/>
48 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#String"/>
49 </rdf:Property>
50 <rdf:Property rdf:ID="lname">
51 <rdfs:domain rdf:resource="#Artist"/>
52 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#String"/>
53 </rdf:Property>
54 <rdf:Property rdf:ID="exhibited">
55 <rdfs:domain rdf:resource="#Artifact"/>
56 <rdfs:range rdf:resource="#Museum"/>
57 </rdf:Property>
58 <rdf:Property rdf:ID="title">
59 <rdfs:domain rdf:resource="#ExtResource"/>
60 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#String"/>
61 </rdf:Property>
62 <rdf:Property rdf:ID="mime-type">
63 <rdfs:domain rdf:resource="#ExtResource"/>
64 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#String"/>
65 </rdf:Property>

25

66 <rdf:Property rdf:ID="file_size">
67 <rdfs:domain rdf:resource="#ExtResource"/>
68 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#Integer"/>
69 </rdf:Property>
70 <rdf:Property rdf:ID="last_modified">
71 <rdfs:domain rdf:resource="#ExtResource"/>
72 <rdfs:range rdf:resource="http://www.w3.org/rdf-datatypes.xsd#Date"/>
73 </rdf:Property>
74
75 <Painter rdf:ID="picasso132">
76 <paints>
77 <Painting rdf:about="http://www.museum.gr/guernica.jpg">
78 <technique>oil on canvas</technique>
79 <exhibited>
80 <Museum rdf:about="http://www.museum.gr"/>
81 </exhibited>
82 </Painting>
83 </paints>
84 <paints>
85 <Painting rdf:about="http://www.museum.gr/woman.qti">
86 <technique>oil on canvas</technique>
87 </Painting>
88 </paints>
89 <fname>Pablo</fname>
90 <lname>Picasso</lname>
91 </Painter>
92
93 <Sculptor rdf:ID="rodin424" fname="August" lname="Rodin">
94 <creates>
95 <Sculpture rdf:about="http://www.artchive.com/crucifixion.jpg">
96 </Sculpture>
97 </creates>
98 </Sculptor>
99
100 <Sculpture rdf:about="http://www.artchive.com/crucifixion.jpg">
101 <exhibited> <Museum rdf:about="http://www.rodin.fr"/> </exhibited>
102 </Sculpture>
103
104 <ExtResource rdf:about="http://www.museum.gr/guernica.jpg"/>
105 <ExtResource rdf:about="http://www.museum.gr/woman.qti"/>
106 <ExtResource rdf:about="http://www.artchive.com/crucifixion.jpg">
107 <mime-type>image/jpeg</mime-type>
108 </ExtResource>
109 <ExtResource rdf:about="http://www.museum.gr">
110 <title>Reina Sofia Museum</title>
111 <last_modified>2000/06/09</last_modified>
112 </ExtResource>
113 <ExtResource rdf:about="http://www.rodin.fr">
114 <title>Rodin Museum</title>
115 <last_modified>2000/02/01</last_modified>
116 </ExtResource>
117
118 </rdf:RDF>

26

B The BNF Grammar of RQL

query ::= "(" query ")"
j "subClassOf" ["^"] "(" query ")"
j "subPropertyOf" ["^"] "(" query ")"
j "domain" "(" query ")"
j "range" "(" query ")"
j query set op query
j query bool op query
j "not" query
j query comp op query
j query "in" query
j "count" "(" query ")"
j query "[" integer literal "]"
j query "[" integer literal ":" integer literal "]"
j constant
j var
j &identi�er
j "^" identi�er
j sfw query
j "exists" var query ":" query
j "forall" var query ":" query

sfw query ::= "select" projslist "from" rangeslist ["where" query]

comp op ::= "<" j "<=" j ">" j ">=" j "=" j "!=" j "like"

set op ::= "union" j "intersect" j "minus"

bool op ::= "and" j "or"

constant ::= integer literal
j real literal
j quoted string literal
j quoted char literal
j date
j "true"
j "false"

var ::= identi�er
j "$" identi�er
j "@" identi�er
j "Class"
j "Property"

projslist ::= "*" j var f "," var g

rangeslist ::= onerange f "," onerange g

onerange ::= var query j pathexpr

pathexpr ::= pathelem f "." pathexpr g

pathelem ::= ["f" from to "g"] query ["f" from to "g"]

from to ::= var [":" query]

27

C RQL Typing System

C.1 Basic Queries

ith: e : [�]; i : integer; i 2 [1::n]
(e[i]) : �

in: e : �; e0 : (f�g j [�])
(e in e0) : boolean

comp: e : �; e0 : � 0; � = � 0; � 2 (=; 6=; <;>;�;� like)
(e � e0) : boolean

ucomp: e : (�1 + �2 + : : :+ �n); e
0 : � 0; 9i 2 [1::n] : �i = � 0; � 2 (=; 6=; <;>;�;�; like)

(e � e0) : boolean; coerce(e) : �i(�i)

ucompu: e : (�1 + �2 + : : :+ �n); e
0 : (� 01 + � 02 + : : :+ � 0n); 9i; j 2 [1::n] : �i = � 0j ; � 2 (=; 6=; <;>;�;� like)

(e � e0) : boolean; coerce(e) : �i(�i); coerce(e
0) : �j(�

0
j)

set operations: col1 : (f�g j [�]); col2 : (f�
0g j [� 0]); � = � 0; � 2 (intersect j union j minus)
(col1 � col2) : f�g

C.2 Filters and Path Expressions

data paths: e : f�g
(select x from efxg) : f�g; x : �

e : f[�1; �2]g
(select x; y from fxgefyg) : f[�1; �2]g; x : �1; y : �2

8@e 2 P;@e : f[�i; �
0
i]g

(select x; y from fxg@efyg) : f[�i(�i);�i(�
0
i)]g; x : �i(�i); y : �i(�

0
i)

schema paths: e : f�g; � = (�UC j�UP); r = ($c j @p)
(select r from efrg) : f�g; r : �

e : �UP ; domain(e) : �UC ; range(e) : �UCL
(select $c1; $c2 from f$c1gef$c2g) : f[�UC ; �UCL]g; $c1 : �UC ; $c2 : �UCL

8@e 2 P; domain(@e) : �UC ; range(@e) : �UCL
(select $c2; $c2 from f$c1g@ef$c2g) : f[�UC ; �UCL]g; $c1 : �UC ; $c2 : �UCL

mixed paths: e : �UP ; domain(e) : �UC ; range(e) : �UCL; eval(e) : f[�1; �2]g
(select $c1; x; $c2; y from fx : $c1gefy : $c2g) :

f[�UC ; �1; �UCL; �2]g; $c1 : �UC ; x : �1; $c2 : �UCL; y : �2

28

