
The RDFSuite: Managing Voluminous RDF Description Bases

So�a Alexaki Vassilis Christophides Greg Karvounarakis Dimitris Plexousakis

Institute of Computer Science,

FORTH, Vassilika Vouton, P.O.Box 1385, GR 711 10, Heraklion, Greece

falexaki, christop, gregkar, dpg@ics.forth.gr

Karsten Tolle

Johann Wolfgang Goethe-University, Robert-Mayer-Str. 11-15,

P.O.Box 11 19 32, D-60054 Frankfurt/Main, Germany

tolle@dbis.informatik.uni-frankfurt.de

Abstract

Metadata are widely used in order to fully exploit information resources available

on corporate intranets or the Internet. The Resource Description Framework (RDF)

aims at facilitating the creation and exchange of metadata as any other Web data. The

growing number of available information resources and the proliferation of description

services in various user communities, lead nowadays to large volumes of RDF metadata.

Managing such RDF resource descriptions and schemas with existing low-level APIs and

�le-based implementations does not ensure fast deployment and easy maintenance of real-

scale RDF applications. In this paper, we advocate the use of database technology to

support declarative access, as well as, logical and physical independence for voluminous

RDF description bases.

We present RDFSuite, a suite of tools for RDF validation, storage and querying.

Speci�cally, we introduce a formal data model for RDF description bases created using

multiple schemas. Compared to the current status of the W3C standard, our model relies

on a complete set of validation constraints for the core RDF/S (without rei�cation) and

provides a richer type system including several basic types as well as union types. Next,

we present the design of a persistent RDF Store (RSSDB) for loading resource descriptions

in an object-relational DBMS by exploring the available RDF schema knowledge. Our

approach preserves the
exibility of RDF in re�ning schemas and/or enriching descriptions

at any time, whilst it ensures good performance for storing and querying voluminous RDF

descriptions. Last, we brie
y present RQL, a declarative language for querying both RDF

descriptions and schemas, and sketch query evaluation on top of RSSDB.

Keywords: RDF Formal Models, Storage Systems, Declarative Query Languages, Tools

for the Semantic Web, Portal Applications.

1

1 Introduction

Metadata are widely used in order to fully exploit information resources (e.g., sites, docu-

ments, data, images, etc.) available on corporate intranets or the Internet. The Resource

Description Framework (RDF) [15] aims at facilitating the creation and exchange of meta-

data as any other Web data. More precisely, RDF provides i) a Standard Representation

Language for metadata based on directed labeled graphs in which nodes are called resources

(or literals) and edges are called properties and ii) an XML syntax for expressing metadata

in a form that is both humanly readable and machine understandable. Due to its
exible

model, RDF is playing a central role in the next evolution step of the Web - termed the Se-

mantic Web. Indeed, RDF/S enable the provision to di�erent target communities (corporate,

inter-enterprise, e-marketplace, etc.) of various kinds of metadata (for administration, rec-

ommendation, content rating, site maps, push channels, etc.) about resources of quite diverse

nature (ranging from PDF or Word documents, e-mail or audio/video �les to HTML pages or

XML data). To interpret resource descriptions within or across communities, RDF allows for

the de�nition of schemas [4] i.e., vocabularies of labels for graph nodes (i.e., classes) and edges

(i.e., properties) that can be used to describe and query RDF description bases. Furthermore,

RDF schema vocabularies can be easily extended to meet the description needs of speci�c

(sub-)communities (e.g., through specialization of both entity classes and properties) while

preserving the autonomy of description services for each (sub-)community.

Many content providers (e.g., ABCNews, CNN, Time Inc.) and Web Portals (e.g., Open

Directory, CNET, XMLTree1) or browsers (e.g., Netscape 6.0, W3C Amaya) already adopt

RDF. In a nutshell, the growing number of available information resources and the prolifer-

ation of description services in various user communities, lead nowadays to large volumes of

RDF metadata (e.g., the Open Directory Portal of Netscape export in RDF around 170M of

Subject Topics and 700M of indexed URIs). It becomes evident that managing such volu-

minous RDF resource descriptions and schemas with existing low-level APIs and �le-based

implementations [19] does not ensure fast deployment and easy maintenance of real-scale

RDF applications. Still we want to take bene�t from three decades of research in database

technology to support declarative access and logical and physical independence for RDF de-

scription bases. In this way, RDF applications have to specify in a high-level language only

which resources need to be accessed, leaving the task of determining how to e�ciently store

or access them to the underlying RDF database engine.

1
www.dmoz.org, home.cnet.com, www.xmltree.com

2

range

targetsourceURI

p_name
Property

ns2#rodin ns2#crucifixation

L
oa

de
r

A
PI

Class

ns1#Painter

A
PI

E
ng

in
e

E
va

lu
at

io
n

RQL

Optimizer
Module

ns1#Artist ns1#Artist ns1#creates ns1#Artifact
Constructor

Graph

DBMS

Pa
rs

er

VRP Model
ns1#creates

subClass subProp

ns1#Artist

superClass superProp

ns1#Painter ns1#paints

SubClass SubProperty

VRP

Validator

Pa
rs

er

domainc_name

 ns2#rodin

ns1#creates

Figure 1: Overview of the ICS-FORTH RDFSuite

In this paper we present ICS-FORTH RDFSuite2, a suite of tools for RDF validation (Val-

idating RDF Parser-VRP), storage (RDF Schema Speci�c DataBase-RSSDB), and querying

(RDF Query Language-RQL) using an object-relational DBMS (see Figure 1). To illustrate

the functionality and the performance of RDFSuite we use as testbed the catalog of the Open

Directory Portal exported in RDF (see Section 2). Then we make the following contributions:

� Section 3 introduces a formal data model for description bases created according to

the RDF Model & Syntax and Schema speci�cations [15, 4]. The main challenge for

this model is the representation of several interconnected RDF schemas, as well as the

introduction of a graph instantiation mechanism permitting multiple classi�cation of

resources. Compared to the current status of the W3C standard, our graph model relies

on a complete set of validation constraints for the core RDF/S (without rei�cation) and

provides a richer type system including several basic types as well as union types.

� Section 4 presents our persistent RDF Store (RSSDB) for loading resource descrip-

tions in an object-relational DBMS (ORDBMS) by exploring the available RDF schema

knowledge. Our approach preserves the
exibility of RDF in re�ning schemas and/or

enriching descriptions at any time, whilst it ensures better performance for storing and

querying voluminous RDF descriptions than those proposals using a monolithic ta-

ble [18, 16, 5] to represent resource descriptions and schemas under the form of triples.

� Section 5 brie
y presents a declarative language, called RQL, to query both RDF de-

scriptions and related schemas. RQL is a typed language that follows a functional

approach (�a la OQL [7]) and supports generalized path expressions featuring variables

on both labels for nodes (i.e., classes) and edges (i.e., properties). Finally, we describe

the implementation of RQL on top of RSSDB and sketch how RQL queries are trans-

lated into SQL3 by the RQL interpreter in order to push as much as possible path

expressions evaluation to the underlying ORDBMS.

Finally, Section 6 presents our conclusions and draws directions for further research.

2
www.ics.forth.gr/proj/isst/RDF

3

2 The Open Directory Portal Catalog

Portals are nowadays becoming increasingly popular by enabling the development and main-

tenance of speci�c communities of interest (e.g., enterprise, professional, trading) [11] on

corporate intranets or the Internet. Such Community Web Portals essentially provide the

means to select, classify and access, in a semantically meaningful and ubiquitous way various

information resources. Portals may be distinguished according to the breadth of the target

community (corporate, inter-enterprise, e-marketplace, web, etc.), the complexity of informa-

tion resources (e.g., sites, documents, data), as well as, the quality of the relationships aiming

to establish with the community members (horizontal, vertical). In all cases, the key Portal

component is the Knowledge Catalog holding descriptive information, i.e., metadata, about

the community resources.

For instance, the catalog of Internet (or horizontal) Portals, like Yahoo!3 or Open Di-

rectory4, mainly uses huge hierarchies of topics (e.g., ODP uses 16 hierarchies with 248236

topics) to semantically classify Web resources (e.g., ODP index 2,251,641 sites). Additionally,

various administrative metadata (e.g., titles, mime-types, modi�cation dates) of resources are

usually created using a Dublin-Core like schema. Then, users can either navigate through the

topics of the catalog to locate resources of interest or issue a full-text query on topic names

and the URIs or the titles of described resources. In Section 5 we will illustrate how our query

language can be used to provide a declarative access to the catalog content. In the sequel, we

will illustrate how Portal Catalogs can be easily and e�ectivelly represented using RDF/S.

The middle part of Figure 2 depicts the two schemas employed by the Open Directory:

the �rst is intended to capture the semantics of web resources while the second is intended

for Portal administrators. The scope of the declarations is determined by the correspond-

ing namespace de�nition of each schema, e.g., ns1 (www.dmoz.org/topics.rdfs) and ns2

(www.oclc.com/dublincore.rdfs). For simplicity, we will hereforth omit the namespaces as

well as the paths from the root of the topic hierarchies (since topics have non-unique names)

pre�xing class and property names. In the ODP topics schema, we can see two out of the

sixteen hierarchies, namely, Regional and Recreation whose topics are represented as RDF

classes (see the RDF/S default namespaces in the upper part of Figure 2). Various semantic

relationships exist between these classes either within a topic hierarchy (e.g., subtopics) or

across hierarchies (e.g., related topics). The former, is represented using the RDF subclass

3
www.yahoo.com

4
www.dmoz.org

4

SunScale

Integer

String

String

Date
last_modified

Ext.Resource

title

description

file_size

Regional Recreation

Lodging

Hotel Directories

Hotel related

Pulitzer Opera

title
title

title

Class
property

r1

r2
r3

ns1:www.dmoz.org/topics.rdfs ns2:www.oclc.org/dublincore.rdfs

typeOf (instance)

subClassOf (isA)

rdf:www.w3.org/1999/02/22-rdf-syntax-ns rdfs:www.w3.org/TR/2000/CR-rdf-schema-20000327

P
or

ta
l r

es
ou

rc
e

de
sc

ri
pt

io
ns

P
or

ta
l S

ch
em

as
R

D
F

/S

Travel Vacation
-Rentals

Disneyland

r4

title

Site officiel de
Disneyland Paris

description

Official site of
Disneyland Paris

description

Bedford

Paris

Ile-de-France

Figure 2: Modeling in RDF the Catalog of the Open Directory Portal

relationship (e.g., Travel is a, not necessarily direct, subclass of Paris) and the latter using

an RDF property named related (e.g., between the classes Ile-de-France and Hotel). Finally,

the ODP administrative metadata schema represents the various OCLC Dublin-Core [22]

descriptive elements (with the execption of the Subject element), as literal RDF properties

de�ned on class ExtResource. Note that properties serve to represent attributes of resources

as well as relationships between resources. Properties can also be organized in taxonomies in

a manner similar to the organization of classes.

Using these schemas, we can see in the lower part of Figure 2, the descriptions created for

four sites (resources &r1-&r4). For instance, &r4 is a resource classi�ed under both the classes

Paris and ExtResource and has three associated literal properties: a title property with value

\Disneyland" and two description properties with values \O�cial site of Disneyland Paris"

and \Site o�ciel de Disneyland Paris" respectively. In the RDF jargon, a speci�c resource

(i.e., node) together with a named property (i.e., edge) and its value (i.e., node) form a

statement. Each statement is represented by a triple having a subject (e.g., &r4), a predicate

(e.g., title), and an object (e.g., \Disneyland "). The subject and object should be of a type

compatible (under class specialization) with the domain and range of the predicate (e.g., &r4

is of type ExtResource). In the rest of the paper, the term description base will be used to

5

denote a set of RDF statements. Although not illustrated in Figure 2, RDF also supports

structured values called containers (i.e., bag, sequence) for grouping statements, as well as,

higher-order statements (i.e., rei�cation5). Finally, both RDF graph schemas and descriptions

can be serialized in XML using various forests of XML trees (i.e., there is no root XML node).

We can observe that properties are unordered (e.g., the property title can be placed before

or after the property description), optional (e.g., the property �le size is not used), can be

multi-valued (e.g., we have two description properties), and they can be inherited (e.g., to

subclasses of ExtResource), while resources can be multiply classi�ed (e.g., &r4). These mod-

eling primitives provide all the
exibility we need to represent heterogeneous descriptions of

community resources (for di�erent purposes), while preserving a conceptually uni�ed view of

the community's description base through one or the union of all related schemas. It becomes

clear that the RDF data model di�ers substantially from standard (object or relational) mod-

els [2] or the recently proposed models for semistructured or XML databases [1]. Therefore

existing systems cannot be used, as such, to manipulate voluminous RDF description bases.

In the sequel, we will present a logical data model allowing users to issue high-level queries

on RDF/S graphs while several physical representations of these graphs can be implemented

by the underlying DBMS to improve storage volumes and optimize queries.

3 A Formal data model for RDF

Since the notion of resource is somehow overloaded in the RDF M&S and RDFS speci�ca-

tions [15, 4], we distinguish, RDF resources w.r.t. their nature into individual entities (i.e.,

nodes) and properties of entity resources (i.e., edges).

� Nodes : a set of individual resources, representing abstract or concrete entities of

independent existence, e.g., class ExtResource de�ned in an RDF Schema or a speci�c

web resource e.g., &r4 (see Figure 2).

� Edges : a set of properties, representing both attributes of and binary relationships

between nodes, either abstract or concrete, e.g., the property title de�ned in our example

schema and used by the speci�c resource &r4.

RDF Resources are also distinguished according to their concreteness into tokens and

classes.

� Tokens : a set of concrete resources, either objects, or literals (e.g., &r4, \SunScale").

� Classes : a set of abstract entity or property resources, in the sense that they collectively

refer to a set of objects similar in some respect (e.g., ExtResource).

5
We will not treat rei�cation in this paper.

6

Figure 3: Semantic inconsistencies in specialization of properties

To label abstract (i.e., schema) or concrete (i.e., token) RDF nodes and edges, we assume

the existence of the following countably in�nite and pairwise disjoint sets of symbols: C of

Class names, P of Property names, U of Resource URIs as well as a set L of Literal type names

such as string, integer, date, etc. Each literal type t 2 L has an associated domain, denoted

dom(t) and dom(L) denotes
S
t2L dom(t) (i.e., the rdfs:Literal declaration). Without loss

of generality, we assume that the sets C and P are extended to include as elements the class

name Class and the property name Property respectively. The former captures the root of

a class hierarchy (i.e., the rdfs:Class declaration) while the latter captures the root of a

property hierarchy (i.e., the rdf:Property declaration) de�ned in RDF/S [15, 4]. The set P

also contains integer labels (f1; 2; : : :g) used as property names (i.e., the rdfs:Container-

MembershipProperties declaration) by the members of container values (i.e., the rdfs:Bag,

rdfs:Sequence declarations).

Each RDF schema uses a �nite set of class names C � C and property names P � P

whose scope is determined by one or more namespaces. Property types are then de�ned using

class names or literal types so that: for each p 2 P , domain(p) 2 C and range(p) 2 C [L.

We denote by H = (N;�) a hierarchy of class and property names, where N = C [P . H

is well-formed if � is a smallest partial ordering such that: if p1; p2 2 P and p1 � p2, then

domain(p1) � domain(p2) and range(p1) � range(p2)
6.

Three remarks are noteworthy. First, unlike the current RDF M&S and RDFS speci�-

cations [15, 4] the domain and range of properties should always be de�ned. This additional

constraint is required mainly because the sets of RDF/S classes C and literal types L are

disjoint. Then, a property with unde�ned range may take as values both a class instance (i.e.

a resource) or a literal. Since, the union of rdfs:Class and rdfs:Literal is meaningless in

RDF/S, this freedom leads to semantic inconsistencies. Additional semantic problems arise

in the case of specialization of properties with unde�ned domains and ranges. More precisely,

6
The symbol � extends � with equality.

7

Alphabets: C1 C \ P \ T = ;

C2 L \ U = ;

Schema: C3 8p 2 P;9!c1 2 C (c1 = domain(p)) ^ 9!c2 2 C [TL (c2 = range(p))

C4 8c; c0; c00 2 C :

C4.0 � c � Class

C4.1 � c � c0; c0 � c00) c � c00

C4.2 � c � c0) c 6= c0

C5 8p; p0; p00 2 P :

C5.0 � p � Property

C5.1 � p � p0; p0 � p00) p � p00

C5.2 � p � p0) p 6= p00

C5.3 � p � p0) domain(p) � domain(p0) ^ range(p) � range(p0)

C5.4
� p � p0 ^ p � p00) domain(p) � domain(p0) ^ domain(p) � domain(p00)

^range(p) � range(p0) ^ range(p) � range(p00)

Data: C6 8v 2 U) �(v) 2 C [T

C7 8p 2 P [f1; 2; : : :g; [v1; v2] 2 semp:

C7.1 � if p 2 f1; 2; : : :g) �(v1) 2 frdf:Bag, rdf:Alt, rdf:Seqg

C7.2 � if p 2 P) �(v1) � domain(p); �(v2) � range(p)

Table 1: Formal de�nition of imposed constraints

to preserve the set inclusion requirement of specialized properties (binary predicates) their

domain and range should also specialize the domain and range (unary predicates) of their

superproperties. This is something which, in the case of multiple specialization of properties

(see Figure 3 -a-), cannot always be ensured because RDF/S do not support intersection of

classes (in a Description Logics style). The second constraint imposes that both domain and

range declarations of properties should be unique. This is foremost required because RDF/S

do not support union of classes, which can be considered as the domain of properties. Further-

more, it is not possible to infer domains in case of specialization of properties with multiple

domains (see Figure 3 -b-).

Last, we need to consider an additional constraint of a syntactic nature imposing that class

and property de�nitions should be complete. This means that, on the one hand superclass and

superproperty de�nitions should accompany the class and property de�nitions respectively

and, on the other, the de�nition of the domain and range of a property should be given

along with that of the property. In this manner, the extension of existing RDF hierarchies

of names by re�ning their classes and properties in a new namespace is still permitted, while

at the same time semantic inconsistencies that may arise due to arbitrary unions of de�ned

hierarchies are avoided. Such inconsistencies include the introduction of multiple ranges of

properties or the introduction of cycles in class or property hierarchies. Unlike the current

RDF M&S and RDFS speci�cations [15, 4] this constraint ensures that the union of two

valid RDF hierarchies of names is always valid. The imposed constraints are summarized in

8

Table 1 using the notation introduced in this section.

In this context, RDF data can be atomic values (e.g., strings), resource URIs, and con-

tainer values holding query results, namely rdf:Bag (i.e., multi-sets) and rdf:Sequence (i.e.,

lists). More precisely, the main types foreseen by our model are:

� = �L j �U j f�g j [�] j (1 : � + 2 : � + : : : + n : �)

where �L is a literal type in L, f:g is the Bag type, [:] is the Sequence type, (:) is the

Alternative type, and �U is the type for resource URIs 7. Alternatives capture the semantics

of union (or variant) types [6], and they are also ordered (i.e., integer labels play the role of

union member markers). Since there exists a prede�ned ordering of labels for sequences and

alternatives, labels can be omitted (for bags, labels are meaningless). Furthermore, all types

are mutually exclusive (e.g., a literal value cannot also be a bag) and no subtyping relation is

de�ned in RDF/S (e.g., between bags of di�erent types). The set of all type names is denoted

by T .

It should be stressed that the main subtleties for typing RDF/S graphs are related to the

following facts:

� Classes do not de�ne object or relation types: an instance of a class is just a resource

URI without any value/state;

� Resources may belong to di�erent classes not necessarily pairwise related by specializa-

tion: the instances of a class may have quite di�erent properties associated with them

while there is no other class on which the union of these properties is de�ned;

The proposed type system o�ers all the arsenal we need to capture containers with both

homogeneous and heterogeneous member types, as well as, to interpret RDF schema classes

and properties. For instance, unnamed ordered tuples denoted by [v1; v2; : : : ; vn] (where vi is

of some type �i) can be de�ned as heterogeneous sequences8 of type [(�1 + �2 + : : : + �n)].

Hence, RDF classes can be seen as unary relations of the type f�Ug while properties as binary

relations of type f[�U ; �U]g (for relationships) or f[�U ; �L]g (for attributes). As we will see

in Section 5, RDF containers can be also used to represent n-ary relations (e.g., as a bag of

sequences). Finally, assignment of a �nite set of URIs (of type �U) to each class name9 is

captured by a population function � : C ! 2U . The set of all values forseen by our model is

denoted by V .

7
In Section 5, we will see that our query language treats URIs, i.e., identi�ers, as simple strings.

8
Observe that, since tuples are ordered, for any two permutations i1; : : : ; in and j1; : : : ; jn of 1; : : : ; n,

[i1 : v1; : : : ; in : vn] is distinct from [j1 : v1; : : : ; jn : vn].
9
Note that we consider here a non-disjoint object id assignment to classes due to multiple classi�cation.

9

De�nition 1 The interpretation function [[:]] is de�ned as follows:

� for literal types: [[L]] = dom(L);

� for the Bag type, [[f�g]] = fv1; v2; : : : vng where v1; v2; : : : vn 2 V are values of type � ;

� for the Seq type, [[[�]]] = [v1; v2; : : : vn] where v1; v2; : : : vn 2 V are values of type � ;

� for the Alt type [[(�1 + �2+ : : :+ �n)]] = vi where vi 2 V 1 < i < n is a value of type �i;

� for each class c 2 C, [[c]] = �(c) [
S
c0�c[[c

0]];

� for each property p 2 P , [[p]] = f[v1; v2] j v1 2 [[domain(p)]]; v2 2 [[range(p)]]g[
S
p0�p[[p

0]].

De�nition 2 An RDF schema is a 5-tuple RS = (VS ; ES ; ; �;H), where: VS is the set of

nodes and ES is the set of edges, H is a well-formed hierarchy of class and property names

H = (N;�), � is a labeling function � : VS [ES ! N [T , and is an incidence function

 : ES ! VS � VS.

The incidence function captures the rdfs:domain and rdfs:range declarations of proper-

ties10. Note that the incidence and labeling functions are total in VS[ES and ES respectively.

This does not exclude the case of schema nodes which are not connected through an edge.

De�nition 3 An RDF description base, instance of a schema RS, is a 5-tuple RD =

(VD; ED; ; �; �), where: VD is a set of nodes and ED is a set of edges, is the incidence

function : ED ! VD � VD, � is a value function � : VD ! V , and � is a labeling function

� : VD [ED ! 2N[T which satis�es the following:

� for each node v in VD, � returns a set of names n 2 C [T where the value of v belongs

to the interpretation of each n: �(v) 2 [[n]];

� for each edge � in ED going from node v to node v0, � returns a property name p 2 P ,

such that:

{ if p 2 P n f1; 2; : : :g, the values of v and v0 belong respectively to the interpretation

of the domain and range of p: �(v) 2 [[domain(p)]], �(v0) 2 [[range(p)]];

{ if p 2 f1; 2; : : :g, the values of v and v0 belong respectively to the interpretation of a

BagjSeqjAlt type and their corresponding member types: �(v) 2 [[BagjSeqjAlt(�)]],

�(v0) 2 [[�]].

Note that the labeling function captures the rdf:type declaration that associates each

RDF node with one or more class names. It should be stressed that our model captures

the majority of RDF/S modeling primitives with the exception of property rei�cation given

that it is not expressible in RDFS. Finally, built-in property types such as rdfs:seeAlso,

rdfs:isDefinedBy, rdfs:comment, rdfs:label can be easily represented in our model, but

due to space limitations they are not considered in this paper.

10
Constraint C3 of Table 1 ensures that rdfs:domain and rdfs:range are not any more relations as in the

current RDF M&S and RDFS speci�cations [15, 4].

10

Figure 4: The Validating RDF Parser (VRP)

3.1 The Validating RDF Parser (VRP)

To conclude this section, we brie
y describe the Validating RDF Parser (VRP) we have im-

plemented to analyze, validate and process RDF descriptions. Unlike other RDF parsers

(e.g., SiRPAC11), VRP (see Figure 4) is based on standard compiler generator tools for Java,

namely CUP/JFlex (similar to YACC/LEX). As a result, users do not need to install addi-

tional programs (e.g., XML Parsers) in order to run VRP. The VRP BNF grammar can be

easily extended or updated in case of changes in the RDF/S speci�cations. VRP is a 100%

Java(tm) development understanding embedded RDF in HTML or XML and providing full

Unicode support. The stream-based parsing support of JFlex and the quick LALR grammar

parsing of CUP ensure good performance when processing large volumes of RDF descrip-

tions. Currently VRP is a command line tool with various options to generate a textual

representation of the internal model (either graph or triple based).

The most distinctive feature of VRP is its ability to verify the constraints speci�ed in the

RDF M&S and RDFS speci�cations [15, 4] as well as the additional constraints we introduced

previously (see Table 1). This permits the validation of both the RDF descriptions against

one or more RDFS schemas, and the schemas themselves. The VRP validation module relies

on (a) a complete and sound algorithm [21] to translate descriptions from an RDF/XML form

(using both the Basic and Compact serialization syntax) into the RDF triple-based model (b)

an internal object representation of this model in Java, allowing to separate RDF schema from

data information. As we will see in the sequel, this approach enable a �ne-grained processing

of RDF statements w.r.t. their type which is crucial to implement an incremental loading of

RDF descriptions and schemas.

11
www.w3.org/RDF/Implementations/SiRPAC

11

4 The RDF Schema Speci�c DataBase-RSSDB

This section describes the persistent RDF store (RSSDB) for loading resource descriptions in

an object-relational DBMS. We begin by presenting our schema generation strategy.

The core RDF/S model is represented by four tables (see Figure 5), namely, Class,

Property, SubClass and SubProperty which capture the class and property hierarchies de-

�ned in an RDF schema. Table NameSpace keeps the namespaces of the RDF Schemas stored

in the DBMS and is mainly used to save space when storing class and properties names.

Table Type keeps the class names de�ned in RDF/S and Literal type names for all schemas.

Subsequently, for every class or property used in a Portal Catalog, a new table is created

to store its instances (recall that all names are unique). Speci�callly, class tables store the

URIs of resources while property tables store the URIs of the source and target nodes of the

property. Indices are constructed on the attributes URI, source and target of the above

tables in order to speed up joins and the selection of speci�c tuples of the tables. Indices are

also constructed on the attributes lpart and nsid of the table Class and on the attribute

subid of the tables SubClass and SubProperty. In other words, our RDF-enabled DBMS

relies on a schema speci�c representation of resource descriptions similar to the attribute-based

approach proposed for storing XML data [12, 20].

Three remarks are noteworthy. First, unlike XML, RDF graphs contain labels for both

graph nodes and edges. Therefore, we need to generate tables for both properties and class

instances. Second, RDF labels may be organized in taxonomies through multiple specializa-

tion (as opposed to element types de�ned in XML DTDs or Schemas). This information is

captured by the SubClass and SubProperty tables, while the corresponding instance tables

are also connected through the subtable relationship, supported by an object-relational. Note

that the syntactic constraint imposing complete class and property de�nitions, ensures that

the table hierarchy created in RSSDB can be only extended through specialization. Third,

there is no real need for expensive (due to data fragmentation in several tables) RQL queries,

reconstructing the initially loaded resource descriptions - as in XML query languages - since

there are various ways to serialize RDF graph descriptions in a forest of XML trees.

4.1 The RDF Description Loader

Figure 6 depicts the architecture of our system for loading RDF metadata in an object-

relational DBMS, namely PostgreSQL12. The loader has been implemented [3] in Java and

12
www.postgresql.org

12

Figure 5: Relational Representation of RDF Description Bases

communication between loader and PostgreSQL relies on the JDBC protocol.

The loader comprises two main modules. The �rst module checks the consistency of

analyzed schemas descriptions in comparison with the stored information in the DBMS. For

example, in case that an analyzed property has already been stored, it checks whether its

domain and range are the same as the ones stored in the DBMS. Another functionality of

this module is the validation of RDF metadata based on stored RDF schemas instead of

connecting to the respective namespaces. Thus, we avoid analyzing and validating repeatedly

the RDF schemas used in metadata and reduce the required main memory, since only parts

of RDF schemata are fetched. Consequently, our system enables incemental loading of RDF

descriptions and schemas, which is crucial for handling large RDF schemas and even larger

RDF description volumes created using multiple schemas (e.g., Netscape Open Directory

exports 100M of class hierarchies and 700M of resource descriptions).

The second module implements the loading of RDF descriptions in the DBMS. To this

end, a number of loading methods have been implemented as member functions of the related

VRP internal classes. Speci�cally, for every attribute of the classes of the VRP model, a

method is created for storing the attribute of the created object in the DBMS. For example,

the method storetype is de�ned for the class RDF Resource, in order to store object type

information. The primitive methods of each class are incorporated in a storage method de�ned

13

Figure 6: The RDF Schema Speci�c DataBase and Loader

in the respective class invoked during the loading process. A two-phase algorithm is used for

loading the RDF descriptions. During the �rst phase, RDF class and properties are stored

to create the corresponding schema. During the second phase the database is populated with

resource descriptions.

4.2 Performance Tests

In order to evaluate the performance of our system, we used as testbed the RDF dump of

the Open Directory Catalog consisting of 170 MBytes of class hierarchies and 700 MBytes of

resource descriptions. Experiments have been carried out on a Sun ULTRA 60 machine with

a 450MHz processor and 250 MBytes of main memory. The bu�er size of the DBMS was set

to 4 MBytes.

Initially, schema descriptions are loaded in the DBMS. In the sequel, data descriptions

are loaded and indices on the tables containing the data descriptions are constructed. For

each �le, we measure the number of triples contained in it, the time required to load the

triples and the resulting size of the DBMS. We take di�erent measurements for data and

schema descriptions. Indices are also constructed on the tables Class (or Property) and

SubClass (or SubProperty) but their costs on storage space and time are not included in the

measurements due to their minimal in
uence to the total DBMS size and loading time. Some

preliminary performance results appear in the graphs of Figures 7 and 8.

14

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

D
B

M
S

 s
iz

e
(K

B
)

#Schema triples

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

S
to

ra
ge

 T
im

e
(s

ec
)

#Schema triples

Figure 7: Statistics for loading schema descriptions

The �rst graph of Figure 7 depicts the size of the database in comparison with the number

of the schema triples that are loaded. We observe that the size of the DBMS scales linearly

with the number of triples. The tests show that the database size is 14 times bigger than

that of the original �le holding the descriptions. Speci�cally, 50 MBytes13 of class hierarchies

(248236 classes) have taken up 708 MBytes. This signi�cant factor is mainly attributed to

the information that the DBMS keeps for the tables. Approximately 65% of the total space

(450 MBytes) is taken up for storing information about the attributes of the created tables.

The second graph in Figure 7 shows the time required for storage in comparison with the

number of the triples have been stored. As the number of stored triples increases, the time

required for storing a triple also increases. This is due to the tests that the DBMS should

carry out before creating a new table (e.g., to test if a table with the same name has already

been created) or to the cost of updating indices created on the table storing the attributes

of de�ned database tables. These tests demand more time as the database's schema grows.

The average time for loading a schema triple is about 0.175 sec.

The respective graphs for the size of the database and the time required for storing resource

descriptions are shown in Figure 8. The �rst graph depicts the size of the database before

and after indices are constructed on the tables in comparison with the number of the data

triples loaded. We observe that the shape of the graph is not linear. The space allocated for

a table in the DBMS doesn't correspond to the total size of records contained in it due to

fact that the DBMS does not allocate space every time a record is added. Instead, a speci�c

amount of space is allocated when additional space is necessary to store a record in the table.

The additional space allocated in
uences more the ratio (DBMS size)/(triples size) when the

13
This is the volume of the pure ODP schema information producing when properties such as symbolic(1),

related, altlang, newsGroup, editor, lastUpdate, catid, dc:Title and dc:Description attributed to the classes

are removed.

15

Figure 8: Statistics for loading resource descriptions

volume of the data descriptions stored in the tables is small. The tests show that the database

size is about 2 times bigger than that of the �le containing the descriptions. When indices are

constructed it becomes 6 times bigger. As far as data triples are concerned, storage time (see

the second graph in Figure 8) increases when the number of classes where URIs are classi�ed

increases, since more time is required for database's schema querying (i.e., for �nding the

tables). This additional time in
uences the total storage time especially when the average

number of instances per class is small. The tests show that the average time for loading a

data triple is about 0.006 sec. When indices are constucted, the average time increases to

0.01sec.

Compared to approaches using a unique table [18, 16, 5] to represent RDF descriptions and

schemas in the form of triples, RSSDB requires almost the same database volume for storing

(and indexing) RDF resource descriptions (i.e., twice the size of the original �le) while RDF

schema descriptions clearly consume more space (i.e., 14 times bigger). However, given the

proportion of the loaded RDF schema (50 M) and data (700M), the average increasing storage

factors are comparable (i.e., 2.8 in RSSDB vs. 2.1 in the triple-based approach). Of course,

the de�nitive advantage of the RDF schema speci�c representation adopted by RSSDB is the

obtained performance gain in query evaluation. As a matter of fact, by restricting the search

space to speci�c class and property tables, we are able to optimize all basic RDF queries

(e.g., �nd the instances of a class, a property, etc.). Due to space limitations extensive query

results are not preseted in this paper.

The only limitation of the RSSDB representation is the large number of tables created

for large RDF schemata. Given that some commercial DBMS systems (and not PostgreSQL)

permit only a limited number of tables, this approach is not always applicable. Furthermore,

it also increases the number of joins required to evaluate RQL path expressions (see Section 5).

16

Several variations are currently studied in order to reduce the number of created tables. In the

�rst alternative representation, a property having as range the class rdfs:Literal (attribute-

property) is represented as an attribute of the table created for the domain of this property.

Consequently, new attributes are added to the class tables. The tables created for properties

with range any class other than rdfs:Literal remain unchanged. The above representation

is applicable to RDF schemas where attribute-properties are single-valued and not specialized.

We conclude this section with a second alternative to the basic RSSDB representation,

allowing us to avoid the creation of tables for classes (or properties) with few or no instances

at all. The members of those classes would be kept in a unique table Instances having

the attributes uri and classid for keeping the uri's of the resources and the id's of the

classes in which resources belong. Furthermore, the tables SubClass and SubProperty can

be completely suppressed. For this, we need to replace class (or property) names by ids using

an appropriate encoding system (e.g., Dewey, post�x, pre�x, etc.) for which a convenient total

order exists between the elements in the hierarchy (i.e., capturing the subclass or subproperty

relationships). We are currently working on the choice of a such linear representation of node

or edge labels allowing us to optimize queries that involve di�erent kinds of traversals in a

hierarchy (e.g., an entire subtree, a path from the root, etc.). From some preliminary tests,

the gains with this representation in storage volumes and time required for recursive query

evaluation seems quite promising.

5 Querying RDF Description Bases with RQL

As we have seen in the previous sections, the catalog of Portals like Netscape Open Directory

comprises huge hierarchies of classes (248236 Subject topics) and an even bigger number of

resource descriptions (2,251,641 indexed sites). It becomes evident that browsing such large

description bases is a quite cumbersome and time-consuming task. Consider, for instance,

that we are looking for information about hotels in Paris, under the topic Regional of the

ODP (see Figure 2). ODP allows users to navigate through the topic hierarchy; even if one

knows the exact path to follow, this would require approximately 10 steps, in order to reach

the required topics (i.e. Hotels, Hotel Directories in Figure 2). Then, in order to �nd the

URIs of the sites whose title or description matches the string "*Opera*", users are forced to

manually browse the entire collection of resources directly classi�ed under the topic of interest.

Note that, in order to locate resources classi�ed under the subtopics (e.g., Hotel Directories)

of a given topic, browsing should be continued by the users. RQL aims to simplify such tasks,

17

by providing powerful path expressions permitting smooth �ltering/navigation on both Portal

schemas and resource descriptions. Then the previous query can be expressed as follows:

Q1: Find the resources under the hierarchy Regional, about hotels in Paris whose title

matches "*Opera*".

select Z

from (select $X

from Regionalf:$Xg

where $X like "*Hotel*" and $X < Paris)fYg.fZgtitlefTg

where T like "*Opera*"

The schema path expression in the from clause of the nested query, states that we are

interested in classes (variables pre�xed by $ like $X) specializing the root Regional. Then,

the �ltering condition in the where clause will retain only the classes whose name matches

"*Hotel*" and they are also subclasses of Paris (e.g., Hotel and Hotel Directories. Here, to

get all relevant topics, the only required schema knowledge is that the subtopics of Regional

contains geographical information and a topic Paris is somewhere in the hierarchy. Thanks

to RQL typing, variable Y is of type class name and ranges over the result of the nested

query. The data path expression in the outer query iterates over the source (variable Z of

type resource URI) and target values (variable T of type resource URI) of the title property.

The \." implies an implicit join condition between the extend of each class valuating Y

and the resources valuating Z. Finally, the result of Q1 will be a bag of resources whose

title value matches "*Opera*". Obviously, RQL schema queries are far more powerful than

the corresponding topic queries of common portals, which allow only full-text queries on the

names of topics. Furthermore, compositions of schema and data queries like Q1, are not

possible in current portals, since one cannot specify that some query terms should match the

topic names and other should be found in the descriptions of the resources.

To make things more complex, relevant information in portals may also be found under

di�erent hierarchies, that may be \connected" through related links. For example, as we

can see in Figure 2, information about hotels in Paris may also be found in the Recreation

hierarchy. Moreover, such links are not necessarily bi-directional; thus, a user starting from the

Regional hierarchy may never �nd out that similar information may be found underRecreation

e.g., Vacation-Rentals. For such cases, RQL path expressions allow us to navigate through

schemas as for example, f: $Zgrelated:Regionalf: $Xg. The above examples illustrate a

unique feature of our language, namely that, unlike logic-based RDF query languages (e.g.,

18

SiLRI [10], Metalog [17]), RQL provides the ability to smoothly switch between schema and

data querying while exploiting - in a transparent way - the taxonomies of labels and multiple

classi�cation of resources. More examples on RQL can be found in [13].

5.1 RQL Interpreter

The RQL interpreter consists of (a) the parser, analyzing the syntax of queries; (b) the graph

constructor, capturing the semantics of queries in terms of typing and interdependencies of

involved expressions; and (c) the evaluation engine, accessing RDF descriptions from the

underlying database [14]. Since our implementation relies on a full-
edged ORDBMS like

PostgreSQL, the goal of the RQL optimizer is to push as much as possible query evaluation

to the underlying SQL3 engine. Then pushing selections or reordering joins to evaluate RQL

path expressions is left to PostgreSQL while the evaluation of RQL functions for traversing

class and property hierarchies relies on the existence of appropriate indices (see the last

paragraph). The main di�culty in translating an entire RQL algebraic expression (expressed

in an object algebra a la [9]) to a single SQL3 query is due to the fact that most RQL

path expressions interleave schema with data querying [8]. This is the case of the query Q1

presented previously.

The left part of �gure 9 illustrates the algebraic translation of Q1. The translation of the

nested query given in shadow box on bottom is straightforward: the class variable $X ranges

over all the subclasses of Regional and its values are �ltered according to the conditions in

the where clause. The operator Map on top is a simple variable renaming for the iterator (Y)

de�ned over the nested query result. Then, the data path expression in the from clause is

translated into a semi-join between the source-values of title and the proper instances of the

class extends (W) returned by the nested query. The connection between the two expressions

is captured by a Djoin operation (i.e., a dependent join in which the evaluation of the right

expression depends on the evaluation of the left one). Djoin corresponds to a nested loop

evaluation with values of variable Y passed from the left-hand side (i.e., nested query) to the

right-hand side. Finally, as illustrated in the right part of Figure 9, the selection operation

on titles has been also pushed to the left branch. Both branches in the �nal expression, can

be now translated into corresponding SQL3 queries while the nested loop is evaluated by

the RQL interpreter (the * indicates an extended interpretation of tables, according to the

subtable hierarchy):

19

Map

Y:$X

Project

Select

subclassOf(Regional)[$X]

and
$X like ‘‘*Hotel*’’

$X < Paris

$X

Project

Select

Project

DJoin

DJoin

Project

Select

subclassOf(Regional)[$X]

and
$X like ‘‘*Hotel*’’

$X < Paris

$X

T like ‘‘*Opera*’’

Map

Y:$X

Z Z

Semijoin

Select^(Y)[W]

title[Z,T]

T like ‘‘*Opera*’’

W = Z

Semijoin

^(Y)[W]

W = Z

title[Z,T]

Figure 9: Example of an RQL query optimization

select X

from subclassesof(Regional) X

where issubclassOf(X, Paris) and X like *Hotel"

select Z.source

from title* Z, Y W

where Z.target like *Opera*" and Y.source = W

Hence, for each class returned by the �rst query, Y will be valuated with the corresponding

class name.

6 Summary

In this paper we presented the architecture and functionality of ICS-FORTH RDFSuite,

a suite of tools for RDF metadata management. RDFSuite addresses a notable need for

RDF processing in Web-based applications (such as Web portals) that aim to provide a rich

information content made up of large numbers of heterogeneous resource descriptions. It

comprises e�cient mechanisms for parsing and validating RDF descriptions, loading into a

DBMS as well as query processing and optimization in RQL. We also presented a formal

data model for RDF metadata and de�ned a set of constraints that enforce consistency of

RDF schemas, thus enabling the incremental validation and loading of voluminous description

20

bases. We argue that, given the immense volumes of information content in Web Portals, this

is a viable approach to providing persistent storage for Web metadata. By the same token,

e�cient access to information in such Portal applications is only feasible using a declarative

language providing the ability to query schema and data and to exploit schema organization

for the purpose of optimization. We also reported on the results of preliminary tests conducted

for assessing the performance of the loading component of RDFSuite. These results illustrate

that the approach followed is not only feasible, but also promising for yielding considerable

performance gains in query processing, as compared to monolithic approaches. More extensive

performance tests are currently being carried out.

Current research and development e�orts focus on studying the transactional aspects of

loading RDF descriptions in a DBMS, as well as, the problem of updating or revising descrip-

tion bases. A detailed analysis of loading, storage and query evaluation and optimization

using alternative representation schemes is underway. Furthermore, appropriate index struc-

tures for reducing the cost of recursive querying of deep hierarchies need to be devised as well.

Speci�cally, an implementation of hierarchy linearization is underway, exploring alternative

node encodings. Last, but not least, we intend to extend our formal data model to capture

higher-order aspects such as statement rei�cation and provide a formal notion of context.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann, 1999.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[3] So�a Alexaki. Storage of RDF Metadata for Community Web Portals. Master's thesis,
University of Crete, 2000.

[4] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Speci�ca-
tion 1.0, W3C Candidate Recommendation. Technical Report CR-rdf-schema-20000327,
W3C, Available at http://www.w3.org/TR/rdf-schema, March 27, 2000.

[5] D. Brickley and L. Miller. Rdf, sql and the semantic web - a case study. Available at
http://ilrt.org/discovery/2000/10/swsql/.

[6] L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76(2/3):138{164, 1988.

[7] R.G.G. Cattell and D. Barry. The Object Database Standard ODMG 2.0. Morgan Kauf-
mann, 1997.

[8] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized Path
Expressions. In Proc. of ACM SIGMOD Conf. on Management of Data, pages 413{422,
Montreal, Canada, June 1996.

[9] S. Cluet and G. Moerkotte. Nested Queries in Object Bases. In DBPL'93, pages 226{242,
1993.

21

[10] S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service for rdf.
In W3C Query Languages Workshop, Cambridge, Mass., 1998.

[11] C. Finkelstein and P. Aiken. Building Corporate Portals using XML. McGraw-Hill, 1999.

[12] D. Florescu and D. Kossmann. A performance evaluation of alternative mapping schemes
for storing xml data in a relational database. Technical Report 3680, INRIA Rocquen-
court, France, May 1999. Available at http://www-caravel.inria.fr/dataFiles/GFSS00.ps.

[13] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Querying Com-
munity Web Portals. Available at http://www.ics.forth.gr/proj/isst/RDF/RQL/, 2001.
Submitted for publication.

[14] Greg Karvounarakis. A Declarative RDF Metadata Query Language for Community
Web Portals. Master's thesis, University of Crete, 2000.

[15] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax
Speci�cation. Technical report, World Wide Web Consortium, February 1999. Available
at http://www.w3.org/TR/REC-rdf-syntax.

[16] J. Liljegren. Description of an rdf database implementation. Available at http://WWW-
DB.stanford.edu/~melnik/rdf/db-jonas.html.

[17] M. Marchiori and J. Saarela. Query + metadata + logic = metalog. In W3C Query
Languages Workshop, Cambridge, Mass., 1998.

[18] S. Melnik. Storing rdf in a relational database. Available at http://WWW-
DB.stanford.edu/~melnik/rdf/db.html.

[19] Some proposed RDF APIs.
GINF: http://www-db.stanford.edu/~melnik/rdf/api.html,
RADIX: http://www.mailbase.ac.uk/lists/rdf-dev/1999-06/0002.html,
Netscape Communicator: http://lxr.mozilla.org/seamonkey/source/rdf/base/idl/,
RDF for Java: http://www.alphaworks.ibm.com/formula/rdfxml/.

[20] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The Design and Performance Evaluation of
Alternative XML Storage Strategies. Technical report, CS Dept., Universiy of Wisconsin,
2000. Available at http://www.cs.wisc.edu/niagara/papers/vldb00XML.pdf.

[21] Karsten Tolle. ICS-Validating RDF Parser: A Tool for Parsing and Validating RDF
Metadata and Schemas. Master's thesis, University of Hannover, 2000.

[22] S. Weibel, J. Miller, and R. Daniel. Dublin Core. In OCLC/NCSA metadata workshop
report, 1995.

22

