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ABSTRACT
Query languages for XML often use path expressions to lo-
cate elements in XML documents. Path expressions are reg-
ular expressions such that underlying alphabets represent
conditions on nodes. Path expressions represent conditions
on paths from the root, but do not represent conditions on
siblings, siblings of ancestors, and descendants of such sib-
lings. In order to capture such conditions, we propose to
extend underlying alphabets. Each symbol in an extended
alphabet is a triplet (e1; a; e2), where a is a condition on
nodes, and e1 (e2) is a condition on elder (resp. younger)
siblings and their descendants; e1 and e2 are represented by
hedge regular expressions, which are as expressive as hedge
automata (hedges are ordered sequences of trees). Nodes
matching such an extended path expression can be located
by traversing the XML document twice. Furthermore, given
an input schema and a query operation controlled by an ex-
tended path expression, it is possible to construct an out-
put schema. This is done by identifying where in the input
schema the given extended path expression is satis�ed.

1. INTRODUCTION
XML [5] has been widely recognized as one of the most

important formats on the WWW. XML documents are or-
dered trees containing text, and thus have structures more

exible than relations of relational databases.
Query languages for XML have been actively studied [1,

14]. Typically, operations of such query languages can be
controlled by path expressions. A path expression is a regu-
lar expression such that underlying alphabets represent con-
ditions on nodes. For example, by specifying a path expres-
sion (section�; figure), we can extract �gures in sections,
�gures in sections in sections, �gures in sections in sections
in sections, and so forth, where section and figure are condi-
tions on nodes. Based on well-established theories of regular
languages, a number of useful techniques (e.g., optimization
[2, 8, 15, 19]) for path expressions have been developed.
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However, when applied to XML, path expressions do not
take advantage of orderedness of XML documents. For ex-
ample, path expressions cannot locate all <�gure> elements
whose immediately following siblings are <table> elements.
On the other hand, industrial speci�cations such as XPath

[10] have been developed. Such speci�cations address or-
deredness of XML documents. In fact, XPath can capture
the above example. However, these speci�cations are not
driven by any formal models, but rather designed in an ad-
hoc manner1. Lack of formal models prevents generalization
of useful techniques originally developed for path expres-
sions.
As a formal framework for addressing orderedness, this pa-

per shows a natural extension of path expressions. First, we
introduce hedge regular expressions, which generate hedges
(ordered sequences of ordered trees). Hedge regular expres-
sions can be converted to hedge automata (variations of tree
automata for hedges) and vice versa. Given a hedge and a
hedge regular expression, we can determine which node in
the hedge matches the given hedge regular expression by
executing the hedge automaton. The computation time is
linear to the number of nodes in hedges.
Second, we introduce pointed hedge representations. They

are regular expressions such that each \symbol" is a triplet
(e1; a; e2), where e1; e2 are hedge regular expressions and a is
a condition on nodes. Intuitively, e1 represent conditions on
elder siblings and their descendants, while e2 represent con-
ditions on younger siblings and their descendants. As a spe-
cial case, if every hedge regular expression in a pointed hedge
representation generates all hedges, this pointed hedge rep-
resentation is a path expression.
Given a hedge and a pointed hedge representation, we

can determine which node in the hedge matches the given
pointed hedge representation. For each node, (1) we deter-
mine which of the hedge regular expressions matches the
elder siblings and younger siblings, respectively, (2) we then
determine which of the triplets the node matches, and (3)
we �nally evaluate the pointed hedge representation. Again,
the computation time is linear to the number of nodes in
hedges.
Another goal of this work is schema transformation. Re-

call that query operations of relational databases construct
not only relations but also schemas. For example, given in-
put schemas (A;B) and (B;C), the join operation creates
an output schema (A;B;C). Such output schemas allow

1However, a formal semantics for a subset of XPath has been
later developed by Philip Wadler [35].



further processing of output relations.
It would be desirable for query languages for XML to

provide such schema transformations. That is, we would
like to construct output schemas from input schemas and
query operations (e.g., select, delete), which utilize hedge
regular expressions and pointed hedge representations. To
facilitate such schema transformation, we construct match-
identifying hedge automata from hedge regular expressions
and pointed hedge representations. The computation of
such automata assigns marked states to those nodes which
match the hedge regular expressions and pointed hedge rep-
resentations. Schema transformation is e�ected by �rst cre-
ating intersection hedge automata which simulate the match-
identifying hedge automata and the input schemata, and
then transforming the intersection hedge automata as ap-
propriate to the query operation.
The rest of this paper is organized as follows. In Sec-

tion 2, we consider related works. We introduce hedges and
hedge automata in Section 3, and then introduce hedge reg-
ular expressions in Section 4. In Section 5, we introduce
pointed hedges and pointed hedge representations. In Sec-
tion 6, we de�ne selection queries as pairs of hedge regular
expressions and pointed hedge representations. In Section
7, we study how to locate nodes in hedges by evaluating
pointed hedge representations. In Section 8, we construct
match-identifying hedge automata, and then construct out-
put schemas. In Section 9, we conclude and consider future
works.

2. RELATED WORKS
Queries for structured documents have been studied by

very many researchers (see surveys [3, 4]). Recently, formal
approaches such as MSO have appeared.
Monadic second-order logic (MSO) [13, 33] allows the use

of set variables ranging over sets of domain elements in ad-
dition to individual variables ranging over domain elements,
where domain elements may be positions in strings or nodes
in trees. Universal and existential quanti�ers can be used
for both types of variables. MSO formulas on strings can be
translated to string automata, and vice versa.
MSO formulas can be used to represent selection queries.

Selection queries de�nable by MSO can be translated to
query automata, and vice versa [26], and can also be trans-
lated to boolean attribute grammars, and vice versa [25,
24]. Such query automata or attribute grammars can be
evaluated eÆciently, and the time complexity is linear to
the number of nodes. However, translation of MSO formulas
to automata or attribute grammars requires non-elementary
space in the worst case [20].
Neven and Schwentick [27] de�ned FOREG and FOREG�,

which are �rst-order logic extended with horizontal path ex-
pressions and vertical path expressions. After showing that
these languages do not capture MSO, they introduced a logic
called ETL, which is as expressive as MSO but can be evalu-
ated eÆciently. In fact, evaluation of an ETL formula takes
time exponential to the size of the formula.
Our hedge regular expressions and pointed hedge regu-

lar representations also capture MSO queries. Furthermore,
these expressions can be evaluated in time linear to the num-
ber of nodes and time exponential to the expression size. Ex-
ponential time is required for converting non-deterministic
hedge automata to deterministic ones. However, we conjec-
ture that such conversion is usually eÆcient, as does conver-

sion of non-deterministic string automata to deterministic
ones.
Papakonstantinou and Vianu [30] use regular expressions

to navigate both vertically and horizontally (i.e., ancestors
and siblings). Moreover, they provide schema transforma-
tion, which they call \DTD inference". Their input schemas,
which they call regular loto (labeled ordered tree object)
type de�nitions, represent hedge local languages, while their
output schemas represent hedge context-free languages. The
class of local languages is a proper subclass of the class
of regular languages, which is in turn a proper subclass of
context-free languages. However, in our framework, both in-
put and output schemas represent hedge regular languages
rather than hedge local languages. Since schema languages
such as RELAX [18], TREX [9], and XML Schema [34] use
hedge regular languages rather than hedge local languages,
we would argue that our work is more applicable to such
languages.
Although [27] and [30] allow variables in patterns, our

framework does not allow variables. As a result, a pointed
hedge representation cannot locate tuples of elements. In-
troduction of such variables are discussed in Section 9.
Nivat and Podelski [31, 28] introduced pointed binary tree

representations, which inspired our work. We have extended
them for hedges rather than binary trees. Furthermore, we
have introduced an algorithm for evaluating pointed hedge
representations and constructed match-identifying hedge au-
tomata for schema transformation.
Milo, Suciu, and Vianu [21] provides typechecking of XML

transformers, which are modeled by k-pebble transducers.
Given an input regular tree language, an output regular tree
language, and a k-pebble transducer, their typechecking en-
sures whether the result of transforming any XML document
in the input language is contained by the output language.
XDuce [17] is a programming language for handling XML

documents. Types in XDuce are regular expressions of types.
Operations in XDuce perform regular expression pattern
matching. Furthermore, XDuce provides type inference by
using tree automata.
Caterpillar expressions [6] capture conditions on ancestor

nodes, sibling nodes, etc. Expressiveness of caterpillar ex-
pressions is compared with that of regular tree languages.
XPath [10] capture conditions on ancestors, siblings, de-

scendants, and so forth. However, XPath is not as struc-
turally expressive as combinations of hedge regular expres-
sions and pointed hedge representations. In fact, some path
expressions (e.g., a� which implies \all ancestors are a")
cannot be captured by XPath. On the other hand, XPath
can capture conditions on attributes. For our framework
to capture such conditions, we only have to allow terminal
symbols to represent collections of tag names and conditions
on attributes.

3. HEDGES AND HEDGE AUTOMATA
In this section, we introduce hedges (ordered sequences of

ordered trees) 2 and hedge automata, which were originally
introduced by Pair and Quere [29], and Takahashi [32].
Some researchers [26, 21] have used unranked tree au-

tomata for XML queries, probably because XML documents

2The term \hedge" was introduced by Courcelle [12]. Some
authors use "forests", but forests are sets of trees rather
than sequences of trees.



are unranked trees rather than hedges. However, we use
hedge automata for two reasons. First, conditions on sib-
lings can be naturally captured by hedge automata. Second,
regular expressions for unranked trees cannot be introduced
without introducing those for hedges in advance. In fact,
Takahashi [32] studied both unranked tree languages and
hedge languages, and pointed out that regular hedge lan-
guages provide a nicer generalization of regular string lan-
guages.
Hereafter, we assume that � is an alphabet and that X is

a �nite set of variables. They are disjoint and do not contain
either h or i.

De�nition 1. A hedge over � and X is (1) � (the empty
hedge), (2) x (x 2 X), (3) ahui (a 2 �, u is a hedge), and
(4) uv (u and v are hedges). The set of hedges is denoted
H[�; X].

For example, ah�i, ahxi, and ah�ibhbh�ixi are hedges. Note
that symbols in � are used as labels of non-leaf nodes, while
variables in X are used as labels of leaf nodes3. We abbre-
viate ah�i as a. Thus, the third example is abbreviated as
abhbxi.

De�nition 2. The ceil of a hedge u, denoted due, is a
string over � [X recursively de�ned below:

d�e = � (the empty string);

dxe = x;

dahuie = a;

duve = duedve

For example, the ceil of ahxi and that of abhb xi are a and
ab, respectively.

De�nition 3. A deterministic hedge automaton M is a 6-
tuple (�; X;Q; �; �; F ) such that (1)Q is a �nite set of states,
(2) � is a function from X to Q, (3) � is a mapping from
� � Q� to Q such that fq1q2 : : : qkj �(a; q1q2 : : : qk) = qg,
denoted ��1(a; q), is regular for any q 2 Q, a 2 �, and
(4) F is a regular set over Q and is called the �nal state
sequence set.

As an example, we show a deterministic hedge automaton,
which accepts any sequences of trees dhphxii, dhphxiphyii,
dhphxiphyiphyii; : : :. The deterministic hedge automaton is
M0 = (�0; X0; Q0; �0; �0; F0), where

�0 = fd; pg;

X0 = fx; yg;

Q0 = fqd; qp1; qp2; qx; qy; q0g;

�0(x) = qx;

�0(y) = qy;

�0(d; u) =

(
qd (u 2 L(qp1q

�
p2));

q0 (otherwise);

�0(p; u) =

8><
>:
qp1 (u = qx);

qp2 (u = qy);

q0 (otherwise);

F0 = L(q�d)
3We do not formally de�ne nodes in hedges, but they are
address-value pairs, where an address is a Dewey number
and a value is a variable or symbol.

Given a hedge, a deterministic hedge automaton is exe-
cuted in the bottom-up manner. First, we assign a state
to every leaf node by computing �(x), where x is the label
of the leaf node. Then, we assign a state to each node by
applying the transition function � to the label of this node
and the states of the child nodes.

De�nition 4. The computation of a hedge u by a deter-
ministic hedge automaton M , denoted Mku, is a hedge re-
cursively de�ned below:

Mk� = �;

Mkx = �(x);

Mkahui = �(a; dMkue)hMkui;

Mkuv = (Mku)(Mkv)

De�nition 5. A hedge u is accepted byM if dMkue is con-
tained by F . The language accepted by M , denoted L(M),
is the set of hedges accepted by M .

Consider a hedge dhphxiphyiidhphxii. Its computation by
M0 (shown above) is qdhqp1hqxiqp2hqyiiqdhqp1hqxii. The ceil
of this computation is qdqd, which is contained by F0. Thus,
this hedge is accepted by M0.

De�nition 6. A non-deterministic hedge automaton M is
a 6-tuple (�; X;Q; �; �; F ) such that (1) Q is a �nite set of
states, (2) � is a mapping from X to 2Q, (3) � is a mapping
from ��Q� to 2Q such that fq1q2 : : : qkj �(a; q1q2 : : : qk) 3
qg, denoted ��1(a; q), is regular for any q 2 Q, a 2 �, and
(4) F is a regular set over Q and is called the �nal state
sequence set.

As an example, M1 = (�1; X1; Q1; �1; �1; F1) is a non-
deterministic hedge automaton where:

�1 = fd; pg;

X1 = fx; yg;

Q1 = fqd; qp1; qp2; qxg;

�1(x) = fqxg

�1(y) = ;;

�0(d; u) =

(
fqdg (u 2 L(qp1q

�
p2));

; (otherwise);

�0(p; u) =

8>>><
>>>:
fqp1; qp2g (u = qxqx);

fqp1g (u = qx);

fqp2g (u = qx);

; (otherwise);

F0 = L(q�d)

De�nition 7. The set of computations of a hedge u by a
non-deterministic hedge automatonM , denotedMku, is the
set of hedges recursively de�ned below:

Mk� = f�g;

Mkx = �(x);

Mkahui = fa0hu0i j u0 2 Mku; a0 2 �(a; du0e)g

Mkuv = fu0v0 j u0 2Mku; v0 2 Mkvg

De�nition 8. A hedge u is accepted by a non-deterministic
hedge automatonM if for some u0 2 Mku, du0e is contained
by F . The language accepted by M , denoted L(M), is the
set of hedges accepted by M .



As an example, we execute M1 (shown above) for two
hedges dhphxiphyii and dhphxxiphxxii. The set of compu-
tations of the �rst hedge is empty. Thus, this hedge is not
accepted. The set of computations of the second hedge is
fqdhqp1hqxqxiqp1hqxqxii, qdhqp1hqxqxiqp2hqxqxiig. The ceils
of these computations are qd, which is contained by F1.
Thus, the second hedge is accepted.
The following theorem can be easily proved by subset con-

struction.

Theorem 1. Deterministic hedge automata and non-
deterministic hedge automata are equally expressive.

4. HEDGE REGULAR EXPRESSIONS
In this section, we introduce hedge regular expressions,

which are as expressive as hedge automata.
Although there are many works [16, 11] on binary tree

regular expressions, hedge regular expressions have not been
studied in the literature. To the best of our knowledge, the
work closest to ours is Pair and Quere [29]. Their expres-
sions capture the class of hedge local languages, which is
a proper subclass of hedge regular languages. Since any
hedge regular language can be obtained by applying some
projection to some hedge local language, a pair of an expres-
sion and projection provides a hedge regular \expression".
Our work di�ers in not using projections. In other words,
our hedge regular expressions directly capture hedge regular
languages.
Recall that regular expressions for strings have the con-

catenation and the closure (*) operator. Hedge regular ex-
pressions require two sets of these operators. The �rst set
creates new hedges by aligning hedges in the horizontal di-
rection. Meanwhile, the second set creates new hedges by
embedding hedges in hedges.
Although it is easy to align hedges in the horizontal di-

rection, it is not straightforward to embed hedges in hedges.
Where in a hedge do we embed other hedges? As a target
for such embedding, we introduce substitution symbols.
Let Z be a set of substitution symbols. We assume that

Z and � [X [ fh; ig are disjoint.

De�nition 9. A hedge over � and X with substitution
symbols in Z is recursively de�ned below:

� �;

� x (x 2 X);

� ahzi (a 2 �; z 2 Z),

� ahui (a 2 �; u is a hedge with substitution symbols)

� u1u2 (u1; u2 are hedges with substitution symbols)

The set of hedges with substitution symbols is denoted by
H[�; X; Z].

De�nition 10. The embedding of U(� H[�; X; Z]) in v(2
H[�; X; Z]) at a substitution symbol z, denoted by U Æz v,
is the set of hedges with substitution symbols obtained by
replacing every occurrence of z in v by some element of
U ; di�erent occurrences of z may be replaced by di�erent
elements of V . The embedding of U(� H[�; X; Z]), in V (�
H[�; X; Z]) at z, denoted by U Æz V , is

S
v2V U Æz v.

For example, let U = fa; bg and v = chzichzi, where
a; b; c 2 � and z 2 Z. Then, U Æz v is fchaichai, chaichbi,
chbichai, chbichbig. Note that chaichbi is constructed by re-
placing the �rst occurrence of z with a and the second with
b. Let V = fchzichzi; chzig. Then, U Æz V is fchaichai,
chaichbi, chbichai, chbichbi, chai; chbig.
Now, we are ready to introduce hedge regular expressions.

De�nition 11. A hedge regular expression over an alpha-
bet �, a set X of variables, and a set Z of substitution
symbols is recursively de�ned below:

� ;;

� �;

� x (x 2 X);

� ahei (a 2 �; e is a hedge regular expression),

� e1e2 (e1; e2 are hedge regular expressions),

� e1je2 (e1; e2 are hedge regular expressions),

� e� (e is a hedge regular expression),

� ahzi (a 2 �; z 2 Z),

� e1 Æz e2 (e1; e2 are hedge regular expressions, and
z 2 Z), and

� ez (e is a hedge regular expression, and z 2 Z) ,

De�nition 12. A hedge regular expression e represents a
set L(e) of hedges with substitution symbols recursively de-
�ned below:

L(;) = ;;

L(�) = f�g;

L(x) = fxg;

L(ahei) = fahui j u 2 L(e)g;

L(e1e2) = fu1u2 j u1 2 L(e1); u2 2 L(e2)g;

L(e1je2) = L(e1) [ L(e2);

L(e�) = f�g [ L(e) [ L(ee) [ L(eee) [ : : : ;

L(ahzi) = fahzig;

L(e1 Æz e2) = L(e1) Æz L(e2)

L(ez) = L(e1;z) [ L(e2;z) [ L(e3;z) [ : : :

L(e1;z) = L(e);
L(e2;z) = L(e1;z) Æz L(e) [ L(e1;z);
L(e3;z) = L(e2;z) Æz L(e) [ L(e2;z);
: : :

For example, consider a hedge regular expression ahzi�z.
Obviously, L(ahzi�) is f�; ahzi; ahziahzi; ahziahziahzi; : : :g:
To compute L(ahzi�z), we have to compute L(ahzi� 1;z),
L(ahzi� 2;z), L(ahzi� 3;z); and so forth.
For every positive integer i, L(ahzi� i;z) contains all hedges

such that (1) their height is equal to or less than i, (2)
every symbol is a, and (3) every substitution symbol is z.
Therefore, L(ahzi�z) contains all hedges such that (1) every
symbol is a, and (2) every substitution symbol is z.

Lemma 1. Given a hedge regular expression e, we can
construct a hedge automaton that accepts L(e).



Proof. We do not provide a whole proof, but sketch how
a hedge hedge automaton is constructed from a given hedge
regular expression.
For each sub-expression e0 of e, we construct a non-

deterministic hedge automaton M(e0) that accepts L(e0).
Since substitution symbols occur in hedges in L(e), we allow
substitution symbols as variables of hedge automata.
For each substitution symbol z in Z, we introduce a state

�z and always use this state for z, and denote set f�z j z 2 Zg
by �Z. States in �Z are used only for leaf nodes; they are
never used for nodes labeled with symbols in �. Moreover,
they never occur in �nal state sequences.
Case 1: ;
M(;) = (;; ;; ;; �1; �1; ;), where the domain of �1 and

that of �1 are empty.
Case 2: �
M(�) = (;; ;; ;; �1; �1; f�g), where the domain of �1 and

that of �1 are empty.
Case 3: x
M(x) = (;; fxg; fqg; �1; �1; fqg), where the domain of �1

is empty and �1(x) = fqg.
Case 4: ahei
Let M(e) be (�1; X1; Q1; �1; �1; F1). Then, M(ahei) =

(�1[fag; X1; Q1[fq2g; �2; �1; fq2g), where q2 is a state not
contained by Q1 and

��12 (a; q2) = F1;

��12 (a; q1) =

(
��11 (a; q1) (a 2 �1; q1 2 Q1);

; (a =2 �1; q1 2 Q1);

��12 (i; q2) = ; (i 2 �1 n fag);

��12 (i; q1) = ��11 (i; q1) (i 2 �1 n fag; q1 2 Q1):

Case 5: e1e2
Let M(e1) be (�1; X1; Q1; �1; �1; F1) and let M(e2) be

(�2; X2; Q2; �2; �2; F2). By renaming states not contained
by �Z, we assume Q1 \Q2 � �Z.
M(e1e2) = (�1[�2; X1[X2; Q1[Q2; �3; �3; F1F2), where

�3(x) =

8><
>:
�1(x) [ �2(x) (x 2 X1 \X2);

�1(x) (x 2 X1 nX2);

�2(x) (x 2 X2 nX1);

��13 (i; q) =

8>>>>><
>>>>>:

��11 (i; q) ((i; q) 2 �1 �Q1;

(i; q) =2 �2 �Q2);

��12 (i; q) ((i; q) 2 �2 �Q2;

(i; q) =2 �1 �Q1);

; (otherwise)

Case 6: e1je2
The construction of M(e1je2) is very similar to that of

M(e1e2). The only di�erence is that the �nal state sequence
set is F1 [ F2 rather than F1F2.
Case 7: e�

Let M(e) be (�1; X1; Q1; �1; �1; F1). Then,
M(e�) = (�1; X1; Q1; �1; �1; F

�
1 ):

Case 8: ahzi
M(ahzi) = (fag; fzg; fq; �zg; �1; �1; fqg), where

�1(z) = �z;

��11 (a; q) = f�zg;

��11 (a; �z) = ;:

Case 9: e1 Æz e2
Let M(e1) be (�1; X1; Q1; �1; �1; F1) and let M(e2) be

(�2; X2; Q2; �2; �2; F2). Again, we assume Q1 \Q2 � �Z.
Let X 0

2 = X2nfzg and Q
0
2 =Q2nf�zg. Then,M(e1Æze2) =

(�1 [ �2; X1 [X 0
2; Q1 [Q02; �3; �3; F2), where

�3(x) =

8><
>:
�1(x) [ �2(x) (x 2 X1 \X 0

2);

�1(x) (x 2 X1 nX
0
2);

�2(x) (x 2 X 0
2 nX1);

��13 (i; q) =

8>>>>>>>>>><
>>>>>>>>>>:

��11 (i; q) ((i; q) 2 �1 �Q1;

(i; q) =2 �2 �Q02);

��12 (i; q) ((i; q) 2 �2 � (Q02 n �2(i; �z));

(i; q) =2 �1 �Q1);

(��12 (i; q) n f�zg) ((i; q) 2 �2 � �2(i; �z);

[F1 (i; q) =2 �1 �Q1);

; (otherwise)

Case 10: ez

Let M(e) be (�1; X1; Q1; �1; �1; F1). Then,
M(ez) = (�1; X1; Q1; �2; �1; F1), where

��12 (i; q) =

(
��11 (i; q) (i 2 �1; q 2 Q1 n �1(i; �z))

��11 (i; q) [ F1 (i 2 �1; q 2 �1(i; �z))

Lemma 2. Given a hedge automatonM , we can construct
a hedge regular expression that represents L(M).

Proof. We do not provide a whole proof, but sketch how
a hedge regular expression is constructed from a given hedge
automaton.
Informally, the key idea is to pick a state of a hedge au-

tomaton, decompose the hedge automaton to small hedge
automata at every occurrence of that state, and combine
these small hedge automata with operators of hedge regu-
lar expressions. By repeatedly applying this procedure, we
eventually have a hedge regular expression.
Let M be (�; X;Q; �; �; F ), and q be a state in Q. Con-

sider a hedge accepted byM and those of its nodes to which
M assigns q. At these nodes, we decompose this hedge
into small hedges. Upper hedges contain nodes of the form
ahqi, where a is a symbol in �. Such nodes are said to be
connector nodes. If we embed lower hedges within connec-
tor nodes of upper hedges, we can reconstruct the original
hedge. Since connector nodes have states in Q as labels of
leaf nodes, upper small hedges are contained by H[�; X[Q]
rather than H[�; X].
After decomposing hedges at a state q, we would like

to uniquely determine the label of the connector nodes.
For this purpose, we assume that, for each state q in Q,
there exists one and at most one symbol a 2 � such that
��1(a; q) 6= ; and denote this symbol by �(q). If this as-
sumption does not hold, we only have to use (Q � �) [ Q
as a state set and reconstruct � so that it returns the input
symbol as the �rst component.
Next, we create another deterministic hedge automaton

M ' by extending M for decomposed hedges. For each q in
Q, we introduce a state q̂ and denote fq̂ j q 2 Qg by Q̂. We
also introduce a dead-end state q?, which is not contained
by Q. New transition functions �0 and �0 are de�ned below:



�0(q) = q̂ (q 2 Q)

�0(x) = �(x) (x 2 X)

�0(a; u) =

8><
>:
q (u = q̂; a = �(q));

�(a; u) (u 2 Q�);

q? (otherwise);

Now,M 0 = (�; X[Q;Q[Q̂[fq?g; �
0; �0; F ) is a determin-

istic hedge automaton. Moreover, L(M 0)\H[�; X] = L(M).
Let Q1; Q2 be subsets of Q, and q be a state in Q. We

de�ne R(q;Q1; Q2) as the set of hedges u (2 H[�; X [ Q])
such that

� if a node is neither a leaf nor a connector, the state
assigned to this node by M 0 is contained by Q1,

� if a node is a connector, the state assigned to this node
by M 0 is contained by Q2, and

� dM 0kue is contained by ��1(�(q); q).

We show that R(q;Q1; Q2) can be represented by hedge
regular expressions by induction on the cardinality of Q1.
Base case: Since the cardinality of Q1 is 0, this set is

empty. Thus, any node in a hedge in R(q; ;; Q2) is either a
leaf node (i.e., labeled with a variable in X or state in Q)
or a connector node. For each state r 2 Q, the set of leaf
nodes or connector nodes which reach r is �nite and can
thus be represented by a hedge regular expression, say er.
By replacing each r in ��1(�(q); q) with er, we have a hedge
regular expression representing R(q; ;; Q2).
Inductive case: We consider R(q;Q1 [ fpg; Q2), where

p =2 Q1.
Obviously, R(q;Q1[fpg; Q2) includes R(q;Q1; Q2). Con-

sider a hedge in R(q;Q1 [fpg; Q2)nR(q;Q1; Q2). The com-
putation of such a hedge has at least one occurrence of
state p. We decompose this hedge at each of the highest
occurrences of state p. The set of hedges below such an oc-
currence of p is captured by R(p;Q1 [ fpg; Q2), while the
set of hedges above such an occurrence of p is captured by
R(q;Q1; Q2 [ fpg). Thus, we have the following equation.

R(q;Q1 [ fpg; Q2) =

R(p;Q1 [ fpg; Q2) Æp R(q;Q1; Q2 [ fpg)

[ R(q;Q1; Q2):

Again, R(p;Q1[fpg; Q2) includes R(p;Q1; Q2). Consider
a hedge in R(p;Q1 [ fpg; Q2) nR(p;Q1; Q2). The computa-
tion of such a hedge has at least one occurrence of state p.
We decompose this hedge at each of the lowest occurrences
of state p. The set of hedges below such an occurrence of p is
captured by R(p;Q1; Q2), while the set of hedges above such
an occurrence of p is captured by R(p;Q1 [ fpg; Q2 [ fpg).
Thus, we have the second equation.

R(p;Q1 [ fpg; Q2) =

R(p;Q1; Q2) Æp R(p;Q1 [ fpg; Q2 [ fpg)

[R(p;Q1; Q2):

Finally, we consider R(p;Q1 [ fpg; Q2 [ fpg). At each
occurrence of state p, we decompose this hedge into hedges
in R(p;Q1; Q2 [ fpg). Thus, we have the third equation.

R(p;Q1 [ fpg; Q2 [ fpg) = R(p;Q1; Q2 [ fpg)p:

It follows from these three equations that

R(q;Q1 [ fpg; Q2) =

(R(p;Q1; Q2) Æp R(p;Q1; Q2 [ fpg)p [R(p;Q1; Q2))

Æp R(q;Q1; Q2 [ fpg) [R(q;Q1; Q2):

The right-hand side of this equation does not use Q1[fpg
but rather uses Q1 as the second argument of R. By the
induction hypothesis, the right-hand side can be represented
by a hedge regular expression. Thus, the left-hand side can
also be represented.
By replacing each r 2 Q occurring in F with a hedge

regular expression representing R(r;Q; ;) , we have a hedge
regular expression representing L(M).

The next theorem directly follows from the two lemmas.

Theorem 2. Hedge regular expressions and hedge automata
are equally expressive.

5. POINTED HEDGE REPRESENTATIONS
In this section, we introduce pointed hedge representa-

tions, which naturally extend path expressions. Pointed
binary tree representations were originally introduced by
[31, 28] and their applications to structured documents were
studied [22]. We extend them for hedges rather than binary
trees. Furthermore, pointed hedge representations use hedge
regular expressions rather than hedge (or tree) automata.

De�nition 13. A pointed hedge over � and X is a hedge
with one substitution symbol � (in other words, an element
of H[�; X; f�g]) such that � occurs once and only once.

De�nition 14. The product of pointed hedges u and v,
denoted by u� v, is the only element of fug Æ� v.

For example, ahxibh�i and ahxibhch�iyi are pointed hedges;
the product of the former and latter is ahxibhchahxibh�iiyi
(Figure 1).
The associative law holds; that is, (u�v)�w = u�(v�w)

for any pointed hedges u; v; w.

De�nition 15. A pointed base hedge is a pointed hedge of
the form u1ah�iu2, where u1; u2 are hedges and a is a symbol
in �.

For example, ahxibh�i is a pointed base hedge. On the
other hand, ahxibhch�iyi is not.
Any pointed hedge can be uniquely decomposed into a

sequence of pointed base hedges. After such unique decom-
position, � is introduced as the child of each node in the path
from the top-level to � (Figure 2). For example, ahxibhch�iyi
can be decomposed into ch�iy and ahxibh�i.

De�nition 16. A pointed base hedge representation is a
triplet (e1; a; e2), where a 2 � and e1; e2 are hedge regu-
lar expressions.

De�nition 17. A pointed base hedge matches (e1; a; e2) if
it is of the form u1ah�iu2, where u1 and u2 are contained
by L(e1) and L(e2), respectively.



Figure 1: Pointed hedges and their product
(The left-top example is ahxibh�i and the right-
top example is ahxibhch�iyi. Their product is
ahxibhchahxibh�iiyi)

Figure 2: Decomposition of pointed hedges (the
right-hand side begins at the bottom and ends at
the top).

As an example, consider a pointed base hedge represen-
tation (ahzi�z; b; ahzi�z), where ahzi�z is an example hedge
regular expression shown in the previous section. Recall
that this hedge regular expression generates all hedges such
that every symbol is a and every substitution symbol is z.
Therefore, a pointed hedge matches (ahzi�z; b; ahzi�z), when
the parent of � is labeled with b, the other symbols are a,
and the substitution symbols are z.

De�nition 18. A pointed hedge representation is a regular
expression over a �nite set of pointed base hedge represen-
tations.

De�nition 19. A pointed hedge umatches a pointed hedge
representation e if

� u is decomposed into a sequence of pointed base hedges
u1; u2; : : : ; uk (i.e., u = u1 � u2 � : : :� uk),

� e generates (e11; a1; e12); (e21; a2; e22); : : : ; (ek1; ak; ek2),
and

� ui matches (ei1; a; ei2) for every i (1 � i � k).

As an example, consider a pointed hedge representation
(ahzi�z; b; ahzi�z)�. A pointed hedge matches this pointed
hedge representation if (1) the parent of � is labeled with
b, (2) all its ancestor nodes are labeled with b, (3) all other
nodes are labeled with a, and (4) the substitution symbols
are z.

6. SELECTION QUERIES
Having introduced hedge regular expressions and pointed

hedge representations, we can introduce selection queries.
They form the backbone for queries on structured docu-
ments and have been studied by many researchers [22, 25,
26, 24, 23].

De�nition 20. A selection query is select(e1; e2), where
e1 is a hedge regular expression and e2 is a pointed hedge
representation.

To de�ne how selection queries work, we need two auxil-
iary de�nitions.

De�nition 21. The subhedge of a node n in a hedge u is
the hedge comprising all descendants of n. The envelope of
a node n in a hedge u is the result of removing the subhedge
of n and adding � as the child of n.

For example, consider bahahbxibi. This hedge has two
nodes at the top-level, and the second top-level node has
two second-level nodes. The subhedge and envelope of the
�rst second-level node is bx and bahah�ibi, respectively.

De�nition 22. A node n in a hedge u is located by selec-
tion query select(e1; e2) if the subhedge of n is contained
by L(e1) and the envelope of n is contained by L(e2).

As an example, let e1 be (bjx)
� and e2 be (�; a; b)(b; a; �).

Then, the �rst second-level node of the second top-level node
of bahahbxibi is located by select(e1; e2).
Next, we study evaluation of selection queries. Evaluation

of pointed hedge regular representations is not straightfor-
ward and we will consider such evaluation in Section 7. Here
we consider evaluation of hedge regular expressions.
The following theorem for evaluating hedge regular ex-

pressions appears trivial, but it is also useful for schema
transformation. Furthermore, we will later introduce a sim-
ilar theorem for pointed hedge representations.

Theorem 3. Given a hedge regular expression e, we can
construct a deterministic hedge automaton M # e and a set
of marked states such that

� any hedge u is accepted by M # e, and

� a node occurring in u is located by e if and only if
(M # e)ku assigns a marked state to this node.

Proof. Given a hedge regular expression e1, we �rst con-
struct a deterministic hedge automaton

M1 = (�; X;Q; �; �; F )

from e1.
For a string u = (q1; i1)(q2; i2) : : : (qn; in) over Q� f0; 1g,

we denote q1q2 : : : qn by u[1], and denote i1i2 : : : in by u[2].
Now, we can construct M # e1.



M # e1 = (�; X;Q� f0; 1g; �0; �0; (Q� f0; 1g)�)

where

�0(x) = (�(x); 0);

�0�1(a; (q; 1)) = fu 2 (Q� f0; 1g)� j u[1] 2 ��1(a; q) \ Fg;

�0�1(a; (q; 0)) = fu 2 (Q� f0; 1g)� j u[1] 2 ��1(a; q) n Fg;

F 0 = fu 2 (Q� f0; 1g)� j u[1] 2 Fg:

The rest of the proof is straightforward.

For example, given (bjx)�, we can construct a determinis-
tic hedge automaton M = (�; X;Q; �; �; F ) where

� = fa; bg;

X = fxg;

Q = fq0; q1; q2g;

�(x) = q1;

�(i; u) =

(
q0 (i = b; u = �);

q2 (otherwise);

F = L((q0jq1)
�)

We then construct

M # e = (�; X;Q� f0; 1g; �0; �0; (Q� f0; 1g)�)

where

�0(x) = (q1; 0);

�0(i; u) =

8>>><
>>>:
(q0; 0) (i = b; u = �);

(q2; 0) (u 2 L(((q0; 0)j(q0; 1)j

(q1; 0)j(q1; 1))
�);

(q2; 1) (otherwise):

Then, the computation of bahahbxibi by M # e is a hedge
(q2; 0)(q2; 0)h(q2; 1)h(q0; 0)(q1; 0)i(q2; 0)i. The state assigned
to the �rst second-level node of the second top-level node is
(q2; 1). This node is thus located, while the other nodes are
not located.
Next, we consider complexities of hedge regular expression

evaluation. Conversion from a hedge regular expression to
a non-deterministic hedge automaton requires time linear
to the size of the expression, but conversion from a non-
deterministic hedge automaton to a deterministic one re-
quires time exponential to the size of the non-deterministic
hedge automaton. Note that these conversions are per-
formed before we start to examine hedges. Once a determin-
istic hedge automaton is created, we can evaluate it against a
given hedge by traversing the hedge in the depth-�rst man-
ner. Such evaluation takes time linear to the number of
nodes.
Finally, we consider expressiveness of selection queries. It

is well known that a language of �nite strings is accepted
by a string automaton if and only if it is MSO-de�nable [7].
This observation has be generalized for unranked trees or
hedges [26]. It readily follows that our selection queries are
de�nable in MSO. Conversely, by applying the techniques
by Neven and Schwentick [26, 27], one can show that our
selection queries express exactly the MSO de�nable selection
queries.

7. EVALUATION OF POINTED HEDGE
REPRESENTATIONS

In Section 6, we have studied how we evaluate hedge reg-
ular expression e1 of a selection query select(e1; e2). In
this section, we show an algorithm for evaluating pointed
hedge representation e2. Given a hedge, this algorithm lo-
cates those nodes whose envelopes match the pointed hedge
representation by traversing the hedge twice.
We informally present the key idea. Although the under-

lying alphabet of e2 contains many hedge regular expres-
sions, we would like to evaluate all of them by performing
one traversal. This is done by creating a single deterministic
hedge automaton which captures all of these hedge regular
expressions. In other words, this automaton simluates ex-
ecution of the deterministic hedge automata created from
these hedge regular expressions.
For each node, this automaton computes a sequence of

states for elder siblings, and another for younger siblings.
By examining the label of this node and these two sequences,
we can determine which of the pointed based hedge repre-
sentations occurring in e2 is satis�ed. This idea is formally
captured by the following theorem.

Theorem 4. Given a pointed hedge representation r, we
can construct

� a deterministic hedge automaton M = (�; X;Q; �; �; ;),

� a right-invariant equivalence relation � of �nite index
over Q�, and

� a regular set L over (Q�=�)� �� (Q�=�)

such that

for any pointed hedge u;

u matches r if and only if �1�2 : : :�n 2 L; where

� u11aih�iu12; u21aih�iu22; : : : ; un1anh�iun2 is the decom-
position of u, and

� �i = ([dMkui1e]�; ai; [dMkui2e]�) (1 � i � n).

Proof. Recall that a pointed hedge representation is a
regular expression over a �nite set of pointed base hedge
representations. Let this �nite set for r be f(e11; a1; e12),
(e21; a2; e22); : : : ; (en1; an; en2)g.
For each ei1 and ei2 (1 � i � n), we construct determin-

istic hedge automata Mi1 and Mi2.
Without loss of generality, we can assume that Mi1; Mi2

share the state set Q, the transition function �, and the
transition function �. That is,

Mi1 = (�; X;Q; �; �; Fi1) (1 � i � n);

Mi2 = (�; X;Q; �; �; Fi2) (1 � i � n)

If they did not share Q; �; �, we only have to use the cross
product of all state sets as a new state set; that is, we use
Q11�Q12�Q21�Q22� : : : Qn1�Qn2 as the state set, where
Qij is the state set of Mij . We then reconstruct transition
functions and �nal state sequences for this new state set.
It is well known that any regular (string) set is the union

of some of the equivalence classes of a right-invariant equiva-
lence relationship of �nite index; we say that the equivalence
relationship saturates the regular set. Since Fi1 (1 � i � n)



is regular over Q, it is saturated by a right-invariant equiv-
alence relationship �i1 of �nite index over Q�. Likewise,
Fi2 (1 � i � n) is saturated by another right-invariant
equivalence relationship �i2 of �nite index over Q�. Let

� = (�11 \ �12 \ �21 \ �22 \ � � � \ �n1 \ �n2):

In other words, � holds if and only if �11, �12, �21, �22; : : :,
�n1, �n2 hold. Then, � is a right-invariant equivalence re-
lationship of �nite index over Q�. Furthermore, � saturates
Fi1 and Fi2 (1 � i � n).
Assume that

Fi1 = C1
i1 [ C2

i1 [ : : : [ Cni1

i1

and

Fi2 = C1
i2 [ C2

i2 [ : : : [ Cni2

i2 ;

where Cj1
i1 ; C

j2
i2 (1 � j1 � ni1; 1 � j2 � ni2) are equivalence

classes of � over Q�. Then, a pointed base hedge u1ah�iu2
matches (ei1; ai; ei2) if and only if

([dMku1e]�; a; [dMku2e]�)

is contained by [
1�j1�ni1;1�j2�ni2

Cj1
i1 � faig � Cj2

i2 :

Let � be a mapping from a pointed base hedge repre-
sentation to a subset of (Q�=�) � � � (Q�=�) such that
�((ei1; ai; ei2)) is the set shown above. � can be naturally ex-
tended as a homomorphism from sequences of pointed base
hedge representations. Let

L = �(L(r)):

Since the image of a regular language by a homomorphism is
regular, L is regular. Obviously, a pointed hedge u matches
r if and only if

([dMku11e]�; a1; [dMku12e]�)

([dMku21e]�; a2; [dMku22e]�) : : :

([dMkun1e]�; an; [dMkun2e]�)

is contained by L, where the decomposition of u is u11aih�iu12,
u21aih�iu22; : : :, un1anh�iun2.

In this construction, conversion from hedge regular ex-
pressions to deterministic hedge automata takes time expo-
nential to the size of hedge regular expressions. Construc-
tion of right-invariant equivalence classes �i1;�i2 requires
determinization of �nite (string) automata, thus taking ex-
ponential time. The rest of the construction takes polyno-
mial time. Thus, this construction takes exponential time.
Consider the mirror image of L, namely fwk : : : w2w1 j

w1w2 : : : wk 2 Lg. Since the mirror image of a regular set is
regular, we can construct a deterministic (string) automaton

N = (S; �; s0; S�n)

that accepts this set, where S is a �nite set of states, s0 (2 S)
is a start state, and S�n (� S) is a set of �nal states.
Now, we are ready to sketch an algorithm for locating

those nodes which satisfy a pointed hedge representation.
This algorithm requires two depth-�rst traversals, and takes
time linear to the number of nodes. Intuitively speaking, de-
terministic hedge automaton M and equivalence relation�

are evaludated during the �rst traversal, and then determin-
istic (string) automaton N is evaluated during the second
traversal.

Algorithm 1

First traversal Let e be a node. Let e1; e2; : : : ; ek be its
elder siblings, e01; e

0
2; : : : ; e

0
l be its younger siblings.

� When we visit e, we compute an element of Q�= �
for the sequence of states assigned to e1; e2; : : : ; ei.
The computed element, together with the number
i, is recorded at the parent of e.

� When we leave e, we assign a state in Q to e by
computing � or �.

We start computing an element of Q�=� for the
sequence of states assigned to e01; e

0
2; : : : ; e

0
l; this

computation is completed when we later leave e0l.

If e does not have younger siblings (i.e., l = 0), we
compute an element of Q�=� for the sequence of
states assigned to e1; e2; : : : ; ek; e. The computed
value, together with the number 1, is recorded at
the parent of e. We also compute another ele-
ment of Q�=� for the sequence of states assigned
to e2; e3; : : : ; ek; e. Again, the computed value,
together with the number 2, is recorded at the
parent of e. And so forth.

Second traversal We only have to evaluate N so as to
locate elements which match the given pointed hedge
representation.

When we visit a node e, by examining its label and
value recorded at its parent, we can determine an ele-
ment of (Q�=�)� �� (Q�=�).

By applying � to this element and the state (in S) of
its parent node, we assign a state to e. If and only if a
�nal state in S�n is assigned to e, it is located by the
given pointed hedge representation.

We note that Neven and Van den Bussche [25] have shown
that selection queries de�nable by MSO formulas can be
evaluated by traversing a tree twice.

8. MATCH-IDENTIFYING HEDGE
AUTOMATA

In this section, to facilitate schema transformation, we
construct a match-identifying hedge automaton. A match-
identifying hedge automaton accepts the same language as
does the input schema, but further identi�es matches to
hedge regular expressions and pointed hedge representations
at the schema level.
For each query operation, an output schema can be cre-

ated by modifying the match-identifying automaton as ap-
propriate to the query operation. In the case of selection,
we only have to use marked states as �nal state sequences
(To be precise, we have to use only those marked states from
which �nal state sequences can be reached).
As for a hedge regular expression e, Theorem 3 ensures

that we can construct a hedge automaton M # e1 that cap-
tures e1. As for a pointed hedge representation, the follow-
ing theorem provides a similar solution.



Theorem 5. Given a pointed hedge representation e2, we
can construct a non-deterministic hedge automaton M " e2
and a set of marked states such that

� for any hedge u in H[�; X], there exists one and at
most one successful computation of u, and

� a node occurring in u is located by e2 if and only if
the only successful computation of u assigns a marked
state to this node.

If this theorem holds, construction of match-identifying
hedge automata is straightforward. Given an input schema,
M # e1, and M " e2, we can construct a match-identifying
hedge automaton by creating an intersection of these hedge
automata.

Proof. In Theorem 4, given a hedge regular expression,
we have constructed a deterministic hedge automaton M =
(�; X;Q; �; �; ;), a right-invariant equivalence relation � of
�nite index over Q�, and a regular set L over (Q�=�)���
(Q�=�). We have also constructed a deterministic (string)
automaton N = (S; �; s0; S�n) that accepts the mirror image
of L. On the basis ofM , �, L, and N , we construct a match-
identifying non-deterministic hedge automaton.
The key idea is to make a non-deterministic (string) au-

tomaton N 0 which simulates N in reverse (Figure 3). That
is,

� if N has a transition labeled Æ from a state s1 to an-
other state s2, then N 0 has a transition labeled Æ from
s2 to s1 via Æ, where Æ is a pointed base hedge repre-
sentation,

� the start state of N is a �nal state of N 0, and

� any state of N is a start state of N 0.

Formally, N 0 = (S; �0; S; fs0g) where �
0(Æ; s2) 3 s1 if and

only if �(Æ; s1) = s2:
Suppose that N 0 has successful computations (sequences

of states) for a string. If we reverse these computations,
we obtain computations of N for the mirror image of this
string. Since N is a deterministic automaton, it has only one
computation per string. Therefore, each string has one and
at most one successful computation by N 0. At each point
in a string, N 0 may have multiple choices. But only one of
them leads to a �nal state.
We construct a match-identifying non-deterministic hedge

automaton

M 0 = (�; X;Q0; �; �; F 0):

This automaton simulates M (which is deterministic) and
also simulates N 0 for every path from a leaf node to the top-
level. Thus, any hedge has one and at most one successful
computation by M 0.
First, the set of states Q0 is de�ned below:

Q0 = (Q� S � �) [ (Q� fs?g � fa?g):

Since we intend to use (Q�=�)� �� (Q�=�) in the def-
inition of �, a state in Q0 comprises a symbol in �. Use of
S and Q in Q0 allows simulation of N and Mi1;Mi2, respec-
tively. s? and a? are additional values for leaf nodes.
A set Q0mark of marked states is de�ned below:

Q0mark = Q� S�n � �:

Execution

of N

Simulation

in reverse

s0

� �0
s0

([dMku11e]�; a1; [dMku12e]�) 6?
s1

� �0
s1

([dMku21e]�; a2; [dMku22e]�) 6?
s2 s2

si�1

� �0
si�1

([dMkui1e]�; ai; [dMkui2e]�) 6?
si si

Figure 3: Simulation of N in reverse
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[qj+1 : : :
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qi]

Figure 4: Given the equivalence class of q1 : : : qj�1,
the label aj of the i-th child, the equivalence class of
qj+1 : : : qi, and state s assigned to the parent element,
function � must return sj.

Use of S�n implies that N 0 begins with one of its start
states or N reaches one of its �nal states.
Mapping � from � to Q0 is de�ned below:

�(x) = (�(x); s?; a?):

Next, we de�ne a function � from ��Q0� to the power set
of Q0. Given a symbol and a sequence of states in Q0, this
function returns a set of states in Q0. The �rst component
(2 Q) simulates �. The second component (2 S [ fs?g)
simulates N 0 (Figure 4). The third component (2 �[fa?g)
is the symbol given as an input.

�(a; (q1; s1; a1)(q2; s2; a2) : : : (qi; si; ai)) =
f(�(a; q1q2 : : : qi); s; a) j
for every j (1 � j � i), either aj = a? or
s 2 �0(([q1 : : : qj�1]�; aj ; [qj+1 : : : qi]�); sj)g

Next, we show that � satis�es the regularity condition.
We can easily show that ��1(a; (q; s; b) (a; b 2 �; a 6= b; q 2
Q; s 2 S) and ��1(a; (q; s?; a?)) (q 2 Q) are regular.

��1(a; (q; s; b)) = ;

��1(a; (q; s?; a?)) = ;

Next, we consider ��1(a; (q; s; a) (q 2 Q; s 2 S; a 2 �).
The key idea is to eliminate those child node sequences which
cause failures to simulate N 0.

��1(a; (q; s; a)) = h(��1(a; q)) n
[

C1;C2 2 Q�=�

h(C1) 
h(C2);



where


 = f(q0; s0; a0) j s0 6= �((C1; a
0; C2); s); q

0 2 Qg

and h is a homomorphism such that

h(q) = (fqg � S ��) [ f(q; s?; a?):g

Intuitively speaking, the inequality in the de�nition of Y
implies that N fails to reach s0 or N 0 fails to reach s.
Since regular sets are closed under homomorphisms, con-

catenation, and boolean operations, the inverse image of �
is a regular set.
Finally, we construct a �nal state sequence set F 0. The

�rst component (2 Q) simulates F . The second component
(2 S [fs?g) and third component (2 �[fa?g) are de�ned
so that N 0 reaches its �nal state s0.

F 0 = f(q1; s1; a1)(q2; s2; a2) : : : (qi; si; ai) j

for every j (1 � j � i); either aj = a? or

s0 2 �(([q1 : : : qj�1]�; aj ; [qj+1 : : : qi]�); sj)g

It remains to show that F 0 is regular. As in the construc-
tion of the inverse image of �, we can rewrite F as below:

F 0 = h(Q�) n
[

C1;C2 2 Q�=�

h(C1)Y h(C2)

where 
 and h are the same as in the inverse image of �.
Again, since regular sets are closed under homomorphisms,

concatenation, and boolean operations, F 0 is a regular set.

Finally, we show how this construction can be simpli�ed
when pointed hedge representations do not impose condi-
tions on siblings or their descendants. In other words, such
pointed hedge representations are traditional path expres-
sions. In this case, � is Q��Q�. Thus, we can use � rather
than (Q�=�) � � � (Q�=�) We can also assume that the
transition function � of N is a mapping from �� S to S.
The match-identifying non-deterministic hedge automa-

ton for a traditional path expression is

M 0 = (�; X;Q0; �; �; F 0)

and Q0mark is the set of marked states where

Q0 = (S � �) [ (fs?g � fa?g);

Q0mark = S�n ��;

�(x) = (s?; a?);

��1(a; (s; b)) = ; (a 6= b);

��1(a; (s?; a?)) = ;;

��1(a; (s; a)) = (f(s0; a0) j s0 2 S; a0 2 �;

�(a0; s) = s0g [ f(s?; a?)g)
�;

F 0 = (f(s0; a0) j s0 2 S; a0 2 �;

�(a0; s0) = s0g [ f(s?; a?)g)
�

9. CONCLUSIONS AND FUTURE WORKS
We have assumed XML documents as hedges and have

presented a formal framework for XML queries. Our se-
lection queries are combinations of hedge regular expres-
sions and pointed hedge representations. A hedge regular
expression captures conditions on descendant nodes. To lo-
cate nodes, a hedge regular expression is �rst converted to

a deterministic hedge automaton and then it is executed by
a single depth-�rst traversal. Meanwhile, a pointed hedge
representation captures conditions on non-descendant nodes
(e.g., ancestors, siblings, siblings of ancestors, and descen-
dants of such siblings). To locate nodes, a pointed hedge
representation is �rst converted to triplets: (1) a deter-
ministic hedge automaton, (2) a �nite-index right-invariant
equivalence of states, and (3) a string automaton over the
equivalence classes. Then, this triplet is executed by two
depth-�rst traversals. Schema transformation is e�ected by
identifying where in an input schema the given hedge regular
expression and pointed hedge representation is satis�ed.
Interestingly enough, as it turns out our framework ex-

actly captures the selection queries de�nable by MSO, as
do boolean attribute grammars and query automata. On
the other hand, our framework has two advantages over
MSO-driven approaches. First, conversion of MSO formulas
to query automata or boolean attribute grammars requires
non-elementary space, thus discouraging implementations.
On the other hand, our framework employs determiniza-
tion of hedge automaton, which requires exponential time.
However, we conjecture that such determinization usually
works, as does determinization of string automata. Second,
(string) regular expressions have been so widely and suc-
cessfully used by many users because they are very easy to
understand. We hope that hedge regular expressions and
pointed hedge representations will become commodities for
XML in the near future.
There are some interesting open issues. First, is it possi-

ble to generalize useful techniques (e.g., optimization) devel-
oped for path expressions to hedge regular expressions and
pointed hedge representations? Second, we would like to in-
troduce variables to hedge regular expressions so that query
operations can use the values assigned to such variables. For
this purpose, we have to study unambiguity of hedge regular
expressions. An ambiguous expression may have more than
one way to match a given hedge, while an unambiguous ex-
pression has at most only one such way. Variables can be
safely introduced to unambiguous expressions.
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