ISO/IEC 15938‑1:2000(E)

© ISO/IEC

© ISO/IEC
ISO/IEC 14496‑1:1999(E)

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND ASSOCIATED AUDIO

ISO/IEC JTC1/SC29/WG11 N3575
MPEG 00/N3575

July 2000 (Beijing)

	Source:
	Systems Sub-group

	Title:
	DDL Working Draft 4.0

	Status:
	Draft

	Editor:
	Jane Hunter (DSTC Pty Ltd)

	Contributors:
	Ernest Wan (CISRA), Claude Seyrat (UPMC), Cédric Thiénot (UPMC), Frank Nack (CWI)

	Note

At the 51st MPEG meeting in Noordwijkerhout, it was decided to adopt XML Schema Language with MPEG-7-specific extensions as the MPEG-7 DDL. Consequently this document has been rewritten to reflect this decision. It provides an overview of the most important features of XML Schema, from the point of view of satisfying MPEG-7 requirements. In addition it describes MPEG-7-specific extensions, perceived problems with XML Schema Language and DDL open issues. For the complete, detailed XML Schema specifications refer to:

 http://www.w3.org/TR/xmlschema-0/ XML Schema Part 0: Primer, W3C Working Draft, 7 April, 2000

 http://www.w3.org/TR/xmlschema-1/ XML Schema Part 1: Structures W3C Working Draft, 7 April 2000

 http://www.w3.org/TR/xmlschema-2/ XML Schema Part 2: Datatypes W3C Working Draft, 7 April 2000

ISO/IEC JTC 1/SC 29/WG 11 xxxx
Date: 2000-05-25

ISO/IEC xxxx-x:2001(E)

ISO/IEC JTC 1/SC 29/WG 11

Modified by the SC 29 Secretariat

Information technology – Multimedia Content Description Interface –
Part 2 : Description Definition Language

Contents

VI0
Introduction

0.1
Overview
VI
0.2
Overview of the sub-parts
VII
1
Scope
11
2
Normative References
11
3
Terms and Definitions
11
4
Abbreviations and Symbols
12
5
XML Schema Language Structural Components
12
5.1
Introduction
12
5.2
Details
13

5.2.1
Schema Wrapper – Preamble
13

5.2.2
Type Definitions
14

5.2.3
Declaration Components
15

5.2.4
Group Definitions
17

5.2.5
Wildcards
18

5.2.6
Annotations
19

6
XML Schema Language Datatypes
19

6.1
Introduction
19

6.2
Description
19

6.2.1
Built-in Primitive Datatypes
20

6.2.2
Built-in Derived Datatypes
20

6.2.3
The List Datatype
20

6.2.4
Defining Derived Datatypes
20

7
MPEG-7-specific Extensions
22

7.1
MPEG-7-specific Structural Extensions
22

7.2
MPEG-7-specific Datatype Extensions
22

8
Unused Features of XML Schema
23

9
XML Schema Problem Issues
23

10
DDL Open issues
23

Annex A (informative) Bibliography
25

Annex B (informative) Patent statements
26

Figures

Tables

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

The MPEG-7 standard also known as "Multimedia Content Description Interface" aims at providing standardized core technologies allowing description of audiovisual data content in multimedia environments. In order to achieve this broad goal, MPEG-7 will standardize:

· Descriptors (D): representations of Features, that define the syntax and the semantics of each feature representation,

· Description Schemes (DS), that specify the structure and semantics of the relationships between their components, which may be both Ds and DSs,

· A Description Definition Language (DDL), to allow the creation of new DSs and, possibly, Ds and to allows the extension and modification of existing DSs,

· System tools, to support multiplexing of description, synchronization issues, transmission mechanisms, file format, etc.

The MPEG-7 standard consists of the following parts, under the general title Information Technology - Multimedia Content Description Interface:

· Part 1: Systems. Architecture of the standard, tools that are needed to prepare MPEG-7 Descriptions for efficient transport and storage, and to allow synchronization between content and descriptions. Also tools related to managing and protecting intellectual property.

· Part 2: Description Definition Language (DDL). Language for defining new DSs and perhaps eventually also for new Ds, binary representation of DDL expressions.

· Part 3: Visual. Visual elements (Ds and DSs).

· Part 4: Audio. Audio elements (Ds and DSs).

· Part 5. Multimedia Description Schemes. Elements (Ds and DSs) that are generic, i.e. neither purely visual nor purely audio.

· Part 6. Reference Software. Software implementation of relevant parts of the MPEG-7 Standard.

· Part 7. Conformance. Guidelines and procedures for testing conformance of MPEG-7 implementations.

This document represents the current Working Draft of Part 2 of the MPEG-7 standard, the DDL Working Draft. It proposes facilities within the DDL for constraining the structure and contents of MPEG-7 descriptions.

Introduction

0.1 Overview

The MPEG-7 standard also known as "Multimedia Content Description Interface" aims at providing standardized core technologies allowing the description of audiovisual data content in multimedia environments [1]. This is a challenging task given the broad spectrum of requirements and targeted multimedia applications, and the broad number of audiovisual features of importance in such context. In order to achieve this broad goal, MPEG-7 will standardize:

· Descriptors (D): representations of Features, that define the syntax and the semantics of each feature representation;

· Description Schemes (DS), that specify the structure and semantics of the relationships between their components, which may be both Ds and DSs;

· A Description Definition Language (DDL), to allow the creation of new DSs and, possibly, Ds and to allows the extension and modification of existing DSs;

· System tools, to support multiplexing of description, synchronization issues, transmission mechanisms, file format, etc.

The DDL forms a core part of the MPEG-7 standard. It provides the solid descriptive foundation by which users can create their own Description Schemes and Descriptors. The DDL defines the syntactic rules to express and combine Description Schemes and Descriptors. According to the definition in the MPEG-7 Requirements Document [2] the DDL is

‘...a language that allows the creation of new Description Schemes and, possibly, Descriptors. It also allows the extension and modification of existing Description Schemes.’

The DDL is not a modeling language such as Unified Modeling Language (UML) but a schema language to represent the results of modeling audiovisual data, i.e. DSs and Ds.

The DDL must satisfy the MPEG-7 DDL requirements. It has to be able to express spatial, temporal, structural, and conceptual relationships between the elements of a DS, and between DSs. It must provide a rich model for links and references between one or more descriptions and the data that it describes. In addition, it must be platform and application independent and human- and machine-readable. DDL Parser also has to be capable of validating descriptor data types, both primitive (integer, text, date, time) and composite (histograms, enumerated types).

The DDL design has been informed by numerous proposals and input documents submitted to the MPEG-7 DDL AHG since the MPEG-7 Call for Proposals in October 1998 [3]. It has also been heavily influenced by W3C's XML Schema Language [4,5,6] and the Resource Description Framework (RDF) [7].

At the 51st MPEG meeting in Noordwijkerhout in March 2000, it was decided to adopt XML Schema Language as the MPEG-7 DDL. However the DDL will require some specific extensions to XML Schema Language to satisfy all of the requirements of MPEG-7. However their precise implementation is still being investigated and further extensions are also possible. For details see http://archive.dstc.edu.au/mpeg7-ddl. The current version of the DDL is based on the XML-Schema version as of 7th April 2000 [4,5,6].

This working draft presents the current status of the Description Definition Language for the MPEG-7 standard. The ideas and concepts presented in this document are likely to undergo further change, both due to changes in the XML Schema Language specification and due to the addition of further MPEG-7-specific extensions. This document will also serve as a resource of representations for those Descriptors and Description Schemes which form the eXperimental Model (XM), as well as providing a description template for DSs and Ds.

0.2 Overview of the sub-parts

The DDL can be broken down into the following logical normative components:

· The XML Schema structural language components;

· The XML Schema datatype language components;

· The MPEG-7 specific extensions.

The structure of this document reflects this logical breakdown:

· Section 5 specifies the semantics of the structural part of XML Schema Language.

· Section 6 specifies the datatyping mechanisms within XML Schema Language.

· Section 7 describes the MPEG-7–specific extensions.

· Section 8 lists the XML Schema Language features which are currently considered extraneous to the requirements of MPEG-7.

· Section 9 describes problems encountered with XML Schema Language during the DS and D encodings.

· Section 10 lists the DDL open issues.

· Annexes A and B contain the Bibliography and Patent Statements respectively.

Information technology (Multimedia Content Description Interface (
Part 2 : Description Definition Language
1 Scope

The objective of this working draft is to provide a concise, unambiguous specification of the MPEG-7 DDL which will enable MPEG-7 users and developers to:

· create valid MPEG-7 description schemes and descriptors;

· develop tools such as editors and parsers for processing descriptions, description schemes and descriptors;

· generate refinements, extensions and modifications to the DDL.

This document describes the various features of the DDL. It defines the syntax of the DDL constructs and datatypes and provides (non-normative) examples which illustrate their application.
A (non-normative) prototype DDL parser tool is being developed by members of the DDL AHG, which validates the syntax of description scheme and descriptor definitions as well as instantiations of corresponding descriptions. The parser will need to parse both pure XML Schema schemes and descriptions as well as MPEG-7 extensions to XML Schema Language.

2 Normative References

The following ITU-T Recommendations and International Standards contain provisions, which, through reference in this text, constitute provisions of ISO/IEC 15938. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on ISO/IEC 15938 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau maintains a list of currently valid ITU-T Recommendations.
3 Terms and Definitions

[Definition:] An attribute is …;

[Definition:] An complexType is …;

[Definition:] A constraint is…;

[Definition:] A content model is…;

[Definition:] A datatype is…;

[Definition:] A definition creates a new type;

[Definition:] A declaration enables the appearance in a document instance of an element or attribute with a specific name and type.

[Definition:] Derivation is…;;

[Definition:] A Descriptor is…;

[Definition:] A Description Scheme is…;

[Definition:] An element is…;

[Definition:] A facet is…;

 [Definition:] An instance is..;

[Definition:] A model group is…;

[Definition:] A namespace is…;

[Definition:] An NCName is a name with no colon, as defined in [21].

[Definition:] A QName is a name with an optional namespace qualification, as defined in [21].

[Definition:] Refinement is …;

[Definition:] A Schema is….;

[Definition:] Scope is….;

[Definition:] A simpleType is….;

[Definition:] A type is …;

[Definition:] A type reference is…;

[Definition:] Validation is ….;

[Definition:] Well-formedness is ….;

4 Abbreviations and Symbols

	DS
	Description Scheme

	D
	Descriptor

	DDL
	Description Definition Language

	XML
	Extensible Markup Language 1.0

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	RDF
	Resource Description Framework

	EBNF
	Extended Backus-Naur Form

	DTD
	Document Type Definition

	XLink
	XML Linking Language

	XPointer
	XML Pointer Language

	XPath
	XML Path Language

	XSL
	XML Stylesheet Language

	XSLT
	XSL Transformations

5 XML Schema Language Structural Components

5.1 Introduction

The purpose of this section is to describe the language constructs provided to define the structures and attributes of Description Schemes and Descriptors.

An XML Schema consists of a set of schema components which can be divided into three groups. The primary components are:

· The Schema – the wrapper around the definitions and declarations;

· Simple type definitions;

· Complex type definitions;

· Attribute declarations;

· Element declarations.

The secondary components are:

· Attribute group definitions;

· Identity-constraint definiitions;

· Model group definitions;

· Notation declarations.

The third group are the “helper” components which contribute to the other components and cannot stand alone:

· Annotations;

· Model groups;

· Particles;

· Wildcards.

5.2 Details

5.2.1 Schema Wrapper – Preamble

The preamble consists of an XML element “schema” which contains the following attributes:

· A reference to the XML Schema namespace:

xmlns:xs=http://www.w3.org/1999/XMLSchema
· targetNamespace : the current schema identity i.e. the URI by which the current schema is to be identified ;
· version: a schema version specification

· a reference (URI) to the MPEG7 DDL to be used for validation:

xmlns:mpeg7=http://www.mpeg7.org/MDS_schema
· xmlns : References to other imported schemas and abbreviations for referring to definitions in these external schemas. The xmlns keyword can be followed by ‘:’ and a prefix. This identifies the origins of the referenced constructs.
· elementFormDefault: indicates whether locally declared elements must be qualified or unqualified

· attributeFormDefault: indicates whether locally declared attributes must be qualified or unqualified

Non normative example:

<schema xmlns=http://www.w3.org/1999/XMLSchema

xmlns:mpeg7='http://www.mpeg7.org/2000/MPEG7_schema'

targetNamespace='http://www.mpeg7.org/2000/MPEG7_schema'

elementFormDefault='unqualified'

attributeFormDefault='unqualified'>

……

……

</schema>

XML namespaces [11] provide a simple method for qualifying names of descriptors and description schemes used in MPEG-7 DDL descriptions by associating them with namespaces identified by URI references. Every schema definition must begin with this preamble in order to identify the namespace of itself. This also provides the ability to generate descriptions which combine schemas from multiple different namespaces.

5.2.2 Type Definitions

Type definitions define internal schema components which can be used in other schema components such as elements, attributes or other type definitions. XML Schema provides two kinds of type definition component :

· simple and

· complex.

5.2.2.1 Simple Type Definitions

New simple types can be defined by derivation from existing simple types (built-ins or derived) through a restriction of the base simple type. Elements and attributes can then be declared which have these simple types. Simple types cannot have element content and cannot carry attributes.

The available built-in simple types are in Appendix A of [4]. A list of facets to these simple types are in Appendix B of [4]. The examples below illustrate how to define new simple types through the application of restrictions using facets on the base simple types.

Non-normative examples :

<simpleType name=”6bitInteger” base=”nonNegativeInteger”>

<minInclusive value=”0”/>

 <maxInclusive value=”63”/>

</simpleType>

<simpleType name="DirectionType" base="string">

<enumeration value="unidirectional"/>

<enumeration value="bi-directional"/>

</simpleType>

<simpleType name='listOfString' base='string' derivedBy='list'/>

5.2.2.2 Complex Type Definitions

A complex type definition is a set of attribute declarations and a content type, applicable to the attributes and children of an element declared to be of this complex type.

Complex type definitions provide the following :

· Constraints on the appearance and content of attributes ;

· Constraints on children elements - to be empty, or to conform to a specified element-only or mixed content model ;

· Derivation of complex types from other simple or complex types through extension or restriction.

New complex types are defined using the complexType element and such definitions typically contain a set of element declarations, element references, and attribute declarations. The declarations are not themselves types, but rather an association between a name and constraints which govern the appearance of that name in documents governed by the associated schema. Elements are declared using the element element, and attributes are declared using the attribute element. For example, Organization is defined as a complex type, and within the definition of Organization we see three element declarations and one attribute declaration:

<complexType name="Organization">

<element name="OrganizationName" type="string"/>

<element name="ContactPerson" type="Individual" minOccurs="0"

maxOccurs="unbounded"/>

<element name="Address" type="Place" minOccurs="0"/>

<attribute name="id" type="ID" use=”required”/>

</complexType>

The consequence of this definition is that any element appearing in an instance whose type is declared to be Organization must consist of three elements and one attribute. These elements must be called OrganizationName, ContactPerson and Address. The first of these elements will contain a string, the second will contain the complexType Individual and the third will contain the complexType Place. Any element whose type is declared to be Organization must appear with an attribute called id which must contain an ID.

5.2.2.3 Content Model Constraints

Using the content attribute it is possible to constrain the content model of a complexType to the following:

· empty – no child elements only attributes;

· mixed – character data appears between elements and their children;

· elementOnly – the default content type which consists of elements and attributes;

· textOnly – use when deriving a complexType from a simpleType.

Non-normative example of the empty content model:

<element name='internationalPrice'>

 <complexType content='empty'>

 <attribute name='currency' type='ISO4217CurrencyCode' />

 <attribute name='value' type='decimal' />

 </complexType>

 </element>

<internationalPrice currency='EU' value='423.46'/>

Non-normative example of the mixed content model:

<element name='salutation'>

 <complexType content='mixed'>

 <element name='name' type='string'/>

 </complexType>

</element>

<salutation>Dear Mr.<name>Robert Smith</name>,</salutation>

5.2.2.4 Derived Complex Types

It is possible to derive new complex Types by :

· Extension of a simple or complex base type definition or by

· Restriction of a complex base type definition.

A complex type which extends another does so by having additional content model particles at the

end of the other definition's content model, or by having additional attribute declarations, or both.

Non-normative example of derivation of a complexType by extension of a simpleType:

<complexType name="controlledTerm" base="string" derivedBy="extension">

 <attribute name="CSName" type="string" use="optional"/>

 <attribute name="CSTermId" type="string" use="optional"/>

 <attribute name="CSLocation" type="uri" use="optional"/>

</complexType>

Non-normative example of derivation of a new complexType by extension of an existing complexType:

<complexType name="Creator" base="Person" derivedBy="extension">

<element name="role" type="controlledTerm"/>

</complexType>

A type definition whose declarations or facets are in a one-to-one relation with those of another specified type definition, with each in turn restricting the possibilities of the one it corresponds to, is said to be a restriction. The specific restrictions might include narrowed ranges or reduced alternatives. Members of a type, A, whose definition is a restriction of the definition of another type, B, are always members of type B as well.

Non-normative example of derivation by restriction :

<complexType name="personName">

 <element name="title" minOccurs="0"/>

 <element name="forename" minOccurs="0" maxOccurs="unbounded"/>

 </complexType>

<complexType name="simpleName" base="personName" derivedBy="restriction">

 <element name="title" maxOccurs="0"/>

 <element name="forename" minOccurs="1" maxOccurs="1"/>

 </complexType>

5.2.3 Declaration Components

5.2.3.1 Element Declarations

An element declaration specifies a type definition for an element either by reference or explicitly, and may provide occurrence (minOccurs and maxOccurs attributes) and default information (default attribute). The default values for minOccurs and maxOccurs are :

minOccurs =1 ;

maxOccurs =

1. unbounded, if the maxOccurs [attribute] equals unbounded,

2. otherwise the number corresponding to the lexical [value] of the maxOccurs [attribute], if present,

3. otherwise the number corresponding to the lexical [value] of the minOccurs [attribute], if it is present and greater than 1

4. otherwise 1.

Non-normative examples :

<element name="myelement" type="string" default="abc"/>

(myelement has default values minOccurs=1, maxOccurs=1)

<element name="et0" type="myComplexType" minOccurs="0" maxOccurs="unbounded"/>

5.2.3.2 Anonymous Type Definitions

Schemas can be constructed by defining named types and then declaring elements that reference the types using the element name=.. type=.. construction. This style of schema construction is straightforward but it can be unwieldy, especially if you define many types that are referenced only once and contain very few constraints. In these cases, a type can be more succinctly defined as an anonymous type which saves the overhead of having to be named and explicitly referenced.

Non-normative example :

<element name="et1">

 <complexType>

 <element ref="et0"/>

 . . .

 <attribute>. . .</attribute>

 </complexType>

 </element>

5.2.3.3 Element References

The element declarations we have described so far have each associated a name with an existing type definition. Sometimes it is preferable to reference an existing element rather than declare a new element, for example:

 <element name="comment" type="string" />

 <element ref="comment" minOccurs="0" />

This declaration references an existing element, comment, that was declared elsewhere in the schema. In general, the value of the ref attribute must reference a global element, i.e. one that has been declared under schema rather than as part of a complex type definition. The consequence of this declaration is that an element called comment may appear in an instance document, and its content must be consistent with that element's type, in this case, string.

5.2.3.4 Equivalence Classes

Equivalence classes allow elements to be substituted for other elements. Using the equivClass attribute, elements can be declared to be equivalent to an exemplar element. The exemplar element must be a global element. For example if we declare two elements seriesTitle and programTitle as equivalence classes to the Title exemplar element, then seriesTitle and programTitle can be used anywhere that Title has been used. Equivalence class elements must be the same type as the exemplar element.

Non-normative example :

<element name="Title" type="string"/>

<element name="seriesTitle" type="string" equivClass="Title"/>

<element name="programTitle" type="string" equivClass="Title"/>

5.2.3.5 Abstract Elements and Types

Elements and Types may be declared to be abstract.

Abstract elements cannot appear in instantiations. When an element is declared to be abstract, a member of that element's equivalence class must appear in the instance document.

<element name= ‘abstractElement’ type=’string’ abstract=’true’/>

When an element's corresponding type definition is declared as abstract, all instances of that element must use xsi:type to indicate a derived type that is not abstract.

<complexType name='Vehicle' abstract='true'/>

 <complexType name='Car' base='Vehicle'/>

 <complexType name='Plane' base='Vehicle'/>

 <element name='transport' type='Vehicle'/>

<transport xsi:type ="Car"/>

5.2.3.6 Attribute Declarations
Attribute declarations associate a name with constraints on the presence and value of the attribute by referring to a simple datatype.

Attribute definitions enable the following constraints to be associated with an attribute name:

· type - constrains the attribute value to this simple datatype;
· use - a value which indicates whether the attribute is required | optional | fixed | default | prohibited; by default the value is "optional";

· value - indicates either a fixed or default value for the attribute;

Attributes may appear once or not at all (the default). A use attribute is provided in an attribute declaration to indicate whether the attribute is required or optional, and if optional whether the attribute's value is fixed or whether there is a default. A second attribute, value, provides any value that is called for. To illustrate, the example below contains a declaration for the Income attribute, which is declared with use and value values of fixed and 42 respectively. This declaration means that the appearance of an Income attribute is optional (the default) and if it does appear, its value must be 42, and if it does not appear, a schema processor will create an Income attribute with this value.

Non normative examples:

<attribute name=’Income’ type=’integer’ use=’fixed’ value=’42’/>

<complexType name=”myDS2”>

 <element ref=”myDS1”/>

 <attribute ref=”Income”/>

</complexType>

5.2.4 Group Definitions

5.2.4.1 Attribute Group Definition
Attribute Group definitions provide a mechanism to include a group of attributes by name within a complexType definition.

Non normative example:

<attributeGroup name=’id_href_Group’>

 <attribute name=’id’ type=’ID’ use=’required’/>

 <attribute name=’href’ type=’uriReference’ use=’required’/>

</attrGroup>

<complexType name=’myDSType’>

 <element name=’SegmentDS’ type=’SegmentDSType’/>

 <attributeGroup ref=’id_href_Group’/>

</complexType>

5.2.4.2 Unnamed Groups

Three compositors are provided to construct unnamed groups of elements :

· sequence – constrains the elements in the group to appear in the same order in which they are declared ;

· choice – only one of the elements in the group may appear in an instance ;

· all – all of the elements in the group must appear once only and in any order.

Non normative example:

<complexType name="SegmentNode">

<sequence maxOccurs="unbounded">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element name="ReferenceToSegment" type="ReferenceToSegment" />

 <element name="SegmentNode" type="SegmentNode"/>

 </choice>

 <element name="SegmentRelationshipNode"

 type="SegmentRelationshipNode"

 minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="ID" use="optional"/>

</complexType>

5.2.4.3 Named Model Groups

A model group definition associates a name and optional annotations with a Model Group. By reference to the name, the entire model group can be incorporated by reference into a complexType or element. The modelGroup name does not appear in description instantiations. This construct serves a similar purpose to the attributeGroup mechanism for attributes but is applied to content models.

Possible compositors within the model group definition are: all | choice | sequence.

Non normative example:
<group name=’myModelGroup’>

 <choice>

 <element ref=’MyDS1’/>

 <element ref=’MyDS2’/>

 </choice>

</group>

<complexType name=’AnotherDS’>

 <group ref name=’myModelGroup’/>

 <attribute ……./>

</complexType>

5.2.5 Wildcards

The any element can be used to specify that any well-formed XML is permissable in an element type’s content model. The namespace attribute associated with the any element can be used to restrict the namespaces from which the element content can be taken. Possible namespace values are:

· ##any – Any well-formed XML from any namespace;

· ##local – Any well-formed XML that is nor qualified i.e. not declared to be in a namespace;

· ##other – Any well-formed XML in a namespace which is different to the target namespace of the type being defined;

· ##targetNamespace - the target namespace of the type being defined;

· list of namespace(s) – e.g. http://www.w3.org/xhtml
Non normative example:

<element name=’open_element’>
 <complexType>

 <any namespace=’##other’/>

 </complexType>

</element>

Similarly, the anyAttribute element allows any attribute to be associated with elements. A namespace attribute (as for the any element) can be associated with anyAttribute to specify the possible namespaces from which the attribute content can be taken.

Non normative example:

<element name=’open_element’>
 <complexType>

 <any namespace=’##other’/>

<anyAttribute namespace=’##local’/>

 </complexType>

</element>

This declaration permits the following example of an instantiation:

<open_element size=’10000’>
 <comment>This could be anything

 </comment>

</open_element>

5.2.6 Annotations

Schema annotations can be inserted using the annotation element and either of its two sub-elements, documentation or appInfo. Annotations can appear at the beginning of most schema constructs i.e. inside elements and complex type definitions. The documentation element can be used to insert comments and the appInfo element can be used to provide information for tools, stylesheets and other applications.

Non-normative example :

<complexType name="MatrixR" base="listOfFloat" derivedBy="extension">
 <annotation>

 <documentation>Matrix of Reals with Size1 rows and Size2 columns

</documentation>

 </annotation>

 <attribute name="Size1" type="nonNegativeInteger" use="required" />

 <attribute name="Size2" type="nonNegativeInteger" use="required" />

</complexType>
6 XML Schema Language Datatypes

6.1 Introduction

This section describes the facilities for defining datatypes within the DDL. The proposal is that the data typing facilities be based on XML Schema: Datatypes [6], but with extensions to satisfy MPEG-7-specific DDL requirements.

Section 6.2 describes the data type facilities proposed by XML Schema: Datatypes. Section 6.2.1 describes the built-in data types. Section 6.2.2 describes the built-in derived data types. Section 6.2.3 describes the mechanisms for defining customized derived data types.

Section 6.3 describes the proposed extensions required to satisfy MPEG-7 requirements. These include:

· Adding the following built-in enumerated data types:

· Mimetype - based on either the IANA list of Internet media types or the latest IETF XML Media Types;

· Country - based on ISO3166-1:1997;

· Region - based on ISO3166-2:1998;

· Currency - based on ISO4217:1995;

· Character set - based on IANA list of Character Sets;

· Adding built-in array and matrix data types.
6.2 Description

6.2.1 Built-in Primitive Datatypes

The following built-in primitive data types are provided within XML Schema:Datatypes:

· string;

· boolean;

· float;

· double;

· decimal;

· timeDuration [ISO 8601];

· recurringDuration;

· binary;

· uriReference;

· ID;

· IDREF;

· ENTITY;

· NOTATION;

· QName.

6.2.2 Built-in Derived Datatypes

The following built-in datatypes, which have been derived from the primitive data types (base types), are also provided by XML Schema:Datatypes:

· language [RFC 1766];

· IDREFS;

· ENTITIES;

· NMTOKEN, NMTOKENS;

· Name, NCName;

· integer, nonPositiveInteger, negativeInteger, nonNegativeInteger, positiveInteger;

· long, unsignedLong;

· int, unsignedInt;

· short, unsignedShort;

· byte, unsignedByte;

· timeInstant, time, timePeriod;

· date, month, year, century;

· recurringDate, recurringDay.

6.2.3 The List Datatype

A list dataype must be derived from an atomic datatype. This yields a list datatype that can contain whitespace separated lists of values of the base type. The following constraining facets may be applied to a list datatype:

· length

· maxLength

· minLength

· enumeration

 <simpleType name='listOf5Floats' base='float' derivedBy='list'>

 <length value=’5’/>

 </simpleType>

6.2.4 Defining Derived Datatypes

A derived datatype can be defined from a primitive datatype or another derived datatype by adding constraining facets. Below are descriptions of the facets which are provided to generate customized data types.

6.2.4.1 Bounds facets

Bounds facets include minInclusive, minExclusive (lower bound), maxInclusive, maxExclusive (upper bound).

<simpleType name=‘heightInInches’ base =‘float’>

 <minInclusive value="0.0"/>

 <maxInclusive value="120.0">

</simpleType>

6.2.4.2 Numeric facets

The Numeric facets are precision which represents the total number of decimal digits and scale which represents the number of decimal digits after the decimal point.

<simpleType name=‘mysizetype’ base=‘decimal’/>

 <precision value="8"/>

 <scale value="2"/>

</simpleType>

<attribute name=‘size’ type=‘mysizetype’/>

6.2.4.3 Date/Time facets

The dateTime facets, duration and period apply to the temporal simple types - recurringDuration plus all of its derived datatypes (timeInstant, time, timePeriod, date, month, year, century, recurringDate, recurringDay). The duration facet defines the duration of a temporal data type while period defines the period between recurrences.

<simpleType name=‘myInstantdatatype’ base=‘timePeriod’/>

 <duration value="P2D"/>

</simpleType>

 <simpleType name='dayOfWeek' base='recurringDuration'>

 <period value='P7D'/>

 </simpleType>

6.2.4.4 Pattern Facet

pattern - regular expression used to constrain the format of a string;

<simpleType name=‘myPhoneNum’ base=‘string’>

 <pattern value="\d{3}-\d{4}"/>

</simpleType>

6.2.4.5 Enumeration Facet

enumeration - constrains the value space to a specified set of values

<simpleType name='modelTypes base ='string'>

 <enumeration value='Analytic'/>

 <enumeration value='Synthetic'/>

 <enumeration value='Correspondence'/>

</simpleType>

6.2.4.6 Length Facets

length, minlength, maxlength – applies to certain datatypes to constrain length, minimum length or maximum length;

<simpleType name=‘myString’ base =‘string’>

 <maxLength value="24"/>

</simpleType>

6.2.4.7 Encoding Facet

encoding - applies to the binary data type to constrain encoding - possible values are hex and base64
<simpleType name=‘myhexdatatype’ base=‘binary’/>

 <encoding value=’hex’/>

</simpleType>

7 MPEG-7-specific Extensions

The following features have been added to the XML Schema Language specification in order to satisfy specific MPEG-7 requirements :

· Array and Matrix datatypes;
· Typed references;

· Enumerated datatypes for MimeType, CountryCode, RegionCode, CurrencyCode and CharacterSetCode.

7.1 MPEG-7 Structural Extensions

7.1.1 Defining Arrays and Matrices

We need to be able to provide a mechanism which forces the parser to restrict the size of arrays and matrices either to the pre-defined value of a facet in a schema definition or to an attribute at the time of instantiation. Using the list datatype, we provide two methods for specifying sizes of (1D) arrays and multi-dimensional matrices. A new facet mpeg7:dimension, which is a list of positive integers, is provided to enable the specification of the dimensions of the array or matrix. The size is fixed and the parser will generate the array or matrix from a list of values, accordingly.

For 1D arrays, the mpeg7:dimension facet provides the same functionality as the existing length facet. If neither the mpeg7:dimension nor the length facet are specified, the default is a list of arbitrary length. The length will be determined by the number of elements in the list. Preferably only one facet (length or mpeg7:dimension) is specified. If both are specified then they must be consistent otherwise the parser will flag an error.

Non-normative example :

<simpleType name="IntegerMatrix3x4" base="integer" derivedBy="list">

<mpeg7:dimension value="3 4" />

</simpleType>

<element name='IntegerMatrix3x4' type='IntegerMatrix3x4'/>

<IntegerMatrix3x4>

5 8 9 4

6 7 8 2

7 1 3 5

</IntegerMatrix3x4>
To support parameterized array sizes, one can use the special attribute, mpeg7:dim, to specify the dimension of a (complex) list type at the time of instantiation.

<simpleType name="ListOfInteger" base="integer" derivedBy="list" />

<complexType name="NDimIntegerArray" base="listOfInteger" derivedBy="extension">

<attribute ref="mpeg7:dim" />

</complexType>

<element name="IntegerMatrix" type="NDimIntegerArray" />

<IntegerMatrix mpeg7:dim="2 4">1 2 3 4 5 6 7 8</IntegerMatrix>

Below are a set of non-normative examples which illustrate how arrays and matrices can be defined using the XML Schema list datatype:

<!-- Definition of "Vector of integers" -->

<simpleType name="listOfInteger" base="integer" derivedBy="list" />

<complexType name="VectorI" base="listOfInteger" derivedBy="extension">

<attribute ref="mpeg7:dim" />

</complexType>

<!-- Definition of "Vector of reals" -->

<simpleType name="listOfFloat" base="float" derivedBy="list" />

<complexType name="VectorR" base="listOfFloat" derivedBy="extension">

<attribute ref="mpeg7:dim" />

</complexType>

<!-- Definition of "Matrix of integers" -->

<complexType name="MatrixI" base="listOfInteger" derivedBy="extension">

<attribute ref="mpeg7:dim" />

</complexType>

<!-- Definition of "Matrix of reals" -->

<complexType name="MatrixR" base="listOfFloat" derivedBy="extension">

<attribute ref="mpeg7:dim" />

</complexType>

7.1.2 Typed References

The attribute refEltName needs to be provided for attribute and element declarations of type IDREF to enable users to specify the name of the element (and consequently any of its equivalent classes) to which the IDREF is pointing.

<element name=’SummaryDSRef’ type=’IDREF’ refEltName=’SummaryDS’/>

<attribute name='CreationInfoDSRef' type='IDREF' refEltName='CreationInfoDS'/>

Elements referred to by IDREF can also be any of the equivalent classes of the element named in refEltName.

7.2 MPEG-7 Datatype Extensions

7.2.1 Built-in Datatypes

The following built-in datatypes are also seen as being required by MPEG-7 :

· unsignedInt1 (0-1)

· unsignedInt3 (0-7)

· unsignedInt5 (0,31)

· unsignedInt6 (0-63)

· unsignedInt7 (0-127)

· unsignedInt8 (unsignedByte)

7.2.2 Built-in Enumerated Datatypes

In addition to the built-in derived types provided by XML Schema:Datatypes, the following built-in enumerated data types will be provided.

· MimeType - IANA list of Mime Types [12, 13] (type= IANA-MimeType)

· Country Code - ISO3166-1:1997 [14] (type="ISO3166-1CountryCode")

· Region Code - ISO3166-2:1998 (type="ISO3166-2RegionCode")

· Currency Code - ISO4217:1995 (type="ISO4217CurrencyCode")
· Character Set Code - IANA List of Character Sets [15] (type="IANA-CharacterSetCode")

8 Unused XML Schema Features

The following features of XML Schema language are not currently necessary to satisfy the requirements of the MPEG-7 DDL. However they may prove useful in the future as MPEG-7 implementations grow in size and complexity:

· Uniqueness;

· Key, KeyRef;

· Notation declarations;

· Particles;

9 XML Schema Problem Issues and Requests

The current list of XML Schema problem issues can be found at :

http://archive.dstc.edu.au/mpeg7-ddl/issues.html
This list includes the following issues :

· Array and Matrix datatypes ;

· Extensibility mechanisms ;

· Parameterization of array and matrix sizes ;

· Typed references ;

· Derivation issues ;

· Inconsistencies in Occurrence constraints ;

· Element-specific importation and exportation ;

· Derivation by restriction on text-only complex types.

10 MPEG-7 DDL Open Issues

The following issues still require resolution within the DDL AHG :

· Parser handling of MPEG-7 extensions ;

· Encoding of matrices ;

· Related/Interdependent DSs and Ds ;

Annex A
(informative)

Bibliography

[1] MPEG Requirements Group, ”MPEG-7: Context, Objectives and Technical Roadmap”, Doc. ISO/MPEG N2861, MPEG Vancouver Meeting, October 1999

[2] MPEG Requirements Group, ”MPEG-7 Requirements Document V.11”, Doc. ISO/MPEG N2996, MPEG Melbourne Meeting, October 1999

[3] MPEG7 Requirements Group, Results of MPEG-7 Technology Proposal Evaluations and Recommendations. Doc. ISO/IEC JTC1/SC29/WG11 MPEG99/N2730, MPEG Seoul Meeting, March 1999.

[4] XML Schema Part 0: Primer, W3C Working Draft, 7 April 2000 http://www.w3.org/TR/xmlschema-0/
[5] XML Schema Part 1: Structures, W3C Working Draft, 7 April 2000 http://www.w3.org/TR/xmlschema-1/
[6] XML Schema Part 2: Datatypes, W3C Working Draft, 7 April 2000 http://www.w3.org/TR/xmlschema-2/

[7] Resource Description Framework (RDF) http://www.w3.org/RDF/
[8] MPEG-7 Multimedia Description Scheme Group, "MPEG-7 Multimedia Description Schemes XM (v2.0)", Doc. ISO/IEC JTC1/SC29/WG11 w3246, Noordwijkerhout, March 2000.
[9] MPEG-7 Multimedia Description Scheme Group, "MPEG-7 Multimedia Description Schemes WD (v2.0)", Doc. ISO/IEC JTC1/SC29/WG11 w3247, Noordwijkerhout, March 2000.
[10] Extensible Markup Language (XML) 1.0, W3C recommendation, http://www.w3.org/TR/REC-xml, 10 February 1998
[11] Namespaces in XML, http://www.w3.org/TR/REC-xml-names/ , W3C Recommendation, 14 January 1999
[12] IANA List of Mime Types ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types
[13] Network Working Group, Internet Draft, XML Media Types, http://www.ietf.org/internet-drafts/draft-murata-xml-04.txt, May 15, 2000
[14] ISO Country Codes ISO3166-1:1997http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html
[15] IANA List of Character Sets ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

(informative)

Patent statements

The user's attention is called to the possibility that, for some of the processes specified in this part of ISO/IEC xxxx, conformance with this specification may require use of an invention covered by patent rights.

By publication of this part of ISO/IEC xxxx, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. Information regarding such patents can be obtained from the following organisations.

The table summarises the formal patent statements received and indicates the parts of the standard to which the statement applies. The list includes all organisations that have submitted informal patent statements. However, if no "X" is present, no formal patent statement has yet been received from that organisation.

2
3

