A Layered Approach to Information Modeling and

Interoperability on the Web

Sergey Melnik * and Stefan Decker

Database Group, Stanford University
{melnik,stefan}db.stanford.edu

Revised version: Sep 4, 2000

Abstract. On the Semantic Web, the target audience
is the machines rather than humans. To satisfy the de-
mands of this audience, information needs to be avail-
able in machine-processable form rather than as unstruc-
tured text. A variety of information models like RDF
or UML are available to fulfill this purpose, varying
greatly in their capabilities. The advent of XML lever-
aged a promising consensus on the encoding syntax for
machine-processable information. However, interoperat-
ing between different information models on a syntactic
level proved to be a laborious task. In this paper, we
suggest a layered approach to interoperability of infor-
mation models that borrows from layered software struc-
turing techniques used in today’s internetworking. We
identify the object layer that fills the gap between the
syntax and semantic layers and examine it in detail. We
suggest the key features of the object layer like iden-
tity and binary relationships, basic typing, reification,
ordering, and n-ary relationships. Finally, we examine
design issues and implementation alternatives involved
in building the object layer.

1 Introduction

A wealth of novel Web applications are aimed at provid-
ing integrated access to data and enabling comprehen-
sive Web services. Examples of such applications include
data portals and warehouses, mediation and e-business
services. For many of these applications, data interop-
eration is essential. For example, an information portal
needs to integrate data from different sources, whereas
business-to-business communication requires bridging
differences between incompatible business documents

* Permanent address: Database Group, Leipzig University, Ger-
many

like purchase orders and invoices. Unfortunately, Web
data sources and services deploy a variety of information
models and data encoding syntaxes. Hence, exchange of
information between Web applications is limited and re-
quires expensive engineering.

Factors like design independence, competition,
purpose-tailoring, and the increasing installed base of
software that uses diverse data models suggest that a
variety of alternative information models will always be
around. Although increasing use of XML has simplified
data exchange, the problem of information interoper-
ability remains largely unresolved. For the same kind
of data, independent developers often design XML syn-
taxes that have very little in common. For example,
biztalk.org lists a number of XML schemas used to
encode purchase orders. In the schema by LCS Interna-
tional Inc., the issue date of a purchase order is specified
as:

<PurchaseOrder>
<orderDate>...</orderDate>
</PurchaseOrder>

The encoding chosen by the Open Application Group
(OAG) looks rather like

<PROCESS_P0_004>
<DATAAREA>
<PROCESS_P0>
<POORDERHDR>
<DATETIME>...</DATETIME>
</POORDERHDR>
</PROCESS_P0>
</DATAAREA>
</PROCESS_P0_004>

whereas the schema by the NxTrend Technology Inc.
requires yet another incompatible format:

2 Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web

<PurchaseOrder>
<0OrderHeader>
<P0IssueDate>...</P0IssueDate>
</0rderHeader>
</PurchaseOrder>

Current approaches to interoperation

Enabling interoperation between say the Noris ERP sys-
tem used by LCS Inc. and an OAGIS-compliant sys-
tem is a laborious task. Multiple strategies are used for
enabling data interoperability. One possible solution is
translating directly between two different kinds of XML
schemas. Such translation can be done, for example, us-
ing a declarative language like XSLT. A serious obstacle
for this approach is that a mapping between two XML
representations needs to be carefully specified by a hu-
man expert. In the example, the expert needs to under-
stand both the encoding of LCS Inc. and OAG schemas
and the semantics of the schema elements. Since the rep-
resentations can be very diverse, the mappings created
by the expert are often complex. This complexity makes
them hard to maintain when the original data schemas
change and hinders efficient execution of mappings.

An alternative strategy that is used for reconciling
XML data is based on intermediate conceptual mod-
els [DMvHT00]. In this case, a human expert is needed
to reverse-engineer the underlying conceptual model for
every XML schema, and to specify formally how the
original schema maps onto the corresponding concep-
tual model. After this step, the differences between con-
ceptual models can typically be bridged with less effort.
Although more elegant, this approach has, however, dif-
ficulties comparable to the first one. That is, intervention
of a human expert is required, and the mappings need
to be maintained.

Today’s information exchange resembles a group of
people communicating by means of encrypted data with-
out disclosing the keys needed to decipher it. A way
of reducing the tremendous effort needed for data in-
teroperation is to supply metadata needed to interpret
the exchanged information. However, the semantics of
XML elements used by Web applications is hard-coded
into the applications and is typically not available in
machine-processable form. In fact, explicit and compre-
hensive encoding of metadata is prohibitive for all but
rare application scenarios. It is not even clear how much
metadata is sufficient, and how it should be encoded.
Thus, establishing interoperation is a complex task, with
many special-case solutions. Solving the interoperability
problem on a broad scale requires novel techniques.

Computer networks and data models

In this paper we introduce some initial ideas targeted at
facilitating data interoperation using a layered approach.

Our approach resembles the layering principles used in
internetworking. Consider a client application that wants
to establish a reliable connection with a server applica-
tion separated by multiple heterogeneous networks. If
attacked directly, this problem is virtually unfeasible.
Even in case of a direct physical connection between the
client and the server, both sides have to be prepared to
deal with different protocols, addressing schemas, packet
sizes, error handling, flow control, congestion control,
quality of service etc. The amount of control information
and mutual agreement needed to deliver and correctly in-
terpret the bits across multiple networks is enormous. To
reduce its design complexity, most network software is
organized as a series of layers. The purpose of each layer
is to offer certain services to the higher layers, shielding
those layers from the details of how the offered services
are implemented. Internetworking is achieved by a com-
mon understanding of protocols. The transmitted data,
flowing through the different layers, is enriched with con-
trol information necessary for the correct interpretation
of the data in a particular layer. From a data perspec-
tive, this control information can be viewed as metadata
used for routing the original data package in the desired
way through the network and interpreting the data by
the recipient.

Analogously, if attacked directly, data exchange re-
quires tremendous effort. Any two applications have to
be prepared to deal with various encoding syntaxes, dif-
ferent ways of representing objects, ordered and n-ary re-
lationships, aggregation, specialization, cardinality con-
straints, ontology languages etc. To harness the complex-
ity of data interoperation, we suggest a software struc-
turing technique similar to that used in internetworking.
We noticed that existing and emerging data models also
tend to be organized in a layered fashion. For example,
the Resource Description Framework [LS98] uses XML
as its serialization syntax. RDF itself can be deployed as
an object model for carrying UML data [Mel00]. Finally,
UML is used as a basis for the Open Information Model
(OIM) developed by the Meta Data Coalition. Currently,
such ad hoc layering approaches lack well-defined separa-
tion between data modeling layers, have redundant fea-
tures on different layers, and are generally characterized
by a very low granularity of layering. We believe that
clean separation between the layers can significantly im-
prove data interoperation and facilitate applicability of
well-established internetworking principles like bridges
and gateways.

In this paper we focus on the question how to identify
and distinguish data modeling layers from each other.
We start with an analysis of existing data modeling lan-
guages and try to extract modeling primitives used in
those languages. We roughly organize these modeling
primitives into three major layers, the syntax, object and
semantic layer, and examine the object layer in more de-
tail. We do not claim that the resulting organization is
perfect and definitive. Rather, it is a first incremental

Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web 3

step in our effort to build a comprehensive data interop-
eration architecture.

The next section describes our layered reference
model, which we call Information Model Interoperability
(IMI) Reference Model. We highlight the design choices
that need to be made in providing a clean separation be-
tween the data modeling layers and sublayers. In Sect. 3
we review some popular data models used for data ex-
change on the Web and justify our design choices. In the
rest of the paper we focus on the features and implemen-
tation of the object layer.

2 Information Model Interoperability (IMI)
Reference Model

To illustrate the principles of layered data modeling, let
us briefly review the fundamental concepts of network
layers. Imagine two network applications that exchange
data using the TCP /IP protocol (see Fig. 1). A protocol
like TCP or IP is an agreement between the communicat-
ing parties on how communication has to proceed. The
entities comprising the corresponding layers on different
machines are called peers. No data is directly transferred
between the peers. Instead, each layer passes data and
metadata (header or control information) to the layer
immediately below it, until the lowest layer is reached.

In the figure, the application layer passes the data
to the transport layer. The transport layer arranges the
data into segments and appends a TCP header to each
segment. The header contains metadata about the seg-
ment like its sequence and acknowledgement number,
source and destination port etc. The TCP header and
data are passed further down to the network layer. The
network layer arranges segments into packets and ap-
pends its own headers to them. Finally, the data link
layer sends the data over a physical medium as a se-
quence of bits, preceded by a frame header. The frame
header contains, for instance, a delimiter, number of bits
and the checksum of the frame. This information is re-
quired to identify frames in a bit sequence. On the other
side of the wire, the process is reversed. Each layer re-
ceives data from the layer below it, and evaluates the
header containing information on how to interpret the
data field.

Every pair of adjacent layers exchange information
using an interface. The interface defines which primi-
tive operations and services the lower layer offers to the
upper one. Clean-cut interfaces make it simpler to re-
place the implementation of one layer with a completely
different implementation and minimize the amount of
information that must be passed between layers. In our
example, the data link layer may equally well be imple-
mented using the Ethernet or the Token Ring protocol.
This design choice does not affect the upper layers. It is
not even necessary that the interfaces on all machines in
a network be the same, provided that each machine can

correctly use all the protocols. For instance, a UNIX ap-
plication may use Berkeley sockets, whereas a Windows
application may use the Winsock library. The only im-
portant issue for a successful multilayer communication
is an agreement on the protocol stack, i.e. which kind of
protocol is used on every layer.

Now, let us turn to data modeling. Imagine two appli-
cations that need to exchange complex data. Instead of
forcing every application to deal directly with the details
of semantics, structure and serialization of data, we can
organize the data exchange software in a layered fashion,
similarly to the approach taken in the internetworking.
Consider a sample set of layers depicted in Fig. 2. In the
application layer, the data may be accessed using high-
level primitives like ”employee.setEmployer(boss)”.
As in the networking architecture, the data is not ex-
changed directly between two peer layers. Instead, every
layer appends metadata needed to correctly interpret the
data, and passes them to the layer below it.

In the example depicted in the figure, the seman-
tic layer creates an object graph representing the en-
tities and their relationships. It appends to the object
graph the metadata needed to determine which ontol-
ogy languages and ontologies are used, how they are
implemented, how cardinality, aggregation etc. are ex-
pressed, and passes both the data and metadata to the
object layer. The metadata appended at the object layer
describes e.g. how ordered relationships or n-ary rela-
tionships are implemented, or how typing of nodes is
represented in the object graph. This information is for-
warded to the syntax layer, which generates, for exam-
ple, an XML document containing the object graph, and
appends to it an XML schema needed to extract the ob-
ject graph from the document.

On the other end of the communication link, the pro-
cess is reversed and a high-level data structure is de-
livered to the application layer. Similarly to internet-
working, every data modeling layer relies on a number
of rules and conventions to exchange information with
its peer, just as two corresponding networking layers de-
ploy a specific communication protocol. For example, the
syntax layer may require that the metadata be repre-
sented using the XML Schema standard. We call a list
of such ”protocols” (sets of conventions) a model stack.
In our reference model, every data modeling language
like UML, RDF etc. can be viewed as a specific model
stack.

Obviously, implementing layered data interoperation
has a number of challenges. Often a clean-cut distinction
between layers or features is not possible. Furthermore,
mutual dependencies between the layers may exist. For
example, n-ary relationships may be implemented us-
ing ordered relationships, or the other way around. Fur-
ther challenges include the choice of flexible and powerful
APIs for every layer, building data gateways for existing
data models etc.

4 Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web
Application — Data |, | Application
layer layer

TCP header
e.g. sequence #,
Transport sequence Transport
layer <—| ack # source port, | " ¢ bytes | layer
destination port
IP packet header
Network e.g. source address, sequence L, | Network
layer destination address of bytes layer
Frame header
Data link e.g. delimiter, sequence |, | Datalink
layer “— length, checksum of bits layer
Fig. 1. An example of networking layers
Application pu— Data —» | Application
layer layer
Metadata
; e.g. how ontologies, | sequence)
Semantic <— cardinality etc. are of object —>| Semantic
layer implemented graphs layer
Metadata
: e.g. how order and -
Object <«—| n-ary relationships of :;gzten;:: hs —>| Object
layer are implemented Ject grap layer
Metadata
how to extract S
Syntax | | | object graph (e.g. e.g. sequence of XML documents — lyntax
layer using XML schema) Ve

Fig. 2. An example of data modeling layers

As we will demonstrate in the following sections, ev-
ery layer, or feature like ”ordered relationships”, can be
logically implemented in a number of ways. Given n such
features with m options each, this yields m™ possible in-
compatible model stacks, or data models. Clearly, direct
interoperation between m”™ data models is a tedious task
that may require as many as O(m?") mappings between
data models. This is exactly the obstacle that today’s in-
formation integrators face. In fact, in current data mod-
eling languages, the distinction between data modeling
layers is blurred. Many standards like UML or XML
Schema attempt to capture as many features as pos-
sible, reaching from the definition of syntactic elements
to aggregation, class partitions, ontology languages etc.
As a result, interoperation is exacerbated.

Using a layered approach sketched above, interop-
eration between data models can be simplified by an
order of magnitude. Indeed, if every layer has m imple-
mentation options, only O(m?) mappings within a given
layer are required in worst, case. For n layers, this yields
O(nm?) mappings, compared to O(m>"). This simple
quantitative analysis explains the tremendous success of
layered internetworking. In computer networks, bridges
and gateways are used to interoperate within a given
layer like the data link layer. Analogously, data model-
ing gateways can be deployed to reduce the complexity

of data interoperation. We call this approach ”interdata-
working”.

3 Data Modeling Languages for the Semantic
Web

On the Semantic Web, a web of machine-processable in-
formation, a variety of data modeling languages are used.
In this section we discuss several major languages. The
goal of our discussion is to identify how specific data
modeling primitives are used in those languages. In the
next section we will show a way of organizing these mod-
eling primitives into layers and sublayers. The list below
contains the major types of approaches for data repre-
sentation languages for the Semantic Web. Note that the
selected list is by no means exhaustive:

— OEM (Object Exchange Model) [PGMW95] is a
data model developed for Information Integration
Projects at Stanford University.

— RDF and RDF Schema: RDF (Resource Description
Framework) [LS98] and RDF Schema (the Schema
Language for RDF) [Be00] are W3C Recommenda-
tions for describing metadata on the web.

— SHOE (Simple HTML Ontology Extensions)
[HHL99] is an extension to HTML which allows

Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web 5

web page authors to annotate their web documents
with machine-understandable content.

— UML (Unified Modeling Language) is the industry-
standard language for specifying, visualizing, con-
structing, and documenting the artifacts of software
systems.

— OIL (Ontology Inference Layer) [FHHT00] is a lan-
guage defined on top of RDF for enabling more ex-
pressive ontology definitions.

In the next sections we discuss these modeling lan-
guages in more detail.

3.1 OEM

OEM is one of the first and simplest information models
that have been proposed for exchanging information on
the Web by the database community. The main features
it offers are object identity and nesting. The OEM model
is a directed labeled graph, in which every object has
a distinct identity and a type. Apart of atomic types
like integers and strings, OEM supports sets and lists
(sets and lists correspond to container types in RDF,
see below). OEM object graphs can be represented in
a graphical notation and serialized using a simple text-
based syntax. This syntax is not based on XML; OEM
was suggested before XML became available.

3.2 RDF and RDF Schema

RDF is a data model for representing data on the Web.
RDF defines the following modeling primitives:

— Object identity: RDF distinguishes between re-
sources, which have object identity (an OID), and
literals, i.e. opaque strings. An OID is represented by
a URI, a Uniform Resource Identifier (URIs are gen-
eralized URLs). A URI does not necessarily address a
resource on the web. For example, the International
Standard Book Number 0679405739, which identifies
a 1992 edition of the novel ”War and Peace”, can be
used as a URI "ISBN:0679405739”. Thus, real world
objects are represented in RDF using surrogates, or
symbols that are associated with these objects.

— Binary relationships: Relationships in RDF are mod-
eled via binary relations. Thus RDF models have the
form of a directed graph.

— Reification: In RDF a specific binary relation be-
tween two objects is called a statement. To allow
statements about statements, a statement can be rei-
fied, that means expressed by another objects with a
certain set of properties. The object is a placeholder
for the original statement, and hence can be used to
make statements about the original statement.

— Container: RDF defines specific container types rep-
resenting sequences, alternatives, and multisets.

RDF Schema is the Schema language for RDF. RDF
Schema is similar to frame-based languages. The main
modeling primitives defined in RDF Schema are:

— Classes: RDF Schema allows defining an explicit hi-
erarchy of classes. A class is a resource and has a
unique ID. The subClass relationship is defined by
the property subClassOf.

— Property and Property Constraints: RDF Schema has
modeling primitives for defining property constraints
that restrict the range and domain of a property to
certain classes.

Notice that RDF Schema is defined on top of RDF.
RDF itself does not depend on RDF Schema.

3.8 SHOE

SHOE is an ontology-based knowledge representation
language providing annotations for HTML pages. SHOE
defines the following modeling primitives:

— Categories, which are similar to RDF-Schema classes,
are defined with a <def-category> tag and may spec-
ify one or more subsuming categories (superclasses).
Categories can be used to build term taxonomies, by
defining a hierarchy of child-parent relationships.

— Relations: SHOE contains means to define n-ary re-
lations, defined with a <def-relation> tag, which also
contains type definitions for each argument.

— Ontology Primitives: Special modeling primitives are
aiming at ontology administration: Ontology ex-
tensions are expressed in SHOE with the <use-
ontology> tag, which contains the identifier and ver-
sion number of the intended ontology. The <use-
ontology> tag also allows to define a URL attribute
(pointing to the ontology definition), and a prefix at-
tribute used to define a local identifier for terms. The
<def-rename> tag allows to define a renaming for a
concept defined from another ontology.

— Inference Rules are defined using the <def-
inference> tag to supply additional axioms. SHOE
axioms are equivalent to definite Horn Clauses (a
subset of First Order Predicate Logic, which resem-
bles if-then rules).

3.4 UML

UML has been designed as a modeling language for
software-intensive systems. UML possesses a compre-
hensive logical foundation. For this reason, it has been
deployed for modeling tasks significantly broader than
software engineering. In brief, UML has the following
features relevant for our exposition:

— Abstract notation is a human-readable graphical no-
tation of models. A UML model is comparable to
a schema, or ontology. An instance of a UML model

6 Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web

comprises objects that participate in various relation-
ships with each other.

— XMI serialization: XML Metadata Interchange
(XMI) is an XML-based encoding standard for UML
models. Object Constraint Language (OCL) is a for-
mal language used to specify well-formedness rules
for models. OCL can be compared in style with
XML DTDs. DTDs constrain the number of possible
valid instances of XML documents, whereas OCL
constrains the number of possible valid instances of
UML models.

— UML CORBAfacility is a programming language-
neutral API for manipulating UML models. It de-
fines classes like Classifier, Method, Generalization
etc. with corresponding access methods and proper-
ties.

— Four-layer metamodel structure: the architecture of
UML is based on a four-layer structure. The four lay-
ers are: user objects, model, metamodel, and meta-
metamodel. In short, descriptions of models belong
to higher levels of abstraction than the models them-
selves. That is, user objects, models, metamodels and
meta-metamodels live in disjunct ”worlds”, and can-
not directly relate to each other. UML is primarily
concerned with the metamodel layer, which is an
instance of the meta-metamodel layer. The meta-
metamodel layer is defined in a separate standard
called MOF (Meta-Object Facility). MOF is hard-
wired, i.e. its semantics is considered to be well
known. MOF’s modeling primitives include Meta-
Classes, MetaAttributes, MetaOperations etc.

UML defines a rich set of models for virtually all
aspects of software engineering. These models are orga-
nized in packages and comprise interfaces and compo-
nents, distribution and concurrency, activity diagrams,
patters and collaborations etc. Features comparable to
RDF’s object identity and relationships are defined
in the UML package Behavioral Elements/Instances
and Links. As another example, the package Foun-
dation/DataTypes defines the data types like Integer,
Boolean, String, Time etc.

3.5 OIL

The OIL language is based on Description Logic (DL)-
oriented ontologies and has a well-defined first-order se-
mantics and automated reasoning support, e.g. for class
consistency and subsumption checking. OIL supports the
following modeling primitives:

— Ontology Metadata, based by Dublin Core Metadata
Element Set. Ontology definitions consist of an op-
tional import statement, an optional rule-base and
class and slot definitions.

— A slot definition (slot-def) associates a slot (a binary
relation) name with a slot definition. A slot defini-
tion specifies global constraints that apply to the slot

- languages (e.g. logics, workflows, rules)
- domain models (e.g. CWM)
- conceptual models (e.g. UML, RDF Schema)

‘ Semantic layer \ﬁ
‘ Object layer \ﬁ
‘ Syntax layer \ﬁ

Fig. 3. The syntax, object, and semantic layers

- n-ary relationships

- ordering

- reification

- basic typing

- identity and binary relationships

level of abstraction

- restricted document models (e.g. DTDs)
- generic document models (e.g. XML, ASN.1)
- serialization (e.g. Unicode, binary)

relation. A slot-def can consists of a subslot-of state-
ment, domain and range restrictions, and additional
qualities of the slot, such as being inverse, transitive,
and symmetric.

— A class definition (class-def) associates a class name
with a class description. Sophisticated class defini-
tions (e.g. equivalence between classes, i.e. renam-
ing, or subclass-statements) are expressed as Boolean
combination of class expressions using the operators
AND, OR or NOT. Slot-constraints, which relate a
class to a certain property (or slot), are also class
expressions. Possible slot-constraints are:

— has-value: Every instance of the class defined by
the slot constraint must have a slot value that is
an instance of each class-expression in the list.

— value-type: If an instance of the class defined by
the slot-constraint is related via the slot relation
to some individual x, then x must be an instance
of each class-expression in the list.

— maz-cardinality: An instance of the class defined
by the slot-constraint can be related to at most n
distinct instances of the class-expression via the
slot relation (similar are min-cardinality and, as
a shortcut, cardinality).

The syntax of OIL is oriented towards XML and
RDF. [HFB'00] defines a DTD and a XML schema def-
inition for OIL and [BKD00] defines OIL as an exten-
sion of RDFS.

4 Syntax, Objects, and Semantics

To reduce the complexity of building the Semantic Web,
we suggest viewing Web-enabled information models as a
series of layers: the syntax layer, the object layer, and the
semantic layer (see Fig. 3). Every layer may have mul-
tiple sublayers. The semantic layer, or knowledge rep-
resentation layer, deals with conceptual modeling and
knowledge engineering tasks. The basic function of the
object layer, or frame layer, is to provide applications
with an object-oriented view of their domain. The syntax
layer is responsible for ”dumbing down” object-oriented
information into document instances and byte streams.

Every of the three layers has a number of sublay-
ers. Every sublayer corresponds to a specific data mod-
eling feature, e.g. aggregation or reification, that can be

Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web 7

logically implemented in many different ways. Plausible
criteria for designing the layers and sublayers include
grouping two (sub)layers if they have mutual dependen-
cies, or merging a sublayer that has a single possible im-
plementation option with an adjacent sublayer. In the
rest of this section, we briefly describe each of the layers
in a bottom-up fashion.

4.1 Syntax Layer

The main task of the syntax layer is to provide a way of
serializing information content into a sequence of charac-
ters or bits. Any application that exchanges information
with other applications or stores it persistently needs to
structure the information carefully so that the recipi-
ent or reader can retrieve the information in its original
form. Data structures used by applications are typically
not just flat lists of uniform data elements. Therefore,
additional markup mechanisms are required to preserve
nested structure of data.

In the past two years we have witnessed how an
impressive global-scale agreement on a common syntax
layer has been achieved. XML has become pervasive, its
use ranging from electronic publishing to electronic busi-
ness. XML tagging or ASN.1 encoding rules are exam-
ples of markup mechanisms for preserving the structure
of data. The syntax layer could be divided into three
sublayers (bottom-up):

— serialization: data instances are serialized into byte
streams. For example, XML documents are serialized
as Unicode character strings, whereas ASN.1 uses a
binary encoding.

— generic document models: applications structure in-
formation as nested data structures. XML provides a
generic document model. Instances of this model can
be manipulated using APIs like XML DOM.

— restricted document models: sometimes applications
want to enforce structural constraints on the nested
data structures they use. XML Document Type Def-
initions (DTDs) are an example of grammars for de-
scribing such structural constraints.

To reconstruct the objects and relationships from the
representation used in the syntax layer, metadata is re-
quired. Obviously, two peer syntax layers need to agree
on the metadata standard used for this purpose. For ex-
ample, the emerging XML Schema standard can be de-
ployed to extract objects and their relationships from
an XML document. In this case, a specific XML schema
would capture the information on how to identify ob-
jects. Another alternative is to choose a more generic
or implied encoding standard. For example, [LS98] de-
scribes a standard way of encoding object graphs in
XML. In this case, no special schema needs to be ap-
pended to the XML data.

4.2 Object Layer

The purpose of the object layer is to offer applications
an object-oriented view on the information that they op-
erate upon. In contrast to data structures, objects have
immutable object identity, i.e. change of an object’s iden-
tity results in a different object. The very basic function
of the object layer is to enable manipulation of objects
and binary relationships between them. However, differ-
ent applications may require more functionality of the
object layer, depending on their complexity. We iden-
tified four additional sublayers that are often used. In
Section [5] we describe the object layer in more detail.
Here is a brief summary of the five sublayers:

— identity and binary relationships: every object-
oriented model provides these features.

— basic typing: a simple abstraction mechanism. One
object is used to "type” another object.

— reification: some information models (e.g. RDF,
UML) require access to whole relations and individ-
ual links between objects.

— ordering: ordered relationships are integral part of
some information models (e.g. UML).

— n-ary relationships are deployed in information mod-
els like SHOE.

4.8 Semantic Layer

Roughly speaking, the semantic layer provides interpre-
tation of the object model used in the object layer.
This objects, or surrogates, used in the object layer are
mapped onto physical and abstract objects like books,
airplane tickets, database tables, logical formulae and
paragraphs of text. The ultimate goal of the Semantic
Web is to make applications interoperate in the seman-
tic layer. The semantic layer is comprised of a number
of rich and complex sublayers like:

— conceptual models: vocabularies for representing con-
ceptual models (e.g. RDF Schema, UML Founda-
tion/Core). Features of conceptual models may in-
clude elements like generalization, aggregation, car-
dinality constraints etc.

— domain models: deal with ontologies of a particular
application domain, e.g. transportation, manufactur-
ing, e-business, digital libraries, Web resources, etc.

— languages: instead of using a natural language, the
machines on the Semantic Web convey informa-
tion using formal languages. These languages can be
highly specialized or serve a general purpose. Exam-
ples include workflow definition languages, Datalog,
first-order logic, UML statecharts, SQL etc. Terms
and expressions in these languages are first-class ob-
jects that can be manipulated on the object layer.
In this way, applications can dynamically learn the
semantics of previously unknown languages.

8 Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web

5 Object Layer: Features and Design Issues

The object layer is the focus of our paper. In this sec-
tion we discuss the five sublayers of the object layer in
more detail. We illustrate the features of these sublay-
ers using examples from RDF, UML, SHOE and OEM.
The purpose of our discussion is to gain a better un-
derstanding of the design issues involved in the object
layer. Such understanding is beneficial for the specifica-
tions of the mappings between object layers in different
model stacks. Ultimately, we hope it can contribute to
an agreement on the capabilities of object layers similar
in scale to an agreement on the syntax layer (XML).

In the discussion of the object layer we are again
following a bottom-up approach, i.e. from the ground-
level features to more high-level ones. The design issues
that we consider in this section have a logical character.
They do not necessarily preclude the variety of imple-
mentation alternatives at the programming level. Never-
theless, a logical implementation can have major impact
on the API design. In Sect. 6 we briefly examine some
programming-level implementation issues.

5.1 Identity and Binary Relationships

Object identity and binary relationships can be seen as
the least common denominator between any two object-
oriented models. A model lacking object identity is sim-
ply not an object-oriented model any more [Cat91]. In
every object-oriented model, objects do not exist on
their own, but engage in multiple relationships with each
other. Binary relationships is the simplest form of such
relationships. Notice that at the object layer we deal
with objects at the instance level, i.e. every object is
treated as an individual identifiable entity.

As long as an application does not need to ex-
change information with other applications, is does not
matter how the objects are identified. In fact, suitable
object-oriented APIs may hide the object identity from
the programmer completely. To take advantage of the
Semantic Web, applications need to communicate, ei-
ther directly or indirectly by publishing information in
machine-readable form. Thus, explicit identifiers for the
objects are required. In RDF, objects are identified us-
ing the Uniform Resource Identifiers (URIs), a general-
ized form of Uniform Resource Locators (URLs). A sim-
ilar approach is taken by SHOE. In UML, objects are
identified using Universally Unique Identifiers (UUIDs).
OEM allows any unique variable length identifiers. URISs,
UUIDs etc. support global identity for the objects, which
is a prerequisite for building the Semantic Web.

Information models use different abstract notations
for binary relationships between objects. In this paper,
we adopt the RDF notation. Fig. 4 illustrates a binary
relationship between a source and a destination object.
As a rule, the position of the object in a relationship, i.e.

relationship
source type destination
object object

Fig. 4. Abstract notation for a binary link between two objects

source or destination, is significant. In RDF, every such
relationship is viewed as a statement, or assertion. The
source and destination objects are the subject and the
object of the assertion, respectively.

In UML, relationships between object instances as
shown in the figure are referred to as links. The relation-
ship type, i.e. the relationship as a whole in the semantic
layer, is called association. To avoid ambiguity, we follow
this terminology.

5.2 Basic Typing

Information models sometimes deploy a primitive typing
mechanism to differentiate the objects among each other.
Another object is used to denote the type of the given
object. We refer to such mechanism as basic typing. The
semantics of basic typing is broader (less strictly defined)
than that of instantiation; if two objects are of the same
type, they can be used in a similar context within the
application.

In OEM, basic typing is used to denote atomic types
such as integer or string, and container types such as set
or list. Since the ”types” themselves are first-class ob-
jects, the application can request additional information
about the types.

In RDF, the purpose of basic typing is to allow boot-
strapping of more complex typing facilities in the seman-
tic layer. In the notation used above, basic typing of an
object A using object B is represented as an arc from A
to B with a label type that denotes basic typing.

5.8 Reification

To refer to individual links between objects, or to asso-
ciations (relationships as a whole), a reification mecha-
nism is required. Reification is Latin for "making into a
thing”. Using reification, links and associations can be
treated as first-class citizens in an information model.
Associations are reified to enable applications to pro-
vide additional information about them. Reification of
links can be used for multiple purposes. For example,
in RDF every link corresponds to an assertion. Thus,
reification of links provides a ”quotation” mechanism,
i.e. an application can refer to information stated by
another application. Being able to discuss, dispute or
support the relationships and properties of objects is a
crucial prerequisite for machine communication. On the
other hand, reification of links can be used to implement
nesting of instances of information models.

Reification of links and associations is illustrated in
Fig. 5. The big oval denotes the object that represents

Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web 9

source association destination
- object object

reified association

reified link--~~

source destination
object object

Fig. 5. Reification of links and relationships

reified link

L destination
assodiation

source cEseEEiEn destipation
object object

Fig. 6. Logical implementation of reified links in RDF

the reified link. In the figure, this object is used as the
source for another link. To emphasize reification of the
association in the bottom part of the figure, the associa-
tion is circumscribed as an object. This object can, too,
participate in other links. These two kinds of reification
provide the necessary prerequisites for computational re-
flection, i.e. the capability for a computational process
to reason about itself [Smi96].

Both UML and RDF support reification of links and
associations. In both standards, link reification is log-
ically implemented by introducing a new object with
properties that identify the parts of the link. The logical
implementation of link reification in RDF is illustrated
in Fig. 6.

5.4 Ordering

Some information models like UML make heavy use
of ordered relationships. To illustrate ordered relation-
ships, consider the DublinCore association ”creator”. In
Pushkin’s poem ”Mozart and Salieri”, which inspired the
movie ”Amadeus”, both Mozart and Salieri were pre-
sented as the ”creators” of ”Requiem”. No doubt, when
modeling the authorship of "Requiem”, we want Mozart
to be the primary author.

Fig. 7 illustrates six logical implementation alterna-
tives for the ordered binary relationship between ”Re-
quiem” and the two composers. The right-hand size of
the figure presents a ”logical” view of the object graphs.
The six alternatives are named specialization, container,
ordinal properties, linked list, ternary, and reification, ac-
cording to their logical implementation. Notice that al-
though any representation can be bijectively translated
into every other one, they are more or less semantically
faithful. For example, the second representation (con-
tainer) is particularly semantically misleading for rep-
resenting ordered relationships since it states that the
creator of "Requiem” is an object typed as Sequence.

A qualitative comparison of the alternatives is pre-
sented in Tab. 1. Besides semantic faithfulness, we con-

spedialization

Logically equivalent to:

creator:1(Requiem, Mozart)
creator:2(Requiem, Salieri)

container

Sequence

type

" creator
Requiem

creator(Requiem,
Sequence(Mozart, Salieri))

ordinal properties

creator(Requiem, Mozart, Salieri)

creator(Requiem, Mozart)

creator(Requiem, Salieri)

next(creator(Requiem, Mozart),
creator(Requiem, Salieri))

creator(Requiem, Mozart, 1)
creator(Requiem, Salieri, 2)

creator(Requiem, Mozart)
creator(Requiem, Salieri)
order(creator(Requiem, Mozart), 1)
order(creator(Requiem, Salieri), 2)

Fig. 7. Implementation alternatives for ordered relationships

sider how difficult it is to use the same logical schema for
representing the inverse order. Inverse order is required
when the objects at the source end that are related to
a single object at the destination end have an ordering
that must be preserved. For example, if the ”creator” as-
sociation were to capture the chronological order of the
pieces written by the composers, representation for the
inverse order would be needed. We gave a minus (—) to
the schemes that required creation of additional reified
objects for links or associations to support inverse order.

Finally, the last metric that we consider here is
the implementation effort. By implementation effort we
mean not the effort needed to implement the API that
allows manipulating ordered relationships, but the effort
needed to use such an API. The typical operations we
considered are

— find all creators of ”Requiem” (ignore order)

10 Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web

Alternative Semantic faithfulness Inverse order Implementation effort
specialization ++ — N
container - — ——

ordinal properties +— — —

linked list +— + +

ternary +— + +—
reification + + 4

Table 1. Logical implementation alternatives for ordering

— find all properties of ”Requiem” (hide auxiliary ob-
jects like instances of Sequence)

— find the first creator of ”Requiem”

— add/insert a second (third etc.) creator

The schemes specialization and container are espe-
cially implementation-intensive. Specialization requires
tracing the ordered versions of ”creator” like ” creator:1”
for every access, whereas container entails checks to de-
termine whether a single object or a bag is the desti-
nation of the link. In our comparison, we only consid-
ered ordered binary relationships, since ordered n-ary
relationships are used very seldom and their semantics
is typically hard to comprehend. Although ordering by
reification looks fairly verbose in the figure, we found
that it has a number of preferable characteristics that
make it a viable choice for a logical implementation of
ordered relationships.

In some information and data models, ordering is
built-in, i.e. it cannot be reduced to other modeling
primitives like reification and binary relationships. Such
models include UML, OEM, and XML. In other models
like RDF and SHOE, ordering is not a built-in feature
and can be implemented in various ways, similarly to
the alternatives that we considered above. The choice
of alternatives depends on the availability of modeling
primitives. For example, since SHOE lacks reification,
ordering by reification is out of the question.

5.5 n-ary Relationships

The last important feature that belongs to the object
layer are m-ary relationships. Although n-ary relation-
ships are used fairly seldom compared to binary rela-
tionships, they are supported by some Web-enabled in-
formation models like UML or SHOE. Hence, in general,
Semantic Web applications should be prepared to deal
with n-ary relationships.

Often, n-ary relationships are logically implemented
on top of the four sublayers discussed above. Neverthe-
less, a clear definition of the semantics of n-ary relation-
ships is crucial for interoperability between information
models. n-ary relationships cannot be implemented as a
combination of binary relationships without using addi-
tional objects. Thus, in the object layer, an n-ary link

Fig. 8. Example of a ternary link

is typically represented as an object that is linked to n
objects participating in the link (see Fig. 8).

Notice that the logical implementation depicted in
the figure does not impose a specific implementation on
the programming level. For example, the above ternary
link can be implemented as a 3-tuple in a relational
database. Using m-ary relationships, however, requires
specifically designed API methods.

5.6 Summary of Object Layer Features

The five features of the object layer that we discussed
above are summarized in Tab. 2. The features that are
implementable, but are not standardized in a particular
information model are not counted. For example, order
can be implemented in SHOE in many different ways
using n-ary relationships, but every application may do
it in a different way.

Some features in the table are marked as implicit.
These features, like ordering in UML or n-ary relation-
ships in SHOE, are visible on the API level only. They
are not directly represented in the object model.

In our discussion of the object layer we do not in-
tend to pinpoint the "best” logical implementation of
each sublayer. It is clear that the designers of different
data models may choose one or another option depend-
ing on their needs. Thus, in two distinct data models
ordering, for example, may be implemented either in a
ternary fashion or using reification. Instead of choosing
the best option, our goal is to emphasize the usefulness
of each sublayer, and provide a roadmap for designing
bridges and gateways between similar sublayers in dif-
ferent model stacks.

Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web 11

Feature RDF UML SHOE OEM OIL
object identity and binary relationships + + + + +
basic typing + + (implicit) 4+ (implicit) + +
reification + + 0 0 0
ordering 0* + (implicit) 0 0* 0
n-ary relationships 0 -+ + (implicit) 0 0

Table 2. Object layer features in RDF, UML, SHOE, OEM and OIL.

*: RDF containers and OEM lists do not carry the semantics of ordered relationships.

6 Implementation and APIs for Object Layer

In the previous section we discussed the logical imple-
mentation of the object layer. This section deals with
the programming-level realization. The logical design of
the object layer largely determines both the APIs and
the exchange syntax (i.e. mapping to the syntax layer)
used for implementing the object layer. In particular, the
APIs need to consider both navigational and declarative
access to the objects. The navigational access is of pri-
mary relevance for in-memory implementations, whereas
declarative access is important for database support.
Layer and sublayer APIs are an integral part of a layered
data modeling architecture and require careful design. In
this section, we illustrate some factors that need to be
considered for such design.

6.1 Navigational Access

Traditionally, object-oriented models deploy APIs that
are tailored for the object model of a given application.
The objects are represented by instances of program-
ming language objects. The properties or links between
objects are accessed using member variables or get/set
methods. Basic typing is provided by the typing sys-
tem of the programming language. While perfect for a
closed domain, such APIs are very inflexible. For ex-
ample, it is usually not possible to add a property of
a new kind to an object at runtime. Furthermore, in-
heritance schemes are fixed (e.g. single inheritance) and
cannot be chosen by developers. Tailored APIs usually
do not support reification of binary links. Generic APIs
like [Mel99] provide the necessary flexibility. However,
they are not as compact and intuitive, increasing devel-
opment time and maintenance costs. If an API provides
a class like ”Link”, reification comes usually for free,
since instances of ”Link” can be used without worrying
about their identity. ”For free” means that no additional
objects and arcs as shown in Fig. 6 need to be created.
When such lightweight reification is possible, a conve-
nient strategy for implementing ordered relationships is
order by reification. n-ary relationships can be realized
in a straightforward fashion mirroring the logical imple-
mentation described in the Sect. 5.5.

6.2 Declarative Access

Relational or object-oriented databases usually offer a
declarative query language. An important consideration
for implementing the object layer on top of a database
is how well the querying capabilities of the database can
be exploited. A clever implementation would be able
to translate many kinds of declarative access operations
into a single database query. In such cases, the query op-
timizer of the database system can be used effectively.
The tradeoff between tailored and generic representa-
tions applies for databases similarly as for APIs. For
example, if associations are represented as separate rela-
tional tables, the capability of reification of associations
is lost, and no queries with variable associations are pos-
sible.

To illustrate the importance of the design of the ob-
ject layer, consider the following implementation of or-
dering using a relational DBMS. In this implementation,
a single table tuples holds binary links between objects
in a generic fashion. The table contains four fields that
represent object identifiers, all fields are of the same type
(Object identifiers in a database system are typically
implemented as integers. In the examples below we are
using stylized string values). The implementation uses
order by reification. A sample content of the database is
shown below.

idl Requiem creator Salieri
id2 Requiem creator Mozart
id3 id1l order 2

id4 id2 order 1

id5 Pinocchio creator Geppetto

The table contains two ordered links and one un-
ordered link. The field ID contains identifiers of reified
links. All ”find”-queries listed in Sect. 5.4 as implemen-
tation criteria can be executed using a single SQL query.
The most sophisticated query of these is retrieving the
first creator. The complicating factor is that some cre-
ators are unordered. Still, retrieving the first creator for
an object like Requiem can be done using the following
single query:

12 Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web

SELECT t1.S, t1.0

FROM tuples AS ti1
LEFT JOIN tuples AS t2 ON t1.ID=t2.S
WHERE t1.S=Requiem AND

t1.P=creator AND
(t2.P IS NULL OR t2.P=order) AND
(t2.0 IS NULL OR t2.0=1)

GROUP BY t1.S

The GROUP BY clause is required to reduce the num-
ber of multiple unordered creators to one. The first cre-
ators of all objects can be retrieved by dropping the first
conjunct in the WHERE clause. The result of the query
would be:

(Requiem, Mozart)
(Pinocchio, Geppetto)

6.3 Mapping to the Syntax Layer

The mapping to the syntax layer can be optimized to
support the features provided by the object layer. As
an example, consider how serialization of reification and
order can be implemented in a compact way. Order by
reification can be expressed as

<tuple ID="idl" S="Requiem" P='"creator"
0="Mozart"/>
<tuple SID="id1" P="order" 0="1"/>

The XML attribute SID in the second tuple is a ref-
erence to an ID attribute declared in the first tuple. For
even more compact representation, a specialized order-
ing syntax can be used. Thus, the fact that Salieri is the
second creator can be serialized as:

<tuple S="Requiem" P="creator" 0="Salieri"
order="2"/>

7 Related Work and Conclusion

In this paper we make the following three contributions.
First, we analyze some information models and suggest a
layered reference model for Information Model Interop-
erability. The reference model allows reducing the com-
plexity of achieving interoperability between information
models on the Semantic Web. We identify the object
layer and examine its features in detail. Finally, we dis-
cuss issues involved in implementation of the object layer
to illustrate requirements for object layer APIs.

In our approach to structuring the Information
Model Interoperability (IMI) reference model we are
building on the analogy with the Open Systems Inter-
connection (OSI) reference model used in computer net-
works (see [Tan97] for a good summary). One of the
major contributions of OSI is to provide a clear distinc-
tion between services, interfaces and protocols used in

internetworking, enabling a stack of services on top of
the more basic levels. Using layering for data modeling
includes the following advantages:

— The complexity of data model interoperation is re-
duced to interoperation within a specific layer or sub-
layer. Bridges and gateways can be built to support
mappings between layers.

— Comprehensive APIs for individual layers facilitate
reuse and reduce the costs of application develop-
ment. For example, OIL reuses RDF parsing and
querying tools.

— Implementations of the layers and agreements be-
tween peer layers can be exchanged without affecting
the applications.

Layering techniques have also been tried in knowl-
edge representation systems [Bra79]. Brachman’s archi-
tecture is aiming at the implementation of a knowl-
edge representation system, starting from data struc-
tures, which are used to implement logical inference
engines, to adequate epistemological primitives, which
facilitate knowledge modeling and engineering. In con-
trast, the IMI models deals primarily with interopera-
tion between information providers and consumers. Our
model is structured in a way that similar fundamental
knowledge representation primitives are situated in the
same or close by layers. The stratification of epistemolog-
ical primitives is not given in Brachman’s architecture:
the epistemological primitives (one layer in Brachmans
model) are situated in several IMI layers.

On a limited scale, a layered approach to data model-
ing has been successfully tried in practice. For instance,
[Mel00] demonstrates how the semantic layer of UML
can be built on top of RDF, and [BKD*00] defines OIL
as an extension of RDF Schema on top of the object
layer of RDF. Such reuse eliminates effort for defining
yet another object model or syntax, and boosts interop-
erability. As another example, many information models
adopted XML for their syntax layers and are able to
reuse XML tools and parsers developed by third parties.
We believe that a layered approach to data modeling
can be an important step toward the realization of the
Semantic Web.

References

[Be00] Dan Brickley and R.V. Guha (eds). Resource
Description Framework (RDF) Schema Specifi-
cation 1.0. W3C Candidate Recommendation,

2000.

[BKD"00] J. Broekstra, M. Klein, S. Decker, D. Fensel, and
I. Horrocks. Adding formal semantics to the
Web: building on top of RDF Schema. Technical
Report: Free University of Amsterdam, 2000.

[Bor85] A. Borgida. Features Of Languages For The De-

velopment Of Information Systems At The Con-
ceptual Level. IEEE Software, Jan 1985.

Sergey Melnik and Stefan Decker: A Layered Approach to Information Modeling and Interoperability on the Web

[Bra79] R. J. Brachman. On the Epistomological Status
of Semantic Networks. In Findler, Nicholas V.
(Ed., 1979). Associative Networks. Representa-
tion and Use of Knowledge by Computers. New
York: Academic Press, volume 3-50, 1979.

[Cat91] R. G. G. Cattell. Object Data Management. AW,
1991.

[DMvH"00] S. Decker, S. Melnik, F. van Harmelen,
D. Fensel, M. Klein, J. Broekstra, M. Erdmann,
and I. Horrocks. The Semantic Web: the Roles
of XML and RDF. IEEE Internet Computing,
Sep 2000.

[DSS93] R. Davis, H. Shrobe, and P. Szolovits. What
is a Knowledge Representation? AI Magazine,
14(1):17-33, 1993.

[FHH*00] D. Fensel, I. Horrocks, F. Van Harmelen,
S. Decker, M. Erdmann, and M. Klein. OIL
in a Nutshell. In Knowledge Acquisition,
Modeling, and Management, Proceedings of the
European Knowledge Acquisition Conference
(EKAW-2000), R. Dieng et al. (eds.), Lecture
Notes in Artificial Intelligence, LNAI, Springer-
Verlag, Oct 2000.

[GMW99] R. Goldman, J. McHugh, and J. Widom. From
Semistructured Data to XML: Migrating the
Lore Data Model and Query Language. In
WebDB Workshop, 1999.

[HFB*00] I. Horrocks, D. Fensel, J. Broekstra, S. Decker,
M. Erdmann, C. Goble, F. van Harmelen,
M. Klein, S. Staab, R. Studer, and E. Motta.
The Ontology Inference Layer OIL. Technical
Report, Free University of Asterdam, 2000.

[HHO00] J. Heflin and J. Hendler. Semantic Interoper-
ability on the Web. In Proc. of Extreme Markup
Languages, 2000.

[HHL99] J. Heflin, J. Hendler, and S. Luke. SHOE: A
Knowledge Representation Language for Inter-
net Applications. Technical Report CS-TR-4078
(UMIACS TR-99-71), 1999.

[LS98] O. Lassila and R. Swick. Re-
source Description Framework (RDF)
Model and Syntax Specification.
http://www.w3.org/TR/REC-rdf-syntax/,

1998.

[Mel99] S. Melnik. An API for RDF.
http://www-db.stanford.edu/~melnik/rdf/api.html,
1999.

[Mel00] S. Melnik. Representing UML in RDF.
http://wwu-db.stanford.edu/~melnik/rdf/uml/,
2000.

[PGMWO95] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object Exchange Across Heteroge-
neous Information Sources. In Proc. of the 11th
IEEE Int. Conf. on Data Engineering (ICDE),
pages 251-260, Taipe, Taiwan, March 1995.

[Smi96] Brian C. Smith. On the Origin of Objects. MIT
Press, 1996.

[Sow00] John F. Sowa. Ontology, Metadata, and Semi-
otics. In Proc. Int. Conf. on Conceptual Struc-
tures (ICCS), Aug 2000.

[Tan97] Andrew. S. Tanenbaum. Computer Networks.
Prentice-Hall, 3rd ed, 1997.

13

