AN XML REPOSITORY ARCHITECTURE
FOR STEP MODULES

JOSHUA LUBELL
National I nstitute of Standards and Technology
lubell @nist.gov

ABSTRACT

NIST is developing a web-based repository to serve as the core of a
modular environment for developers of STEP, a family of product data
exchange standards. Modules are represented in the repository as XML,
enabling them to be treated both as documentation and as software
components. A prototype implementation of the module repository uses

XML and other emerging technologies to dynamically render a module’s
content in a web browser in response to user input. No server-side
processing is required.

KEYWORDS: STEP, XML, module, repository, product data exchange

INTRODUCTION

STEP (the Standard for the Exchange of Product model data, officially ISO 10303) [1]
[2] is a family of standards defining a vocabulary and semantics for the exchange of
product data throughout a product's life cycle. An application protocol (AP) in STEP
describes a particular data model of an engineering or technical application. STEP
developers are adopting a new modular development strategy for APs [3] [4], driven by
requirements to:

* Reduce AP development costs.

* Allow implementations to contain multiple AP subsets or extensions.

* Improve AP interoperability.

In this new strategy reusable components called application modules, or simply
modules, are combined to form modular APs. Modules have a dual nature in that they
function not only as standards documents for reference, but also as software components
to be used by yet-to-be-developed software tools for building APs. Although guidelines
exist for developing and using modules and for evaluating them with respect to APs [5]
[6], documentation alone is insufficient for effective development of modules and APs.
To move STEP modularization from vision to reality, a “plug-and-play” modular
software environment must exist to aid STEP developers in choosing modules and adding
constraints to meet an AP’s requirements.



The National Institute of Standards and Technology (NIST) is developing a web-based
repository of modules to serve as the core of this modular environment for developers of
STEP standards. This repository is intended to facilitate the management of and access to
module-related documentation. The repository’s users will be developers of modular APs
as well as creators of new modules. Modules will be represented in the repository as
XML (Extensible Markup Language) [7] documents. XML is a particularly attractive
choice of representation language for modul es because:

* XML parsers are inexpensive and easy to obtain.

* Internet browsers will soon be able to parse XML and will include standardized
application programmer interfaces for manipulating XML data.

XML iswell suited both for data exchange over the Web and for producing human-
readable output in numerous formats. Thus, XML satisfies the dual nature of
modules.

Figure 1 shows a high-level view of the repository. The repository contains library and
catalog data, both represented in XML. Library data is used to produce the actual
documentation for a module. Catalog data associates classification properties with
modules to facilitate searches. Repository data will be represented in a manner rich
enough to enable the generation both of documentation in the traditional sense (page-
oriented output) and of interactive, dynamic hypertext taking advantage of the full
capabilities of the Web. Repository data can also serve as input to one of the software
applications comprising a plug-and-play modular software environment for STEP. For
example, repository data might be fed to an interactive software tool that guides AP
developers in constraining modules to meet an AP’s information modeling requirements.

renository /i/
library <

XML

processor

printed
docs

Figure 1. Repository architecture.
DESIGN ISSUES
XML Representation of STEP Modules

Modules contain a mix of formal specifications written in EXPRESS (a modeling
language used for describing information requirements in STEP) [8] [9], prose describing
the EXPRESS, illustrations, and boilerplate text specific to standards documents. Since
boilerplate text can be generated automatically, an XML document type definition (DTD)
for modules is essentially a DTD for annotated EXPRESS. Therefore, a principal



challenge in developing a module DTD for a repository is defining the mapping from
EXPRESS concepts to XML. Several issues come into play when seridizing an
information model into an XML vocabulary. Various EXPRESS-to-XML mapping
methods have been proposed and analyzed with respect to these issues [10].

One design issue of particular relevance to the module repository is whether to employ
an early binding or alate binding. In an early binding, the named components of the XML
vocabulary directly correspond to EXPRESS data types. For example, consider the

following EXPRESS definition of a point on aplane with x and y axes:
ENTI TY point;
X : REAL;
y . REAL,
END_ENTI TY;

This EXPRESS definition specifies a point as having two attributes whose values are
real numbers corresponding to the point's x and y coordinates. An early-bound XML

serialization of a point might look something like this:
<point id="e1">
<point.x id="al"><real /></point.x>
<point.y id="a2"><real /></point.y>
</point>

In a late binding, the named components of the XML vocabulary do not directly
correspond to EXPRESS data types. Instead they correspond to EXPRESS meta-objects.

For example, alate-bound XML seriaization of apoint could look like this:
<entity id="el">
<name>point</name>
<attribute id="al”><name>x</name><type><real /></type></attribute>
<attribute id="a2"><name>y</name><type><real /></type></attribute>
</entity>

Although the late binding is more verbose than the early binding, a late-bound
EXPRESS-to-XML mapping is better suited to the module repository than an early-bound
mapping. If an early-bound strategy were to be used, there would have to be a distinct
DTD for each EXPRESS information model in the repository. This would complicate
implementation. A late binding, on the other hand, allows for asingle DTD to be used for
any EXPRESS specification since the XML vocabulary defined by the DTD corresponds
to EXPRESS meta-objects rather than data types specific to the model.

Another issue relevant to the design of the repository DTD isthe level of granularity of
the markup with respect to the EXPRESS language. At one extreme, all of a module’s
EXPRESS code could be represented in XML as character data inside a single pair of
tags. This would not be very useful because there would be no easy way for an XML
application to reference an individual EXPRESS construct or associate descriptive text
with it. The other extreme would be to have a DTD specifying markup for every single
token in the EXPRESS language. Such a DTD would be overly verbose and cumbersome
to work with because the EXPRESS language is so complex.

The module repository takes a middle-of-the-road approach, specifying high-level
EXPRESS structures such as data types, their attributes, and inheritance relationships
between data types, but not specifying markup for low-level expressions. As an example,
consider a point equidistant from the x and y axes. The following EXPRESS definition
specifies this as a subtype of the point data type defined previously:



ENTI TY poi nt _on_di agonal SUBTYPE OF (point);
VWHERE WR1 : ABS(x) = ABS(Yy);
END_ENTI TY;

The construct following the WHERE keyword is a rule with the label WR1. The rule
body consists of a constraint expression specifying that the inherited x and y attributes
must have the same absolute value.

This definition represented in XML using a late-bound, middle-of-the-road markup
scheme with hooks for English descriptions of some EXPRESS constructs might look as

follows:
<entity id="e2">
<name>point_on_diagonal</name>
<description>A <entityref linkend="e2" /> is a <entityref
linkend="e1"” /> equidistant from the <attributeref linkend="al” /> and
<attributeref linkend="a2” /> axes.</description>
<subtype><entityref linkend="e1” /></subtype>
<whererule>
<label>WR1</label>
<description><attributeref linkend="al” /> and <attributeref
linkend="a2"” /> shall have the same absolute value.</description>
<expression>ABS(Xx) = ABS(y)</expression>
</whererule>
</entity>

Note that the XML captures point_on_diagonal’s subtype relationship with point and
specifies that point_on_diagonal is constrained by a rule with label WR1. The constraint
expression ABS(x) = ABS(y), however, is not marked up. As far as an XML parser is
concerned, the constraint expression is indistinguishable from any other character data.

Accommodating Off-line Repository Use and Collabor ative Development

STEP APs are international standards and, as such, are often developed by teams
spanning multiple organizations and multiple countries. Meetings are frequent, and much
of the work gets done while on travel where Internet access is not always available.
Therefore, the module repository needs to be downloadable so that it can function off-line
with Internet access being needed only intermittently to update the repository contents.
This requirement dictates that the repository favor client-side processing over server-side
processing. Also there must be a robust means for users to update their local repository
installations and make changes to modules in a master repository, presumably residing on
an Internet-accessible server somewhere.

XML and other emerging web technologies such as Java [11], client-side scripting [12],
and the Document Object Model (DOM) interface [13] make possible highly interactive
web applications with dynamic content and with all processing taking place within the
browser. By eliminating the need to interact with a web server, these technologies can be
used to create a user interface for off-line access to the module repository. The next
section discusses a prototype implemented to demonstrate this.

An environment for modifying modules, tracking their versions, tracking errata, and
updating local repositories can be built using the same tools that large, distributed
software projects use to manage collaborative development [14] [15]. Implementation of
this environment using these tools should be straightforward because STEP modules
function in a manner similar to software components. Also, like source code, modules are



stored as text files, making it easy to maintain revision histories in terms of line-by-line
changes.

REPOSITORY PROTOTYPE

A repository prototype has been implemented to demonstrate some of the benefits of
representing modules using XML. In particular, it demonstrates how a module can be
rendered dynamically in a browser environment in response to user input and independent
of a web server. EXPRESS specifications are represented in XML using a late-bound
vocabulary with hooks for text descriptions of EXPRESS constructs. The prototype uses
client-side scripting in conjunction with the DOM interface to provide dynamic hypertext
without server-side processing.

Figure 2 shows a screen shot of the user interface displaying an EXPRESS
specification containing the point and point_on_diagonal type definitions from the earlier
example. Prose descriptions of point_on diagonal and its constraint on inherited
attributes x and y are visible in the screen shot. An AP developer may click on any of the
button labels embedded in the EXPRESS to toggle a text description of the labeled item.
At any time, the developer may click on the buttons at the top of the page to show or hide
all text descriptions. All rendering is done using a single XML document and without any
interaction with a web server. In fact, the prototype has been demonstrated successfully
on alaptop computer without any Internet connection or server software.

Further information about this prototype is available at http://www.nist.gov/stepmod/.

Fil= Edit Debug Style Tools

Eacl Fonard I file fmlbmlfdemodwacexample xml o

ENTITY Point|.

ﬂ : REAL ;
¥| : REAL ;
EHD_ENTITY;

ENTITY Point on diagonal

A point_on_diagonal 15 a point equidistant from the x and v axes.

SUBTYPE OF point ;
WHERE

% and ¥ shall have the same abschite walue. |

ABS(x) = ABS(y)
END ENTITY : b

' Figure 2. Screen shot from repository prototype showing annotated EXPRESS.




FUTURE DIRECTIONS

The proposed module repository addresses some of the requirements resulting from the
new modular approach to STEP AP development. In particular, the repository addresses
the need for modules to function both as documentation and as software components, and
the need for a configuration-controlled electronic catalog of specifications that can be
accessed with or without an Internet connection. To realize more fully the plug-and-play
modular software environment envisioned for AP developers, we have set out goals for
the near future to develop the following:

e A full DTD for modules. This DTD will represent both catalog and library data and
will be a superset of the DTD used in the prototype.

* Tools for tracking modifications to modules and managing updates to loca
repositories.

* A tool to enable module authors to continue using their favorite software for creating
and modifying EXPRESS specifications and not require them to use an XML editor to
make changes to EXPRESS code. Such a tool would need to create an XML
document template from an initial EXPRESS specification and aso facilitate the
merging of modifications to an EXPRESS specification of a module with the existing
XML document for the module.

REFERENCES

1. Kemmerer, SJ. (ed.) STEP: The Grand Experience, Special Publication 939, National Institute of
Standards and Technology (July 1999).

2. 1S0 10303-1:1994 Industrial automation systems and integration - Product data representation and
exchange - Part 1. Overview and fundamental principles.

3. I1SO TC184/SC4/WG10 STEP/SC4 Industrial Data Framework (August 7, 1999). Available at
http://wg10step.aticorp.org/.

4. Allison Barnard Feeney and David M. Price A Modular Architecture for STEP, World Automation
Congress, Seventh International Symposium on Manufacturing with Applications (June 2000).

5. 1SO TC184/SC4/WG10 N221, Guidelines for the content of application modules (1998-12-23).
Available from http://wgl0step.aticorp.org/.

6. 1SO TC184/SC4/WG10 N222, Guidelines for the content of application protocols using application
modules (1998-12-21). Available from http://wgl0step.aticorp.org/.

7. World Wide Web Consortium Extensible Markup Language (XML) 1.0, W3C Recommendation,
http://www.w3.0rg (10-February-1998).

8. D. Schenck and P. Wilson. Information Modeling the EXPRESS Way. Oxford University Press (1994).

9. 1S0 10303-11:1994, Industrial automation systems and integration - Product data representation and
exchange - Part 11: Description methods: The EXPRESS language reference manual.

10. Kimber, W.E. XML Representation Methods for EXPRESS-Driven Data, Grant/Contractor Report 99-
781, Nationa Institute of Standards and Technology (November 1999). Avalable at
http://www.nist.gov/sc4/wg_gc/wgl1/n095/.

11. Flanagan, David. Javain a Nutshell, 2nd Edition. O’Reilly, Sebastopol California (May 1997).

12. ECMA-262, ECMAScript Language Specification, 2™ Edition. European Computer Manufacturers
Association (August998).

13. World Wide Web Consortiunbocument Object Model (DOM) Level 1 Specification, Version 1.0,
W3C Recommendation, http://www.w3.orgu@ust 181998).

14. Per Cederqvist, et allersion Management with CVS for CVS 1.9. Signum Spport AB. Available at
http://wwwgnu.org/manual/cvs-1.9/

15. Bugzlla bug-tracking systenttp://bugzilla.mozilla.org/




