
A Logic-Based Approach to XML Data

Integration

Wolfgang May

may@informatik.uni-freiburg.de

TECHNICAL REPORT

Institut f�ur Informatik

Albert-Ludwigs-Universit�at

Georges-Koehler-Allee

79110 Freiburg, Germany





Abstract

In this work, a logic-based framework for XML data integration is proposed. XPath-
Logic extends the XPath language with variable bindings and embeds it into �rst-
order logic, interpreted over an edge-labeled graph-based data model. XPathLog is then
the Horn fragment of XPath-Logic, providing a Datalog-style, rule-based language for
manipulating and integrating XML data. In contrast to other approaches, the XPath
syntax and semantics is also used for a declarative speci�cation how the database should
be updated : when used in rule heads, XPath �lters are interpreted as speci�cations of
elements and properties which should be added to the database.

Due to the close relationship with XPath, the semantics of rules is easy to grasp. In
addition to the logic-based semantics of XPath-Logic, we give an algebraic semantics for
evaluating XPathLog queries based on answer-sets. The formal semantics is de�ned wrt.
a graph-based model which covers the XML data model, tailored to the requirements
of XML data integration. It is not based on the notion of XML trees, but represents
an XML-style (i.e., based on elements and attributes) database which simultaneously
represents individual, overlapping XML trees as views of the database.

The \pure" XPathLog data model is extended with expressive modeling concepts such
as a class hierarchy, nonmonotonic inheritance, and a lightweight signature concept.
Information integration in this approach is based on linking elements from the sources
into one or more result trees, creating elements, fusing elements, and de�ning access
paths by synonyms. By these operations, the separate source trees are developed into
a multiply linked graph database in which one or more result tree views can be distin-
guished by projections. The combination of data and metadata reasoning is supported
by seamlessly adding XML Schema trees and even ontology descriptions to the internal
database.

XPathLog has been implemented in LoPiX. The practicability of the approach is
demonstrated by a case study which also serves as a running example. The �rst part
of the essay is dedicated to an overview of the development of XML-related concepts
which also motivates the design decisions of the XPathLog framework.
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1 INTRODUCTION

XML has been designed and accepted as the framework for semi-structured data where it plays
the same role as the relational model for classical databases. Specialized languages are available
for XML querying, around the basic [XPa99] addressing language, e.g., XQL [Rob99], XML-
QL [DFF+99b], Quilt/XQuery [CRF00, XQu01] and for transformations of XML sources, e.g.,
XSLT [XSL99] (also XML-QL and Quilt/XQuery can be used for generating new XML documents
from given ones since their output format is XML), but at the time this paper is written, yet none
of them can be seen as an XML data manipulation language. A proposal for updating XML will
be published in [TIHW01]. For writing applications for creating and manipulating XML data, the
dominating language is Java, regarding the DOM model as a data structure where applications
are built on.

XML provides a uniform formalism (and by its ASCII representation also a uniform format)
for electronic data interchange over the internet. Many XML applications \live" in a \prede�ned"
setting where all participants use the same \language" and are aware of each other, e.g., in B2B
(business-to-business) networks, banking, and health care. Additionally, there is a growing rate
of autonomous data interchange: Information suppliers provide XML data on the Web which is
then used by information brokers (e.g., search engines or market places) or users which are not
previously known by the supplier. Here, the data source is autonomous in the sense that it may
change the data and also the data format without noti�cation of the users. Having numerous
accessible information sources on the Web, \everybody" may extract the information which he
considers to be relevant and restructure and integrate it according to his personal needs, creating
a personalized view on the data sources. Here, a powerful and preferably declarative language
over a 
exible data model is needed.

Depending on the application, XML data can be regarded as documents (e.g., in document
repositories in the publishing �eld), or as (excerpts from) databases (e.g., in catalogs in the B2B
�eld, or in banking applications). The focus of the present work is on the database point of view.

The paper follows a logic-based approach: XML instances are mapped to a semantical structure
which serves for interpreting XPath-Logic formulas. XPath-Logic is based on (i) �rst-order logic,
and (ii) XPath reference expressions extended with variables. XPath-Logic formulas can e.g. be
used for specifying constraints and reasoning on XML documents.

The Horn fragment of XPath-Logic, called XPathLog, provides a declarative, Datalog-style lan-
guage for manipulation and integration of XML documents. The syntax and querying semantics
is based on XPath. Whereas XSLT, XML-QL, and Quilt/XQuery use XML patterns for gener-
ating output (with the consequence that their output can only generate XML, but it cannot be
used for manipulating an existing XML instance), our language deviates from these approaches:
XPathLog works on an abstract model which represents an XML database supporting multiple
overlapping XML trees. An extended XPath syntax is used for querying (rule bodies) and gen-
erating/manipulating the data (rule heads). The semantics is given as sets of variable bindings;
only when �nal output is produced, the well-known XML syntax/model is used.

The \pure" XPathLog language also applies as a querying and data manipulation language
to the \classical" XML tree model. But, for the application to information integration, the edge-
labeled navigation graph data model shows its strengths by supporting operations such as element
fusion for combining properties of elements which are regarded to be \the same" from di�erent
sources, linking which allows for (re)structuring XML trees by reusing already existing nodes, and
synonyms which allow for reuse of access paths. Extensions to the data model combine the XML
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2 1. INTRODUCTION

model with modeling concepts known from the object-oriented model and earlier approaches to
semi-structured data such as a class hierarchy and metadata information by signatures. The latter
also serve for de�ning result views of the internal XML database.

Structure of the paper. The essay consists of four parts:

� When carrying out such a project { the design of a programming language for a still evolving
and extending data model { a detailed analysis of current and previous approaches is essen-
tial. By comparing evolving, consecutive languages and modeling concepts, important and
problematic aspects and details can be identi�ed. On the other hand, when designing, im-
plementing, testing, and applying the language in practice, the motivation how these details
have been solved, and their practical consequences become more clear.

Thus, the �rst part of the work does not only sketch the basic notions, but is dedicated
to an overview of XML-related concepts which are related to the present approach. The
concepts are described, several details which come up repeatedly are compared, and the
evolution up to now is described, also motivating design decisions for XPathLog. The basic
XML concepts, i.e., XML itself and DTDs, are introduced in Section 2. Section 3 describes
the development of concepts and languages around the \basic" XML documents: XPath
provides the basic formalism for querying XML, serving as a base for the development of
XML querying languages which are also described in this section. Additionally, formalisms
for describing XML metadata and linking XML documents are discussed. Section 4 analyzes
the di�erent requirements when regarding XML from the document and the database point
of view.

� The central concepts of the work, XPath-Logic and XPathLog are motivated and described
in the second part, relating them to existing approaches:

Section 5 de�nes X-structures as semantical structures which represent XML documents and
presents XPath-Logic as a logic which is interpreted over X-structures. The Horn fragment of
XPath-Logic, XPathLog is investigated as a rule-based XML data manipulation language in
Section 6, starting with the querying semantics. Section 7 de�nes the semantics of XPathLog
rules, focusing on the semantics of rule heads for generating and modifying XML data, and
the semantics and evaluation of XPathLog programs. Section 8 compares the pure XPathLog
language with other XML querying languages and related notions.

� Building upon the basic XPathLog concept, especially its application for data integration is
investigated. At the same time, extending concepts are also related to the XML mainstream.
Section 9 extends the XML data model by classes, a class hierarchy, and inheritance as known
from object-oriented data models. Section 10 introduces a lightweight notion of signatures to
describe metadata in XPath-Logic. The handling of multiple XML trees for data integration
(including metadata and ontologies) is described on an abstract level in Section 11. The
practicability of the approach is demonstrated by the case study describing the integration
of the Mondial database in Section 12. Section 13 investigates the handling of XLinks.

� The forth part focusses on the implementation of XPathLog and its relationship with related
approaches. Section 14 compares XPathLog with F-Logic [KLW95], which strongly in
uenced
the design of the language (XPathLog can be seen as a crossbreed between XPath and F-
Logic). Section 15 describes the LoPiX system which extends the pure XPathLog language
with a programming environment providing Web access and additional built-in functionality.

A general discussion of related work and the conclusion can be found in Section 16.

The Appendix contains some DTDs and XML Schema speci�cations of the database. Appendix E
contains the lists of de�nitions, examples etc. with their pagenumbers.

Publications from this thesis. Some parts of this work have already been accepted for publi-
cation. [May01c] describes XPathLog as an XML Data Manipulation Language; [May01b] focusses
on the applications for data integration.
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The Mondial Database

The XML Mondial database is used as a running example throughout this work: the \�nal"
version, mondial-2.0 (see Appendix and [Mon]) serves for experiments with a nontrivial XML
instance. The XML representations of the sources (see at [May01a]) have been used for data
integration in XPathLog (cf. Section 11).

The original Mondial case study [Mon] has been carried out for demonstrating the use of
the Florid system [FLO98,LHL+98] as an integrated tool for wrapping and mediation [May99a],
resulting in the Mondial database in F-Logic, Oracle, Datalog, and XML format. From this case
study the wrapped sources have been exported in XML format (see Appendix D) and are now
used for the XML integration case study.

Mondial has been compiled from the following sources:

The CIA World Factbook: The CIAWorld Factbook (www.odci.gov/cia/publications/pubs.
html) provides political, economic, and social and some geographical information about the
countries.

A separate part of the CIA World Factbook provides information about political and eco-
nomical organizations.

Global Statistics: Cities and Provinces: The Global Statistics Data (www.stats.demon.nl)
provides information about administrative divisions (area and population) and main cities
(population).

Qiblih: Geographical Coordinates: The Qiblih pages (http://www.bcca.org/misc/qiblih/
latlong.html) provide the geographical coordinates of many cities around the world.

The Terra Database: The KarlsruheTerra database can be seen as the origin and the \kernel"
of the idea of the Mondial database. There, geographical and political information about
countries, administrative divisions, cities, organizations, waters, mountains, deserts etc. is
stored in a relational schema used for a practical training in Oracle at Karlsruhe University.

Country Names and Codes: An additional Web page has been used which gives the country
names in di�erent languages and the country codes. Terra uses german names and all other
sources use english and local names.
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2 XML: AN OVERVIEW OF

BASIC NOTIONS

XML (Extensible Markup Language) has been de�ned as a semistructured data model, both suit-
able for the document-oriented point of view and for the database point of view. An important
aspect is also that the document aspect and the data aspect may be combined in a single instance
of semistructured data (thus, the terms XML document and XML instance will be used synony-
mously, the term XML database is used even more general, denoting several possibly overlapping
XML instances).

Originally, the ideas of semistructured data have mainly been present in the document com-
munity, where the SGML language has been developed.

Models and languages for semistructured data have attracted a lot of interest in the database
community since the mid 90s [Abi97, AQM+97b, BDHS96, Suc97, KIF98]. One motivation for
studying semistructured data was the immense growth and impact of the World Wide Web.
Moreover, there was a growing need for integration of data from heterogeneous sources (e.g., legacy
systems or data available from the Web), for which semistructured data provides a common data
model. Typical features attributed to semistructured data include the following: the structure is
irregular, partial, unknown, or implicit in the data, and typing is not strict but only indicative
[Abi97]. Since the distinction between schema and data is often blurred, semistructured data is
sometimes called \self-describing" [Bun97].

Starting from the document point of view, a document consists of its contents, i.e., the text,
and markup, i.e., the structuring and annotations of the text (cf. LATEX or RTF). Here, again, logi-
cal and optical markup are distinguished: a LATEX source necessarily contains the contents together
with logical markup (e.g., \begin{itemize}\item text\item more text\end{itemize}). Some-
times, the source also contains minor optical markup by indentation (to make the source readable,
is does not in
uence the resulting document). Processors (e.g., LATEX) or stylesheets are used to
translate the logical markup into optical markup, i.e., boldfacing, vertical whitespaces, indenta-
tion, items etc., leaving the contents unchanged. Other languages are used for restructuring and
merging documents, including their contents.

In the text processing community, the (meta)language SGML (Standard Generalized Markup
Language) has been developed at IBM starting in 1979, and became a standard (ISO 8879:1986) in
1986. SGML de�nes a tree model for documents providing sophisticated concepts for logical and
optical document markup. Additionally to the internal representations of SGML tools, there is an
ASCII representation using an extensive grammar (lots of round (\(", \)") and angle (\<",\>")
brackets). SGML tools are widely used in publishing (for \smaller" tasks, academic researchers
prefer LATEX, which is already much easier to learn than SGML). For exchanging SGML documents,
the ASCII representation is used. For handling SGML documents, languages like CSS and DSSSL
have been developed.

With the World Wide Web as a new medium for presenting hypertext documents (i.e., docu-
ments which potentially associate a functionality with parts of the contents, e.g., having clickable
links to other documents or starting applications), new, specialized markup requirements came
up. On the other hand, the functionality needed for Web representations requires only a small
subset of what has been provided by SGML. Third, the Web presentation language was expected
to be much smaller, easier to parse (to be parsed by graphical Web browsers) and easier to learn
than SGML (to be used by casual users). The design of HTML (Hypertext Markup Language), a
much stripped version of SGML started in 1989 at CERN, and HTML became a standard in 1991.

5
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HTML speci�es a set of tags with a prede�ned semantics, how to present Web pages in graphi-
cal Web browsers, such as Mosaic [NCS93] (August 1993), Netscape (April 1994), and Microsoft
Explorer (May 1996).

HTML. In many aspects, HTML gives a good intuition for understanding XML: The ASCII
representation of XML data and HTML share the same syntactical notions (part of SGML).
Formally, HTML is a specialized SGML application, designed as a language for describing Web
pages. Its grammar is speci�ed by a DTD (Document Type Description), the SGML notion of a
\schema speci�cation" (see also Section 2.2).

A HTML page is a hierarchical structure of nested elements, consisting of a start tag, e.g.,
<TABLE>, some contents (i.e., text and nested elements), and an end tag, e.g., </TABLE>. Elements
may be further speci�ed by attributes, e.g., <TD colspan = \2"> ... </TD>.

The HTML standard de�nes the semantics of these tags, that means, a speci�cation how they
are represented in a browser, together with a grammar which speci�es how the tags may be nested
and which attributes are allowed. With several extensions, HTML now provides a lot of tags for
combined optical and logical markup (headers, lists, tables, hyperlinks, linebreaks, colors, fonts,
pictures etc.).

2.1 XML

The development of XML (Extensible Markup Language) started in summer 1996 by the XML
Working Group (a group of SGML experts lead by John Bosak (Sun Microsystems)) which worked
in cooperation with the W3C (World Wide Web Consortium). The design of XML was driven by
the idea to have a generic SGML-based language for representing semistructured data in a self-
describing way, i.e., the instance contains both the contents, and a description of the semantics
of the contents. The latter is achieved by structuring the contents using semantical tags : Every
XML application de�nes its own semantical tags which are described in a DTD (Document Type
Description). Then, elements represent objects of an application area, containing information
both in the attributes and in the element contents. After some consecutive Working Drafts, the
XML 1.0 Recommendation has been published in February 1998 [XML98].

2.1.1 XML Data Model

First, note that the (abstract) XML data model is not concerned with the \common" representation
of XML data by ASCII �les (syntactically very similar to HTML). Even XML documents are not
necessarily given in the ASCII representation. Nevertheless, the notion of a DTD specifying
attributes and elements also applies to the abstract XML data model in general.

The abstract data model of an XML instance (for a detailed, formal description of the XML
Query Data Model, see Section 3.9.1) is a tree, consisting of nodes. The XML data model distin-
guishes di�erent types of nodes, amongst them document nodes (the entry points of the trees),
element nodes (the inner tree nodes), text nodes (leaves), and attribute nodes (another type of
leaves). The DOM (Document Object Model) API (see Section 2.1.3) is a speci�cation of an
abstract datatype which implements this data model.

Every XML instance is associated with a unique document node which serves for \accessing" the
XML instance (in XPath, the expression document(url) gives access to this node). The document
node (containing some metainformation about the document) again has a unique child (which is
an element node) which is the root node of the document.

� Element nodes (including the root node) have a name (often referred to as their \tag", e.g.,
mondial, country, or city). The element contents is an (ordered!) list of children, i.e., element
nodes and text nodes. Additionally, elements may have a (unordered!) set of attribute nodes
associated with them.
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The XML tree structure is recursive: every element node together with its children and
attributes is again a (sub)tree.

� Text nodes contain only text contents and have no children and no attributes.

� Attribute nodes have a name (e.g., area or capital), a type, and a value. The value can be
either atomic, or a set of atomic values. The basic XML model distinguishes between the
following attribute types:

{ CDATA: scalar, (nearly) arbitrary text contents1,

{ NMTOKEN: scalar, token values (i.e., text without whitespaces),

{ NMTOKENS: multivalued, a list of tokens (separated by whitespace), e.g.,

<country name=\Switzerland" industry=\machinery chemicals watches">

{ ID: a distinguished scalar NMTOKEN attribute. Its value must uniquely identify an element
throughout the whole XML instance.

{ IDREF: a scalar reference attribute, its (NMTOKEN) value must occur as the value of an ID

attribute somewhere in the XML instance.

{ IDREFS: a multivalued (NMTOKENS-valued) reference attribute, each of its values must occur
as the value of an ID attribute somewhere in the XML instance.

Concerning IDREF(S) attributes, the abstract data model does not specify how the value
is actually stored { it is only required that the referencing semantics can be implemented
by an application which is aware that the attribute is a reference attribute.

The types of attributes are not given in the XML instance, but in the document type descrip-
tion (DTD) (see below).

� Additionally, there are comment nodes and processing instructions which are not considered
in this work.

In general, every XML instance is of a certain document type, i.e., built from element nodes and at-
tributes according to a certain speci�cation: the correspondingDTD (Document Type Description)
(see Section 2.2) speci�es the structure of the XML instance by describing the allowed element
types and attributes. An XML instance is valid it it conforms with the constraints speci�ed in
the DTD (which is mentioned in the unique document node of the XML instance).

The abstract XML data model described above has numerous representations:

� The DOM representation (see Section 2.1.3) which is the internal data structure of most
lightweight XML tools,

� database-like representations by (proprietary) data structures in commercial systems (e.g.,
Tamino [Sof], eXcelon [eXc]) which are often based on the DOM speci�cation and augmented
with index structures,

� mappings to the relational model (XML extensions to relational database systems, such as
Oracle's OraXML),

� implementations in LDAP (Lightweight Directory Access Protocol) [Ope],

� . . . and the \common" ASCII representation which serves for the following purposes:

{ it is human-readable by presenting the tree as a tagged document similar to HTML, and

{ for electronic data interchange, a \standard" representation is required which can be pro-
cessed by all tools (exchanging an internal data structure such as a DOM is not suitable)
and communicated by the basic internet protocols.

1for the details of allowed characters, see the XML Standard [XML98].
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DOM-based systems are often called native XML systems; but for the end user, it is not relevant
which internal representation is used.

Example 2.1 (ASCII Representation of XML Instances)

Using the ASCII representation, an element node has, e.g., the form

<country car code=\D" capital=\city-berlin">
<name>Germany</name>
<city id=\city-berlin" name=\Berlin"> ... </city>
<city id=\city-hamburg" name=\Hamburg"> ... </city>

</country>

The country element has a car code attribute (to be declared of type ID in the DTD) which identi-
�es it amongst all nodes in the document (not only amongst the country elements) and an IDREF

attribute capital which is a reference to a node whose ID-declared attribute has the value \city-
berlin". Its element contents is a name element with text contents \Germany", followed by two
city elements. Both have an id attribute (declared as ID in the DTD), one of them has the value
\city-berlin" which is required by the above capital reference.

De�nition 2.1 (Document Order)

Every XML tree de�nes an enumeration of its elements, called document order (<doc) which results
from traversing the tree recursively by depth-�rst search, listing the root element before traversing
the subtree.

The notion of document order is extended to attribute nodes by attr1 <doc attr2 if elem1 <doc

elem2 holds where elemi is the element to which attr i belongs. The order of di�erent attribute
nodes of one element is arbitrary. 2

A formal data model for querying XML is described in Section 3.9.1. Note that there is no direct
representation for use with Web browsers (except loading the plain ASCII �le). For accessing
XML with Web browsers, see Section 2.1.4.

2.1.2 XML Documents in ASCII Representation

One of the requirements when designing XML was that there must be a \human-readable", self-
describing representation (i.e., in ASCII). This representation is derived from the SGML ASCII
representation by the common tag syntax known from HTML. Since this representation is also
used as the format for electronic data interchange over the internet, it is often regarded as the
representation of XML data: XML applications (including XML-awareWeb browsers and database
interfaces) are expected to parse XML documents in this representation and to be able to export
XML data in this representation.

Formally, an XML instance consists of a prolog (which contains some metadata about the
document, in the abstract model associated with the document node) and the root element which
in turn contains nested elements.

The prolog contains a document type declaration (not to be confused with the DTD (Document
Type Description)) of the form

<!DOCTYPE name (SYSTEMjPUBLIC) url> or <!DOCTYPE name [dtd ] >

which tells the name of the document's type (i.e., mondial) which is described by a DTD (see
Section 2.2). The DTD can either be given inline by dtd in the above document type declaration,
or by an url (where the DTD can be found) as an external DTD. Here, PUBLIC stands for a
public, standard DTD whereas SYSTEM stands for a local, private DTD. In either case, the DTD is
required to de�ne an element type whose name is the name declared as the document type. Also,
the root element of the XML instance must be an element of type name.
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Example 2.2 (XML Instance with DTD)

The running example in this work consists of two �les (for the original �les, see [Mon]): The
document at the url �le:mondial-2.0.dtd is a DTD which declares an element type mondial (and
some other things):

<!ELEMENT mondial (. . . )>

Then, an XML instance of the document type mondial has the form

<?xml version=\1.0" . . . >
<!DOCTYPE mondial SYSTEM \mondial-2.0.dtd">
<mondial attributes>

elements
</mondial>

In contrast to HTML which requires the browsers to be very fault-tolerant with sloppy sources,
the XML requirements on well-formed documents are much stronger:

� pairs of opening and closing tags must be correctly nested, e.g.

<a attributes> . . . <b attributes>. . . </b> . . . </a>

� empty elements are allowed with a special syntax:

<a attributes/>

Due to this restrictive speci�cation, XML parsers can be implemented quickly, and e�cient since
no error-correction is required. Note that well-formedness is only concerned with the ASCII
representation.

Example 2.3 (XML)

Consider the following excerpt of the Mondial database [Mon] for illustrations (the complete
DTD can also be found in Appendix A).

<!ELEMENT mondial (country+, organization+, . . . )>
<!ELEMENT country (name, population, city+, . . . )>

<!ATTLIST country car code ID #REQUIRED memberships IDREFS #IMPLIED
capital IDREFS #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT city (name, population*)> <!ATTLIST city . . .>
<!ELEMENT population (#PCDATA)> <!ATTLIST population year CDATA #IMPLIED>

<!ELEMENT organization (name, abbrev, established?, members*)>
<!ATTLIST organization id ID #REQUIRED seat IDREF #IMPLIED>

<!ELEMENT abbrev (#PCDATA)>
<!ELEMENT members EMPTY>

<!ATTLIST members type CDATA #REQUIRED country IDREFS #REQUIRED>

<country car code=\B" capital=\cty-brussels" memberships=\org-eu org-nato . . . ">
<name>Belgium</name>
<population>10170241</population>
<city id=\cty-Brussels" country=\B">

<name>Brussels</name>
<population year=\95">951580</population>

...
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</city>
...

</country>

<organization id=\org-eu" seat=\cty-Brussels">
<name>European Union</name> <abbrev>EU</abbrev>
<members type=\member" country=\GR F E A D I B L NL DK SF S IRL P GB"/>
<members type=\membership applicant" country=\AL CZ H SK LV LT PL BG RO EW M CY"/>

</organization>

A representation of this excerpt as a graph can be found in Figure 5.1.

2.1.3 The DOM API

The DOM (Document Object Model) [DOM98] is an application programming interface (API) for
XML instances. It de�nes an abstract datatype which implements the abstract XML tree model
for storing and managing XML instances. An important objective for the Document Object Model
is to provide a standard programming interface that can be used in a wide variety of environments
and applications. The DOM is designed to be used with any programming language. In order to
provide a precise, language-independent speci�cation of the DOM interface, the speci�cation is
de�ned using the Interface De�nition Language (IDL) de�ned by the Object Management Group
(OMG) in the CORBA speci�cation. With the Document Object Model, programmers can build
documents, navigate through their structure, and add, modify, or delete elements and content.
Anything found in an HTML or XML document can be accessed, changed, deleted, or added using
a DOM implementation (which are available e.g., for C++ and Java).

The original DOM Level 1 Speci�cation (1998-2000) has successively been extended by DOM
Level 2 (Nov. 2000) and DOM Level 3 (Jan. 2001). This re
ects the ongoing work on the data
model, as, e.g., described in the XML Query Data Model and Algebra (described in Section 3).

2.1.4 XML and Web Browsers

Although XML documents in their ASCII representation are very similar to HTML �les, they are
useless for browsers (except the XML �le uses only the HTML tags, i.e., it is in fact an HTML
document): for the browser, the tags have no semantics { thus, the browser cannot interpret them.
It knows how to map a

<UL> <LI> . . . </LI> . . . </UL>

sequence to the browser window, but what to do with a

<country> <city> . . . </city> . . . </country>

sequence?2

Here, stylesheets can be used: For a given document type (de�ning a set of element types and
attributes), a stylesheet de�nes a transformation how to map element types to XML structures
according to some other DTD. If the target DTD is the HTML DTD, the result can be interpreted
by a browser.

Stylesheets can be written either in CSS (Cascading Style Sheets, a simple language designed
for SGML and frequently used for HTML), or DSSSL (a very expressive, complex functional
language which is used for transforming SGML documents in publishing environments), or XSLT
(XSL Transformations, see Section 3.4). The latter is a powerful functional-style pattern-based
transformation language especially for XML, in XML syntax. XML documents on the Web may

2Thus, clicking on a link to an XML or DTD �le at [Mon] results in an empty browser window. View Page

Source then shows the XML ASCII representation.
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specify an XSL stylesheet (via its url) which should be applied when the document is accessed by
a browser. If the browser is XSL-enabled, it will process the stylesheet and the XML instance and
display the resulting HTML page.

2.2 DTD (Document Type De�nition)

SGML and XML allow for the de�nition of tags. Each SGML application de�nes its own tags and
attribute names. These are described in a DTD (Document Type Description). Thus, HTML is
one instance of an SGML language, called a document type { every complete HTML document
refers to the DTD "HTML.dtd" in its prolog. The DTD describes a document type by specifying
which tags are allowed, their attributes, and the allowed nestings. Roughly, the DTD corresponds
to the schema de�nition in relational or object-oriented databases.

For an XML instance, one can either de�ne an own DTD (as it is done for the Mondial
database), or refer to an existing DTD. For electronic data interchange, it is necessary that all
partners agree on a common DTD, e.g., car manufacturers and suppliers, medicine, or �nancial
services use standardized DTDs.

A DTD for a document type doctype consists of a grammar which describes the class of docu-
ments,

� which elements are allowed in a document of the type doctype,

� which subelements are allowed for these elements (element types, order, cardinality),

� which attributes are allowed (attribute name, type, and cardinality),

� additionally, entities may be de�ned. Since entities are not a modeling concept, but merely
act as macros for writing a document, they are not considered in the sequel.

The structure of the contents of elements is de�ned by element type declarations

<!ELEMENT elem type contentsmodel>

where

� if contentsmodel = EMPTY, elements of type elem type are empty, i.e., do not have any contents
(but may have attributes).
Note that an empty element, e.g., <foo attr=\. . . "/>, is di�erent from an element with empty
contents, e.g., <foo attr=\. . . "/> </foo>.

� if contentsmodel = (#PCDATA), elements of type elem type have only text contents and per-
haps attributes,

� if contentsmodel = (expression) where expression is a regular expression over element names,
the structure of a complex element type is described. The following constructs are used:

{ \,": sequence,

{ \j": exclusive-or (choice),

{ \*": arbitrary often,

{ \+": arbitrary often, at least once,

{ \?": optional (0 or 1 times).

� if contentsmodel = (#PCDATAjelem type1j...jelem typen)*, an element with mixed contents is
described, i.e., elements of this type may contain text children and children of the given
element types in arbitrary ordering and nesting. It is not possible to give a more detailed
speci�cation of element types with mixed contents in a DTD.
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� if contentsmodel = (ANY), elements of this type may have arbitrary contents (even, element
types which are not named in the DTD).

The allowed attributes of elements are declared by attribute declarations. An attribute declaration
is of the form

<!ATTLIST elem type
attr name1 attr type1 attr constr1

...
...

...
attr namen attr typen attr constrn>

where for an element type, all its attributes are described by their name, their attribute type and
a constraint on their cardinality. DTDs allow only for a very restricted set of attribute types which
has already been mentioned for the XML data model:

� CDATA,

� NMTOKEN,

� NMTOKENS,

� ID,

� IDREF,

� IDREFS,

� additionally enumerations: if

attr type = (const1j : : : jconstk) ,

the attribute is scalar, with token type; additionally, it is required that the value is one of
the enumerated values, e.g.,

<river name=\Rhein">
<to type=\sea" water=\sea-north-sea"/></river>

with the DTD fragment

<!ATTLIST to
type (riverjlakejsea) #REQUIRED
water IDREF #REQUIRED >

or a string-valued enumerated attribute, e.g., for the state codes of a US database:

<!ELEMENT city (. . . )>
<!ATTLIST city state (ALjAKjARjAZjCAj. . . ) #REQUIRED

. . . >

Whereas the attribute type speci�es the type and in some sense the maximal cardinality of at-
tributes, the attribute constraint attr constri primarily speci�es the minimal cardinality. Addi-
tionally, it is used for de�ning default or mandatory values:

� #REQUIRED: the attribute must be given for each instance of the element type.

� #IMPLIED: the attribute is optional.

� #FIXED value (where value is a value allowed for attr typei): the attribute has this value for
all instances of the element type (monotonic value inheritance). Note that for multivalued
attributes, lists are allowed.
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� default : the attribute will implicitly be present for each instance of the element type. If a
value is given in the document, it is used, otherwise the default is used (a restricted kind of
non-monotonic value inheritance). Note that the inheritance is overriding, not accumulating.

Remark 2.1

FIXED attributes are especially used when assigning values to attributes with a meta-semantics
de�ned in several namespaces providing special XML-related functionality, e.g., XLink (see Sec-
tion 3.8). 2

Note that a cardinality > 1 still means that there is at most one attribute value for every instance
of the element type, but that the attribute is of a collection type, e.g.

<country name=\Switzerland" industry=\machinery chemicals watches">

where industry is de�ned as NMTOKENS.

Note also that (i) there is no order of attributes, but (ii), for \multivalued" attributes, the
values are sometimes regarded to be ordered (e.g., in [TIHW01]).

Validity. An XML instance is valid wrt. a speci�ed DTD if it satis�es the constraints expressed
in the DTD (if the document is in its ASCII representation, well-formedness is basically required).
Note that this also requires that all values of type IDREFmust match the value of some ID attribute.

Example 2.4 (DTD, Fixed Values)

Consider the following fragment of a DTD:

<!ELEMENT name EMPTY>

<!ATTLIST name attr1 CDATA \value"
attr2 IDREFS #FIXED \id1 id2">

By having a FIXED attribute value for a reference attribute, this requires every document of this
document type which contains an instance of the element type name to contain at least two elements
with the IDs id1 and id2.

Discussion. DTDs are a heritage from the SGML area, tailored to describe the document
structure. Here, the notion of element types is present for specifying the structure of documents,
but not as a modeling concept. Some typical schema issues from the database area are not covered:

� Datatypes: the only literal types are CDATA/PCDATA and NMTOKEN(S).

� Cardinalities: instead of min/max cardinalities as, e.g., in the ER model or in UML, only
optional/required and scalar/multiple (by iteration) can be speci�ed.

A signi�cant weakness is that it is clumsy to specify that an element must contain some subele-
ments once in arbitrary order:

Example 2.5 (DTD: Non-ordered Subelements)

A country element must have one area subelement, one population subelement and one gdp subele-
ment in any order:

<!ELEMENT country ((area,population,gdp)j(area,gdp,population)j
(population,gdp,area)j(population,area,gdp)j
(gdp,area,population)j(gdp,population,area))>

Note that

<!ELEMENT country ((areajpopulationjgdp)*)>
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would allow every element to occur several times.

Additionally, the DTD does not know anything like a class or type hierarchy. It is not possible to
specify one type as an extension of another (except the purely textual use of entities as macros
in the DTD code). Thus, the inheritance concept is actually restricted. Another problem with
DTDs is that they are not in XML syntax.

The W3C XML Schema working draft [XML99a] (cf. Section 3.7) provides an XML syntax
database style formalism for specifying XML metadata, introducing simple datatypes, complex
datatypes, a datatype extension hierarchy etc.

2.3 Namespaces

Every application de�nes its own element and attribute names. Especially, several XML-related
concepts, e.g., XSLT (see Section 3.4), XMLSchema (see Section 3.7) and XLink (see Section 3.8)
use prede�ned names which may occur in combination with names used by the application. Addi-
tionally, there are standardized namespaces for several application areas, e.g., medicine, banking
etc. whose elements and attributes are understood by applications in the respective area.

Here, XML introduces the namespace concept: a node (element and attribute) does not only
have a name (e.g., country), but also a namespace (e.g., mondial). Then nodes sharing the same
name, originating from di�erent sources (also having totally di�erent structure) can be distin-
guished. Every namespace is associated with a url where additional information can be found.

Example 2.6 (Namespaces)

Consider an application which combines the Mondial database with a linguistic database. The
mondial:language element is de�ned as

<!ELEMENT country (. . . , language*, . . . )>
<!ELEMENT language (#PCDATA)>
<!ATTLIST language percentage CDATA #REQUIRED>

and contains information, where a language is spoken by how many people. In contrast, a linguis-
tics:language node

<!ELEMENT language (name, derivation, period, model, syntax, grammar, . . . )>

describes a language from the linguistics point of view:

� derivation states from which language(s) it is derived, possibly using additional subelements
which derive the language's features which have been in
uenced by some other language,

� period describes when the language has developed and how it has changed (e.g., medieval
german, modern german),

� model describes if it is a word-based, syllable-based, or letter-based,

� syntax describes if it is written from left to right etc.,

� grammar may be a complex element containing information on grammar patterns (existence
of de�nite articles, pronouns, cases, tempi etc).

An application which uses both sources will then distinguishmondial:language and linguistics:language
nodes; similar for mondial:name and linguistics:name.

A node which is associated with a namespace inherits the namespace information to its subele-
ments and attributes, i.e.,
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<mondial:country car code=\B">
<name>Belgium </name>
<language percentage="56">Dutch</language>
<language percentage="32">French</language>
<language percentage="1">German</language>
</mondial:country>

implicitly associates the mondial namespace also with the car code attribute, and the name and
language subelements.

Distinguishing between application-level concepts and meta-level concepts. Name-
spaces are important when XML documents are augmented with elements carrying a meta-level
semantics: XML documents can e.g., contain formatting information, cf. XSL formatting objects
(see Section 3.4) which describes the optical markup. Another example is the extension with link-
ing functionality using the XML Linking Language which is described with theMondial example
in Sections 3.8 and 13. In these cases, the (prede�ned) meta-level concepts are intended to be
interpreted application-independently by the used tools whereas the actual application logic is
concerned with the application-level concepts.

Information integration. In this case, information from several sources has to be integrated
on the application level. In general, the concepts de�ned in the sources are overlapping. The
sources may use di�erent ontologies (where potentially the same names are used for the same
concept, or also for di�erent concepts). Applications use the namespaces for distinguishing which
ontology has to be used for interpretation of nodes. Information integration using namespaces is
further considered in Sections 11 and 12.
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3 XML: FURTHER NOTIONS

3.1 Overview

Today, nearly all languages in the XML world are based on XPath [XPa99] (see Section 3.2).
The �rst versions of XPath have been developed as W3C XSL Pattern Language [XSL98]1 in the
August 1998-April 1999W3C XSL (Extensible Stylesheet Language) working drafts (note that the
Dec. 1998 WD did not yet use the terms of axes and location paths). XSL Patterns were mainly
employed in the W3C XSLT (XSL Transformations) part [XSL99]. In parallel, theW3C XPointer
working drafts [XPt00] (XML Linking (April 1997), W3C XPointer (March 1998)) coined the
term location paths. The �rst W3C XPath working draft in July 1999 [XPa99] combined the
XPointer and XSL Pattern notions into XPath which since then serves as a uni�ed base for W3C
XSLT (WD July 1999, see Section 3.4), W3C XPointer (WD Dec. 1999, see Section 3.8), W3C
XQuery [XQu01] (February 2001, see Section 3.11), and other concepts. A formal semantics of
XSL Patterns/XPath can be found in [Wad99a,Wad99b].

XQL (XML Query Language) [RLS98,Rob99] (see Section 3.3) was an early proposal (1998,
non-W3C) for a simple querying language which has been developed in parallel to the W3C XSL
Pattern Language (still not using the terms axis and location path). The experiences with XQL
in
uenced the design of XPath and subsequent concepts. XQL has been implemented in [HM99].

W3C XSLT (XSL Transformations) [XSL99] (see Section 3.4) has been developed as the W3C
transformation extension to the XSL Pattern Language. Since the July 1999 WD (after the
separation of XSL Patterns into XPath), XSLT is formally based on XPath. XSLT embeds XPath
in a rule-based functional-style language for generating an XML result tree. The syntax of the
functional part is XML where XPath expressions are embedded as attribute values or text contents,
using the reserved namespace xsl: which provides specialized \command" elements. There are
multiple implementations, both in the research and in the commercial �eld.

The �rst commercial products have been developed based on these early proposals: Tamino
[Sof] and Excelon [eXc] provide XML platforms for storing, querying, transforming, and inte-
grating XML data, combined with additional internet-related and database-related functionality.
In the early development stages, both products implemented XQL and XSLT for querying and
transformation. By now, they migrated to XPath/XSLT.

XML-QL [DFF+98, DFF+99b, DFF+99a] (see Section 3.5) has been presented in 1998 in a
non-W3C proposal for an XML querying and transformation language. The design (and imple-
mentation) of XML-QL has been in
uenced by the Strudel/StruQL [FFLS97,FFK+98] project.
In contrast to the W3C XSL Pattern Language which de�ned the W3C state of the art at that
time, it was designed to provide a better support for data-intensive applications such as joins
and aggregates, and for constructing new XML data. The basic idea was in
uenced by SQL-like
languages, partitioning XML-QL queries into a selection part and a construction part :

WHERE xml-pattern
IN url
CONSTRUCT xml-pattern

1We refer to W3C working drafts and recommendations by mentioning W3C explicitely at the �rst occurrence to
distinguish them from non-W3C proposals (which were often submissions to W3C, intended to in
uence the W3C
developments). Working drafts and recommendations on all W3C concepts can be found at [W3C]. Non-W3C
concepts are, e.g., XQL, XML-QL, Quilt, YAXQL.

17



18 3. XML: FURTHER NOTIONS

In contrast to the navigation/path-based approach of XSL Patterns/XQL, XML-QL uses XML
patterns in the WHERE part which are matched against the queried document for extracting vari-
able bindings which are then used in the generating clause. Although, compared to XSLT, the
transformation functionality is restricted since it is not possible to operate on the result set of a
previous step. XML-QL has been implemented in [DFF+99c]. Several systems use XML-QL, e.g.,
SilkRoute [FTS00], or MIX [BGL+99] (see also Section 16.1).

IDREFS attributes are a crucial problem with XQL and XML-QL: Their values are a sequence
of ids, separated by whitespaces, e.g., memberships=\org-EU org-UN org-NATO . . . ", denoting that
the attribute references a set of objects by enumerating their ids. Since both XQL and XML-QL
do not provide a special dereferencing operator but use joins for dereferencing, it is not possible
in these languages to split IDREFS attributes in their individual references. The XSL Pattern
Language de�nes the id(. . . ) function which implicitly splits IDREFS attributes and follows each
of the references. Nevertheless, the same problem remains for NMTOKENS (see also Section 3.2.2).

YAT/YATL (Yet Another Tree Model/Language) [CDSS99] is a pre-XML proposal, already
using SGML and DTDs. Its trees provide a uni�ed model for relational, object-oriented (ODMG)
and semistructured/document data (SGML). The YATL language follows a rule-based design for
complex objects in the style of MSL or F-Logic. In [CCS00], the YAT system is turned into an
XML system for data integration.

In [FSW99], XQL, XML-QL, and the languages YATL [CDSS99] and Lorel [AQM+97a,GMW99]
have been compared and essential features of an XML querying language have been identi�ed. In
Section 8.1.1, it is shown that XPathLog satis�es these requirements.

Based on the experiences with XSL Patterns/XQL, XSLT, and XML-QL, the requirements
on an XML querying language have been stated in the W3C Query Requirements working draft
[XMQ01c] (see Section 3.6). Roughly, the results concerning this work are

� the XML Query Language must be declarative, not enforcing a particular evaluation strategy,
and

� it should have several language bindings. One language syntax must be convenient for hu-
mans, and one syntax must be expressed in XML. The idea here is { similar to XSLT { that
queries are XML instances and thus can be manipulated themselves by XML languages.

Schema and metadata aspects have not been dealt with in the above languages. From the database
point of view, DTDs (which are a heritage from the SGML world) are not su�cient; additionally,
since their syntax is not XML, they do not �t into the picture: a metadata format in XML is
favorable. This requirement is satis�ed by W3C XML Schema [XML99a] (see also Section 3.7)
which provides a database-oriented metadata language for XML in XML syntax. XML Schema
de�nes (basic) datatypes and complex structures (complexTypes); the latter are then used as
element types.

Based on the above requirements and the experiences with XML Schema, the W3C XML
Query Data Model [XMQ01b] (see Section 3.9.1) andW3C XML Querying Algebra [XMQ01a] (see
Section 3.9.3) have been de�ned. The XML Query Data Model de�nes formally the information
contained in the input to an XML Query processor in terms of trees. Especially, it supports the
explicit handling of multiple documents for data integration. The algebra serves for giving the
semantics for XML query languages using the XML Query Data Model. Being formally de�ned
by operators, is also serves for formal investigations (e.g., query optimization) of XML query
languages (similar to the relational algebra for SQL optimization). The type system behind the
algebra is based on that of XML Schema.

In some sense incorporating an \evolution step", Quilt [CRF00,RCF00] (see Section 3.10) is
the �rst query language that extends XPath syntax with higher-level constructs (as has already
been done in XML Schema and XLink for other tasks). Quilt queries consist of a series of FOR -

LET - WHERE - RETURN clauses (FLWR; pronounced \
ower"):

FOR variable IN xpath-expr
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LET additional variable := xpath-expr
WHERE �lters
RETURN xml-expr

The FOR - LET - WHERE clause forms the extraction part, generating a set of variable bindings
which are used in the RETURN clause to construct an XML tree. FLWR expressions may be nested
in many ways.

Quilt has been in
uenced by earlier languages, i.e., SQL/OQL for the functional design,
XPath/XQL for addressing nodes, and especially XML-QL for the structure of the FLWR expres-
sions. An important di�erence to XML-QL is that Quilt uses XPath expressions for generating
variable bindings where XML-QL uses XML pattern matching.

By embedding XPath into the higher-level construct of an FLWR expression, there can be
many equivalent, syntactically very di�erent queries. Thus, the XML query algebra described
above will �nd an application here. An extensible, open-source Quilt implementation in Java is
available at [Sah00].

With some minor revisions, Quilt (using the XPath 2.0 semantics now) has become the XQuery
Language [XQu01] (Feb. 2001 Working Draft; see Section 3.11). Current work now concerns the
details in the relationships with other XML activities:

� De�nition of the semantics of XQuery in terms of the XML Query Algebra (a mapping from
XQuery expressions to the Algebra is given in [XQu01]),

� Currently, the type system of XQuery is the type system of XML Schema. As already
remarked for XML Schema, the type systems of XML Schema, the XML Query Algebra,
and XQuery have to be aligned. As a consequence, also the speci�cation of the DOM API is
expected to be adapted.

� XQuery does not yet { as required in the XML Query Requirements [XMQ01c] { provide a
syntax which is completely in XML. Nevertheless, an XQuery version which embeds XPath
into XML-syntax XQuery FLWR expressions (similar as XSLT-style combines XPath and its
own elements into XML syntax) is just syntactic sugar.

The �rst (to the knowledge of the author) XML query language which is in XML syntax has been
presented in [Moe00]: YAXQL de�nes an XSLT-style query language, using the xql: namespace
(see Section 3.14).

The above-mentioned commercial products Tamino [Sof] and Excelon [eXc] were adapted from
XQL to XPath as the basic query language; also extending XSLT with extension functions. System
integration is supported by Java APIs providing DOM access to the database contents, and for
XPath querying from Java environments. Additionally, they provide access to the metadata by
speci�c tools.

The �rst \XML-native" language for updating XML database contents has been de�ned in
XUL (XML Update Language) [eXc00] which extends XSLT with data manipulation constructs
(see also Section 3.13).

A proposal for extending XML querying languages based on variable bindings will be published
in [TIHW01] (see Section 3.12)2.

As a \world-wide" data format, XML also provides a concept for expressing links between XML
documents: The XLink part of XLL (XML Linking Language) (see Section 3.8) de�nes elements
with hyperlink semantics, based on XPath/XPointer. Currently, no querying language has been
de�ned which provides special semantics for handling XLinks. A proposal for the handling and
navigation of XLinks in queries is presented in Section 13.

In the following subsections, more detailed descriptions of the above languages and concepts
are given, leading to �rst conclusions in Section 3.16.

There are two aspects which emerge for nearly all XML-related concepts:

2thanks to the authors for providing me with a copy before.
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� handling of IDREFS attributes (an IDREFS attribute is a single value of the form \id1 id2 : : : idn",
referencing several nodes),

� the duality between elements with text contents and literals, which comes up in XPath and
is \solved" in XML Schema, and

� the result trees may contain dangling reference attributes (cf. Section 11.8).

The background for discussing these XML-related concepts is made up by the search for a data
model and a language for use in XML databases where XML data should be restructured and
integrated.

3.2 XPath

XPath [XPa99] de�nes the basic addressing mechanism in XML documents, which is employed by
most XML querying languages. The expressions which are de�ned by XPath are called location
paths. Every location path declaratively selects a set of nodes from a given XML document.

The syntax follows the UNIX Directory Notation, e.g.,

/mondial/country/city/name

addresses all nodes N such that N is a name subelement of some city element which in course
is a subelement of some country subelement of a (the unique) mondial subelement of the root
element.

The combination of the original URL speci�cation with XPath expressions is de�ned in the
XPointer standard (see Section 3.8), e.g.,

�le:/home/dbis/Mondial/mondial.xml#mondial/country/city/name

is an XPointer which points to name subelements of city elements in the document at the url
file:/home/dbis/Mondial/mondial.xml.

Navigation: location steps. XPath is based on navigation through the XML tree by path
expressions of the form //step/step/.../step. Formally, the input to every location step is a node
set, called the context (the input to the �rst step ist the set containing only the document node).
From this set, a new node set (called result set) is computed which then serves as input for the
next step. For this computation, the input node set is processed, evaluating the location step for
every node in it, appending its result set to the overall result, and proceeding with the next node.
Every single step is of the form

axis::nodetest[�lter ]*.

which speci�es that navigation goes along the given axis in the XML document. The axis speci�es
the tree relationship between the nodes selected by the location step and the current context node.
Along the chosen axis, the nodetest speci�es the node type and the name of the nodes to be selected.
From these, the ones qualify which satisfy the given �lter (which in turn contains predicates over
XPath expressions). If more than one �lter are given, they are applied iteratively.

The semantics of XPath expressions is de�ned in terms of node sets, i.e., unordered forests.
Only during the evaluation of individual navigation steps, there is an temporary node list (called
context).

Axes. For every navigation step, the axis speci�es the direction of navigation in the tree. All
forward axes (denoted by (f)) enumerate the nodes in document order (cf. De�nition 2.1), whereas
all backward axes (b) enumerate them in reverse document order:
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De�nition 3.1 (XML Axes)

Given an element, every axis de�nes a list of nodes:

� self axis (f): contains exactly the element itself,

� child (f): enumerates all subelements of the element,

� descendant (f): enumerates all subelements by depth-�rst search (enumerating the root of a
subtree before traversing the subtree),

� parent (f): contains exactly the parent of an element,

� ancestor (b): enumerates the ancestors, starting with the parent,

� following-sibling (f): enumerates the following siblings of the element,

� preceding-sibling (b): enumerates the preceding siblings of the element,

� following (f): enumerates all nodes following the current element in document order,

� preceding (b): enumerates all nodes preceding the current element in document order,

� analogous, descendant-or-self (f), ancestor-or-self (b),

� attribute: enumerates all attributes of the element. Here, the enumeration order is not
relevant. 2

The most frequently used axes are abbreviated as

� path/nodetest for path/child::nodetest,

� path//nodetest for path/descendant-or-self/child::nodetest, and

� path/@nodetest for path/attribute::nodetest.

Remark 3.1

Note that path//nodetest is di�erent from path/descendant::nodetest. Let n be a node addressed
by path:

path//node()[3] which is equivalent to path//descendant-or-self/child::node()[3]

selects all third children from any node x on the descendant-or-self axis (the context for selecting
\[3]" are the children of x) wrt. n, whereas

path/descendant::node()[3]

selects the third descendant of n. 2

Nodetests. The second part of a step is the nodetest. It speci�es the node type and the name
of the nodes to be selected by the location step. Every axis has a principal node type: For the
attribute axis, the principal node type is attribute, for all other axes, the principal node type is
element, including PCDATA (text) elements. In the location steps considered in this work, the node
test is one of the following:

� a name, e.g., path/child::city.../..., which selects all subelements of the context node having
the given name (here, all city elements), or

� the test on text contents, i.e., path/text(), which selects all PCDATA subelements of the context
node,

� the test on element contents, i.e., path/node(), which selects all element children of the
context node,

� * (wildcard): selects all element nodes.
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Filters in location steps. Using �lters, the node list obtained from the nodetest is further
restricted { selecting only those nodes which satisfy the given �lter. When evaluating a �lter, the
node list selected by the above steps (navigation along an axis and applying the nodetest) is called
the context, and the currently processed node is the context node. The �lter contains predicates
over expressions, i.e., terms of the following form:

� booleans over predicates,

� literals (strings, numbers), arithmetic expressions over numbers, string operations,

� function calls: they serve e.g., as aggregation functions, or for stating conditions on the
relationship between the current context node and its context :

{ last(): returns n such that n is the size of the context,

{ position(): returns the index of the context node in the current context (i.e., \5" if the
context node is the 5th node in the node list which remained after evaluating the node-
test). Predicates containing the last() or position() function are called proximity position
predicates in [XPa99, Chap. 2.4]. The �lter [position()=i] may be abbreviated by [i].

{ count(nodeset): returns the number of nodes in nodeset (which results from evaluating a
location path wrt. the context node), e.g., count(city) returns the number of city subele-
ments of the current context node,

{ id(expr): returns the node(s) in the current XML instance whose id(s) result from evalu-
ating expr wrt. the context node), e.g., id(@capital) returns the object which is referenced
by the capital attribute of the context node,

{ additionally, string functions, data conversion functions, and boolean functions,

� location paths: location paths evaluated as predicates evaluate to true if their result set is
nonempty.

Inside �lters, relative or absolute location paths may be used:

� relative location paths are evaluated wrt. the current context node, e.g.,

path/axis1::nodetest1[axis2::nodetest2...].

� similar to the UNIX directory notation, absolute location paths begin with \/". They are
evaluated wrt. the root node of the XML document, e.g.,

path/axis1::nodetest1[/axis::nodetest2...].

Comparison Predicates. The comparison predicates =, <, > are extended to (node) sets as
follows: locationPath1=locationPath2 evaluates to true if there is a node in the node list which
results from evaluating locationPath1 and a node in the node list which results from evaluating
locationPath1 such that the result of performing the comparison on the string-values of the two
nodes is true (if necessary, after suitable conversions from element contents to literals, for details
see [XPa99, Section 3.4]; see also Section 5.6).

Filter application. Note that �lters which are applied iteratively on a result set do in general
not commute if they use proximity position predicates. It is also not possible to combine them into
a single �lter:

Example 3.1 (Proximity Position Predicates)

Consider the XPath expression

/descendant::country[name=\Germany" or name=\France"]
/descendant::city[population > 500000][position()=3]
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which selects the third city in Germany which has a more than 500000 inhabitants, and the third
city in France which has a more than 500000 inhabitants: the computation starts with the document
node. From this, the �rst location step

/descendant::country[name=\Germany" or name=\France"]

�rst creates an intermediate result list enumerating all descendants. Applying the nodetest (coun-
try), all element which are of of type country are removed from the list. Then, the �lter is applied,
keeping only the list (france, germany) which is converted into a set, being the �rst intermediate
result set.

Then, iterating over this set (now in arbitrary order!), for each element the second location
step is applied:

/descendant::city[population>500000][position()=3]

Here again the �rst intermediate result list contains all descendants. Then, the list is pruned to
contain only the city subelements. Next, the �rst �lter is applied, dropping all cities with less
than 500000 inhabitants. From the list resulting from this step, the third element is taken to the
second intermediate result set. So, after evaluating the location step for both countries, the result
set consists of two city elements.

In contrast, for the expression

/descendant::country[name=\Germany" or name=\France"]
/descendant::city[position()=3][population>500000]

the evaluation of the second location step is completely di�erent: Again, for both countries, the
�rst intermediate result list contains all descendants and is then pruned to contain only the city
subelements. Then, the �rst, the �lter [position()=3] is applied, retaining only the third city.
Applying the �lter [population>500000], this element survives only if it has more than 500000
inhabitants. Thus, probably the result is empty.

For the combined �lter,

/descendant::country[name=\Germany" or name=\France"]
/descendant::city[position()=3 and population>500000]

the outcome depends on the internal evaluation.

Filters over location paths. Above, �lters have been applied inside location steps, where the
\input" to the �lter was the list selected by axis::nodetest and possibly �lters. Filters can also be
applied to result sets obtained from a sequence of location steps:

(//step/. . . /step)[�lter ]

In case that �lter does not use proximity position predicates, this expression is equivalent to

//step/. . . /step[�lter ] ,

i.e., applying the �lter in the innermost locationStep. If proximity position predicates are used, the
result is in general di�erent:

Example 3.2 (Proximity Position Predicates cont'd)

Consider again the XPath expression

/descendant::country[name=\Germany" or name=\France"]/descendant::city[position()=3]

which selects the 3rd city in France and the 3rd city in Germany. In contrast,
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(/descendant::country[name=\Germany" or name=\France"]/descendant::city)[position()=3]

selects the 3rd city among all cities in Germany or France: �rst, all these cites are selected in a
result set, and then the third element of the set wrt. document order is selected.

The result of (. . . ) is a result set, thus, for evaulating proximity positions, the global document
ordering is used.

Example 3.3 (XPath)

The following XPath expressions may be evaluated wrt. the Mondial database:

� The absolute location path

/mondial/country//city/name

selects all name subelements from city descendants from any country child of any mondial
child of the root element.

� /mondial/country//city/name/text()

selects the text contents of these elements.

� /mondial/country[name = \Germany"]//city/name/text(), and
/mondial/country[name/text() = \Germany"]//city/name/text()

do the same, but only for cities in Germany. Here, implicitly the text contents of the name
element is compared to the string \Germany".

� //city[population > 5000000]/name/text()

selects all names of cities which have more than 5000000 inhabitants. Similar to above, the
comparison is implicitly applied to the text contents of the population subelement of the city
element. The query

//city[population[@year < 1990] > 5000000]/name/text()

selects all cities which satis�ed the above condition even before 1990. Here, the population
subelement is simultaneously interpreted as an integer literal (in the comparison) and as an
element node (when querying its year attribute). This problem is investigated in detail in
Section 5.6.

� /mondial/country/@car code

selects all car code attribute nodes of country elements.

� /mondial/country[in
ation]

selects all country nodes (i.e., the whole subtrees) which have an in
ation subelement.

� The following expression uses an absolute path in a �lter, selecting the city whose id is the
value of seat attribute of the organization whose name is \EU":

//city[@id = /mondial/organization[name=\EU"]/@seat]

Note that

/mondial/organization[name=\EU"]/@seat

does not select this city element, but simply the IDREF seat attribute node of the element
representing the EU, i.e., the value \city-belgium-brussels". In contrast, the location path

id(/mondial/organization[name=\EU"]/@seat)
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would also select the above city element.

� The memberships attribute of countries is de�ned as IDREFS, thus, it is multivalued:

/mondial/country[car code=\D"]/@memberships

selects the IDREFS attribute value, i.e., \org-EU org-NATO ...".

id(mondial/country[car code=\D"]/@memberships)

selects all elements which have one of these ids, i.e., all organizations where Germany is a
member.

Proximity positions:

//organization[3]/@seat

selects the value of the seat (reference) attribute of the third organization (if the third organization
has no seat attribute, the result is empty).

(//organization/@seat)[3]

selects the third value which is a seat attribute of an organization (since not each organization
has a seat attribute, this may be the seat attribute of the forth or �fth organization). Note that
//organization/@seat[3] selects nothing, since there is no organization which has a third seat
attribute.

id((//organization/@seat)[3])

selects the city which is the seat of the third organization, and

(id(//organization/@seat))[3]

selects the third city (wrt. document order) which is a seat of an organization.

3.2.1 Formal Semantics of XPath

A formal semantics of XPath has been given in [Wad99a,Wad99b]. This semantics also forms the
base for the extension from XPath to XPath-Logic and XPathLog in Section 5.

The mappings S, Q, and E de�ne the semantics of XPath patterns, predicates (�lters), and
expressions as shown in Figure 3.1. It uses auxiliary mappings A[[a]] which enumerate the axes,
P(a) which gives the axes' principal nodetype, and D which gives the direction (forward/reverse)
of axes.

This semantics does not completely specify all XPath constructs:

� �lters may be of the form [a/b/c = \foo"] containing a \=" predicate where a/b/c must be
evaluated by S and \foo" is a constant which is evaluated by E .

� expressions of the form (//country//city[population>100000])[position()=2] are allowed in
XPath, but for the primaryExpr \(. . . )", S does not de�ne a semantics.

� the semantics of the id() function is not de�ned.

Nevertheless, the intention is clear; when comparing it to the semantics of XPathLog in Section 5.5,
we straightforwardly extend it to the missing constructs in the \sense of [Wad99b]".
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S : Axis! Pattern! Node! Set(Node)
Sa[[p1j p2]]x = Sa[[p1]]x [ Sa[[p2]]x
Sa[[=p]]x = Sa[[p]]root(x)
Sa[[p1=p2]]x = fx2 j x1 2 S

a[[p1]]x; x2 2 S
a[[p2]]x1g

Sa[[a1 :: p1]]x = Sa1 [[p1]]x
Sa[[n]]x = fx1 j x1 2 A[[a]]x; nodetype(x1) = P(a); name(x1) = ng
Sa[[�]]x = fx1 j x1 2 A[[a]]x; nodetype(x1) = P(a)g
Sa[[text()]]x = fx1 j x1 2 A[[a]]x; nodetype(x1) = Textg
Sa[[p[q]]]x = fx1 j x1 2 S1;Q[[q]](x1; k; n)g where

S1 = Sa[[p]]x; n = size(S1); j = size(fx1 j x1 2 S1; x1 �doc xg);
k = j if a is a forward axis, k = n+1{j if a is a reverse axis.

Q : Qualifier! (Node;Number;Number)! Boolean
Q[[q1 and q2]](x; k; n) = Q[[q1]](x; k; n) ^Q[[q2]](x; k; n)
Q[[q1 or q2]](x; k; n) = Q[[q1]](x; k; n) _Q[[q2]](x; k; n)
Q[[not q]](x; k; n) = :Q[[q]](x; k; n)
Q[[p]](x; k; n) = Schild [[p]](x)
Q[[e1 = e2]](x; k; n) = E [[e1]](x; k; n) = E [[e2]](x; k; n)

E : Expr ! (Node;Number;Number)! Number
E [[e1+e2]](x; k; n) = E [[e1]](x; k; n)+E [[e2]](x; k; n)
E [[e1 � e2]](x; k; n) = E [[e1]](x; k; n) � E [[e2]](x; k; n)
E [[position()]](x; k; n) = k
E [[last()]](x; k; n) = n
E [[i]](x; k; n) = i

Figure 3.1: Formal Semantics of XPath according to [Wad99b]

3.2.2 XPath Weaknesses

Dereferencing. The core XML concept provides unidirectional intra-document references by
ID/IDREF/IDREFS attributes. Using IDREFS, multi-target references can be speci�ed. On the other
hand, using references in XML querying languages is still problematic.

Example 3.4 (Dereferencing)

The following query is used throughout the paper for illustrating dereferencing:

\Select all names of cities which are seats of an organization and the capital of one of
its members."

In XPath, dereferencing is done via the id(. . . ) function. Thus, navigation along several references
becomes confusing:

id(//organization[id(./@seat) = id(id(./member/@country)/@capital)]/@seat)/@name

In contrast, in XML-QL [DFF+99b], dereferencing is done by joins (see Example 3.10).

Quilt [CRF00] (see also Section 3.10) adds a \!"-operator for explicit dereferencing. For the
above query, the selection expression in Quilt is

//organization[@seat!= members/@country!/@capital]/@seat!/name/text() .
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The Kweelt [Sah00] implementation further specializes the syntax by adding dereferencing hints
which specify where to search for the target of a reference: a dereferencing step is of the form

refAttr!felementtype1@attr1, . . . , elementtypen@attrng

The hint then means that the target of the reference is of one of the types elementtype1, . . . ,
elementtypen where the attributes attr1, . . . , attrn, respectively, must be checked. The above selec-
tion expression translates as

//organization[@seat!fcity@idg = members/@country!fcountry@car codeg/@capital]
/@seat!fcity@idg/name/text() .

Since when using a DTD, it is su�cient to know which elementtypes are potential targets of the ref-
erences (then the ID attribute is uniquely de�ned by the DTD), XQuery [XQu01] (see Section 3.11)
reduces the hint to a name test that speci�es the expected name of the target element:

//organization[@seat!city = members/@country!country/@capital]/@seat!city/name/text() .

In XPathLog, we will use implicit dereferencing: reference attributes are always directly resolved,
thus, we will write

//organization[seat = member/@country/@capital]/@seat/name/text()

The resolving of IDREF(S) XQL and XML-QL is insu�cient, see Sections 3.3 and 3.5.

Non-Resolving of NMTOKENS attributes. Whereas XPath handles the splitting and derefer-
encing of IDREF(S) by the id(. . . ) operator, it is striking that, even if a DTD is used, XPath is
not aware of NMTOKENS declarations:

� //country[@car code=\CH"]/@industry[1] = \machinery chemicals watches textiles",
i.e., the NMTOKENS are not split,

� //organization[abbrev=\EU"]/member/@country[1] = \A D I L NL ...",
i.e., the IDREFS are not split, but

� id(//organization[abbrev=\EU"]/member/@country)
yields the country elements for Austria, Germany, Italy etc., i.e., when applying the id
function; they are split, and

� if we add appropriate elements with id's \machinery", \chemicals", etc.,

id(//country[@car code=\CH"]/@industry)

yields these objects! { thus, NMTOKENS can also be \dereferenced" in XPath.

3.2.3 XPath as a Basic Concept

XPath is not an XML querying language, but only an addressing mechanism which selects node
sets in XML documents. Compared with the relational algebra, especially a full join operator is
missing (semi-equijoins are in fact provided by the path operator, and �lters). Also, it cannot be
used for generating XML trees. Its purpose is to provide the common addressing mechanism for
XML, and to serve as a base for XML querying and manipulation languages and further concepts.

Several querying, transformation (which is a completely new concept, compared to the rela-
tional model), and manipulation languages have been presented up to now, providing the following
functionality:

� Joins (XQL, XML-QL, Quilt/XQuery),
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� Dereferencing,

{ via Joins (XQL, XML-QL, Quilt/XQuery),

{ via a dereferencing operator (Quilt/XQuery, YAXQL),

� Embedding in programming language constructs (XSLT, Tamino, eXcelon, YAXQL),

� Aggregation (Quilt/XQuery),

� Generation of XML trees (XSLT, XML-QL, Quilt/XQuery, YAXQL),

� Extension and usage of the addressing mechanism in XML: XPointer/XLink,

� XPath is also used as an addressing mechanism in XML Schema.

These languages are described in the sequel.

3.3 XQL

As mentioned above, XQL (XML Query Language) [RLS98,Rob99] was an early proposal for a
simple querying language. The basic idea and syntax { using paths and �lters for navigation {
was the same as in XSL Patterns; although, the notions of axis and location path had not yet been
de�ned. XQL only used the \/", \//" \/@" operators for navigating to children, descendants,
and attributes { roughly, it is the fragment of XPath which can be built without using axis::;
additionally, union and intersect on results were allowed.

The central extension, making XQL a querying language instead of a pure addressing mecha-
nism, is to generate the result tree (instead of a nodeset) as a projection of the input document.

The 1998 XQL whitepaper [RLS98] solved this problem by return operators which may be
placed after every pre�x of an XQL expression. Return operators add parts of the current node
to the output, generating a result tree:

?: the current node (i.e., its start tag, text contents, and end tag) is added to the result tree,

??: the whole current node is added to the result tree.

Example 3.5 (XQL Return Operators)

The following queries give an impression of XQL return operators:

� country/city[@isCountryCapital]/name

<name>Berlin</name>
<name>Rome</name>

...

� country?/city[@isCountryCapital]/name

<country> <name>Berlin</name> </country>
<country> <name>Rome</name> </country>

...

� country?[@car code?]/city[isCountryCap]/name

<country car code="D"> <name>Berlin</name> </country>
<country car code="I"> <name>Rome</name> </country>

...
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� country?[@car code?]/city?/name/text()

<country car code="D">
<city>Berlin</city> <city>Munich</city> <city>Hamburg</city> ...

...
</country>
<country car code="I">

<city>Rome</city> <city>Milano</city> ...
...

</country>
...

The 1999 XQL proposal [RLS98,Rob99] replaced the return operators by grouping : The expression

path1 f path2 g

returns all results x1 of path1, where the results of path2 evaluating from x1 as context node are
nested inside:

Example 3.6 (XQL Grouping)

The XQL grouping mechanism generates nested results as follows:

country f@car code j city fname/text()g g

returns

<country car code="D">
<city>Berlin</city> <city>Munich</city> <city>Hamburg</city> ...

...
</country>
<country car code="I">

<city>Rome</city> <city>Milano</city> ...
...

</country>
...

The same proposal also included functionality for querying and changing the order of subelements:

� The order of subelements can be queried by binary before and after predicates between nodes
(path/a after b selects all a elements which occur after a b element). This functionality is
covered by XPath's sibling axes.

� Sequencing allows for reordering of children in the output, e.g., pathfa after bg (re)groups
the inner elements such that �rst, all a elements are output, then all b elements.

� If no reordering is explicitly given, the elements retain their sequence in query results [RLS98].

All the above functionality, i.e., return operators, grouping, sequencing, and order-preserving
have not been incorporated into XPath since XPath is designed as a pure addressing mechanism.
Instead, the transformation/querying languages XSLT (W3C), XML-QL, and Quilt/XQuery in-
corporate restructuring mechanisms. An interesting aspect here is, that XPath does not specify
the ordering of nodes in result sets.
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Additionally, asymmetric full joins are provided via correlation variables. If an outer path contains
a variable assignment path[$var := expr ], the variable may be used as a join variable in an absolute
path expression inside a group. These joins have also restructuring functionality, nesting elements
which have not been nested before:

Example 3.7 (Join and Regrouping in XQL)

The following XQL query returns all continents with the name of the countries located on the
continent:

//continent[$cont = id]
f name, //country[encompassed/@continent = $cont]f name/text() gg

<continent>
<name>Europe</name>
<country>Germany</country>
<country>Italy</country>

...
</continent>

...

Handling reference attributes by joins over their values, XQL has a problem with IDREFS attributes:
the attribute value is a sequence of ids, e.g., memberships=\org-EU org-UN org-NATO . . . ". Joining
this value with, e.g., <organization id=\org-EU"> does not �t. Using string operations and the text
containment operator, this functionality may be simulated, but in this aspect, the language is
insu�cient.

XQL in
uenced the design of XPath and subsequent concepts (see overview at the beginning
of Section 3). XQL has been implemented in [HM99]. It served as querying language in the early
versions of Tamino [Sof] and Excelon [eXc], where it now has been replaced by XPath.

3.4 XSL

In the early working drafts, XSL consisted of three components:

� XSL Patterns as an addressing and selection mechanism for XML trees (which was separated
to XPath in July 1999).

� XSL-FO (Formatting Objects; de�ning the namespace fo:) which provides elements describ-
ing formatting and layout markup for XML documents (comparable to LATEX's formatting
environments and commands), e.g.,

{ page layout, areas, frames, indentation,

{ colors, fonts, sizes,

{ optical markup such as lists or tables, etc.

These elements are added to the result tree when transforming XML documents (see below).
XSL-FO-capable browsers are intended to translate these elements into HTML; other appli-
cations may translate them to LATEX/RTF/PDF etc. Currently, the only XSL-FO-capable
tool is FOP [Tau] (a Java program which translates XML documents to PDF).

� XSLT (XSL Transformations; de�ning the namespace xsl:) [XSL99] which serves as a functional-
style programming language for transforming XML documents.

In contrast to XQL and XML-QL which are designed as querying languages (although XML-
QL also allows for transformations using its nested queries functionality), XSLT is designed as a
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transformation language. XSLT stylesheets are applied to XML instances, yielding a new XML
instance. Every XSLT stylesheet is a valid (wrt. the XSLT DTD) XML document, embedding
XPath expressions as attribute values and text contents for addressing nodes. Stylesheets declar-
atively specify how elements should be manipulated. A stylesheet mainly consists of templates
which specify

� to which elements the template applies, and

� what XML (sub)tree results from applying the template to a suitable element.

<xsl:template match=\match-expr">

contents
</xsl:template>

Here, match-expr is an XPath expression which is evaluated wrt. the root element. When the
template is called for a context node, it is applicable to all elements which are addressed by
match-expr (note that the selection of elements to which it is actually applied happens somewhere
else). With this, an element may \run" several templates over all its subelements, handling each
subelement by the suitable template. contents is a sequence of XSLT elements which contains the
\program" for transforming selected nodes. It inserts nodes and text contents into the result tree:

� textual writing of values,

� copying nodes and values from the input tree:

<xsl:template match=\//country/province/city">
<xsl:copy-of select=\current()">

</xsl:template>

is a simple template which can be applied to city elements which are subelements of a province
element which in course is a subelement of a country element, and copies them unchanged
to the result tree,

� generating elements and attributes.

The actual application of elements is controlled by xsl:apply-templates elements (in the contents
part of an xsl:template element):

<xsl:apply-templates select=\xpath-expr"/>

Here, xpath-expr is an XPath expression which selects (wrt. the current context) the elements for
which suitable (selected by the xsl:template match attribute) patterns should be applied:

� <xsl:apply-templates
select=\city[population > 1000000]"/>

handles all city subelements of the current context node whose text contents of their popu-
lation subelement is > 1000000. Note that this command does not specify which template
is actually applied (the template whose match attribute matches the city element will be
applied { for con
ict resolving strategies, see [XSL99]).

� <xsl:apply-templates select=\id(@capital)"/>

handles the element in the current XML document whose id equals the value of the capital
(reference) attribute of the current context node.

Example 3.8 (XSLT Stylesheet)

The stylesheet given below generates a result tree which �rst lists all country elements, and then
all city elements:
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<xsl:stylesheet version=\1.0"
xmlns:xsl=\http://www.w3.org/TR/WD-xsl">

<!-- de�ne template which simply copies country and city elements to the result tree -->
<xsl:template

match=\cityjcountry">
<xsl:copy-of select=\current()"/>

</xsl:template>
<template match=\mondial">

<!-- apply template: countries -->
<xsl:apply-templates select=\/mondial/country">
<!-- ... and then cities -->
<xsl:apply-templates select=\//country/city j //country/province/city"/>

</ template>
</xsl:stylesheet>

Named templates can be de�ned by <xsl:call-template name=\name"/> elements.

Generating the Result Tree. The execution of an XSLT stylesheet on an XML instance
starts with applying the template which matches the outermost element of the instance. Then,
recursively, the processing is controlled by <xsl:apply-templates> and <xsl:call-template> where the
template executions contribute to the result tree generation:

� all tags, complete elements and attributes in the contents of templates which do not belong
to the xsl: namespace (i.e., which are not XSLT commands) are added verbatim to the result
tree.

� Nodes are copied from the input tree to the result tree by <xsl:copy-of select=\xpath-expr"/>;
literal values are copied by <xsl:value-of select=\xpath-expr"/>.

� For assigning attribute values, the value may be speci�ed by an XPath expression, e.g.

<elementname attribute=\xpath-expr">

� New elements can be generated from scratch using

<xsl:element name=\xpath-expr">
<xsl:attribute name=\xpath-expr">

contents
</xsl:attribute>

</xsl:element>

Here, the names can be computed by xpath-expr ; the actual element contents is computed
by recursively applying the XSLT commands in contents.

XSLT also provides the common procedural concepts (loops, conditions) for controlling the pro-
cessing of nodes.

� An important operation when processing a document is the iteration over the result set of
an XPath expression (evaluated wrt. the current context node):

<xsl:for-each select=\xpath-expr">

contents
</xsl:for-each>

� conditional execution is provided by test or case-splits:



3.4. XSL 33

<xsl:if test=\predicate"> contents </xsl:if>

<xsl:choose>
<xsl:when test=\predicate1"> contents1 </xsl:when>
<xsl:when test=\predicate2"> contents2 </xsl:when>
...
<xsl:otherwise> contentsn+1 </xsl:otherwise>

</xsl:choose>

XSLT variables can be de�ned and once assigned with a value (forest, node or literal) by

<xsl:variable name=\var-name" select=\xpath-expr">

contents
</xsl:variable>

where the value is either given by the select attribute, or by the contents (which allows for con-
structing subtrees). Variables are then used either by

<elementname attribute=\$var-name"/>

for de�ning attribute values, or by elements of the form

<xsl:value-of select=\$var-name"/>

which converts the variable's value into a string (for use e.g. as attribute value), or by

<xsl:copy-of select=\$var-name"/>

which adds the variable contents to the result tree.

Communication of variables between templates is done by parameterized templates. Parameters
are declared for templates by

<xsl:template match=\...">
<xsl:param name=\param-name" select=\xpath-expr/">

</xsl:template>

When the template is called, the parameter value is given as an attribute:

<xsl:apply-templates select=\xpath-expr1">
<xsl:with-param name=\param-name" select=\xpath-expr2"/>

</xsl:apply-templates>

XSLT follows the LISP concept, where the program itself can also be regarded as data in the data
model which underlies the language. This allows also to handle programs with XSLT, e.g., rewrite
them, or to exchange programs as XML data, identify relevant subqueries, and reuse them. This
aspect is again considered in the next section where the W3C activities for designing the XML
querying language are described.

One of the main drawbacks of XSLT as a database language (it is not intended as a database
language, but as a transformation language) is that it is not possible to update the document
or the result tree. For data integration, it is often necessary �rst to generate a skeleton of the
result, and then re�ne it stepwise by adding information items from the individual sources (see
Section 11).

Since XSLT allows to add nodes (i.e., subtrees) by (deep)-copying to the result tree, the result
tree may contain dangling reference attributes (i.e., reference whose target is not present in the
result tree).
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There are multiple implementations; the development phase has been accompanied by XT
[Cla98] which has been the most e�cient implementation up to 2001. XT was employed as XSLT
tool in this work. Saxon [Kay99] is another implementation of XSLT (building on the event-
based SAX API) since the early days, also providing several innovative extensions in the saxon:
namespace. Of course, commercial implementations are also available. Di�erent implementations
provide (yet proprietary) extensions:

� Saxon and XT provide the saxon:nodeset() and xt:nodeset() function which allows to access
the result tree generated so far as an input source.

� eXcelon [eXc] { which is a commercial XML database system { extends XSLT with an update
language XUL (XML Update Language) which allows to specify updates on elements which
are selected by XPath expressions.

For accessing several documents, several tools provide the proprietary function document(url) for
accessing the document residing at url as starting point for XPath expressions.

3.5 XML-QL

XML-QL [DFF+98,DFF+99b,DFF+99a] is another early (1998, non-W3C) proposal for an XML
querying and transformation language. The design (and implementation) of XML-QL has been
in
uenced by Strudel/StruQL [FFLS97,FFK+98]. In contrast to XSL Patterns/XQL, XML-
QL does not employ navigation and paths, but XML patterns which are matched against the
queried document. The basic idea was in
uenced by SQL-like languages, partitioning XML-QL
queries into a selection part (WHERE ... IN) and a construction part (CONSTRUCT):

WHERE xml-pattern1
IN url
CONSTRUCT xml-pattern2

Here, xml-pattern1 is matched against the XML instance given by url . Every match yields variable
bindings which are

� used as join variables, and

� propagated to the result,

which is again an XML pattern specifying the result tree:

Example 3.9 (XML-QL)

The following XML-QL query transforms the name subelements of countries into attributes. The
WHERE part is matched against the document \www.../mondial.xml" where it matches all country
elements and assigns the variables $id and $name to the value of the car code attribute and the
text contents of the name element, respectively:

WHERE
<country car code=$id>

<name>$name</>
</>

IN \www.../mondial.xml"
CONSTRUCT <country car code=$id name=$name> </>

For every variable binding, the CONSTRUCT clause generates a new country element in the result:
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<result>
<country car code=\D" name=\Germany"> </>
<country car code=\F" name=\France"> </>

...
</>

The WHERE part can be extended to multiple patterns (also applicable to multiple documents) by

WHERE (expr1 IN doc1, ... , exprn IN docn)

Here, variables which occur in several patterns act as join variables, which is especially required
for evaluating references:

Example 3.10 (XML-QL: Dereferencing via Join)

The following query computes all pairs of countries c and organizations o s.t. c is a member of o:

WHERE
<country car code=$c> </>

IN mondial.xml,
<organization abbrev=$org>

<membership type=$type country=$c> </>
</>

IN mondial.xml
CONSTRUCT

<ismember country=$c organization=$org type=$type> </>

Similar, multiple sources can be accessed:

WHERE
<city name=$name2> </>

IN www.../europe.xml,
<city name=$name1> </>

IN www.../america.xml,
<connection from=$name1 to=$name2> </>

IN www.../lufthansa.xml
CONSTRUCT

<connection>
<from continent=\europe" city= $name1> </>
<to continent=\america" city= $name2> </>

</>

The IN part may also refer to the contents of a variable de�ned in a previous WHERE part. In fact,
this implements the semijoin semantics of XPath �lters:

Example 3.11 (Filtering in XML-QL)

The following XML-QL expression selects all elements which have a name subelement with text
contents \Monaco\:

WHERE
$element
IN mondial.xml,
<name>Monaco</>

IN $element
CONSTRUCT

$element
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Similar to SQL, the CONSTRUCT part may contain nested XML-QL Queries. Here, the IN part
applies

� either to an url (if the inner query on another document is correlated with the contents of
the current element), or

� to the contents of a variable which has been assigned in the WHERE part (if the inner query is
used to restructure the contents of the current element).

Both cases are illustrated by the following examples.

Example 3.12 (Result Grouping in XML-QL)

Nested queries are required when the structure of a document has to be changed and elements are
grouped. The following does the same as the XQL query in Example 3.7:

WHERE <continent> <name>$cont </> </>

IN mondial.xml,
CONSTRUCT

<continent> <name>$cont </>

WHERE <country >

<name>$name </>
<encompassed continent=$cont></>

</>

IN mondial.xml
CONSTRUCT <country>$name</>
</>

Nested queries using a variable in the IN statement are useful if the contents of the current element
should be restructured:

Example 3.13 (XML-QL: Nested Queries)

The following reduces the nested city descendant subelements of country elements to their names:

WHERE <country> $country</>

IN mondial.xml,
CONSTRUCT

<country>

WHERE <name >$name </>

IN $country
CONSTRUCT <name>$name</>

WHERE <city >

<name>$name </>
</>

IN $country
CONSTRUCT <city>$name</>
</>

generates

<country>
<name>Germany</name>
<city>Berlin</city>
<city>Hamburg</city>

...
</country>

...
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In addition to the XML-QL language, [DFF+99b] de�nes a graph-based data model related to
the one de�ned in [Bun97]. In contrast to the XML data model which is incorporated into the
DOM model and into the XML Query Data Model [XMQ01b] (see also Section 3.9.1), the graph
is edge-labeled and supports implicit dereferencing. The data model has been in
uenced by the
experiences with the Strudel/StruQL [FFK+98] project.

Although, the XML-Pattern syntax of XML-QL is not extensible in this way. The syntax
given in [DFF+99b] solves the problem by identifying reference attributes with elements, e.g., the
XML-QL pattern

WHERE <country> <capital name = $name> </> </>

IN mondial.xml

would have the same semantics as XPath's id(//country/capital)/@name. In case that there is
also a capital subelement, the XML-QL syntax is not well-de�ned. This solution is { at least {
questionable. Since joins are supported in XML-QL, the expression

WHERE <country capital = $cap>
<name>$cname</></>

IN mondial.xml,
<city id = $cap>

<name>$capname</></>

IN mondial.xml
CONSTRUCT . . .

is preferable.

Similar to XQL, XML-QLs handling of IDREFS attributes in the querying/matching part is
insu�cient since references are handled by joins or nested subqueries (thus, also by joins): The
value of an IDREFS attribute is a sequence of ids, e.g., memberships=\org-EU org-UN org-NATO
. . . " which does not match with a single id value, e.g., \org-EU". Considering the fact that the
same paper also de�nes the above-mentioned graph-based data model, adding reference cross edges
to the (edge-labeled) XML tree, it is surprising that the consequences have not been dealt with
when designing XML-QL.

The WHERE clause provides some constructs for switching between elements and contents, e.g.,

WHERE <country>
<name>$n </>
<city>$c </>ELEMENT AS $x
</>

IN mondial.xml,
CONSTRUCT . . .

binds $x to <city> . . . </city> elements. Analogously for CONTENT AS.

A kind of element fusion (cf. Section 11.6) is supported by skolem functions which can e.g.,
be used for specifying outer joins over several sources:

Example 3.14 (Element Fusion)

The expression

f WHERE <country> <name>$n </>. . . </>IN cia.xml
CONSTRUCT <country ID=\c($n)"><name>$n </> . . . </>

g f WHERE <country> <name>$n </>. . . </>IN gs.xml
CONSTRUCT <country ID=\c($n)"><name>$n </> . . . </>

g

collects countries from the sources cia and gs. When a country occurs in both of them (by name),
the two elements are combined.
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Advanced features in XML-QL include tag variables and regular path expressions similar as de�ned
in the Lorel language over the OEM model in [GMPQ+97,AQM+97a,GMW99]. Compared to
XQL, XML-QL provides much more transformation functionality. Although, compared to XSLT,
the transformation functionality is restricted: Complex transformations are hard to implement,
using deeply nested �ltering (i.e., iterative WHERE clauses) and complex CONSTRUCT clauses. Similar
to SQL, XML-QL does not support recursive queries.

Using XML patterns, XML-QL has no notion of the XML axes except the child and attribute
axis, i.e., selecting nodes amongst siblings or ancestors. The descendant axis is supported by
regular path expressions: e.g., path/country/descendant::city can be encoded by the pattern

. . . / <country> <(any)�> <city> . . . </> </> </> .

As already stated above, XML-QL uses a data model di�erent from the W3C XML Query Data
Model, in
uenced by the object-oriented data model of the Strudel/StruQL [FFK+98] project.
There is an ordered data model (for documents), and an unordered data model (for databases);
for an investigation of this duality see also Section 4. The unordered data model is a graph with a
distinguished root node in which each node has a unique object identi�er. The graph is labeled as
follows: the edges are labeled with element tags, the nodes are labeled with sets of attribute-value
pairs, and the leaves (text nodes) are labeled with string values. The ordered model extends the
unordered one by associating an order of the complete set of nodes (i.e., the order of the outgoing
edges (i.e., children) of each node is induced by this global order).

A very similar graph-based model (but with local order) is used in our approach, also in
uenced
by the experiences with research on semistructured data in an object-oriented model. For a
comparison, see Section 8.3.

Similar to XSLT, since XML-QL allows to bind variables to nodes (i.e., subtrees) and (deep)-
copy them into the result tree, the result tree may contain dangling reference attributes.

XML-QL has been implemented in [DFF+99c].

3.6 XML Query Requirements

Based on the experiences with XSL Patterns/XQL, XSLT, and XML-QL, the requirements on
an XML querying language have been stated by in the W3C Query Requirements working draft
[XMQ01c]:

� The prospective XML querying language must cover the aspects of both document-oriented
(human readable) and data-oriented (XML as an electronic data exchange format) docu-
ments,

� it must be declarative, not enforcing a particular evaluation strategy,

� it must support the XML 1.0 datatypes, and the complexTypes de�nable in XML Schema,

� it must support references, both within a document, and from one XML instance to another
(i.e., navigation along XLinks in queries; for an investigation on this topic see Section 13),

� it should have several language bindings. One language syntax must be convenient for hu-
mans, and one syntax must be expressed in XML. The idea here is { similar to XSLT { that
queries are XML instances and thus can be manipulated themselves by XML languages.

An important aspect is the design of the XML world as a collection of related standards (doc-
ument format, querying language, metadata language, web-oriented features such as linking and
application-oriented extensions) based on the XPath addressing mechanism, and expressed them-
selves as XML trees. The outline of this picture has been completed by that time with comple-
mentary laguages, e.g., XML Schema (see Section 3.7) for describing metadata, and XLink (see
Section 3.8) for specifying links between XML instances. We �rst describe these two concepts,
and then continue with XML querying in Section 3.9.
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3.7 XML Schema

XML Schema instances are XML trees, built from elements and tags from a special namespace with
a prede�ned semantics. The concepts correspond to those of schema speci�cations in relational and
object-oriented databases. From the database point of view, XML Schemas are preferable against
DTDs due to their modeling concepts. The XML Schema Working Draft [XML99a] consists of
two parts:

� de�nition of datatypes,

� de�nition of structures (complex datatypes, elements, and attributes).

An XML Schema instance which describes the Mondial database can be found in Appendix B.

Data Model. In contrast to DTDs which are a heritage from the SGML document area, the
data model behind XML Schema has been in
uenced by the database community. An important
di�erence to DTDs is that XML Schema distinguishes datatypes (including complexTypes which
act as element types) from element names and allows for a much more detailed speci�cation of
complexTypes.

Datatypes. The de�nition of datatypes allows for a very detailed speci�cation, given as 3-tuples
consisting of (using the terminology of [XML99c])

� a value space (domain) which may be given intensionally (by axioms), extensionally (enumer-
ation), derived from another domain, or by construction from several other domains (e.g.,
constructing tuples or sets),

� a lexical space (the lexical representations of its elements, e.g., 100 = 1.0E2 = 1.0e+2),

� facets which characterize properties of its elements (equality, order, bounds etc). An impor-
tant facet is numeric.

XML Schema uses a set of prede�ned primitive and generated datatypes, e.g., string (which has a
subtype NMTOKEN), boolean, 
oat, double, decimal (with subtypes integer etc.), uriReference (Uni-
versal Resource Identi�er), timeDuration, recurringDuration etc. which are roughly the same as
for SQL. For the use as attributes, there are several XML-speci�c datatypes which are de�ned
according to the XML standard, e.g., NMTOKEN(S), Name, QName etc.

Additionally, XML Schema allows to use datatypes for attributes whose extension depends on
the given document, e.g., ID and IDREF(S) which are relevant in this work. Note that lists such
as NMTOKENS and IDREFS are treated as atomic datatypes.

Contents of XML Schema documents.
The contents of an XMLSchema documents consists of

� type de�nitions,

� attribute declarations, and

� element declarations.

User-de�ned datatypes can be derived from existing datatypes as <simpleType> (de�ning datatypes
for attribute values of text contents) or complexType (de�ning datatypes for elements),

� as a list of some base type (cf. collections in the ODMG standard for object-oriented databases
[CB00]), or

� by restriction of a base type (using restricting facets).

Thus, the type de�nitions induce a type de�nition hierarchy of datatypes.
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Simple Types. Simple types are \literal" types which are used for attribute values of text
contents. Thus the main interest when deriving simple types is to express range restrictions.

Example 3.15 (XML Schema: Derived Simple Types)

The following XML schema elements derive restricted atomic datatypes from 
oat for longitude
and latitude:

<simpleType name=\longitude" base=\
oat">
<minExclusive>-180</minExclusive>
<maxInclusive>180</maxInclusive>

</simpleType>

<simpleType name=\latitude" base=\
oat">
<minInclusive>-90</minInclusive>
<maxInclusive>90</maxInclusive>

</simpleType>

Complex Types. Complex datatypes can be derived from existing datatypes using <complexType>

elements. They may be de�ned by restricting another datatype (either in its components, or in
its structure), or by extending a given one, or creating a completely new one. These datatypes
are then used for de�ning element types. This is one of the main di�erences to DTDs: the seman-
tical notion, i.e., elements { roughly spoken, the tags which are then used in the document { are
di�erent from the structural notion, i.e., datatypes (de�ned as complexTypes). Complex types

� can be derived from a simpleType (which then de�nes the text contents),

� can be derived from a complexType (which then de�nes text contents, some children, and
some attributes),

� de�ne additional content model particles (appended to the content model of the type which
is extended),

� de�ne additional attributes.

For an investigation of structural inheritance when deriving a complexType from another complex-
Type, see Section 10.3. A complexType de�nition is speci�ed by the following properties:

� name,

� base type (which may be a simpleType or a complexType),

� derivation method (extension or restriction),

� attribute declarations,

� content type (elementOnly, empty, mixed, or simpleType (which means, characterOnly con-
tents)),

� contents model (in case of elementOnly).

<complexType name=\name"
base=\basetype"
content=\elementOnlyjemptyjmixedjtextOnly"
derivedBy=\extensionjrestriction" >

element-declarations or facets
attribute-declarations

</complexType>
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The element contents speci�es attributes and content model of the complexType to be de�ned:

� if basetype is a complex or a simple type, and derivedBy=\restriction", it contains facets
which restrict the basetype;

� otherwise it contains <element> and <attribute> subelements as described below which declare
attributes and the structure of element contents. The element contents may further be
nested into <all>, <choice>, <sequence>, and <any> elements which allow for specifying similar
properties as for DTDs. For a pure database view, the content is simply speci�ed by a
sequence of element subelements.

Attribute de�nitions and element de�nitions are allowed both globally, i.e., as immediate children
of the <schema> element, then they may be referenced from arbitrary <complexType> elements
(see below), or locally inside a <complexType> element, then they are local.

Attribute De�nitions. Attribute de�nitions are given by <attribute> elements which specify

� name,

� type (a simpleType which may be de�ned at that place),

� minimal (optional vs. required) and maximal cardinality,

� default value, or a �xed value.

The syntax of the global form is

<attribute name=\name" type=\simpleType" value=\..." />

Recall that simpleType includes NMTOKENS and IDREFS.

In the local form, <attribute> elements occur inside <complexType> elements. Then, attribute
declarations are of the form as above, or refer to global ones:

<complexType name=\name"
base=\basetype" >

element-declarations
<attribute ref=\global attribute name"

use=\defaultj�xedjoptionaljprohibitedjrequired"
value=\..."/>

...
</complexType>

The default of use is optional, and the declaration of value can be inherited from global attribute name.
maxOccurs is FIXED=\1" since there is one attribute of this name { recall that NMTOKENS and
IDREFS are base types.

Element De�nitions. Element de�nitions are given by <element> elements which specify

� name,

� type, which may be a simpleType or a complexType; also local type de�nitions are allowed.
Note that using a simpleType in fact speci�es the type of the element contents and tells that
the elements should behave as literals in certain situations (see Example 3.16; this aspect is
again analyzed later in Section 5.6),

� default value, �xed value,

� integrity constraints (keys, foreign key references similar to SQL)
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The syntax of the global form is as follows:

<element name=\name" type=\typename" default=\..." �xed=\...">

integrity-constraints
</element>

Here, a default/�xed value is allowed only for elements which contain any text contents (note that
a default for element contents is not possible for DTDs).

Complex types cont'd. The de�nition of complex types uses the above <attribute> and <element>

elements. The attributes are simply declared by a list of <attribute> elements (there is no order
of attributes). Since the content model allows complex de�nitions of sequence, choice, etc., here,
additional elements for constraining the structure are provided. The simplest form is a sequence
of <element> elements which does not impose any restrictions on the order of subelements. Several
kinds of de�nitions of subelements are possible:

� referring to global element de�nitions,

� local element de�nition, referring to global types, and

� local element de�nitions, using a locally de�ned type.

<complexType name=\name" ... >

attribute-declarations
<element ref=\element-name"> maxOccurs=\..." minOccurs=\..."/>
<element name=\name" type=\typename"

default=\..." �xed=\..."
maxOccurs=\..." minOccurs=\..." >

integrity-constraints
</element>
<element name=\name"

default=\..." �xed=\..."
maxOccurs=\..." minOccurs=\..." >

type-de�nition
integrity-constraints

</element>
...

</complexType>

where element-name is the name of a global element declaration. If a local type is de�ned, it gets
no name.

ComplexType declarations de�ne local symbol spaces, i.e., the same element name may be used in
several complex data types with di�erent element types (which was not possible in DTDs).

Example 3.16 (XML Schema: Complex Types)

In the Mondial database, the population subelements of country and city are di�erent (the full
XML Schema instance is given in Appendix B):

� city/population has a year attribute,

� country/population does not.

<complexType name=\country">
<attribute name=\car code" . . . />
<element name=\population" type=\integer" . . . />
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...
</complexType name=\country">

<complexType name=\city">
<element ref=\name"/>

...
<element name=\population" . . . >

<complexType base=\integer" derivedBy=\extension">
<attribute name=\year" type =\date" use=\optional"/>

</complexType>
</element>

...
</complexType>

An excerpt of the database, containing both types of population elements is e.g.,

<country car code=\CH" capital=\cty-Bern" memberships=\org-efta org-un . . . ">
<name>Switzerland</name>
<population>7207060</population>
<city id=\cty-Bern" name=\Bern">

<population year=\91">134393</population>
</city>

...
</country>

This example shows another interesting property: both types are derived from the simpleType
integer, thus, they are sometimes expected to act like integers, e.g., in comparisons: the XPath
query

//country[population > 5000000]/name/text()

returns \Switzerland" in its result set. This problem is investigated in Section 5.6.

Integrity Constraints. XML Schema supports identity constraints and referential integrity
constraints known from the relational model:

� unique

� key

� keyref

Here, unique/key and keyref are more expressive than the ID/IDREF concept: unique/key speci�es
a list of properties which must uniquely identify each item amongst a set of nodes which are
addressed by a selector (the selector is again an XPath relative location path). By nesting <key>

elements inside <complexType> elements, even local keys and foreign keys can be de�ned. Here,
only the semantics of a simple form of global keys is described which corresponds to the key concept
in SQL:

The following key element declares the tuple

(x:xpath-expr1,. . . ,x:xpath-exprn)

to be the key of x amongst all elements x addressed by //name:
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<key name=\ name " >

<selector>//name</selector>
<�eld>xpath-expr1</�eld>

...
<�eld>xpath-exprn</�eld>

</key>

where every xpath-expri must have a unique value for each element addressed by xpath-expr .

In contrast to the ID/IDREF semantics,

� keys are not unique to the document, but only to a speci�ed domain (above, all elements
addressed by //name), and

� keys may be composite and may also include element contents (including text contents).

Similarly, <keyref> elements relate a set of referencing nodes to referenced nodes by specifying a
foreign key which references a certain key :

<keyref name=\..." refer=\ keyname " >

<selector>//name</selector>
<�eld>xpath-expr1</�eld>

...
<�eld>xpath-expr1</�eld>

</keyref>

The above <keyref> speci�es that for all elements selected by evaluating //name, the (unique)
values selected by

(x/xpath-expr1, . . . , x/xpath-exprn)

must reference the key which is speci�ed by the corresponding <key name=\keyname"> element.

Example 3.17 (XML Schema: Referential Integrity)

The following excerpt of an the Mondial XML Schema declares the id attribute as the key of
city elements (<key name=\citykey">), and declares the capital attribute of country elements as
a foreign key, referencing citykey:

<complexType name=\country">
<attribute name=\car code" type=\ID" . . . />
<attribute name=\capital" type=\IDREF" . . . />

...
<element name=\city" type=\city" . . . />

...
</complexType>

<complexType name=\city">
<attribute name=\id" type=\ID" use=\required"/>

...
</complexType>

<key name=\citykey">
<selector>//city</selector>
<�eld>@id</�eld>
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</key>

<keyref name=\country2capital" refer=\citykey" >

<selector>//country</selector>
<�eld>@capital</�eld>

</keyref>

As in the above example, key and keyref constructs can be used for speci�ying the target elements
of IDREF attributes. Note that this does not hold for IDREFS since the value of an IDREFS attribute
is a list of keys.

3.8 XPointer and XLink

XPointer [XPt00] is a specialized extension of XPath for selecting parts of XML documents { which
are not necessarily sets of nodes: every \area" which can be selected by clicking and marking can be
described by an XPointer. For this work, only pointers in the sense of \inter-database" references
documents are relevant. Thus, the investigation is restricted to pointers which select node sets {
i.e., we consider only XPath expressions as pointers.

The simplest kind of pointers is already provided by the <A> tag known from HTML: By <A
HREF=\url">, a link to a given url can be speci�ed (with the semantics that clicking on it, the
browser accesses the referenced url). HTML also allows an extension by anchors : if the target
document contains an anchor speci�ed by <A NAME=\name">, a hyperlink to this place can be
de�ned by <A HREF=\url#name">. Note that this only works, if the author of the source has
de�ned a suitable anchor.

The XPointer concept extends the URL and HTML-hyperlink concepts: The URL addressing
mechanism is combined with XPath, and extended for addressing sections or nodesets inside the
target document: XPointers are of the form

XPointer = url#(extended)-xpath-expr

E.g., the following XPointer addresses the country element which has a car code attribute with
value \D" in the document with the url www.our.server.de/Mondial/mondial.xml:

www.our.server.de/Mondial/mondial.xml#descendant::country[@car code=\D"]

An important aspect is that this addressing does not depend on prepared anchors in the target
document, as it is the case for HTML. Thus, everybody can de�ne XLinks from his XML documents
to any other XML source.

XPointers are required to be transparent against mechanical changes (i.e., inserting linebreaks
or indentation for formatting an XML source) in the referenced document. In case that the ids
used in the target document are known, the id() function provides a robust way for addressing
elements { it is even stable wrt. restructuring of the document. Additionally, XML servers can
maintain indexes for e�cient access via id.

XML Linking Language (XLink). XPointers are used in the XML Linking Language (XLink)
[XLi00] for { as the name says { expressing links between XML documents. The syntax and
semantics of XLink is de�ned via XLL (Extensible Linking Language), using the xlink: namespace.
The xlink: namespace provides certain element types with certain attributes with a standardized
semantics which de�nes the behavior of applications and XML servers.

HTML Hyperlinks. HTML Hyperlinks are speci�ed in the source document, addressing a
speci�c point in the target document which has to be prepared by its owner. They are unidirec-
tional, i.e., it is neither possible to check if somebody uses a certain anchor, nor to navigate from
the anchor to any document using it. Additionally, each hyperlink has only one target, it is not
possible to associate a set of targets with a single hyperlink.
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References inside an XML document. The core XML concept already provides unidirec-
tional references by ID/IDREF/IDREFS attributes. Using IDREFS, multi-target references can be
speci�ed. Here, dereferencing is done as shown above with the id(..) operator in XPath (or by
pointer-chasing as in Quilt/XQuery). Note that by id(xpath{expr), a set of nodes can be addressed
if

� xpath-expr is of the form path/@attr and the result set of path contains several nodes, or

� any of the attribute nodes in the result set of xpath-expr is of type IDREFS and has more
than one entry.3

Thus the XML referencing mechanism is unidirectional, already many-valued, but intra-document.

XLink provides several additional linking types:

� inter-document references; even a single reference can have targets in several documents,

� so far, the links are inline links, i.e., the link is directly contained in the document.

� XLink also provides out-of-line links which allow users to create a private collection between
public documents.

� out-of-line links allow for bidirectional references { which are di�erent from two complemen-
tary unidirectional references.

In all cases, the applications have to care about implementing the intended semantics speci�ed for
XLL. XLL also allows for specifying the behavior to be executed when a link is activated. Whereas
the HTML behavior is simply \browse this document", XLL allows for more sophisticated activities
(e.g., not to delay the behavior until the link is activated by a user, but evaluate it immediately
when the document is parsed). For an adaptation to the requirements when querying XLinks in
databases, see Section 13.

XLinks. Arbitrary elements can be declared to have XLink functionality (to choose from the
functionality prede�ned in XLL) by equipping them with an xlink:type attribute and suitable
additional attributes and subelements from the xlink: namespace:

<!ELEMENT linkelement (contentsmodel)>
<!ATTLIST linkelement

xmlns:xlink CDATA #FIXED \http://www.w3.org/xml/xlink/0.9"
xlink:type (simplejextendedjlocatorjarc) #FIXED \..."
... >

The xlink:type attribute selects between four basic types of XLink functionality:

� simple: roughly, the functionality known from <A href=\...">,

� extended: the same, allowing for multiple targets,

� locator: a special element type which is used for specifying targets which are then used by
extended link elements,

� arc: another special element type which is used for de�ning bidirectional links between a set
of locator elements.

The information that some element type is equipped with link semantics is given in the DTD: there,
the attributes of the element type are declared, including attributes from the xlink: namespace.
The xlink:type attribute is assigned with a �xed value.

3even attributes declared as NMTOKEN or NMTOKENS can be (mis)used for dereferencing.



3.8. XPOINTER AND XLINK 47

<!ELEMENT linkelement (contentsmodel)>

% Dependent on the xlink:type, some conditions on
% the contentsmodel apply.

<!ATTLIST linkelement
xmlns:xlink CDATA #FIXED \http://www.w3.org/xml/xlink/0.9"
xlink:type (simplejextendedjlocatorjarc) #FIXED \..."

% speci�es the link element type
xlink:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED
xlink:show (newjparsedjreplace) #IMPLIED
xlink:actuate (autojuser) #IMPLIED >

The other xlink:-speci�c attributes may also be speci�ed with default or �xed values, or de�ned
for each individual instance. They have the following semantics:

� xlink:href: selects a target for the individual instance (it \is" the link),

� xlink:actuate: de�nes the event on which the link is activated:

{ auto: the link is activated when the link element node is parsed,

{ user: the link is activated on user interaction (e.g., clicking).

� xlink:show: speci�es what happens if the link is activated (currently de�ned only for browsing
applications specifying if the target is replaces the current document, or if it is opened in a
new window),

� xlink:role and xlink:title: an application-speci�c characterization of the link.

Example 3.18 (Distributed Mondial)

In the following, XLinks are introduced for a \distributed" version of Mondial where all coun-
tries, all cities of a country, all organizations, and all membership relations are stored in separate
�les

� mondial-countries.xml (all organizations)

� mondial-cities-of-car-code.xml (the cities for each country)

� mondial-organizations.xml (all organizations)

� mondial-memberships.xml (relates countries and organizations)

Simple Links. A simple link is similar to the HTML <A href=\..."> construct.

Example 3.19 (Simple Links)

The @seat attribute of organizations is replaced by a seat subelement which is a simple link:

<!ELEMENT organization (. . . seat . . . )>

<!ELEMENT seat EMPTY>

<!ATTLIST seat xmlns:xlink CDATA #FIXED \http://www.w3.org/xml/xlink/0.9"
xlink:type (simplejextendedjlocatorjarc) #FIXED \simple"
xlink:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xlink:role CDATA #FIXED \seat">



48 3. XML: FURTHER NOTIONS

members

orgs countries

cty-D cty-F

member-of is-member

seat

has-city

Figure 3.2: Distributed XML Mondial Database

An excerpt of the XML document looks as follows:

<organization id=\org-UN">
<seat href=\�le:cities-USA.xml#//city[name/text()=`New York']"/>

...
</organization>

Inline extended Links. Extended links do not have an xlink:href attribute, but instead they
contain one or more locator elements, each of which is a reference of its own.

<!ELEMENT linkelement (... locatorelement* ... )>
<!ATTLIST linkelement

xmlns:xlink ... ...
xlink:type (simplejextendedjlocatorjarc) #FIXED \extended"
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED >

<!ELEMENT locatorelement (contentsmodel)>
<!ATTLIST locatorelement

xmlns:xlink ... ...
xlink:type (simplejextendedjlocatorjarc) #FIXED \locator"
xlink:href CDATA #REQUIRED
id ID #REQUIRED
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED >

Example 3.20 (Extended, Multi-Target Links)

In the distributed Mondial model, every country element has an extended, multi-target link ele-
ment cities which contains <city> locators to all its cities:

<!ELEMENT country (. . . cities . . . )>

<!ELEMENT cities (city*)>
<!ATTLIST cities xmlns:xlink ... ...

xlink:type (simplejextendedjlocatorjarc) #FIXED \extended"
xlink:title CDATA #IMPLIED
xlink:role CDATA #FIXED \cities" >

<!ELEMENT city (#PCDATA)>
<!ATTLIST city xmlns:xlink ... ...



3.8. XPOINTER AND XLINK 49

xlink:type (simplejextendedjlocatorjarc) #FIXED \locator"
xlink:href CDATA #REQUIRED
id ID #REQUIRED
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED >

Note that the xlink:role attribute provides a possibility for giving additional information, e.g., if the
city is the capital, a province capital etc. An excerpt of the XML document mondial-countries.xml
may look as follows:

<country car code=\USA">
<cities>

<city href=\�le:cities-USA.xml#//city[name/text()=`Washington D.C.']"
role=\capital"/>

Washington D.C.
</city>
<city href=\�le:cities-USA.xml#//city[name/text()=`Albany']"

role=\state capital"/>

Albany
</city>
<city href=\�le:cities-USA.xml#//city[name/text()=`New York']"

role=\city"/>

New York
</city>
...

</cities>
...

</country>

Out-of-Line-Links. Out-of-line-links allow to create references not only inside documents, but
also to create XML instances which consist only of links between other documents. This can be
seen as a \personalized overlay" on arbitrary existing (autonomous) sources. Here, the link is not
a directed link to a node, but a relationship (or a set of relationships) between a set of nodes;
allowing also for multidirectional links.

Out-of-line-links consist of locator subelements which specify potential endpoints of links, and
arc elements which specify the relationships between these endpoints:

<!ELEMENT linkelement (#PCDATAjlocatorelementjarcelement)*>
<!ATTLIST linkelement as above >

<!ELEMENT locatorelement as above >

<!ATTLIST locatorelement as above

type, href, id: ID , title, role >

<!ELEMENT arcelement (contentsmodel)>
<!ATTLIST arcelement

xmlns:xlink CDATA #FIXED \http://www.w3.org/xml/xlink/0.9"
xlink:type (simplejextendedjlocatorjarc) #FIXED \arc"

xlink:from IDREF #REQUIRED

xlink:to IDREF #REQUIRED

xlink:show (newjparsedjreplace) #IMPLIED
xlink:actuate (autojuser) #IMPLIED >
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Example 3.21 (Out-of-line Links)

For the distributed Mondial database, the memberships of countries in organizations are stored
in mondial-memberships.xml:

<!ELEMENT memberships (country*, organization*, membership*)>
<!ATTLIST memberships xmlns:xlink ...

xlink:type (simplejextendedjlocatorjarc) #FIXED \extended" >

<!ELEMENT country EMPTY>

<!ATTLIST country xmlns:xlink ...
xlink:type (simplejextendedjlocatorjarc) #FIXED \locator"
xlink:href CDATA #REQUIRED

id ID #REQUIRED >

<!ELEMENT organization EMPTY>

<!ATTLIST organization xmlns:xlink ...
xlink:type (simplejextendedjlocatorjarc) #FIXED \locator"
xlink:href CDATA #REQUIRED

id ID #REQUIRED >

<!ELEMENT membership EMPTY>

<!ATTLIST membership xmlns:xlink ...
xlink:type (simplejextendedjlocatorjarc) #FIXED \arc"

xlink:from IDREF #REQUIRED

xlink:to IDREF #REQUIRED

membership type CDATA #REQUIRED >

mondial-memberships.xml consists now of only one memberships element:

<memberships>
<country id=\D" xlink:href=\.../countries.xml#id('D')" />
<country id=\F" xlink:href=\.../countries.xml#id('F')" />
<country id=\I" xlink:href=\.../countries.xml#id('I')" />
<organization id=\EU" xlink:href=\.../organizations.xml#id('org-EU')" />
<organization id=\UN" xlink:href=\.../organizations.xml#id('org-UN')" />
<organization id=\NATO" xlink:href=\.../organizations.xml#id('org-NATO')" />
<membership xlink:from=\D" xlink:to=\org-EU" membership type=\member"/>
<membership xlink:from=\D" xlink:to=\org-UN" membership type=\member"/>
<membership xlink:from=\CH" xlink:to=\org-UN" membership type=\observer"/>

</memberships>

The XPointer and XLink working drafts [XPt00,XLi00] specify how to express inter-document links
in XML. There is not yet an o�cial proposal how to handle XLinks in queries and applications.
Section 13 describes general considerations on traversing XLinks.

3.9 XML Querying Data Model and Algebra

The recent XML Querying Data Model [XMQ01b] and XML Querying Algebra [XMQ01a] provide
the formal background for XML querying by de�ning types and operators.
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3.9.1 XML Querying Data Model

The XML Querying Data Model de�nes formally the information contained in the input to an
XML Query processor in terms of trees using a node-labeled tree representation augmented with
node identity. It re�nes and formalizes the basic XML data model (cf. Section 2.1.1) which also
provided the base for the DOM API (cf. Section 2.1.3).

The basic concept in the data model is a node, which is of one of nine node types: document, el-
ement, value, attribute, namespace, processing instruction, comment, information item (an opaque
value), or node reference. For every node, accessors are de�ned which return information on the
node. The node types which are relevant for this work are described below:

Document: a document node is distinguished by a URI reference, and a non-empty forest of
child nodes (exactly one of them must be an element node).
The root accessor returns the unique root element node of a document.

Element: an element node has a tag and consists of an unordered forest of namespace nodes,
an unordered forest of attribute nodes, and an ordered forest of child nodes (containing
nodes of the types element, value (for PCDATA children), processing instruction, comment,
and information item). The namespace nodes give the namespaces which are declared on
this element (note that an element may belong to several namespaces).
The accessors name, namespaces, attributes, children, type, and nodes return the element
node's constituent parts (nodes returns an ordered forest containing the attribute nodes
followed by the children). The parent accessor returns its (unique) parent node in the tree.

Attribute: attribute values have a name and a value. The value must be of any simpleType as
de�ned in XML Schema (Datatypes).

Value nodes: value nodes contain the actual information, i.e., PCDATA contents. They can be of
the primitive XML Schema datatypes.
The accessors type, string, parent, localname, and namespace return the corresponding infor-
mation of value nodes.
The referent accessor returns an ordered forest of element nodes associated with an IDREF

value.

Reference nodes: reference nodes are a mechanism to encapsulate the identity of nodes in a
given instance. The accessor deref returns the node referred to by the reference node. Note
that IDREFs are handled as values above.

In addition to nodes, the data model supports ordered (lists) and unordered (bags) forests of nodes
which provide the formal base for node lists (e.g., contexts when evaluating XPath locationSteps,
and (result) nodeSets of XPath expressions). As usual for lists and bags, the operators empty,
append, head, tail, add, empty, some (chooses some element), and union/di�/intersect are de�ned.

3.9.2 Constraints of the Data Model

The data model imposes several constraints and requirements on the applications (mainly, query-
ing) which use it. Most of these problems stated in [XMQ01b, Section 7] are too restrictive
when dealing with data manipulation (cf. Section 8.5), and even more, when investigating data
integration (see Section 11):

� The concept of node references (recall the problems with resolving IDREFS by string oper-
ators in XQL and XML-QL) is de�ned, but the actual technique of handling references for
dereferencing is not implied.

� Node identity: two nodes are identical if they are the same node. This leads to problems
when trying to handle nodes originating from several documents which have been identi�ed
to have the \same semantics".
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� Unique parent (integration): this problem is closely related. Under this assumption, nodes
originating from di�erent documents may not be identi�ed or fused.

� Unique parent (inserting/copying): if a new tree is to be generated from an old one, the
elements cannot be \reused" directly (which would result in two parents) but have to be
copied. Then, the maintenance of reference attributes gets di�cult (see also Sections 3.12
and 8.5).

The above constraints are problematic for data integration, where corresponding elements in dif-
ferent sources have to be identi�ed, merged, and a result tree consisting of information from the
sources has to be generated. In the XML Query Data Model, this is only possible by creating
the result tree from scratch without using elements from the sources. Since (deep-)copying of
whole subtrees is expensive both wrt. computation time and (main memory) storage, this is not
always a favorable solution. Additionally, the maintenance of references is problematic. For data
integration in XPathLog/LoPiX, we use a di�erent data model which allows for overlapping trees,
elements having multiple parents, and element fusion, and synonyms for names (see Section 11).

3.9.3 XML Querying Algebra

The XML Querying Algebra types describe the structure of classes of XML instances and elements
{ similar to a DTD or an XML Schema speci�cation. Since every query implicitly de�nes a class of
XML instances { the instances which are generated when evaluating the query wrt. a database, also
a query has a type. An operator is an instruction how to compute a result from given operands.
From the algebraic point of view, a query is an operator-tree which speci�es how the query is
built from elementary operators. Based on the operator tree, the algebra de�nes the semantics
of queries by specifying both the result of evaluating queries wrt. XML instances, and the result
types of queries:

� \Static Semantics": the result types are derived by structural induction according to the
given type-inference rules, and

� \Dynamic Semantics": the results themselves when evaluating a query wrt. an XML instance
is de�ned by value-inference rules.

The datatypes are { naturally { closely related to the complexType concept of XML Schema.
While the data model and the algebra serve for the formal background of the types and the oper-
ators, XML Schema serves for expressing the type system in XML. The algebra takes the atomic
datatypes from XML Schema and the algebra's external type system, i.e., the type de�nitions
associated with results, are complexTypes according to the XML Schema de�nition. The internal
types are more expressive than those of XML Schema.

Complex datatypes are de�ned as nested regular expressions, giving the names of properties
(i.e., attributes and subelements) together with their cardinalities. Also, the allowed order of
subelements is speci�ed (\,": sequence; \&" both, in arbitrary order; j: choice; tfa; bg: repetition
of a-and-then-b for t times).

The algebra does not yet support IDREF(S) [XMQ01a, App.B, Issue 0007]. There are several
other open issues, such as XPath axes, a three-valued logic for null values, regular path expressions,
global vs. local types etc.

Example 3.22 (XML Query Algebra: Datatypes)

The mondial and country types of the Mondial database are speci�ed as follows (according to
the XML Schema given in Appendix B):

type Mondial = mondial [country f1,*g &
continent f1,*g &
. . . ]
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type Country = country [@car code [ IDREFS ] f1,1g &
@capital [ IDREF ] f1,1g &
@memberships [ IDREFS ] f0,1g &
@area [ Number ] f1,1g,
name [ String ] f1,1g,
population [ Integer ] f1,1g,
indep date [ Date ] f1,1g,

...
ethnicgroups [ CulturalInfo ] f0,*g,
religions [ CulturalInfo ] f0,*g,
languages [ CulturalInfo ] f0,*g,
border [ Border ],
( province [ Province ] f1,*g j

city [ City ] f1,*g)
]

type CulturalInfo = culturalinfo [mixed @percentage [Decimal] f1,1g]

type Border = border [@length [Decimal] f1,1g &
@country [ IDREF ] f1,1g

]

Instances have also a representation in the algebra syntax:

mondial = mondial
[ continent [ name [\Europe"] ,

area [\9460138"]
]

...
country [ @car code [\D"],

@capital [\city-berlin"],
@memberships [\org-un org-eu . . . ],
@area [\356910"],
name [\Germany"],
population [\83536115"],
indep date [\23 05 1949"],

...
ethnicgroups [ @percentage [\95.1"],

\German"
]

ethnicgroups [ @percentage [\2.3"],
\Turkish"

]
...

]
...

The algebra associates a result type (or, will do so in its �nal version) with every query. Queries
in the algebra are expressions over operators, constants and names. In contrast to the relational
algebra which consists of selection, projection, cartesian product/join, union, and minus with
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derived standard operators intersection and division, the XML Query algebra provides a large set
of operators as described below (for details see [XMQ01a, Figure 2]).

1. projection + selection: NameExp[Exp] and @NameExp[Exp] select elements or attributes by
name (or selection expressions over names, wildcards, etc.),

2. sequence/union, di�erence, intersection,

3. arithmetic, boolean, and equality operators, function applications,

4. iteration: for var in expr do expr for iteration. There is no join operator, it has to be speci�ed
as nested-loop-join using two for iterations. Note that the for-joins to not commute, since
the order of elements in the result is relevant.

5. conditional: if expr then expr else expr,

6. local binding: let var=expr do expr,

7. sorting: sort v in expr by expr,

8. match: match expr caseRules, where caseRules is case var : Type do exp caseRules.

Here, (1){(4) implement the operations known from the relational algebra, whereas the remaining
constructs deal with the additional complexity due to the nested structure and order.

So far, the core algebra is quite far from the concepts known from XPath. The XPath \opera-
tors" are de�ned as reducible algebra expressions { here, [XMQ01a, Appendix A] shows how these
XPath expressions are translated into core algebra expressions.

Example 3.23 (XML Query Algebra)

The XPath expression mondial/country is equivalent to

for n in nodes(mondial) do
match n

case c : country[AnyComplexType] do c
else ()

which means: iterate over all nodes in mondial. For every node n, if c is the result from matching
n with \country[AnyComplexType]" (i.e., a projection on the element's tag if this is \country",
and all its contents), then return c (which is in fact the complete country element if n is a country
element). If c is nothing (i.e., n does not match \country[AnyComplexType]" which happens
exactly if it is of an element type other than country, return the empty sequence.

Thus, the core algebra is a low-level speci�cation of operators { corresponding to an implementation-
level speci�cation of SQL expressions { which are much more powerful than the XPath operators.
On an intermediate level, [XMQ01a, Appendix A] also introduces a where cond do expr construct.

A potential application of the algebra for query rewriting and optimization evolves from the
Quilt language [CRF00, RCF00] (which has then been turned into the XQuery working draft
[XQu01]) which is described in the following section.

In the XML Query Algebra Working Draft, an unordered model is explicitly distinguished
[XMQ01a, Section 2.8], providing e.g., a symmetric join where traditional optimizations are ap-
plicable.
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3.10 Quilt

In some sense incorporating an \evolution step", Quilt [CRF00,RCF00] is the �rst query language
that embeds XPath syntax into higher-level constructs (similar to SQL/OQL [ASL89]) (as has
already been done in XML Schema and XLink for other tasks). Quilt queries consist of a series
of clauses that declaratively describe

� what information is to be used,

� which additional conditions apply, and

� how the result is to be constructed.

The keywords in Quilt clauses are FOR - LET - WHERE - RETURN (FLWR; pronounced \
ower"):

FOR variable IN xpath-expr
LET additional variable := xpath-expr
(FOR j LET)*
WHERE �lters
RETURN xml-expr

The FOR clause de�nes variables which are bound to the elements of iterating over the result set
of XPath expressions. Additional variables may be de�ned in the LET clause, computed from the
ones de�ned in the FOR clause. The variables in the FOR clause iterate over the corresponding
xpath-expr , whereas the variables in the LET clause are bound to the result of the corresponding
xpath-expr , i.e., the may be bound to a node set. Variables de�ned in FOR or LET clauses can then
be used in subsequent IN clauses. The result from the FOR and LET clauses is a sequence of variable
bindings. The WHERE clause { similar to SQL/OQL { states additional conditions which tuples
of variable bindings are used for generating the result, using the XPath �lter syntax, augmented
with some syntactic sugar. Then, the RETURN clause generates an XML subtree for each variable
binding.

Example 3.24 (Quilt)

The following Quilt query returns a result document which consists of all countries which have an
area of more than 1000000 km2 and contain more than 10 cities with all their cities as subelements:

FOR $c IN document(\mondial.xml")//country
LET $cities = $c/city
WHERE $c/@area > 1000000 and count($cities) > 10
RETURN

<bigcountry area = $c/@area>
<name>$c/@name</name>

$cities
</bigcountry>

Note that for every value of $c, $cities is bound to the nodeset containing all city subelements of
$c.

As the name says { a quilt is a patchwork carpet { Quilt is a patchwork, in
uenced from many
querying languages:

� SQL/OQL: queries consist of a series of clauses.

� OQL: a functional language whose expressions which may be arbitrarily nested.

� XPath/XQL/XSL Patterns: navigation in XML trees is done by XPath expressions. Quilt
extends XPath with a derefencing operator for resolving IDREF(S) attributes, e.g.,



56 3. XML: FURTHER NOTIONS

//country[@car code = \D"]/@capital!/name/text()

selects the capital reference attribute from the country element whose car code attribute has
the value \D", dereferences it (yielding a city element node) and returns the text contents
of the name subelement.

Additionally, the BEFORE, AFTER, INTERSECT, and EXCEPT constructs from XQL are sup-
ported.

� XQL: a FILTER construct is provided for output projection which shows some similarities
with XQLs output and grouping operators.

� XML-QL:

{ the structure of Quilt queries as a whole is very similar to XML-QL (WHERE xml-pattern
IN url CONSTRUCT xml-pattern). Similar to XML-QL (and SQL), Quilt does not support
recursive queries.

{ information is propagated from the extraction (FOR - LET - WHERE) part to the construc-
tion (RETURN) part via variable bindings,

{ where in both cases, the result is generated by instantiating an XML pattern with variable
bindings (possibly with nested FLWR expressions which contribute subtrees for grouping).

{ The main di�erence is that the extraction part in XML-QL also uses an XML pattern
which is matched whereas Quilt uses iterators and collections over XPath expressions.

Example 3.25 (Quilt: Dereferencing)

Consider the query given in Example 3.4:

id(//organization[id(./@seat) = id(id(./member/@country)/@capital)]/@seat)/@name

The equivalent expression in Quilt is

//organization[@seat!= members/@country!/@capital]/@seat!/name/text() .

The Quilt language provides the \usual" operators used in database queries:

Joins. Quilt allows for joins in the FOR clause by specifying several \var IN xpath-expr" argu-
ments, or by a sequence of FOR - LET clauses. Each FOR - LET clause may contain references to
variables de�ned before, allowing for \correlated joins" such that the domain of the second join
already depends on the current value of the �rst one (which is not possible in SQL, but is allowed
also in OQL).

Additional join functionality is provided by using FLWR expressions in the RETURN part. Here,
also the inner FLWR expression may access variables from the outer clause.

Using nested FLWR expressions in the WHERE clause provides only restricted join functionality
for evaluating conditions since the values from the inner subquery cannot be communicated to the
result (similar to SQL/OQL).

Selection. Selection functionality is explicitly provided by the WHERE clause, but also the XPath
expressions (�lters, existential semantics) provide functionality which is implemented in SQL by
selection.

Projection. Projection is supported by the de�nition of variables in the FOR - LET clause, and
mainly by a FILTER operator which extends the XPath syntax: the expression

xpath-expr1 FILTER xpath-expr2
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results in a tree which contains exactly the nodes of the result set of xpath-expr1 which are selected
by xpath-expr2, retaining the document structure and order (similar to XQL). Nodes are taken
without attributes or subelements, i.e., only the tags are kept. The attribute nodes and element
nodes which should occur in the result have to be selected explicitly. If an intermediate node n in
a tree does not qualify, but some of its children qualify, those occur at n's position.

Example 3.26 (Quilt: Filter)

The expression

//mondial FILTER //country j //country//city

produces only a forest of the form

<country> <city/> </country>
<country> <city/> <city/> <city/> <city/> </country>
<country> <city/> <city/> <city/> </country>

...

(the mondial node does not qualify, and also no attribute nodes and no text nodes are projected).
Thus, to get the intended result containing also the names, the �lter condition must be extended:

//mondial FILTER //country j //country/@car code j //country/name/text()
j //country//city j //city/name/text()

which then generates

<country car code=\A"> Austria <city>Vienna</city> </country>
<country car code=\D"> Germany <city>Berlin</city><city>Hamburg</city>

<city>Munich</city> </country>
...

Note that the FILTER operator changes the tree structure: elements which have been descendants
before may become children when intermediate elements are omitted in the projection. E.g., in
the above example, the intermediate province elements do not occur in the result, instead, the
cities are directly children of the countries.

Restructuring. There is additional restructuring functionality which provides a combination
of selection and projection:

� the XPath expressions in the FOR clause are a combination of selection and projection (pro-
jection of the tree on some of its nodes/subtrees),

� the restructuring when generating the result in the RETURN clause where XML subtrees are
constructed is much more expressive as the \result generation" by projection only in the
SELECT clause in SQL. The use of variables at tag position is allowed in the RETURN clause.

Note that also the SELECT clause in SQL (especially, in the SQL-3 standard with object-relational
extensions) does not only provide projection, but also restructuring and generating functionality.

Additional Operators. Several operators are allowed which have also been present in SQL/OQL:
The FOR clause may be augmented with a DISTINCT speci�cation. A SORTBY expr clause is allowed
after the RETURN clause for sorting the nodes produced by the RETURN clause. The SQL/OQL ANY

and ALL operators have a more explicit syntax in Quilt, using a

WHERE SOME/EVERY var IN expr SATISFIES predicate

clause. Aggregate functions similar to SQL/OQL are also provided.
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Kweelt. Kweelt [Sah00] is an extensible, open-source Quilt implementation in Java based on
a DOM implementation. Here, the dereferencing operator is further extended by adding derefer-
encing hints which specify where to search for the target of a reference: a dereferencing step is of
the form

refAttr!felementtype1@attr1, . . . , elementtypen@attrng .

The hint then means that the target of the reference is of one of the types elementtype1, . . . ,
elementtypen where the attributes attr1, . . . , attrn, respectively, must be checked. The above
selection expression translates as

//organization[@seat!fcity@idg = members/@country!fcountry@car codeg/@capital]
/@seat!fcity@idg/name/text() .

Practical experiences with Kweelt showed that the system is still very slow.

Issues. An important aspect when implementing and using Quilt is that selection functionality
is provided both by the XPath expressions in the FOR clause, and in the WHERE clause. In some
sense the problem corresponds to the use of SELECT statements in SQL in the FROM clause for
restricting the set of tuples participating in the join, or to apply selection in the WHERE clause only.

In SQL implementations, an internal (theoretically, algebra-based) query optimizer rewrites
the statements into an optimal operator tree. Regarding Quilt, this is obviously an aspect where
the XML Query Algebra (see Section 3.9.3) should be useful.

Similar to XML-QL, when (deep)-copying elements into the result tree, the result tree may
contain dangling reference attributes.

3.11 XQuery

With some minor revisions, Quilt (using the XPath 2.0 semantics now) has become the XQuery
Language [XQu01] (Feb. 2001 Working Draft). Since most design issues of the language have been
solved and described above for Quilt, mainly the \W3C-speci�c" issues of integrating Quilt with
the recent developments for the XML Query Data Model and Algebra remained.

Quilt introduced a dereferencing operator \!" for reference attributes (which has already
been extended by the Kweelt implementation). In XQuery, the operator uses a name test that
speci�es the expected name of the target element (the wildcard \*" as nametest accepts all types
of target nodes):

//country[@car code = \D"]/@capital!city/name/text() .

If several documents should be integrated, named documents are allowed (cf. the notion of doc-
ument nodes in the XML Query Data Model). Using the function document(string) (cf. the
document(...) extension function in XSLT), the document node representing the document named
string can be accessed. Document nodes may serve as starting point for XPath expressions, e.g.,

document(mondial)/country[@car code = \D"] .

For data integration, the documents to be integrated in general use their own namespaces. XQuery
allows for accessing namespace de�nitions and assigning them to constants which then can be used
for selecting navigation steps according to the namespaces:

NAMESPACE mondial = \http://. . . /mondial/names"
NAMESPACE cia = \http:cia.gov//factbook/names"

Then, the query

document(\mondial.xml")//mondial:country/cia:*/name()
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navigates in the document mondial.xml to the country elements in the mondial document, then
navigates to all elements whose name is contained in the cia namespace and outputs their names
(i.e., outputs all names of subelements of mondial countries which are also names in the cia
namespace).

In XPathLog/LoPiX, we use a di�erent approach for handling multiple documents with (pos-
sibly overlapping) namespaces (see Section 11).

Quilt has been designed before the XML Query Algebra has been de�ned, using the type system
of XML Schema which has minor di�erences wrt. the one de�ned in the XML Query Algebra. A
preliminary mapping from XQuery expressions to the Algebra is given in [XQu01, Appendix E].
The type systems of XML Schema and Quilt/XQuery will be aligned with the \reference" type
system of the XML Query Algebra.

Comparing XQuery with the XML Query Requirements (cf. Section 3.6) the situation is as follows:

� XQuery covers the aspects of both document-oriented and data-oriented documents,

� it is declarative, not enforcing a particular evaluation strategy,

� it supports the XML 1.0 datatypes (and the primitive datatypes of XML Schema). The
complexTypes of XML Schema have to be re�ned wrt. the XML Query Algebra,

� XQuery partially supports references within a document (dereferencing operator for IDREF(S)).
References from one XML instance to another (XLink) are not supported,

� currently it has only one language binding, the FLWR expressions. A syntax which is ex-
pressed in XML is still missing. Nevertheless, an XQuery version which embeds XPath into
XML-syntax XQuery FLWR expressions (similar as XSLT-style combines XPath and its own
elements into XML syntax) is just syntactic sugar.

3.12 Updating XML

The languages presented above (representing the state of the art in early 2001) do not (yet) provide
constructs for updating XML data. Applications can change existing XML documents based on
the DOM model, but there is no XML update language. Excelon [eXc] provides a proprietary
extension to XSLT, called XUL (XML update language) (cf. Section 3.13).

[TIHW01] describes a proposal for updates in XML, based on the XML Query Data Model
[XMQ01b]. A language-independent de�nition of updates is given; the only assumption is that
the updates are executed in an environment based on variable bindings (as, e.g., in XML-QL or
Quilt/XQuery). The target of an update is the element node which is updated. The following
operations can be applied to target { provided with suitable bindings of other variables:

� Delete(child): if child is a member (i.e., a subelement (including PCDATA), an attribute, or a
reference in an IDREF(S) attribute), it is removed:

$target = //country[@car code=\B"]
$prov = //country[@car code=\B"]//province[name=\Brabant"]
$target.DELETE($prov)

deletes the province subelement of Belgium which represents the province of Brabant. Note
that the whole subtree representing Brabant is deleted; including the city element which
represents Brussels. Thus, there will be dangling references (e.g., belgium/@capital and
eu/@seat). As all the above languages allow for dangling references in their output trees,
[TIHW01] also allows them explicitly.

Note that for IDREFS, it is also possible to remove single references, e.g., the membership of
Belgium in the EU; in this case, XPath does not provide functionality to address the item to
be deleted.
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� Rename(child,name): if child is a non-PCDATA member (i.e., a subelement or an attribute),
it is given a new name. For IDREFS, only the whole list can be renamed, the renaming of
single items is not possible. Here, [TIHW01] does not specify what happens if an attribute
is renamed to a name which already exists.

� Insert(content): content can be PCDATA, an element, an attribute or a reference. For details
see below { insertion is critical due to the unique-parent-requirement in the XML Query
Data Model.

� InsertBefore(ref,content): ref and content must either both be element or PCDATA, or both
references. Then, content is inserted before ref. Analogously for InsertAfter(ref,content).

� Replace(child,content) is an atomic replace operation, equivalent to InsertBefore(child,content)
followed by Delete(child).

� SubUpdate(patternMatch, predicates, updateOp): starting with target, all elements addressed
by patternMatch are selected, these are then �ltered wrt. predicates. For the remaining
elements, updateOp is applied. Note that subUpdates can often be replaced by suitable
constructs of the surrounding language (e.g., FLWUpdate expressions in XQuery+updates).

Based on the abstract operations, an extension of XQuery with FOR - LET - WHERE - UPDATE

clauses is given where the UPDATE clause is of one of the forms:

DELETE $child
RENAME $child TO name
INSERT content [BEFOREjAFTER $child ]
REPLACE $child WITH content
FOR $var IN xpath-expr WHERE preds update

where content can either be a variable, or an XML pattern containing variables for generating new
structures.

Insertions. Since [TIHW01] uses the XML Query Data Model [XMQ01b], the constraints de-
scribed in Section 3.9.2 apply:

� Unique Parent (inserting/copying): if a new tree is to be generated from an old one, the
elements cannot be \reused" directly (which would result in two parents) but have to be
copied.

That means, if any variable in contents is bound to a subtree, this subtree must be copied when
inserting it (or replacing another element by it), leading to the problems described in Section 8.5
for generating new IDs and adapting IDREFs.

3.13 Excelon and XUL

Excelon [eXc] is a commercial XML-based B2B platform. As already stated in the introduction,
the �rst versions implemented XQL and XSLT for querying and manipulation. With the evolving
XPath standard from XQL, XSL Patterns, and XPointer, since version 3.0, all XQL-only features
have been removed and replaced by corresponding XPath features. The main goal of the eXcelon
platform is to act as an XML database in a B2B-environment by providing Java interfaces for
database access using standard DOM and XPath APIs.

An interesting extension by eXcelon is XUL (XML Update Language) which extends XSLT by
suitable constructs in the xln: namespace. \Updategrams" are XML instances which consist of
an <xlnupdate version=\1.0"> element whose contents is a sequence of <foreach>, <update>, and
<remove> elements which specify updates to the database:
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� A <foreach select=\xpath-expr"> element applies its contents to all nodes selected by xpath-
expr . Its contents consists of <foreach>, <update>, and <remove> elements.

� An <update select=\xpath-expr"> element adds attributes or elements to the node selected
by xpath-expr . The contents consists of XSLT <element> and <attribute> elements which
describe the updates.

� A <remove select=\xpath-expr"> element removes the element(s) selected by its xpath-expr .

Example 3.27 (XUL)

The following \updategram" deletes all cities which are capitals and changes the capital reference
attribute to Timbuktu. Note that also all organization/@seat references to deleted capitals have to
be removed.

<xlnupdate version=\1.0">
<remove select=\//organization[@seat=//country/@capital]/@seat"/>
<foreach select=\//country">

<remove select=\id(@capital)"/>
<remove select=\@capital"/>
<update select=\."/>

<xsl:attribute name=\capital">
<xsl:copy-of select=\//city[name=`Timbuktu']/@id"/>

</xsl:attribute>
</update>

</foreach>
</xlnupdate>

3.14 YAXQL

YAXQL [Moe00] is an XML querying language which is in XML syntax. Similar to XSLT, it de�nes
querying language elements which contain XPath expressions as attribute values and element
contents. The result is also created by YAXQL command elements. Similar to XML-QL and
Quilt/XQuery, the matching part of a query generates variable bindings which are communicated
to the constructing part.

Queries in YAXQL consist of four parts with the responsibilities to

� produce variable bindings,

� restrict the collection of produced variable bindings,

� project on relevant variables, and

� construct a result.

A complete query with result construction is an <xql:query-construct> element which has a name
attribute, which associates a name with the query for identi�ying it in case of reuse. The
<xql:query-construct> element contains an <xql:query> element which represents the query, and
an <xql:construct> element which constructs the result. Variable bindings are communicated from
the former to the latter. Queries may be parameterized.

Inside the <xql:query> element,

� the free (input) variables of the query are declared by <xql:declare var=\var" . . . > elements,

� additional variables are assigned with values using <xql:match var=\var" select=\xpath-
expr"> elements. <xql:match> elements can be nested,
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� variables can also be bound by <xql:iterate> elements which specify iteration, e.g., over a
whitespace-separated list of items in a string (tailored for the handling of IDREFS attributes),

� a query may contain subqueries, either as <xql:query> elements or by reusing another query
by an <xql:query-reference href=\query-name"> element which contains <xql:bind> elements
to bind the results from the referenced query to variables of the surrounding query,

� <xql:project> elements serve for binding variables to nodes, text, or even XPointers, using
<xql:bind var=\var" select=\xpath-expr"> elements.

Recursive queries are de�ned by <xql:recursive-query name=\name"> elements, containing <xql:union>

elements which in turn contain one or more <xql:query elements> which may now refer to the sur-
rounding <xql:recursive-query> element.

The <xql:construct> element then constructs a result similar to XSLT, using the variables bound
in the <xql:query> part. Here, additional elements an be used for specifying iteration, concatenation
etc.

There is no reported implementation of YAXQL.

3.15 XMLMetadata: DTDs, XML Schema, and XMLQuery
Algebra

In practice, since the DTDs are the \original" way to describe structural information on XML
documents, most XML tools support DTDs, and thus, most XML instances come with DTDs.

An important argument for DTDs is that standard validating parsers use them; although also
XML Schema-aware parsers/validators have recently been presented (see http://www.w3.org/

XML/Schema). On the other hand, DTDs give only incomplete information on what usually is
understood as schema information in databases: especially, the support for cardinalities is only
restricted.

With usual XML querying languages, there is only implicit access to the DTD - it does not �t
into the XML data model (commercial tools such as Tamino [Sof] and eXcelon [eXc] provide access
to the schema description of stored documents). Nevertheless, as stated above this implicit access
is crucial for validating parsers, and for parsing documents unambiguously (e.g., distinguishing
ID attributes from CDATA ones). In contrast, for querying, as shown in Section 3.2.2, it is not
necessary to distinguish IDREFS from NMTOKENS { everything can be dereferenced.

In contrast, XML Schema documents are valid XML documents according to the XML Schema
DTD which speci�es the structure of XML Schema instances. Thus, applications which are aware
of the special semantics of these tags can access them using standard XML querying languages
such as XML-QL, or Quilt/XQuery, similar to the Data Dictionary in relational database systems.

While both DTDs and XML Schema are designed for practical use, the XML Query Algebra
de�nes a type system for formal use. Comparing the underlying metadata models, DTDs, XML
Schema, and the XML Querying Algebra de�ne di�erent notions of typing:

� DTD: Every element (type) de�nes a \type" whose properties are de�ned by the contents
model of the <!ELEMENT> declaration and by the <!ATTLIST> declaration. The DTD typing
is a \1-level-typing".

One of its main drawbacks for practical use is that it does not distinguish between element
types and subelement names: in the Mondial example, both countries and cities have
population subelements, but with a di�erent structure. This is not expressible with a DTD.

� XML Schema: element types are de�ned by complexType elements. The declarations of
subelements and attributes may either refer to existing element and attribute de�nitions
(1-level), or de�ne local types (nested-types).
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� XML Query Algebra: A type consists of the description of the complete nested structure
without referring to other (non-basic) types (at least in the current version).

For practical aspects, one-level-typing models are better to handle (the metadata extension of
XPathLog (see Section 10) is also a 1-level typing model).

3.16 Discussion

The development of languages in the XML world is now centered around the XPath concept
which itself developed from XSL Patterns, XQL, and XPointer. Based on the \stable" notion of
XPath, the \second-level" concepts of XSLT, XMLSchema, XLink, XQuery etc. are de�ned which
combine XML syntax with XPath,

� de�ning special XML elements in reserved namespaces which represent constructs of the
respective (querying, updating, linking, etc.) language,

� embedding XPath expressions as attributes and element contents for dealing with XML
instances.

Currently, XQuery represents the W3C state of the art in XML querying. The next extensions
are foreseeable:

� XQuery does not yet { as required in the XML Query Requirements [XMQ01c] { provide a
syntax which is completely in XML. Nevertheless, an XQuery version which embeds XPath
into XML-syntax XQuery FLWR expressions is just syntactic sugar { just a question of time.

� Compared with SQL, XQuery is a pure querying and transformation language, it does not
yet support updates. [TIHW01] describes a proposal for updates in XML, see Section 3.12.

At the same time, the non-W3C language XML-QL has also become an established framework, im-
plemented in [DFF+99c], and used in several projects (e.g., SilkRoute [FTS00], or MIX [BGL+99];
see also Section 16.1).

With YAXQL [Moe00], an XML querying language in XML syntax has been presented; also a data
manipulation extension of XSLT has been de�ned by Excelon in XUL (XML Update Language)
[eXc].

Dangling References in the Result Tree. All the above querying languages share the prob-
lem of handling dangling references in the result tree: Generally, for every reference attribute
which is added to the result tree (often, by deep-copying elements bound to variables), it has to
be checked if the target of the reference(s) also belongs to the result tree. Considering the fact
that the splitting of IDREFS is not satisfying by the above languages, this check is in general not
possible to be integrated into the query.

Early Predecessors. The above sections did not describe earlier predecessors of XML, handling
semistructured data, such as Tsimmis/MSL/OEM/Lorel [GMPQ+97,AQM+97a] (starting from
integration of heterogeneous data), Strudel/StruQL [FFK+98] (from the point of view of a Web
site management system; Strudel/StruQL served as a base for XML-QL), or F-Logic/Florid
[HKL+98,KLW95] (originally an object-oriented logic-based framework). They will be compared
in Sections 4.2 and 16.1.

Preview. In the subsequent sections, XPathLog, a logic-programming language based on XPath
is de�ned, extending XPath in Datalog style: the rule body serves for generating variable bindings
which are used in the head for extending the current XML database. In contrast to the languages
presented above, XPathLog does not only produce a standalone result tree which is isolated from
the database, but implements database manipulation directly. In contrast to, e.g., XSLT, the
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language does not use additional constructs whose semantics has still to be de�ned: the only
semantics prerequisite is the bottom-up evaluation strategy of Datalog or any other rule-based
language. Thus, the implementation in LoPiX (see Section 15) could be based on the evalua-
tion component (and even the storage component) of the Florid [HKL+98,LHL+98] system, an
implementation of F-Logic [KL89,KLW95].



4 DATABASE VS.

DOCUMENT POINT OF

VIEW

The XML data model { and semistructured data in general { applies both to documents and to
databases : The SGML language was originally de�ned for documents in the publishing area. On
the other hand, the interest in research on semistructured data in the late 1990s was motivated
from the database community, searching for a data model for data integration and a data format for
electronic data interchange. With the latter, also the combination of document-oriented aspects
with database aspects in a single instance was an important motivation to go beyond classical
data models.

4.1 Analysis

Data Model. The XML data model is a hierarchical model which de�nes an ordered tree with
attributes that can easily be interpreted as a document. The natural relationships in documents
are either (i) substructures, or (ii) references to other parts of the document (where the term
reference here means simply a cross-reference in a document). In XML, the nested elements
de�ne a document structure whose leaves are the text contents. Elements (i.e., the structuring
components) are annotated by attributes which do not belong to the document contents. Inside
the tree, cross-references (IDREF attributes) are allowed.

From the document point of view, the DTD (inherited from the document-oriented SGML
area) is suitable as a speci�cation of the document structure (which cannot really be called a
\schema"). The fact that the DTDs do not allow for specifying the target element type for IDREF
attributes indicates the minor importance of references in this aspect.

In contrast, for databases, a hierarchical structure is in general not intuitive. Here, several
kinds of relationships have to be represented, between substructures and pure references. When
using XML for a database-like application, these relationships have to be represented by reference
attributes. On the other hand, order is often not relevant in databases.

For the database point of view, DTDs are insu�cient: already expressing that an element must
contain some subelements in any order is longwinded (cf. Section 2.5 { the task becomes even
more complicated when cardinalities are given). Additionally, there is no means for specifying
the target element types of reference attributes { considering the fact that relationships must in
general be represented by reference attributes, this is a serious weakness.

With XML Schema, there is a metadata description formalism which is better tailored to the
needs of the database community.

Languages. The development of the navigation and querying languages (XQL, XSL Patterns,
XPath) also re
ects the origin in the document community: navigation along references requires
explicit constructs (via semijoins and the id function). The design of XSLT as a transformation
language based on patterns which are recursively applied also shows its origin in the document
area, traversing a tree. Using XSLT as a database language requires completely di�erent thinking
as e.g., in SQL/OQL (or more general, the notion of a \transformation language" is unusual in
the database area). An update language XUL based on XSLT has been de�ned by Excelon [eXc],
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nevertheless, the basic idea is the recursive application of functional-style patterns as a scripting
and transformation language.

The more recent languages XML-QL and Quilt/XQuery are strongly in
uenced from the
database area. Their queries are declarative in the SQL/OQL style, containing subqueries and op-
erators; the underlying theory is also based on operators related to the relational model (adapted
to the nested structure). They handle references (which means, navigation along relationships in
the database context) as \full" members of the data model as known from the object-oriented
ODMG model.

The requirement that operations must be order-preserving e�ects the algebraic theory, e.g.,
the join is not commutative. Thus, it constrains the optimization strategies and e�ects also
the implementations and their e�ciency. Note that most languages are based on XPath which
does not impose any constraints on the ordering of elements in its result sets (although most of
the implementations are order-preserving) { thus, implementations rely on a global ordering of
elements (see also the comparison in Section 8.2).

Data Integration. Data integration means completely di�erent things in the document area
and in the database area.

\Integration" of documents. Integration of documents is either a simple process, or it needs
much more than only programmable restructuring:

When a large document is generated from disjoint parts (e.g., compiling lecture notes from a
set of individual lectures), the task consists mainly of generating a large tree from smaller ones
without actually touching the contents of the original trees.

On the other hand, when a document has to be generated from a set of documents which are
not disjoint, but each of them describes the same general subject from di�erent points of view, it is
expected to be a manual process (e.g., compiling a thesis from several papers): each section must
be generated by combining the contents of appropriate sections in the original documents. In more
detail, paragraphs must be adapted and rewritten from the original documents in a copy&paste
(&edit) manner.

The �rst task is completely covered by XSLT, whereas the second one is optimally supported
by comfortable editors. In neither case, a \data integration language" in the sense of database
languages is required.

Integration of database contents. Research on data integration in the database community
has pointed out the need for powerful languages which allow for combining database contents with
database metadata (i.e., schema information), e.g., SchemaSQL [LSS96b], Tsimmis/OEM/Lorel
[GMPQ+97], Strudel/StruQL [FFK+98], or F-Logic [HKL+98].

In contrast to documents, the source is seen as a database where objects and their properties
are described; references are regarded as object-valued properties. Thus, there is not a dominating
hierarchical structure, but every source de�nes a densely connected graph. The same contents can
be represented by totally di�erent XML trees.

Thus, a tree-oriented proceeding as in XSLT is not suitable. A language for XML data integra-
tion must support arbitrary navigation in the XML instance, preferably also starting at arbitrary
entry points associated to constants. Then, the integration process is a complex task which cannot
be done in a one-pass way (as with XSLT), but which must iteratively collect and re�ne a result
view on the source graphs (cf. Sections 11 and 12).

On the other hand, in this context, the order of properties and children is in general irrele-
vant. In case the order is relevant, this can e.g., be expressed by attributes. When an \object"
collects properties and relationships from di�erent sources, there is no inherent order. As stated
above, without order, the algebraic theory of a language is much easier, allowing for more e�cient
optimization strategies.

In the following, the language XPathLog is developed as an XML querying and data manipu-
lation language. Although the main goal of the language is data integration, the language concept
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itself includes the handling of order. Later, when focussing on data integration in Sections 11
and 12, the order is ignored.

4.2 Solutions in Related Approaches

The pre-XML projects on semistructured data in the database area used unordered data mod-
els strongly in
uenced by the object-oriented paradigm, e.g., Tsimmis/OEM/Lorel [GMPQ+97,
AQM+97a] , Strudel/StruQL [FFK+98], or F-Logic/Florid [HKL+98,KLW95]. These projects
in turn served as a base for projects in the XML area: XML-QL has been developed based on the
experiences with Strudel/StruQL (translating XML-QL queries into StruQL). The XML-QL
language is also used in the MIX (Mediation in XML) project [BGL+99] which has also been
in
uenced by the Tsimmis architecture. The approach presented in this work, XPathLog and
LoPiX, are based on F-Logic/Florid. Thus, these projects are originally based on unordered,
graph-based models.

XML-QL provides both an unordered and an ordered data model as described in Section 3.5.
The unordered one is practically an object-oriented model: an edge-labeled graph whose nodes
(equipped with object ids) are the elements, the leaves are the text elements, and attributes are
associated with element nodes. The ordered model extends this model with a global order on
nodes. MIX uses the XML-QL language, thus it is based on the same model.

The XPathLog/LoPiX project described in the present work is also based on an originally
unordered graph model. In contrast to the XML-QL data model, the ordered variant enumerates
the children of a node directly, not imposing a global order (see Section 5.3). As a consequence, it
is e.g., allowed that e1 is the �rst child of a node x, and e2 is the second child, whereas for another
node y, e2 is the �rst child and e1 is the second child. This may be useful when the contents of a
source has to be reordered.

In contrast, the YAT/YATL (Yet Another Tree Model/Language) [CDSS99] came up already
with an ordered tree model motivated by SGML (e.g., using DTDs). In [CCS00], the YAT system
is turned into an XML system for data integration.

In the XML Query Algebra Working Draft, an unordered model is explicitly distinguished
[XMQ01a, Section 2.8], providing e.g., a symmetric join where traditional optimizations are ap-
plicable.
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5 XPATH-LOGIC: THE

FORMAL FRAMEWORK

5.1 XPathLog: Adding Variable Bindings to XPath

In this section, XPathLog is presented from an intuitive point of view as a logic-based XML
querying language which extends XPath [XPa99] (see Section 3.2) with Datalog-style variable
bindings. It is the Horn fragment of XPath-Logic which is formally de�ned in Sections 5.4 and 5.5,
after de�ning suitable logical structures in Sections 5.2 and 5.3. XPathLog will be de�ned formally
in Sections 5.4 and 6.

Example 5.1 (XPath, Result Sets)

Consider the following excerpt of the Mondial database [Mon] for illustrations. The complete
DTD can also be found in Appendix A, a representation of this excerpt as a graph can be found in
Figure 5.1.

<!ELEMENT mondial (country+, organization+, . . . )>
<!ELEMENT country (name, population, city+, . . . )>

<!ATTLIST country car code ID #REQUIRED memberships IDREFS #IMPLIED
capital IDREFS #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT city (name, population*)> <!ATTLIST city country IDREF #REQUIRED >

<!ELEMENT population (#PCDATA)> <!ATTLIST population year CDATA #IMPLIED>

<!ELEMENT organization (name, abbrev, members+)>
<!ATTLIST organization id ID #REQUIRED seat IDREF #IMPLIED>

<!ELEMENT abbrev (#PCDATA)>
<!ELEMENT members EMPTY>

<!ATTLIST members type CDATA #REQUIRED country IDREFS #REQUIRED>

<country car code=\B" capital=\cty-Brussels" memberships=\org-eu org-nato . . . ">
<name>Belgium</name>
<population>10170241</population>
<city id=\cty-Brussels" country=\B">

<name>Belgium</name>
<population year=\95">951580</population>

</city>
...

</country>

<country car code=\D" capital=\cty-Berlin" memberships=\org-eu org-nato . . . ">
...

</country>

<organization id=\org-eu" seat=\cty-Brussels">
<name>European Union</name> <abbrev>EU</abbrev>
<members type=\member" country=\GR F E A D I B L . . . "/>
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<members type=\membership applicant" country=\AL CZ . . . "/>
</organization>

<organization id=\org-nato" seat=\cty-Brussels" . . . >
...

</organization>

The XPath expression

//country[name]/city[population/text()>100000 and @zipcode]/name/text()

returns all names of cities such that the city belongs (i.e., is a subelement) to a country where a
name subelement exists, the city's population is higher than 100000, and its zipcode is known.

XPath is only an addressing mechanism, not a full querying language like, e.g., the SQL querying
construct. It provides the base for most XML querying languages, which extend it with their
special constructs (e.g., functional style in XSLT, and SQL/OQL style (e.g., joins) in Quilt). In
the case of XPathLog, the extension feature are Prolog/Datalog style variable bindings, joins,
and rules. A �rst step towards variable bindings in XPath has been introduced in the 1998 XQL
proposal [RLS98] (see Section 3.3) with return operators :

Example 5.2 (XQL Output Operators as Variables)

The following XPath expression with return operators returns pairs (x1; x2) such that x1 is the
name of the country, and x2 is the name of a city in this country:

//country[name/text()?]//city[population/text() > 100000 and @zipcode]/name/text()?

Here, the following \variables" are used:

� country[name/text()?] de�nes an unnamed return variable (position 1 of the return tuple),

� population/text() > 100000 de�nes an implicit local variable whose value is used only in the
comparison,

� @zipcode de�nes a implicit don't care variable whose binding must be present but is never
used,

� /name/text()? de�nes another unnamed return variable (position 2 of the return tuple).

In Logic Programming languages, instead of a result set, for every match, a variable binding of the
free variables is returned which can be used in the rule head. We extend the XPath syntax with
the Prolog-style variable concept (and with implicit dereferencing). First, a semi-formal intuitive
de�nition, is given, extending XPath expressions. A formal de�nition based on the XPath grammar
given in [XPa99, Chap. 2] will be presented in De�nition 5.8.

De�nition 5.1 (XPathLog: Syntax as derived from XPath)

An XPathLog reference expression is an XPath expression where

� every location step nodetest [�lter ]* may be replaced by

{ variable1[�lter ]*,

{ nodetest!variable2[�lter ]*,

{ nodetest[�lter ]*!variable2 or even

{ variable1[�lter ]*!variable2 or

{ variable1!variable2[�lter ]*.
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variable1 is bound to the element name, extending the \*" navigation wildcard, and variable2
is bound to the node.

� for reference attributes @name, additional navigation steps may follow (implicit dereferenc-
ing).

� the id function is not used (since XPathLog supports implicit dereferencing). 2

The variables are bound to the names/nodes/literals (for i.e., CDATA or NMTOKENS attributes) which
result from the respective match; the formal semantics based on that of XPath given in [Wad99b]
(cf. Figure 3.1 in Section 3.2.1) is given in De�nition 5.9. The following example illustrates the
idea:

Example 5.3 (XPathLog: Introductory Queries)

The following examples are evaluated against the Mondial database (an excerpt is given in Ex-
ample 5.1).

Pure XPath expressions: pure XPath expressions (i.e., without variables) are interpreted as
existential queries which return true if the result set is non-empty:

?- //country[name/text() = \Belgium"]//city/name/text().
true

since the country element which has a name subelement with the text contents \Belgium"
contains at least one city descendant with a name subelement with non-empty text contents.

Output Result Set: The query \?- xpath!N" for any xpath binds N to all nodes belonging to
the result set of xpath:

?- //country[name/text() = \Belgium"]//city/name/text()!N.
N/\Brussels"
N/\Antwerp"
...

respectively, for a result set consisting of elements, logical ids are returned (here, using
mnemonic ids instead of o1; o2 etc):

?- //country[name/text() = \Belgium"]//city!C.
C/brussels
C/antwerp
...

Additional Variables: XPathLog allows to bind all nodes which are traversed by an expression
(both by the access path to the result set, and in the �lters):
The following expression returns all tuples (N1; C;N2) such that the city with name N2 belongs
to the country with name N1 and car code C:

?- //country[name/text()!N1 and @car code!C]//city/name/text()!N2.
N2/\Brussels" C/\B" N1/\Belgium"
N2/\Antwerp" C/\B" N1/\Belgium"

...
N2/\Berlin" C/\D" N1/\Germany"

...

Local Variables: The following XPath expression returns all names of cities such that the city
belongs to a country whose name is known and its population is higher than 100000:
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?- //country[name/text()!N1]//city[population/text()! P]/name/text()!N2,
P > 100000.

The semantics of this query is a set of variable bindings for N1 and N2.

Dereferencing: For every organization, give the name of the seat city and all names and types
of members:

?- //organization[name/text()!N and abbrev/text()!A and @seat /name/text()!SN]

/members[@type!MT]/ @country /name/text()!MN.

One element of the result set is e.g.,

N/\. . . " A/\EU" SN/\Brussels" MT/\member" MN/\Belgium"

Navigation Variables: Are there elements which have a name subelement with the PCDATA con-
tents \Monaco", and of which type are they?

?- // Type !X[name/text()!\Monaco"].

Type/country X/country-monaco
Type/city X/city-monaco

Schema Querying: The use of variables at name positions further allows for schema querying,
e.g., to give all names of subelements of elements of type city:

?- //city/ SubElName .
SubElName/name
SubElName/population
...

The schema querying functionality can also be used for validation wrt. a DTD or a given
XML Schema (which can be present as an XML tree in the same XPathLog database).

Recall that XPath does not support implicit dereferencing (cf. Section 3.2.2, Example 3.4), but
uses the id(. . . ) function which leads to confusing expressions if navigation is applied along several
references.

Example 5.4 (Dereferencing)

The XPathLog expression

?- //organization[@seat = members/@country/@capital]/@seat/name/text()!N.

(all city names which are seats of an organization and the capital of one of its members) is
equivalent to the XPath expression

id(//organization[id(./@seat) = id(id(./members/@country)/@capital)]/@seat)/name/text()

As described in Sections 3.10 and 3.11, an explicit dereferencing operator \!"-operator has been
de�ned in Quilt/XQuery, which gives also the type of the referenced element [CRF00,XQu01]:

//organization[@seat!city = members/@country!country/@capital!city]
/@seat!city/name/text() .

XPathLog additionally allows to add further variables to bind the names of the organization and
of the country:

?- //organization[name/text()!ON and
@seat = members/@country[name/text()!CN]/@capital]

/@seat/name/text()!N.

Further examples can be found and executed with the LoPiX system [LoP].
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5.2 Notation and Basic Notions

Logic-oriented frameworks are in general based on a semantical structure (from which a suitable
Herbrand-style structure is derived) as a theoretical foundation. Since XPath-Logic is based on
the notions of �rst-order logic, a short review of �rst-order logic is given, introducing the notation
in this work. As a prerequisite, a syntax and semantics for handling mappings and especially lists
are needed:

Notation 5.1 (Lists)

Throughout this work, the following notation is used:

� For two sets A and B, the set of mappings from A to B is denoted by BA (cf. 2A for the
powerset of A, mapping each element of A to either 1 or 0 (contained or not)).

� A list over a domain D is a mapping from IN to D. Thus, the set of lists over D is denoted
by DIN.

� the empty list is denoted by "; a unary list containing only the element x is denoted by (x);
list concatenation as an operator is denoted by � , e.g., (c) � ` where ` is a list.

� append(`; c) results in the list ` � (c).

� set(expr1(x1; : : : ; xn) j expr2(x1; : : : ; xn; i)) stands for

fexpr1(x1; : : : ; xn) j expr2(x1; : : : ; xn)g

In the following, sets are sometimes used as lists exploiting the fact that a set can be seen as
a list by an arbitrary enumeration.

� In a similar way, a list can be constructed by enumerating its elements. For an enumerable
domain I (set of indices; I can also be a list)

listi2I (expr1(x1; : : : ; xn) j expr2(x1; : : : ; xn; i))

is the list (expr1(x1;1; : : : ; x1;n); expr1(x2;1; : : : ; x2;n); : : : ; ) such that the values xi;1; : : : ; xi;n
are de�ned by expr2(x1; : : : ; xn; i).

� Similar to list,
concati2I(expr1(x1; : : : ; xn) j expr2(x1; : : : ; xn; i))

does the same if expr1(x1; : : : ; xn) is already a list.

� For a �nite list ` = (x1; : : : ; xn), reverse(`) = (xn; : : : ; x1).

� For a list `, `[i; j] denotes the sublist consisting of the ith to jth elements,

� For a list ` of pairs i.e., ` = ((x1; y1); (x2; y2); : : :), ` #1 denotes the projection of the list to
the �rst component of the list elements, i.e., ` #1:= (x1; x2; : : :). 2

First-Order Logic. Each �rst-order language contains a set of distinguished symbols, con-
sisting of parentheses \(" and \)", constants true, false representing the truth values, boolean
connectives :, ^, _, quanti�ers 8, 9, and an in�nite set Var of variables x; y, x1; x2, . . . .

An individual �rst-order language is then given by its signature �. � is partitioned into a
functional part F of function symbols and a relational part P of predicate symbols, each of the
symbols with a given arity which is denoted by ord(f) and ord(p), respectively. 0-ary functions
are also called constants.

The set Term� of terms over � is de�ned inductively as

� each variable is a term,
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� for f 2 F , ord(f) = n and terms t1; : : : ; tn, also f(t1; : : : ; tn) is a term.

The set of atomic formulas over � is given as

Atoms� := fs = t j s; t 2 Term�g [ fp(t1; : : : ; tn) j p 2 P , ord(p) = n, t1; : : : ; tn 2 Term�g :

The set of �rst-order formulas over � is de�ned as the least set with the following properties:

� all atomic formulas are formulas,

� true and false are formulas,

� for formulas A and B, a variable x, :A, A _B, A ^ B, 8x : A, and 9x : A are formulas.

The notions of bound and free variables are de�ned in the usual way, free(F ) denoting the set of
variables occurring free in a set F of formulas.

The semantics of �rst-order logic is given by �rst-order structures over a given signature:

De�nition 5.2 (First-Order Structure)

A �rst-order structure I = (I;U) over a signature � consists of a nonempty set U (universe) and
an interpretation I of the signature symbols over U which maps

� every constant c to an element I(c) 2 U ,

� every n-ary function symbol f to an n-ary function I(f) : Un ! U ,

� every n-ary predicate symbol p to an n-ary relation function I(p) : Un ! ftrue; falseg.

For short, I consists of two mappings IF : F !
S1
k=0 U

(Uk) and IP : P !
S1
k=1 2

(Uk)
2

A variable assignment over a universe U is a mapping

� : Var! U :

For a variable assignment �, a variable x, and d 2 U , the modi�ed variable assignment �dx is
identical with � except that it assigns d to the variable x:

�dx : Var! U :

�
y 7! �(y) if y 6= x ;
x 7! d otherwise.

Similar, for a variable assignment � and a variable x, � n fxg denotes � without the mapping for
x:

� n fxg : Var! U :

�
y 7! �(y) if y 6= x ;
unde�ned otherwise.

Every structure I induces an evaluation I of terms

I : Term� �Var Assignments! U

and tuples of terms, I : Termn
� �Var Assignments! Un, as follows:

I(x; �) := �(x) for a variable x ;
I((t1; : : : ; tn); �) := (I(t1; �); : : : ; I(tn; �)) for terms t1; : : : ; tn ;
I(f(t1; : : : ; tn); �) := (I(f))(I((t1; : : : ; tn); �)) = (I(f))(I(t1; �); : : : ; I(tn; �))

for a function symbol f 2 �, ord(f) = n and terms t1; : : : ; tn.
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To indicate the truth of a formula F in a structure I under a variable assignment �, the standard
notation j= is used: Let s; t be terms, p a predicate symbol, ord(p) = n, t1; : : : ; tn terms, x a
variable, A and B formulas. Then

(I; �) j= true ;
(I; �) j= p(t1; : : : ; tn) :, (I(t1; �); : : : ; I(tn; �)) 2 I(p) ;
(I; �) j= :A :, not (I; �) j= A ;
(I; �) j= A _B :, (I; �) j= A or (I; �) j= B ;
(I; �) j= 9x : A :, there is a d 2 U with (I; �dx) j= A :

The symbols A ^ B := :(:A _ :B), A ! B := :A _ B and 8x : F := :9x : :F are de�ned as
usual.

We start with introducing X-structures as a semantical notion for XML instances, and then give
the syntax of the particular logic.

5.3 XML Instances as Semantical Structures

When considering XML instances, we see an XML instance as an abstract structure over a signa-
ture � = (�N ;�F ;�C ;�P ) which consists of

� �N : element names and attribute names (termed qnames in XML),

� �F : names of XML-built-in functions,

� �C : constant symbols which denote elements in the XML instance (e.g., the constant germany
may be interpreted as the element node addressed by /mondial/country[name=\Germany"]).

� �P : predicates (with arity).

� Additionally, a basic set of literals, i.e., strings and numbers is assumed.

In contrast to the DOM model [DOM98] (see Section 2.1.3) and the XML Query Data Model
[XMQ01b] (see Section 3.9.1) which use a node-labeled tree (i.e., the element and attribute names
are associated with the nodes), an edge-labeled model is used in the present approach. Using
an edge-labeled model proves useful for data integration (see Section 11). The navigation graph
induced by the data model is a variant of the semistructured data model de�ned in [Bun97].
Recall from Section 3.5 that XML-QL [DFF+99b] also uses an edge-labeled graph which especially
de�nes the same handling of text contents as ours. Their data model has been in
uenced by the
experiences with the Strudel/StruQL [FFK+98] project for data integration.

The main features of the model are:

� the universe consists of the element nodes of the XML instance and literals used as attribute
values and text contents;

� element nodes have properties, de�ned by (i) subelements (which are ordered) and (ii) at-
tributes (which are unordered);

� multivalued attributes (NMTOKENS and IDREFS) are silently split;

� reference attributes are silently resolved.

This model supports a declarative handling of IDREFS attributes without the necessity of string
operators.
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De�nition 5.3 (X-Structure)

An X-structure over a given signature � is a tuple

X = (N ;V ;L; I; E ;A)

where

� N is the set of names which may be further distinguished as

{ NE : element names (as e.g., occurring in node tests); NE contains a special element text()
for handling text children.

{ NA: attribute names,

{ later, also class names NC will be introduced which may further be distinguished as NCE
and NCL for element and literal classes;

� V is a set of nodes (from the graph point of view, vertices), identi�ed by internal names,

� L is a set of literals (integers, 
oats, strings),

� I is a (partial) mapping, which interprets the signature:

IE : �N ! NE
IA : �N ! NA

interpret the names �N by element and attribute names (note that a name may simultane-
ously be an element name and an attribute name, e.g. <el n=\foo"> <n> . . . </n></el> is
allowed);

IC : �C ! V

interprets the constant symbols in �C by nodes in V ;

IF : V ��F � (V [ L [ N )� ! V [ L [ N

represents the interpretation of built-in functions, and

IP : �P � (V [ L [ N )� ! ftrue; falseg

represents the interpretation of predicates.

� E is a (partial) mapping
E : V �NE � IN! V [ L

(subelement relationship; from the graph point of view, edges; ordered), and

� A is a (partial) mapping
A : V �NA ! 2V [ 2L

(attribute values).

Note that E and A are not direct interpretations of �, but mappings that \interprete" N . � is
mapped to N before by I, making attribute and element names full citizens of the language.

Furthermore, E is partitioned into the subelement part and the text contents part:

ESub(v; n; i) :=

�
E(v; n; i) if E(v; n; i) 2 L ;
? if E(v; n; i) 2 V ;

Etext(v; n; i) :=

�
E(v; n; i) if E(v; n; i) 2 V ;
? if E(v; n; i) 2 L :
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A is partitioned into the literal-valued part, and the reference part:

ALit(v; n) :=

�
A(v; n) if A(v; n) � L ;
? if A(v; n) � V ;

ARef (v; n) :=

�
A(v; n) if A(v; n) � V ;
? if A(v; n) � L : 2

Note the following:

� XML attribute nodes do not belong to V , but their literal values belong to L.

� for reference attributes (IDREF), the \results" are not the ID-strings, but the target nodes
themselves,

� PCDATA children are handled by the special name text(),

The elements of V (representing the element nodes) do not carry useful information in themselves,
they are only of interest as anonymous entities (similar to object ids) which have certain properties
that are given by E ;A, and I. In the following, mnemonic ids (e.g., john) or arti�cial ids (e.g.,
o 42) are used for elements of V .

De�nition 5.4 (Navigation Graph)

The navigation graph of an X-Structure is the directed graph (V [ L; E [ A) which is induced by
all element nodes, the subelement relationship, and the attribute references. 2

There is a canonical mapping from the set of XML instances to the set of X-structures (modulo
equivalence):

De�nition 5.5 (Canonical X-Structure)

Given an XML instance D, the canonical X-structure XD is de�ned as follows:

� Starting with the root node, the document is traversed in document order, assigning an id
with every element node (inducing a bijective mapping � from element nodes to ids). V is
the set of used ids.

� the set �N of names used in the XML instance (or in the DTD, if available) is mapped by
the bijective mappings IA and IE to \internal names" in NA and NE .

� The interpretations of names are de�ned as

E(v; name; i) = �(node) where node is the ith subelement of node �{1(v) and
IE(name(node)) = name (thus, covering only non-text elements).

E(v; text(); i) = �(node) where node is the ith subelement of node �{1(v)
and node is a text element.

A(v; name) =

8>><
>>:

f�(node) j node is a target node of the I{1A (name) attribute of �{1(v)g
if I{1A (name) is a reference attribute of �{1(v) ;

f` j ` is a value of the I{1A (name) attribute of �{1(v)g
if I{1A (name) is a non-reference attribute of �{1(v) :

Interpretation of the name function:

I(v; name; ") =

�
IE(name(�{1(v))) if �{1(v) is an element node
text() if �{1(v) is a text node.

The de�nitions of built-in functions in XPath contribute to I. 2

In the following, �N is identi�ed with NE and NA, omitting IE and IA.
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Literals: Numbers and Strings. The basic XML data model does not distinguish between
literal datatypes such as numbers and strings: in the DTD, both are text, as PCDATA (children) or
as CDATA or NMTOKEN (attributes); also the ASCII representation does not distinguish them. XPath
casts text data into numbers when required by the queries (e.g., for comparisons or arithmetics).
In contrast XML Schema and the XML Query Data Model support distinguished literal datatypes.
In this work, we follow the basic approach:

� if no datatype information is available, \numeric" data is treated as numbers (casted into
strings if needed for string operations), and non-numeric data is treated as strings (here, the
only problems are e.g., phone numbers which are \numeric" but may start with a leading
\0").

� if datatype information is available, it is used.

Example 5.5 (X-Structure)

The XML instance given in Example 5.1 is represented by the following X-structure (using mnemonic
ids); its graphical representation is given in Figure 5.1:

NE = fmondial, country, name, city, population, abbrev, membersg ,
NA = fcar code, capital, memberships, id, seat, type, countryg ,

E(mondial,country,42) = belgium,
A(belgium,car code) = f\B"g, A(belgium,capital) = fbrusselsg,
A(belgium,memberships) = feu,nato,. . . g
E(belgium,name,1) = belgium-name, E(belgium,name,2) = belgium-pop,
E(belgium,city,3) = brussels, E(belgium,city,4) = ...,
E(belgium-name,text(),1) = \Belgium", E(belgium-pop,text(),1) = 10170241,
A(brussels,country) = fbelgiumg, A(brussels,id) = f\city-brussels"g,
E(brussels,name,1) = brussels-name, E(brussels,population,2) = brussels-pop,
E(brussels-name,text(),1) = \Brussels", E(brussels-pop,text(),1) = 951580,

E(mondial,country,45) = germany,
A(germany,car code) = f`D"g, A(germany,capital) = fberling,
A(germany,memberships) = feu,nato,. . . g

E(mondial,organization,179) = eu,
A(eu,id) = f\org-eu"g, A(eu,seat) = fbrusselsg,
E(eu,name,1) = eu-name, E(eu-name,text(),1) = \European Union",
E(eu,abbrev,2) = eu-abbrev, E(eu-abbrev,text(),1) = \EU",
E(eu,members,3) = eu-mem-mem,
A(eu-mem-mem,type) = f\member"g, A(eu-mem-mem,country) = fbelgium, germany, . . . g,
E(eu,members,4) = eu-mem-appl,
A(eu-mem-appl,type) = f\mem. appl."g, A(eu-mem-appl,country) = falbania,. . . g.

E(mondial,organization,180) = nato,
A(nato,id) = f\org-nato"g, A(nato,seat) = fbrusselsg,

Note that the X-Structure contains references instead of id strings for IDREF attributes.

Remark 5.1

Note that the above de�nition depends on the knowledge about attribute declarations as NMTOKENS,
IDREF, and IDREFS for splitting and resolving. Concerning reference attributes, the problem also
occurs for all other XML querying languages { for resolving references via the id(.) function or
XQuery's \!" operator, is must be known which attributes are declared as ID. Wrt. splitting
NMTOKENS, the problem does not occur for other approaches, since they do not split them, but
require explicit string operations for accessing individual values (cf. Section 3.2.2). 2
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mondial

belgium
@car code=\B"
@memberships=�

@memberships=�

@capital=�

germany @memberships=�

@memberships=�

b-name b-pop brussels @country=�

@id=\city-brussels"

\Belgium" 10170241 brus-name brus-pop @year=1995

\Brussels" 951580

country country

name population

text() text()

city

name
population

text() text()

eu @seat=�

@id=\org-eu"
nato @seat=�

@id=\org-nato"

eu-name eu-abbrev eu-mem1 @type=\member"

@country=�

@country=�

eu-mem2 @type=\mem.appl."

@country=�

\Europ.Union" \EU"

organization

organization

name

abbrev member member

text() text()

Figure 5.1: Example X-Structure

The canonical X-structure to an XML instance represents a single XML tree. Similar, several
XML instances can be represented in an X-structure by separate trees, covering the DOM model.

In full generality, an X-structure can also contain subelement edges and reference edges which
are not conforming with the XML tree model, but which are crucial for data integration (see
Section 11):

� an element may be a subelement of several other elements, even with di�erent names of the
subelement relationship (\overlapping trees", cf. Figure 10.1),

� the subelement relationship may be cyclic (needed for restructuring),

� reference attributes may (temporarily) connect di�erent trees.

Thus, an X-structure is not one or more \XML trees", but an XML database which contains
simultaneously many views (each of which is an XML tree). When such a view should be regarded
as a result tree, there are some requirements. Each node v of an X-structure is a potential root
element for a result tree view which recursively consists of v's subelements and attributes. The
following de�nition characterizes when the subtree rooted in v is a \useful" XML instance:
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De�nition 5.6 (Descendants and roots in an X-structure)

For an X -structure, let

desc(r; v) :, E(r; n; i) = v for some n and some i, or
E(r; n; i) = x for some n and some i, and desc(x; v) holds :

An element r is a root in X if

� if desc(r; v) holds for some v 2 V then, desc(v; v) does not hold, i.e., the descendant relation
in the subtree rooted in r is acyclic, and

� if desc(r; v) and v0 2 ARef (v; n) hold for some n 2 NA and some v; v0 2 V , also desc(r; v0)
holds, i.e., the target of the reference also belongs to the subtree rooted in r. 2

In the above de�nition, the view trees are only de�ned by the subelement relationship. A re�ned
de�nition of view trees which also constrains the types of subelements and attributes that belong
to the view will be given in Section 11.1 for practical use in data integration.

In the following, X-structures serve for de�ning a semantics for XPath-Logic, using XPath-
like terms. Thus, the notion of axes as de�ned in the XML data model has to be mapped to
X-structures:

De�nition 5.7 (Basic Result Sets: Axes)

For every node x in an X-structure X and every axis a of the XML data model,

AX (a; x) 2 ((V [ L)�N )IN

is the list of pairs (value; name) generated by axis a with x as context node (do not confuse AX
with A which denotes the interpretation of attributes in X ).

AX (child; x) := listi2IN((y; name) j E(x; name; i) = y)
AX (attribute; x) := list((y; name) j y 2 A(x; name)) by some enumeration.

For the other axes, AX (a; x) is derived from AX (child; x) according to the XML speci�cation:

AX (parent; x) := set((p; I(p; name; ())) j x 2 AX (child; p) #1)
AX (preceding-sibling; x) :=

concatp2AX (parent;x)#1(reverse(AX (child; p)[1; i{1]) j x = AX (child; p)[i])
AX (following-sibling; x) :=

concatp2AX (parent;x)#1(AX (child; p)[i+1; last()] j x = AX (child; p)[i])
AX (ancestor; x) := concat(p;n)2AX (parent;x)(((p; n)) � AX (ancestor; p))
AX (descendant; x) := concat(c;n)2AX (child;x)((c; n) � AX (descendant; c)) 2

Remark 5.2

Note that in contrast to the XML/XPath data model and the semantics given in [Wad99b],

� AX does not return a list of nodes/literals, but a list of pairs (node=literal; name). This
allows for overlapping trees (cf. Section 11) where a node is a child of several parents, possibly
by di�erent labels.

� As a consequence, the name() function is not necessarily needed for node tests. 2

In case that there are no overlapping trees, AX (axis; v) enumerates the nodes on axis axis wrt.
the node v:
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Proposition 5.1 (Axes in X-structures)

Let XD be the canonical X-structure to an XML instance D (then, there are no overlapping trees,
i.e., there is a unique parent for each element). Let � as de�ned in De�nition 5.5.

Then, for each v 2 V and every axis axis except the attribute axis, AXD(axis; x) #1 enumerates
all nodes on the axis axis starting from �{1(x) in D.

For the attribute axis, AXD (attribute; x) does not enumerate the attribute nodes in the DOM
tree, but (i) silently splits NMTOKENS attributes, and (ii) resolves reference attributes. 2

In case of overlapping trees, there may several parents, and thus, also the sibling and ancestor
axes get a di�erent semantics, enumerating all siblings wrt. each parent. If namespaces are used
for distinguishing these trees (cf. Section 11.4), there is in practice at most one parent for every
namespace. In the meantime, assume that there is a unique parent for simplicity.

5.4 Syntax of XPath-Logic

Inspired by �rst-order logic as a logic for dealing with �rst-order structures, XPath-Logic is de�ned
for expressing properties of XML-Structures. The main di�erence between XPath-Logic and �rst-
order logic is that XPath-Logic has an additional type of atomic formulas: reference expressions
which turn out to be similar to predicates. XPathLog is then the Horn fragment of XPath-Logic.
The \basic" components of the language are XPath-Logic LocationPaths which are syntactically
derived from XPath's LocationPaths. In the following, a formal de�nition is given based on the
W3C XPath [XPa99] speci�cation which complements the informal motivation given in Section 5.1.

De�nition 5.8 (XPath-Logic: Syntax)

The set of basic formulas of an XPath-Logic language is de�ned over a signature � as above,
consisting of names (element names, attribute names, function names, constant symbols, and
predicate names (playing only a minor role for integrating �rst-order logic)):

� every language contains an in�nite set Var of variables.

� XPath-Logic reference expressions over the above names extend the XPath syntax as follows
(referring to the de�nition numbering in [XPa99]):

{ XPath-Logic reference expressions are either XPathAbsoluteLocationPaths [XPa99, Chap. 2],
or they are location paths which start at nodes of the universe that are given as constants
or bound to variables (note that wrt. X-structures, an AbsoluteLocationPath is also simply
a path which starts with the distinguished root element):

[0] ReferenceExpression ::= AbsoluteLocationPath

| ConstantLocationPath

[2b] ConstantLocationPath ::= constant "/" RelativeLocationPath

| variable "/" RelativeLocationPath

{ In XPath-Logic LocationSteps, axis::name[�lter ]� may be extended to bind the selected
nodes to variables:

[4] Step ::= AxisSpecifier "::" NodeTest Predicate*

| AxisSpecifier "::" NodeTest Predicate* "->" Var Predicate*

| AxisSpecifier "::" Var Predicate*

| AxisSpecifier "::" Var Predicate* "->" Var Predicate*

where NodeTest is either a name in �N , or one of the type tests text() or node() from
XPath.
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{ If predExpr is an XPath-Logic predicate expression, then also 9x : predExpr and 8x :
predExpr are XPath-Logic predicate expressions:

[9] PredicateExpr ::= Expr

| exists Var ":" "(" Expr ")"

| forall Var ":" "(" Expr ")"

{ Note that by rules [4], [5], and [6] of [XPa99], expressions of the form a/@b/c are allowed.
The XPath semantics given in [Wad99b] (see also Section 3.2.1 and Figure 3.1) evaluates
any navigation starting from attribute values to false. In our semantics, this syntax denotes
navigation by dereferencing IDREF attributes.

� An XPath-Logic predicate is

{ an XPath-Logic reference expression (which evaluates to true if the result set of the refer-
ence expression is non-empty), or

{ a predicate over XPath-Logic reference expressions.

� XPath-Logic Formulas are built over predicates and reference expressions, using ^, _, :, 9,
and 8. 2

5.5 Semantics

The semantics of XPathLogic is de�ned similar to �rst-order logic by structural induction. The
main task here is to de�ne the semantics of reference expressions, handling navigation, order, and
�ltering. A reference expression simultaneous acts as a term (it has a result (set) and can be
compared to terms) and as a predicate (when used in a �lter). Especially, reference expressions
are allowed to contain formulas in the �lters.

Remark 5.3 (Order)

Recall that the result sets of XPath expressions are unordered [XPa99]:

The primary syntactic construct in XPath is the expression.

An expression matches the production Expr. An expression is

evaluated to yield an object, which has one of the following

four basic types:

- node-set (an unordered collection of nodes without duplicates)

- boolean (true or false)

- number (a floating-point number)

- string (a sequence of UCS characters)

Only internally to the computation, when single steps are considered, there is a current node list
which is used for applying the proximity position predicates (i.e., �lters of the form [position()=i];
abbreviated by [i], or [last()]).

Although, most implementations return the elements of the result set in document order. Simi-
lar to the implementations, our semantics is list-based { using the fact that lists are a specialization
of (multi)sets. 2

The basic result lists are provided by AX (axis; v) for every node v of X (cf. De�nition 5.7). Recall
that for AX (attribute; x), the result set contains literals in case of non-reference attributes, and
element nodes in case of reference attributes. AX (attribute; x) has been de�ned as a list using an
arbitrary (but �xed) enumeration.
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5.5.1 Semantics of Expressions

Expressions are decomposed into their location steps. Every location step consists of choosing an
axis, preselecting nodes by a node test, and �ltering the result by (i) \normal" predicates and
(ii) proximity position predicates which use the order of the intermediate result set for selecting a
certain element by its index.

De�nition 5.9 (Semantics of XPath-Logic expressions)

The semantics is de�ned by operators S and Q which are derived from the formal semantics given
in [Wad99b] (cf. Figure 3.1 in Section 3.2.1).

� SX : Reference Expressions! (V [ L [ N )IN ;
(Reference Expressions�Var Assignments)! (V [ L [ N )IN ;
(Axes�Reference Expressions� V �Var Assignments)! (V [ L [ N )IN

evaluates reference expressions wrt. an axis, a context node, and a variable assignment and
returns a result list. In the third case, we use Sany to denote that the actual value of axis
does not matter. Arithmetic expressions are also reference expressions.

� QX : (Predicate Expressions� V �Var Assignments)! Boolean

evaluates �lter expressions wrt. a context node and a variable assignment.

� Recall that IF and IP provide an interpretation of XPath built-in functions and predicates
according the the speci�cation [XPa99].

1. for closed expressions (i.e., without free variables),

SX (refExpr ) = SX (refExpr ; ;)

2. reference expressions are translated into location paths wrt. a start node:

� entry points: rooted path:

SX (=p; �) = S
any
X (p; root; �)

� entry points: constants c:

SX (c=p; �) = S
any
X (p; IC(c); �)

(this is mainly of interest in Section 11, when multiple documents are used; but also in the
core XPathLog language, names/identi�ers may be associated to nodes, see Section 7.2)

� entry points: variables v 2 Var:

SX (v=p; �) = S
any
X (p; �(v); �)

3. location step:
SanyX (axis :: pattern; x; �) = SaxisX (pattern; x; �)

where pattern is of the form nodetestremainder where remainder is a sequence of �lters and
variable bindings. These are evaluated left to right, always applying the rightmost \opera-
tion" (�lter or variable) to the result of the left part:

4. node test:
SaX (name; x; �) = list(v;n)2AX (a;x)(v j n = name)
SaX (node(); x; �) = list(v;n)2AX (a;x)(v j v 2 V)
SaX (text(); x; �) = list(v;n)2AX (a;x)(v j v 2 L)
SaX (N; x; �) = list(v;n)2AX (a;x)(v j n = �(N))
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5. step with variable:

SaX (pattern! V; x; �) =

�
(�(V )) if (�(V )) 2 SaX (pattern; x; �)
" otherwise.

6. �lter(s) (note that this can be either in the form axis::nodetest[�lter ]� in a location step, or
(refExpr)[�lter ]�):

SaX (pattern[�lter]; x; �) = listy2Sa
X
(pattern;x;�)(y j QX (�lter; y; �

k;n

Pos;Size
))

where L1 := SaX (pattern; x; �) and n := size(L1), and for every y, let j the index of y in L1,
k := j if a is a forward axis, and k := n+1{j if a is a backward axis (cf. [Wad99b]). Pos and
Size are only used if the �lter contains a proximity position predicate.

7. Path:

SaX (p1=p2; x; �) = concaty2Sa
X
(p1;x;�)(S

any
X (p2; y; �))

Filters

8. Reference expressions (existential semantics) in �lters:

QX (refExpr ; y; �) :, SanyX (refExpr ; y; �) 6= ;

9. Predicate expressions:

QX (pred(expr1; : : : ; exprn); y; �) :,
there are x1 2 S

any
X (expr1; y; �); : : : ; xn 2 S

any
X (exprn; y; �)

such that (x1; : : : ; xn) 2 IP (pred)

Recall that IP is an interpretation of predicates, including built-in predicates of XPath.

10. Boolean Connectives:

QX (A and B; y; �) :, QX (A; y; �) and QX (B; y; �)
QX (A or B; y; �) :, QX (A; y; �) or QX (B; y; �)
QX (not A; y; �) :, not QX (A; y; �)

11. Quanti�cation

QX (9X : A; y; �) :, there is an x 2 V [ L [ N s.t. QX (A; y; �xX )
QX (8X : A; y; �) :, for all x 2 V [ L [N , QX (A; y; �xX)

Comparisons.

12. The semantics of comparisons in XPath is element-oriented : E.g., refExpr = term evaluates
to true if the result set of refExpr contains at least one element which equals term.

QX (expr1 op expr2; y; �) :,
there are x1 2 S

any
X (expr1; y; �) and x2 2 S

any
X (expr2; y; �) such that x1 op x2

where op 2 f<;�; >;�;=; 6=g.
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Evaluation of Terms

13. constants (in free predicates or in comparisons in �lters); let value be a string or a number:

SaX (value; x; �) = value

For constants c 2 �C :
SaX (c; x; �) = IC(c)

14. variables (in free predicates or in comparisons in �lters);

SaX (var; x; �) = �(var)

15. functions:

SaX (f(expr1; : : : ; exprn); x; �) = IF (�(x); f; (S
any(expr1; x; �); : : : ;S

any(exprn; x; �)))

Recall that IF is an interpretation of functions, including built-in functions of XPath. Note
also that built-in functions (e.g., count(expr)) regard Sany(expr; x; �) as a set.

16. context-related functions use the extension of variable bindings by pseudo-variables Size and
Pos in rule (6):

SanyX (position(); x; �) = �(Pos)
SanyX (last(); x; �) = �(Size)

Recall that the �lter pattern[i] where i 2 IN stands for pattern[position()=i], thus, also pat-
tern[last()] stands for pattern[position()=last()].

17. arithmetics:

SanyX (expr1 op expr2; x; �) = setx12SanyX
(expr1;x;�);x22S

any

X
(expr2;x;�)(x1 op x2)

The result is a set of literals which are not ordered anyhow (even not by the document order
since the literals do not occur in the document). An arbitrary enumeration of the set is
returned as result list.

Handling Result Sets.

18. Alternative/Union

SaX (p1jp2; x; �) = S
a
X (p1 union p2; x; �) = S

a
X (p1; x; �) � S

a
X (p2; x; �) 2

The semantics is comparable to XPath only for variable-free expressions. In a closed XPath-Logic
reference expression, variables occur in the following situations:

� purely existential, i.e., the variable occurs once. If this occurrence is of the form 9var :
path ! var, then it can be equivalently replaced by path in XPath. If the occurrence is
in a predicate, e.g., 9var : p(: : : ; var; : : :), then there is no equivalent variable-free XPath
expression.

� as a join variable. Then, there is sometimes an equivalent XPath �lter which can be very
complex, especially if there are dependent variables. Thus, the existence of variables adds
expressive power already for queries.

The following theorem states the equivalence of our semantics with the \o�cial one" given in
[Wad99b]:

Theorem 5.2 (Correctness of S and Q wrt. XPath)

For variable-free absolute reference expressions (i.e., pure XPath expressions) without
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� navigating along reference attributes,

� splitting NMTOKENS attributes, and

� using the alternative construct \j" (which requires to merge the result lists using a global
order),

the semantics coincides with the one given in [Wad99b]: For every such XPath expression expr,

SX (expr) = S[[expr]](x)

(for arbitrary x) where S[[expr]] is as de�ned in [Wad99b] and enumerated wrt. document order.

2

The proof uses the following Lemma which contains the structural induction.

Lemma 5.3 (Correctness of S and Q wrt. XPath: Structural Induction)

The variable-free fragment of XPathLog without navigating along reference attributes corresponds
to XPath as follows:

1. For absolute expressions (i.e., expr = =expr0), for all �:

SX (expr; �) = S[[expr]](x)

for arbitrary x.

2. For expressions, for all �:
SX (expr; v; �) = S[[expr]](v) :

3. For �lters, for all �:

QX (�lter ; v; �
k;n

Pos;Size
) , Q[[�lter ]](v; k; n) :

4. For arithmetic expressions and built-in functions, for all �:

SX (expr; v; �
k;n

Pos;Size
) = E [[expr]](v; k; n) :

where Q[[expr]], S[[expr]], and E [[expr]] are as de�ned in [Wad99b]. The individual items are
referred to below by IH1; : : : ; IH4. Since the expressions are variable-free, � is empty except
handling the pseudo variables Size and Pos (which are often also empty). 2

Proof. The above theorem and lemma are proven by structural induction. The enumeration is
the same as in De�nition 5.9. Below, � is an assignment of the pseudo variables Size and Pos
(often even empty). We write

��
= for \equals by de�nition in [Wad99b]".

1. for closed, absolute expressions (i.e., without free variables),

SX (=expr)
Def
= SX (=expr; ;)

IH1
= S[[=expr]](x)

for arbitrary x.

2. reference expressions (only absolute expressions are considered)

SX (=p; �)
Def
= SanyX (p; root; �)

IH2
= Sany [[=expr]](root) :

3. location step:

SanyX (axis :: pattern; x; �)
Def
= SaxisX (pattern; x; �)

IH2
= Saxis[[=pattern]](x) :



5.5. SEMANTICS 87

4. the node test is the base case which is directly mapped to the axes:

SaX (name; x; �)
Def
= list(v;n)2AX (a;x)(v j n = name)

which is characterized in [Wad99b] (A[[a]] enumerates the axes, P(a) gives the axes' principal
nodetype) by

fx1 j x1 2 A[[a]]x; nodetype(x1) = P(a); name(x1) = nameg

which is the de�nition of Sa[[name]](x). Note that dereferencing IDREF(S) and splitting
NMTOKENS has been excluded, thus, the result list is still in document order. Similar (note
that node() is not de�ned in [Wad99b], we extend the de�nition according to the XPath
speci�cation)

SaX (node(); x; �)
Def
= list(v;n)2AX (a;x)(v j v 2 V)
= fx1 j x1 2 A[[a]]x; nodetype(x1) = elementg = Sa[[node()]](x)

SaX (node(); x; �)
Def
= list(v;n)2AX (a;x)(v j v 2 V)
= fx1 j x1 2 A[[a]]x; nodetype(x1) = Textg = Sa[[text()]](x) :

5. step with variable: not allowed in the theorem.

6. �lter(s):

SaX (pattern[�lter]; x; �)
Def
= listy2Sa

X
(pattern;x;�)(y j QX (�lter; y; �

k;n

Pos;Size
))

where L1
Def
= SaX (pattern; x; �) which equals Sa[[pattern]](x; k; n) by induction hypothesis

IH3 and n := size(L1), and for every y, let j the index of y in L1 (which equals size(fx1 j x1 2
L1; x1 �doc yg)), k := j if a is a forward axis, and k := n+1{j if a is a backward axis. This
is the same as de�ned for Sa[[pattern[�lter]]](x).

This is { by induction hypothesis IH3 on Q the same as

IH
= listy2Sa

X
(pattern;x;�)(y j Q[[�lter]](; y; k; n))

��
= Sa[[pattern[�lter]]](x) :

7. Path:

SaX (p1=p2; x; �)
Def
= concaty2Sa

X
(p1;x;�)(S

any
X (p2; y; �))

IH2
= concaty2Sa[[p1]](x)(S

a[[p2]](y))
��
= Sa[[p1=p2]](x) :

Filters

8. Reference expressions (existential semantics) in �lters:

QX (refExpr ; x; �)
Def
, SanyX (refExpr ; x; �) 6= ;
IH3
, Schild[[refExpr ]](x) 6= ;

��
, Q[[refExpr ]](x; k; n) :

(for all k; n since these are not used in refExpr).

9. Predicate expressions: [Wad99b] knows only the \=" predicate; The de�nition is although not
complete: e.g. for �lters of the form [a/b/c = \foo"] which are allowed in XPath, there is no
semantics de�ned. We extend the semantics according to the XPath speci�cation, applying
either S or E .

QX (pred(expr1; : : : ; exprn); x; �)
Def
, there are x1 2 S

any
X (expr1; x; �); : : : ; xn 2 S

any
X (exprn; x; �)

such that (x1; : : : ; xn) 2 IP (pred)
IH2=4
, there are x1 2 Schild[[expr1]](x) or x1 2 E [[expr1]](x; �(Pos); �(Size)); : : : ;

xn 2 Schild[[exprn]](x) or xn 2 E [[exprn]](x; �(Pos); �(Size))

such that pred(x1; : : : ; xn) holds.
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10. Boolean Connectives

QX (A and B; x; �)
Def
, QX (A; x; �) and QX (B; y; �)
IH2
, Q[[A]](x; k; n) and Q[[B]](x; k; n)

��
, Q[[A and B]](x; k; n) :

Analogously for \or" and \not".

11. Quanti�cation is not allowed (since variables are not allowed at all)

12. Comparisons see predicates.

13. constants (in free predicates or in comparisons in �lters); let value be a string or a number:

SaX (value; x; �)
Def
= value

��
= E [[value]](x; k; n) :

14. variables are not allowed.

15. functions are not de�ned in [Wad99b], but the extension is obvious.

16. context-related functions use the extension of variable bindings by pseudo-variables Size and
Pos in rule (6):

SanyX (position(); x; �)
Def
, �(Pos)

��
= E [[position()]](x; �(Pos); �(Size))

SanyX (last(); x; �)
Def
, �(Size)

��
= E [[last()]](x; �(Pos); �(Size)) :

17. arithmetics is proven similar to predicates; again handling the incompleteness of [Wad99b]
as above:

SanyX (expr1 op expr2; x; �)
Def
= setx12SanyX

(expr1;x;�);x22S
any

X
(expr2;x;�)(x1 op x2)

IH2=4
= set

x1 2 Schild[[expr1]](x) or x1 2 E [[expr1]](x; �(Pos); �(Size)); : : : ;
x2 2 Schild[[expr2]](x) or x2 2 E [[expr2]](x; �(Pos); �(Size))

(x1 op x2)

��
= E [[expr1 op expr2]](x; �(Pos); �(Size)) :

18. Alternative/Union: not allowed in the theorem. 2

Note that the above theorem does not extend to general closed formulas since join variables can
further restrict the result set:

Corollary 5.4 (Correctness of S and Q wrt. XPath: Join Variables)

For closed absolute reference expressions (possibly containing bound variables) without navigating
along reference attributes and splitting NMTOKENS attributes,

SX (expr) � S[[expr
0]](x)

where expr0 is obtained from expr by removing all variables (including predicates which contain
variables). 2

The above theorems excluded the following functionality for handling attributes which is not
provided by XPath:

� navigation along reference attributes: we intentionally de�ne the order of the result set for
dereferencing steps in a di�erent way: the result is not in document order, but in the same
order as the referencing elements were1.

1if desired, a reorder-to-document-order operator may be added.
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� splitting NMTOKENS: NMTOKENS are considered as atomic in XPath, whereas they are split in
XPathLog.

Note the interaction of variable bindings by \!V" and �ltering:

Proposition 5.5 (Filters without Proximity Position Predicates)

The variable binding and the �ltering construct commute if the �lter does not use proximity
position predicates : In this case, the expressions

/path/axis::nodetest!var[�lter ]) and /path/axis::nodetest[�lter ]!var

(where var does not occur somewhere else in the expression) are equivalent. 2

Proof. Assume to be expr one of the above expressions. In both cases, QX (expr; root; �) if

� �(var) 2 SX (path/axis::nodetest; root; � n fvarg) and

� QX (�lter ; �(var); � n fvarg). 2

Both constructs do not commute if proximity predicates are used. Here it is important to compute
the intermediate result list �rst and to apply the proximity position predicate and then bind the
information from the selected element to variables (similar to grouping):

Example 5.6 (Filters: Proximity Position Predicates)

The expressions

//country[position()=5 and name!N]!C ,
//country[position()=5][name!N]!C , and
//country[position()=5]!C[name!N]

evaluate to true if C is bound to the 5th country in the database and N is bound to its name. In
contrast, in

//country!C[name!N][position()=5]

already SX (//country!C; �) is only non-empty if �(C) is a country. Then, SX (//country!C; �) =
�(C). N is then bound to the name, but the result list does not contain a 5th element, thus, the
expression evaluates to false.

5.5.2 Semantics of Formulas

De�nition 5.10 (Semantics of XPath-Logic Formulas)

Formulas are interpreted according to the usual �rst-order semantics

j= � (X-structures�Var Assignments� Formulas)

8. Reference Expressions: The semantics of reference expressions corresponds to a predicate in
�rst-order logic, de�ning a purely existential semantics:

(X ; �) j= refExpr :, (SX (refExpr ; �)) 6= ;

9. Predicates:

(X ; �) j= pred(A1; : : : ; An) :,
there are x1 2 SX (A1; �); : : : ; xn 2 SX (An; �) s.t. (x1; : : : ; xn) 2 IP (pred)
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10. Boolean connectives use the de�nition from �rst-order logic:

(X ; �) j= true ;
(X ; �) j= fml1 ^ fml2 :, (X ; �) j= fml1 and (X ; �) j= fml2 ;
(X ; �) j= fml1 _ fml2 :, (X ; �) j= fml1 or (X ; �) j= fml2 ;
(X ; �) j= :fml :, not (X ; �) j= fml ;
(X ; �) j= 9x : fml :, there is a d 2 U with (X ; �dx) j= fml ;
(X ; �) j= 8x : fml :, for all d 2 U , (X ; �dx) j= fml :

2

We write A ; B for the implication which is usual denoted by \!", since \!" is used for
variable binding in reference expressions.

The above semantics de�nitions associates a truth value semantics with XPath-Logic formulas.
The j= relation

X j= closed formula

can be used for expressing integrity constraints on XML documents (see Example 5.7) and even sets
of documents, and for reasoning on X-structures. In contrast, when de�ning XPathLog as a data
manipulation language in the next section, a completely di�erent formalization of the semantics is
given: there, as for Datalog queries, the answer substitutions for a formula containing free variables
have to be computed. The above de�nition of S, de�ning a result list for an XPath-Logic reference
expression is then extended.

Example 5.7 (Integrity Constraints)

Application-speci�c integrity constraints on the Mondial database can be expressed in XPath-
Logic.

Range restrictions: The text contents of population elements and the value of area attributes
must be a non-negative number:

8 X,Y: ((//population/text()!X or Y/@area!X) ; X � 0).

Longitude/latitude values must be in the intervals ]{180; 180] and [{90;+90], respectively:

8 X: ((//longitude/text()!X ; -180<X�180) and (//latitude/text()!X ; -90�X�90)).

The sum of percentages of ethnic groups in a country is less than 100%:

8 C: (//country!C ; sumfN [C]; ethnicgroups/@percentage!Ng � 100).

Bidirectional relationships: The membership of countries in organizations is represented bidi-
rectionally:

8 C,O: (//country!C[@memberships!O] $
9 T: //organization!O/members[@type!T and @country!C]).

Referential integrity: The country attribute of border subelements of country elements must
reference a country which is encompassed by the same continent:

8 C,C2: (//country/border[@country!C2] ;
(//country!C2 and
9 Cont: (C/encompassed/@continent!Cont and

C2/encompassed/@continent!Cont))).

Other conditions: The capital of a country must be a city of the country:

8 C,Cap: (//country!C[@capital!Cap] ; C//city!Cap).
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DTDs and XML Schema. Instead of specifying the document structure by a DTD or an
XML Schema instance, a set of closed XPath-Logic expressions can be given.

Example 5.8 (Integrity Constraints: DTD)

For instance, the de�nition of country elements in the Mondial DTD (cf. Appendix A) which
declares the set of allowed and required properties and their cardinalities can be represented by the
following formula:

8 C: ( //country!C ;
((C/M ; (M = name or M = population or . . . or M = city)) and
countfN [C]; C[name!N]g = 1 and

...
countfN [C]; C[population growth!N]g � 1 and

...
countfN [C]; C[encompassed!N]g � 1 and
(C/@M ; (M = car code or M = area or M = capital or M = memberships)) and
countfN [C]; C[@car code!N]g = 1 and
countfN [C]; C[@capital!N]g = 1 and
(C[@car code!CC] ; countfX [CC]; //country!X[@car code!CC]g = 1)))

The DTD does not specify target types of reference attributes. Such conditions have to be added
manually, as shown above for referential integrity. Also the datatypes, e.g., strings and numeric
types are not considered in DTDs. XML Schema de�nitions can be translated into XPath-Logic
formulas in a similar way.

5.5.3 Aggregation

The basic syntax is extended with aggregation as known for SQL. An aggregation term has the
form

aggfX[G1,. . . ,Gn]; bodyg

where agg is one of the usual aggregation operators min, max, count, and sum and body is the
aggregation body (that is, a conjunction of literals), and [G1,. . . ,Gn] are the group variables (similar
to SQL). If the aggregation body contains other variables than the grouping variables, these are
local to the aggregation. The grouping variables may occur anywhere in the rule body. Like
arithmetic expressions, aggregation terms may only occur in the built-in predicates \=", \<",
\>", \<=", \>=". The term aggfX[G1,. . . ,Gn]; bodyg returns one value for every tuple of
values for [G1,. . . ,Gn]: All variable bindings satisfying body are calculated, yielding bindings for
X,G1,. . . ,Gn. Then, the X's are grouped by [G1,. . . ,Gn] and for every group, agg is calculated and
returned. Aggregation may be nested.

The list of grouping variables [G1,. . . ,Gn] is optional and may be omitted, e.g.,

?- N = countfC; //country!Cg.

yields the total number of country elements in the database.

De�nition 5.11 (Aggregation)

The body of an aggregation term is an XPath-Logic formula which shares the variable assignment
of G1; : : : ; Gn with the surrounding environment. The semantics of formulas is used for evaluating
the aggregation body:

SanyX (aggfV[G1,. . . ,Gn]; bodyg; x; �) = (agg(fv j (X ; (�jfG1;:::;Gng)
v
V ) j= bodyg))

which results in a unary list. (�jfG1;:::;Gng) denotes the restriction of � to the grouping variables
fG1; : : : ; Gng which are communicated between the body and its environment. 2
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5.6 Annotated Literals

The XML data model distinguishes between elements (i.e., nodes of the form <tagname> . . .
</tagname>) and their PCDATA contents. Nevertheless, as already pointed out in Examples 3.3
and 3.16, in several situations, elements containing PCDATA contents are expected to act as numbers
or strings:

Example 5.9 (Annotated Literals)

Consider the following excerpt of the Mondial XML instance:

<country car code=\CH" . . . > <name>Switzerland</name>
<population>7207060</population>

...
</country>

The XPath queries

//country[population > 5000000]/name/text() and
//country[population/text() > 5000000]/name/text()

both are equivalent and return \Switzerland" in their result set. In the �rst query, the element
<population>7207060</population> is implicitly casted into its literal value.

What happens here is not evident in XML/DTD environments. The situation has already been
illustrated in Example 3.3 for XPath queries, and in Example 3.16 when dealing with XML Schema
complexTypes which are based on simpleTypes. The complexType is derived from a simple type
which in some sense induces a \subclass" or \subtype" relationship: it must be allowed to sub-
stitute an instance of the complexType (i.e., an element with PCDATA contents) for a literal value
(i.e., a text child). The idea here is that an element with a PCDATA contents adds structure to a
simple type by allowing attributes (and also subelements in case of mixed contents). Thus, PCDATA
elements with attributes behave as annotated literals :

� in comparisons, arithmetics, or (optionally) in the output, the literal value is used,

� in navigation expressions, the element node is used, and

� in variable bindings, the variable is bound to the element, but it acts as described above
when the value of the variable is used e.g. in a comparison.

� when occurring in the head of an XPathLog rule (cf. Section 7) the element is used.

The interpretation of annotated literals is added to the de�nition of comparison predicates and
arithmetics:

De�nition 5.12 (Semantics of annotated Literals)

S is extended to S� by

S�X (expr; v; �) = listx2Sany
X

(expr;v;�)(x if x 2 L, string(x) otherwise)

where string(x) is the XPath string function which returns the string-value of a node.

� Comparisons:

QX (expr1 op expr2; y; �) :,
there are x1 2 S�X (expr1; y; �) and x2 2 S�X (expr2; y; �) such that x1 op x2

where op 2 f<;�; >;�;=; 6=g.
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� arithmetics:

SanyX (expr1 op expr2; x; �) = setx12S�X (expr1;x;�);x22S�X (expr2;x;�)(x1 op x2) 2

Example 5.10 (Annotated Literals: XML Schema)

Consider the following excerpt of the Mondial XML Schema description which declares a local
population datatype (as a complexType, i.e., for use as an element type) which is derived from a
simpleType, i.e., it is a literal:

<complexType name=\city">
...

< element name=\population" minOccurs=\0" maxOccurs=\unbounded">

<complexType base=\integer" derivedBy=\extension">

<attribute name=\year" type =\date" use=\optional"/>
</complexType>

</element>
</complexType>

<city id=\cty-Germany-Berlin" country=\D">
<name>Berlin</name>
<population year=\95">3472009</population>

</city>

In XPath-Logic, the above fragment is modeled by complex objects with a text property as repre-
sented by the X-structure

E(berlin,name,1) = berlin-name, E(berlin,population,2) = berlin-pop,
E(berlin-name,text(),1) = \Berlin", E(berlin-pop,text(),1) = 951580,
A(berlin-pop,year) = 1995.

which is described by the following facts:

berlin[name!name-berlin and population!pop-berlin-95 ].
pop-berlin-95 [@year!1995 and text()!3472009].
name-berlin[text()!\Berlin"].

The elements pop-berlin-95 and name-berlin are then casted as literals when required by the above
speci�cation. The user can treat country/population like a numerical value which is additionally
annotated with a year attribute:

//city/population is an annotated literal:

?- /city[name=\Berlin" and population!P].
P/3472009
?- /city[name=\Berlin" and population!P[@year!Y]].
P/3472009 Y/1995
?- /city[name=\Berlin"]/population[@year!1995] > 3000000.
true

Although, 3472009[@year!1995] does not hold. Note that the �lter [name=\Berlin"] also uses the
text value of the PCDATA element.

This problem is again investigated in Example 10.4 when dealing with the class hierarchy induced
by an XML Schema description.



94 5. XPATH-LOGIC: THE FORMAL FRAMEWORK



6 XPATHLOG: THE HORN

FRAGMENT OF

XPATH-LOGIC

Similar to the case of Datalog which is the quanti�er-free Horn fragment of predicate logic,
XPathLog is a logic programming language based on XPath-Logic. The language is evaluated
wrt. suitable Herbrand structures.

De�nition 6.1 (XPathLog Atoms)

Atoms are the basic components of XPathLog rules:

� an XPathLog atom is either a predicate expression, or an XPath-Logic reference expression
which does neither contain quanti�ers nor disjunction in �lters.

� an XPathLog atom is de�nite if it uses only the child, sibling, and attribute axes and the
atom does not contain negation, disjunction, function applications, and proximity position
predicates (i.e., does not use the position() and last() functions). These atoms are allowed in
rule heads (see Section 7.2); the excluded features would cause ambiguities what update is
intended.

� an XPathLog literal is an atom or a negated atom,

� an XPathLog query is a list ?- L1, . . . , Ln of literals (in general, containing free variables),

� an XPathLog rule is a formula of the form

A1; : : : ; Ak  L1; : : : ; Ln

where Li are literals and Ai are de�nite atoms. L1; : : : ; Ln is the body of the rule, evaluated
as a conjunction. A1; : : : ; Ak is the head of the rule, which may contain free variables that
must also occur free in the body.

Note that in contrast to usual Logic Programming, we allow for lists of atoms in the rule
head which are interpreted as conjunctions,

� As usual, don't care variables are denoted by X etc. 2

In the remainder of this section, the semantics of queries is investigated. Since the rule bodies are
queries, the query semantics is then also used for de�ning the semantics of XPathLog programs.

6.1 Queries in XPathLog

Similar to Datalog, the evaluation of a query ?- L1, . . . , Ln results in a set of variable bindings
(of the free variables of the query) to ground terms taken from a suitable Herbrand universe:

De�nition 6.2 (XML Herbrand Universe)

The XML Herbrand universe consists of

XML partition:

95
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� N contains the name symbols from �: �N [ �C (attribute and element names, and
constant names) (later also class names), and

� V (node identi�ers), and

Literals: L (literal values, i.e., numbers and strings). 2

Function symbols do not act as term constructors, but only for applying them to nodes. Thus, the
Herbrand universe does not contain terms generated by functions. The semantics of the built-in
functions of XPath is directly encoded into the evaluation.

Usual logic programming frameworks would de�ne the notion of an XML Herbrand Structure
based on a Herbrand base consisting of ground atoms which is then used to de�ne a TP operator.
In the XML case, this is not appropriate since (i) the derived axes are redundant, and (ii) the
insertion of subelements would require large changes in the structure. Instead, a Herbrand model
based on the DOM [DOM98] idea is de�ned, similar to De�nition 5.7: A DOM Herbrand structure
consists of the following:

� a relational portion for the interpretation of (non-built-in) predicates which is represented in
the same way as for Datalog by ground atoms of the Herbrand base. Note that with this,
user-de�ned predicates involving literals, names, and node identi�ers are allowed.

� an XML portion which represents the basic axes of an XML instance similar to X-structures,
using only elements of the Herbrand universe.

De�nition 6.3 (Herbrand Base)

For a given signature �, and a Herbrand universe U = N [ V [ L, the Herbrand base HB is the
set of all ground atoms of the form

p(u1; : : : ; un)

where p 2 �P is a predicate symbol, and ui 2 U are elements of the Herbrand universe. 2

De�nition 6.4 (DOM Herbrand Structure)

A DOM Herbrand structure HD over a given Herbrand universe consists of

� a set preds(HD) of predicate atoms from HB, and

� a (partial) mapping which associates with every x 2 V two lists of ground pairs

{ AHD(child; x) 2 ((V [ L)�NE)IN and

{ AHD(attribute; x) 2 ((V [ L)�NA)IN 2

Again, there is a natural 1:1-correspondence between XML instances and DOM Herbrand struc-
tures (cf. De�nitions 5.5 and 5.7).

The DOM Herbrand structure contains only the basic facts about the XML tree. Recall that
AX (axis; x) has been de�ned for the derived axes based on the child axis in De�nition 5.7; this
de�nition also applies to DOM Herbrand structures, using AHD(child; x).

Remark 6.1

Note that this approach, which associates the order with the children of elements di�ers from e.g.,
the DOM and XML-QL approaches where a global ordering of all elements is used. 2

6.2 Semantics

The semantics of XPathLog queries which will be presented in this section associates a result
list and answer substitutions with every XPathLog query (in general containing free variables) by
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extending the de�nition of S given in Section 5.5. The semantics is based on the closed-world-
assumption, i.e., all atoms which are assumed to hold in the model are explicitly stored in the
database. The semantics also provides the formal base for the implementation of an algebraic
evaluation of XPathLog queries in LoPiX (cf. Section 15).

6.2.1 Answers Data Model

The semantics of XPath-Logic reference expressions is de�ned wrt. an X-structure X as an anno-
tated result list, i.e., every reference expression is mapped to a list of pairs where each pair consists
of

(i) a result element, and

(ii) a set of variable bindings.

Formulas are mapped to a set of variable bindings.

Recall (see Remark 5.3) that the result sets of XPath expressions are unordered. Only internally
to the computation, when single steps are considered, there is a current node list which is used
for applying proximity position predicates.

Similar to Section 5.5, our semantics is again list-based { using the fact that lists are a spe-
cialization of (multi)sets.

De�nition 6.5 (Semantics)

For a given set V1; : : : ; Vn, of variables, the set of variable bindings is given as

((V [ L [ N )n)fV1;:::;Vng :

The set of sets of variable bindings for V1; : : : ; Vn { i.e., the possible answer sets for a query whose
free variables are V1; : : : ; Vn { is

Var BindingsV1;:::;Vn := (2((V[L[N )n))fV1;:::;Vng :

Thus, in the general case for a general set Var of variables where n is unknown,

Var Bindings :=
[

n2IN0

(2((V[L[N )n))(Var
n
)

is the set of sets of variable assignments. We use � for denoting an individual variable binding,
and � 2 Var Bindings for denoting a set of variable bindings.

For an empty set of variables, ftrueg is the only element in Var Bindings (representing the set
with an empty variable assignment); in contrast, ; means that there is no variable binding which
satis�es a given requirement.

AnnotatedResults := ((V [ L)�Var Bindings)

is the set of annotated results (i.e., an annotated result is a pair (v; �) where v is a node or a literal
and � is a set of variable bindings (for the set of variables occurring free in a certain formula)). 2

Less formally, the semantics of an expression is

(i) a result list, and

(ii) with every element of the result list, a list of variable bindings is associated.

The result list (i) is the same as de�ned by S in De�nition 5.9, closely related to the one de�ned
for XPath in [Wad99b].
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Example 6.1 (Semantics)

First, the semantics is illustrated by an example, showing the di�erence between the result list and
the additional bindings. Let X be the XML structure given in Example 5.5, let

expr := //organization!O[member/@country[@car code!C and name/text()!N]]
/abbrev/text()!A.

Then, the semantics of expr is the annotated result list

list((\UN", f(O/un, A/\UN", C/\AL", N/\Albania"),
(O/un, A/\UN", C/\GR", N/\Greece"),

... g),
(\EU", f(O/eu, A/\EU", C/\D", N/\Germany"),

(O/eu, A/\EU", C/\F", N/\France"),
... g),

... )

De�nition 6.6 (Operators on Annotated Result Lists)

First, operations are de�ned which are needed for evaluating reference atoms in XPathLog.

Accessors: From an annotated result list �, the result list is obtained as Res(�):

Res : AnnotatedResultsIN ! (V [ L [ N )IN

((x1; �1); : : : ; (xn; �n)) 7! (x1; : : : ; xn)

For an annotated result list � and a given node-identi�er/literal/name x contained in the
result list, the set of variable bindings associated with x, is obtained by Bdgs(�; x):

Bdgs : AnnotatedResultsIN � (V [ L [N )! Var Bindings
(((x1; �1); : : : ; (x; �); : : : ; (xn; �n)); x) 7! �
(set Bdgs(�; x) = ; if x =2 Res(�))

2

6.2.2 Safety

The semantics de�nition evaluates formulas and expressions wrt. a given set of variable bindings
which e.g., results from evaluating other subexpressions of the same query. This approach allows
for a more e�cient evaluation of joins (sideways information passing strategy), and is especially
needed for evaluating negated expressions (by de�ning negation as a relational \minus" operator).
Negated expressions which contain free variables are intended to exclude some bindings from
a given set of potential results. Thus, for variables occurring in the scope of a negation, the
input answer set to the negation must already provide potential bindings. This leads to a safety
requirement similar to Datalog.

De�nition 6.7 (Safe Queries)

First, safety of variables is decided for each individual ocurrence. A variable occurrence V which
is not inside an aggregation, is safe wrt. the query if at least one of the following holds:

� if the occurrence is in a literal L, and it is not inside the scope of a negation and not in a
comparison predicate other than equality (e.g., X < 3 is unsafe).

� if the occurrence is in a literal Li inside a �lter pattern[L1 and : : : and Ln] and V has a safe
occurrence in pattern or in some Lj s.t. j < i.

� if the occurrence is in a literal Li of the query ?{L1 and : : : and Ln, and V has a safe
occurrence in some Lj s.t. j < i.
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The bodies of aggregation terms must be safe for themselves:

� An occurrence of a variable V in the body of an aggregation expression is safe if it is safe
wrt. the query ?- body .

A query ?- L1, . . . , Ln is safe if all variable occurrences in the query are safe. 2

Note that many unsafe queries can be rewritten into safe queries by

� reordering literals of the query,

� reordering literals inside �lters,

� splitting reference expressions using additional variables, e.g., //country/city/population!P
is equivalent to //country! C, C/city! Cty, Cty/population!P. Then, the individual atoms
may be reordered.

6.2.3 Semantics of Expressions

In the following, the evaluation of safe queries is de�ned. The de�nition below uses the prerequisite
that reference expressions are safe when evaluating them and their �lters from left-to-right in rule
(12) by applying left-to-right propagation when evaluating �lters. Then, all variable evaluations
in rule (15) are safe.

The basic (non-annotated) result lists are again provided by AHD(axis; v) for every node v of HD
(cf. De�nition 5.7).

De�nition 6.8 (Semantics of XPath-Logic expressions)

The semantics is de�ned by operators SB andQB derived from S andQ as de�ned in De�nition 5.9;
the B stands for the extension with variable bindings:

� SBHD : (Reference Expressions)! AnnotatedResultsIN

(Reference Expressions�Var Bindings)! AnnotatedResultsIN

(Axes� V �Reference Expressions� Var Bindings)! AnnotatedResultsIN

evaluates reference expressions wrt. an axis, an (optional) context node and a given set
of variable bindings and returns an annotated result list as described above. Arithmetic
expressions are also reference expressions.

� QBHD : (Predicate Expressions� V �Var Bindings)! Var Bindings

evaluates �lter expressions wrt. a context node and returns a set of variable bindings.

Expressions are evaluated by SB:

1. if no input bindings are given,

SBHD(refExpr ) = SBHD(refExpr ; ;)

2. reference expressions are translated into location paths wrt. a start node:

� entry points: rooted path

SBHD(=p;Bdgs) = SB
any
HD(p; root; Bdgs)

� entry points: constants c 2 �C (which are also elements of the Herbrand universe):

SBHD(c=p;Bdgs) = SB
any
HD(p; c; Bdgs)
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� entry points: variables V 2 Var:

SBHD(V=p;Bdgs) = concatx2AHD(descendants;root)#1(SB
any
HD(p; x;Bdgs ./ fV=xg))

Remark: Here, the input bindings are used for optimization: if every � 2 Bdgs provides
already bindings for the variable V , the sideways information passing strategy directly
e�ects the join fV=xg ./ Bdgs, restricting the possible values for V which in fact results
in

SBHD(V=p;Bdgs) =
concat�2Bdgs;x=�(V );x2AHD(descendants;root)#1(SB

any
HD(p; x;Bdgs ./ fV=xg))

Thus, the propagation of bindings is not only necessary for handling negation but also
provides a relevant optimization for positive literals.

Note that in the recursive call SBanyHD(p; x;Bdgs ./ fV=xg), the propagated bindings are
already augmented with the binding for V .

3. location step:

SBanyHD(axis :: pattern; x;Bdgs) = SB
axis
HD (pattern; x;Bdgs)

where pattern is of the form nodetestremainder where remainder is a sequence of �lters and
variable bindings. These are evaluated left to right, always applying the rightmost \opera-
tion" (�lter or variable) to the result of the left part:

4. node test:

SBaHD(name; x;Bdgs) = list(v;n)2AHD(a;x); n=name(v; ftrueg ./ Bdgs)
SBaHD(node(); x; Bdgs) = list(v;n)2AHD(a;x); v2V(v; ftrueg ./ Bdgs)
SBaHD(text(); x; Bdgs) = list(v;n)2AHD(a;x); v2L(v; ftrueg ./ Bdgs)
SBaHD(N; x;Bdgs) = list(v;n)2AHD(a;x)(v; fN=vg ./ Bdgs)

5. step with variable:

SBaHD(pattern! V; x;Bdgs) = list(y;�)2SBa
HD

(pattern;x;Bdgs)(y; � ./ fV=yg)

6. �lter:

SBaHD(pattern[�lter ]; x; Bdgs) =
list(y;�)2SBa

HD
(pattern;x;Bdgs); QBHD(�lter;y;�0)6=;(y; QBHD(�lter ; y; �

0) n fPos; Sizeg)

If the �lter does not contain proximity position predicates, �0 := �, otherwise let L :=
SBaHD(pattern; x;Bdgs), and then for every (y; �) in L, �0 is obtained as follows, extend-
ing � with bindings of the pseudo variables Size and Pos:

� start with �0 = ;,

� for every � 2 �, the list L0 = list(y;�)2L s:t: �2�(y) contains all nodes which are selected
for the variable assignment �.

� Let now size := size(L0), and for every y, let j the index of x1 in L0, pos := j if a is a
forward axis, and pos := size+1{j if a is a backward axis.

� add �Size;Possize;pos to �0.

After evaluating the �lter, the pseudo variables Size and Pos are again removed from the
bindings.

7. path:
SBaHD(p1=p2; x; Bdgs) = concat(y;�)2SBany

HD
(p1;x;Bdgs)SB

a
HD(p2; y; �)
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Filters

8. Reference expressions (existential semantics) in �lters:

QBHD(refExpr ; x; Bdgs) =
[

(y;�)2SBany
HD

(refExpr;x;Bdgs)

�

9. Predicates except built-in comparisons:

QBHD(pred(arg1; : : : ; argn); x; Bdgs) =
[

(x1;�1)2SB
any

HD
(arg1;x;Bdgs);:::;

(xn;�n)2SB
any

HD
(argn;x;Bdgs);

pred(x1;:::;xn)2preds(HD)

�1 ./ : : : ./ �n

10. Negated expressions which do not contain any free variable:

QBHD(not A; x;Bdgs) =

�
Bdgs if QBHD(A; x; ;) = ;,
; otherwise, i.e., if QBHD(A; x; ;) = ftrueg:

11. For negated expressions which contain free variables, negation is interpreted as the \minus"
operator (as known e.g., from the relational algebra) wrt. the given input bindings. Thus, all
variables which occur free in A must be safe, i.e., every input variable binding has to provide
a value for them.

For two variable bindings �1; �2, let �1 � �2 if �1 is subsumed by �2 (i.e., all variable
bindings in �1 occur also in �2). Intuitively, in this case, if �1 is \abandoned", �2 should also
be abandoned.

QBHD(not expr; x;Bdgs) =
Bdgs { f� 2 Bdgs j there is a �0 2 QBHD(expr; x;Bdgs) s.t. � � �0g

12. Conjunction (recall that disjunction is not allowed in XPathLog �lters):

QBHD(expr1 and expr2; x; Bdgs) =
QBHD(expr1; x; Bdgs) ./ QBHD(expr2; x;QBHD(expr1; x; Bdgs))

Here, in case of negated conjuncts in the �lter, the safety of variables has to be considered.
The above de�nition assumes that by a left-to-right evaluation of conjuncts, the evaluation
is safe (see De�nition 6.7).

Comparisons

13. The built-in equality predicate \=" serves as an assignment if the left-hand side is a variable
V 2 Var which is not bound in Bdgs:

QBHD(V = expr; x;Bdgs) =
[

(y;�)2SBany
HD

(expr;x;Bdgs)

� ./ fV=yg

All other built-in comparisons require all variables to be bound:

QBHD(expr1 op expr2; x; Bdgs) =
[

(x1;�1)2SB
�

HD
(expr1;x;Bdgs);:::;

(x2;�2)2SB
�

HD
(expr2;x;Bdgs);

x1 op x2

�1 ./ �2

where SB� is de�ned analogously to De�nition 5.12 for handling annotated literals.
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Evaluation of Terms

14. constants (in free predicates or in comparisons in �lters); let value be a string or a number:

SBanyHD(value; x;Bdgs) = (value;Bdgs)

For constants c 2 �C :
SBanyHD(c; x;Bdgs) = (IC(c); Bdgs)

15. variables (in free predicates or in comparisons in �lters); the variable occurrence must be
safe:

SBanyHD(var; x;Bdgs) = list�2Bdgs(�(var); f�
0 2 Bdgs j �0(var) = �(var)g)

16. functions:

SBanyHD(f(arg1; : : : ; argn)); x; Bdgs) =

list
(x1;�1)2SB

any

HD
(arg1;x;Bdgs);:::;

(xn;�n)2SB
any

HD
(argn;x;Bdgs)

(x:f(x1; : : : ; xn); �1 ./ : : : ./ �n)

where x:f(x1; : : : ; xn) results from the built-in evaluation of f .

17. context-related functions use the extension of variable bindings by pseudo-variables Size and
Pos in rule (6):

SBanyHD(position(); x; Bdgs) = list�2Bdgs(�(Pos); f�0 2 Bdgs j �(Pos) = �0(Pos)g)
SBanyHD(last(); x; Bdgs) = list�2Bdgs(�(Pos); f�0 2 Bdgs j �(Size) = �0(Size)g)

Recall that the �lter pattern[i] where i 2 IN stands for pattern[position()=i].

18. arithmetics:

SBanyHD(expr1 op expr2; x; Bdgs) = list
(x1;�1)2SB

�

HD
(expr1;x;Bdgs);

(x2;�2)2SB
�

HD
(expr2;x;Bdgs);

group by x1 op x2

(x1 op x2; �1 ./ �2)

19. aggregation:

SBanyHD(aggfX [G1; : : : ; Gn]; bodyg; x; Bdgs) =

list�2Bdgs(agg(f�0(X) j �0 2 QB(body ; x; �jfG1;:::;Gng)g); Bdgs) 2

Note that aggregation does not change the input bindings: the body is evaluated completely
independently, only using the bindings of the variables G1; : : : ; Gn. If the aggregation body
contains other variables than the grouping variables, these are local to the aggregation; their
bindings are not communicated to the environment.

Since the aggregation body is itself evaluated as a nested query, it has to obey the safety
restrictions, i.e., no variable may represent an in�nite answer set.

The above semantics is an algebraic-style extension to the logical semantics of XPath-Logic ex-
pressions which has been de�ned in Section 5.9:

Theorem 6.1 (Correctness of SB and QB)

For every (in general, containing free variables) XPathLog expression expr,

Res(SBHD(expr)) =
[

�2(V[L[N )free(expr)

SHD(expr; �) :

More detailed, for all x 2 V [ L [ N ,

(x 2 Res(SBHD(expr)) and � 2 Bdgs(SBHD(expr); x)) , x 2 SHD(expr; �) : 2
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Again, the theorem uses a lemma which encapsulates the structural induction.

Lemma 6.2 (Correctness of SB and QB: Structural Induction)

The correctness of the answers semantics of XPathLog expressions mirrors the generation of answer
sets by the evaluation: The input set Bdgs of Bindings may contain bindings for the free variables
of an expression. If for some variable var, no binding is given, the result extends Bdgs with
bindings of var. If bindings are given for var, this speci�es a constraint on the answers to be
returned (expressed by joins).

� For every absolute expression expr, (i.e., expr = =expr0) and every set Bdgs of variable
bindings,

(x 2 Res(SBHD(expr;Bdgs)) and � 2 Bdgs(SBHD(expr;Bdgs); x)) ,
(x 2 SHD(expr; �) and � completes some �0 2 Bdgs with free(expr)) :

� For every expression expr, every node v, and every set Bdgs of variable bindings,

(x 2 Res(SBHD(expr; v; Bdgs)) and � 2 Bdgs(SBHD(expr; v; Bdgs); x)) ,
(x 2 SHD(expr; v; �) and � completes some �0 2 Bdgs with free(expr)) :

� for every �lter �lter, every node v, and every set Bdgs of variable bindings,

� 2 QBHD(�lter ; v; Bdgs) ,
QHD(�lter ; v; �) and � completes some �0 2 Bdgs with free(�lter)) :

2

Proof. The enumeration is the same as in the semantics de�nition. The proof is done by
structural induction.

Note: A bit sloppy, we write (x; �) 2 SBHD(expr) for \x 2 Res(SBHD(expr)) and
� 2 Bdgs(SBHD(expr); x)".

1. For closed expressions,

x 2 Res(SBHD(refExpr ))
Def
, x 2 Res(SBHD(refExpr ; ;))
IH
, x 2 SHD(refExpr ; ;)

Def:5:9
, x 2 SHD(refExpr ) :

2. reference expressions are translated into location paths wrt. a start node:

� entry points: rooted path

(x; �) 2 SBHD(=p;Bdgs)
Def
, (x; �) 2 SBanyHD(p; root; Bdgs)
IH
, x 2 SanyHD (p; root; �) and � completes some �0 2 Bdgs with free(=p))

Def:5:9
, x 2 SanyHD (=p; �) and � completes some �0 2 Bdgs with free(=p)) :

� entry points: constants c 2 V analogously (set c instead of root above)

� entry points: variables V 2 Var. By de�nition,

(x; �) 2 SBHD(V=p;Bdgs)
Def
,

(x; �) 2 concatx2AHD(descendants;root)#1(SB
any
HD(p; x;Bdgs ./ fV=xg))

which is exactly the case if there is an x 2 AHD(descendants; root)#1 such that

(x; �) 2 (SBanyHD(p; x;Bdgs ./ fV=xg)) :
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By induction hypothesis, this is equivalent with

x 2 SanyHD (p; x; �) and � completes some �0 2 Bdgs ./ fV=xg with free(p)

which is exactly the case if x = �(V ) and � completes some �0 2 Bdgs with free(V=p). By
Def. 5.9, this again is equivalent with

x 2 SanyHD (V=p; �) and � completes some �0 2 Bdgs with free(V=p) :

3. location step:

(x; �) 2 SBanyHD(axis :: pattern; z; Bdgs)
Def
, (x; �) 2 SBaxisHD (pattern; z; Bdgs)
IH
, x 2 SaxisHD (pattern; z; �) and � completes some �0 2 Bdgs with free(pattern)

Def:5:9
, x 2 SanyHD (axis :: pattern; z; �)

and � completes some �0 2 Bdgs with free(axis :: pattern) :

4. node test:

(x; �) 2 SBaHD(name; z; Bdgs)
Def
, (x; �) 2 list(v;n)2AHD(a;z); n=name(v; ftrueg ./ Bdgs)

which is exactly the case if x 2 list(v;n)2AHD(a;z); n=name(v) and � 2 Bdgs which, by Def. 5.9
is equivalent with x 2 SaHD(name; z; �) and � completes some �0 2 Bdgs with free(name) =
;.

Analogously for node() and text().
Variables at nodetest position:

(x; �) 2 SBaHD(N; z;Bdgs)
Def
, (x; �) 2 list(v;n)2AHD(a;z)(v; fN=ng ./ Bdgs)

which is exactly the case if x 2 list(v;n)2AHD(a;z)(v) and � 2 fN=ng ./ Bdgs which, by Def. 5.9
is equivalent with x 2 SaHD(N; z; �) and � completes some �0 2 Bdgs with free(N) = fNg.

5. step with variable:

(x; �) 2 SBaHD(pattern! V; z; Bdgs)
Def
, (x; �) 2 list(y;�)2SBa

HD
(pattern;z;Bdgs)(y; � ./ fV=yg)

, there is a �00 s.t. (x; �00) 2 SBaHD(pattern; z; Bdgs) and � = �00 ./ fV=xg :

By induction hypothesis, this is exactly the case if there is a �00 such that x 2 SaHD(pattern; z; �
00)

and �00 completes some �0 2 Bdgs with free(pattern), and � = �00 ./ fV=xg. Exactly
then, since x = �(V ), by Def. 5.9, x 2 SaHD(pattern ! V; z; �) and � completes �0 with
free(pattern! V ) = free(pattern) [ fV g.

6. �lter(s):

(x; �) 2 SBaHD(pattern[�lter]; z; Bdgs)
Def
, (x; �) 2 list

(y;�)2SBa
HD

(pattern;z;Bdgs);

QBHD(�lter;y;�
0)6=;

(y; QBHD(�lter; y; �0) n fPos; Sizeg)

for � as de�ned in De�nition 6.8(6). This is exactly the case if

(a) there is a �00 s.t. �00 2 QBHD(�lter; x; �0) and � = �00 n fPos; Sizeg,

(b) (x; �) 2 SBaHD(pattern; z; Bdgs) i.e., � is the corresponding set of variable bindings, and

(c) QBHD(�lter; x; �0) 6= ;.
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The �rst item is by induction hypothesis equivalent to

QHD(�lter ; x; �00) and �00 completes some �0 2 �0 with free(�lter) : (�)

The third item is redundant here (it avoids the addition of elements with empty bindings
list to the result). Since �00 completes some �0 2 �0 with free(�lter), we know that 
 :=
�0 n fPos; Sizeg is an element of �. Specializing the second item to 
 yields

(x; 
) 2 SBaHD(pattern; z; Bdgs) :

By induction hypothesis,

x 2 SaHD(pattern; z; 
) (��)

and 
 completes some 
0 2 Bdgs with free(pattern). Above, we derived 
 = �0 nfPos; Sizeg.
Using (�), since �00 is a completion of �0 with free(�lter), completing 
0 2 Bdgs �rst to 

(binding free(pattern)), then to �0 (binding Size and Pos), then to �00 (binding free(�lter)),
we have

QHD(�lter ; y; �
00) :

From (��), since �00 completes 
,

x 2 SaHD(pattern; z; �
00)

thus by Def. 5.9,

x 2 SaHD(pattern[�lter]; z; Bdgs)

for �00 which completes 
0 2 Bdgs with free(pattern[�lter]).

The argumentation showed the \)" direction (which is the more di�cult direction since 

must be guessed). \(" uses the same relationships and variable bindings.

7. Path:

(x; �) 2 SBaHD(p1=p2; z; Bdgs)
Def
, (x; �) 2 concat(y;�)2SBany

HD
(p1;z;Bdgs)SB

a
HD(p2; y; �)

, there is an (y; �) 2 SBanyHD(p1; z; Bdgs) s.t. (x; �) 2 SB
a
HD(p2; y; �)

IH
, there is a 
 2 � s.t. there is a 
0 s.t. x 2 SaHD(p2; y; 


0) and

0 completes 
 with free(p2) :

For this 
, (y; 
) 2 SBanyHD(p1; z; Bdgs) and by induction hypothesis again y 2 SaHD(p1; z; 
)
and 
 completes some �0 2 Bdgs with free(p1). Thus, also x 2 SaHD(p2; y; 


0) and y 2
SaHD(p1; z; 


0) and by Def. 5.9, x 2 SaHD(p1=p2; z; 

0). 
0 completes some �0 2 Bdgs with

free(p1) [ free(p2).

8. Reference expressions (existential semantics) in �lters:

� 2 QBHD(refExpr ; z; Bdgs)
Def
, � 2

S
(y;�)2SBany

HD
(refExpr;z;Bdgs) �

, there is a y s.t. (y; �) 2 SBanyHD(refExpr ; z; Bdgs)
IH
, y 2 SanyHD (refExpr ; z; �) and � completes some �0 2 Bdgs with free(refExpr )

Def:5:9
, QHD(refExpr ; z; �) and � completes some �0 2 Bdgs with free(refExpr ) :
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9. Predicates except built-in comparisons:

� 2 QBHD(pred(arg1; : : : ; argn); z; Bdgs)
Def
, � 2

S
(x1;�1)2SB

any

HD
(arg1;z;Bdgs);:::;

(xn;�n)2SB
any

HD
(argn;z;Bdgs);

pred(x1;:::;xn)2preds(HD)

�1 ./ : : : ./ �n

, there are (x1; �1); : : : ; (xn; �n) s.t. (xi; �i) 2 SB
any
HD(argi; z; Bdgs)

and pred(x1; : : : ; xn) 2 preds(HD) and � 2 �1 ./ : : : ./ �n
, (take the right �i 2 �i)

there are (x1; �1); : : : ; (xn; �n) s.t. (xi; �i) 2 SB
any
HD(argi; z; Bdgs)

and pred(x1; : : : ; xn) 2 preds(HD) and � = �1 ./ : : : ./ �n
IH
, there are (x1; �1); : : : ; (xn; �n) s.t. xi 2 S

any
HD (argi; z; �i)

and �i extends some �
0
i 2 Bdgs with free(argi)

and pred(x1; : : : ; xn) 2 preds(HD) and � = �1 ./ : : : ./ �n
, (the join guarantees that �0 := �01 = : : : = �0n holds)

there are x1; : : : ; xn s.t. xi 2 S
any
HD (argi; z; �i)

and � extends some �0 2 Bdgs with free(arg1) [ : : : [ free(argn)
Def:5:9
, QHD(pred(arg1; : : : ; argn); z; �)

and � completes some �0 2 Bdgs with free(pred(arg1; : : : ; argn)) :

10. Negated expressions which do not contain any free variable: trivial.

11. For negated expressions which contain free variables: Note that all variables in free(not expr)
are required to be bound by Bdgs (safety).

� 2 QBHD(not expr; z; Bdgs)
Def
, � 2 Bdgs and there is no �0 2 QBHD(expr; z; Bdgs) s.t. � � �0

IH
, � 2 Bdgs and there is no �00 such that

QHD(expr; z; �00) and �00 extends �0 with free(expr) and � � �0

Safety
, � 2 Bdgs and not QHD(expr; z; �)

Def:5:9
, � 2 Bdgs and QHD( not expr; z; �) :

12. Conjunction (recall that disjunction is not allowed in XPathLog �lters):

� 2 QBHD(expr1 and expr2; z; Bdgs)
Def
, � 2 QBHD(expr1; z; Bdgs) ./ QBHD(expr2; z;QBHD(expr1; z; Bdgs))
IH
, there are 
1 2 QBHD(expr1; z; Bdgs)

and 
2 2 QBHD(expr1; z;QBHD(expr1; z; Bdgs)) s.t.
QHD(expr1; z; 
1) and 
1 completes some �

0 2 Bdgs with free(expr1) and
QHD(expr2; z; 
2) and 
1 completes some 


00 2 QBHD(expr1; z; Bdgs) with
free(expr2) and � = 
1 ./ 
2:

, (join condition: 
1 = 
00 � 
2)
QHD(expr1; z; 
2) and QHD(expr2; z; 
2)
and 
2 completes some �

0 2 Bdgs with free(expr1) [ free(expr2)
, QHD(expr1and expr2; z; 
2)

and 
2 completes some �
0 2 Bdgs with free(expr1) [ free(expr2) :

13. built-in equality predicate \=": similar to predicates and variable assigments by ! V . All
other built-in comparisons: similar to predicates.

14. constants: trivial.
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15. variables: trivial (safety!)

16. functions: similar to predicates

17. context-related functions use the extension of variable bindings by pseudo-variables Size and
Pos in rule (6):

(x; �) 2 SBanyHD(position(); z; Bdgs)
Def
, (x; �) 2 list�2Bdgs(�(Pos); f�0 2 Bdgs j �(Pos) = �0(Pos)g)
, �(Pos) = x for some � 2 Bdgs
, x 2 SanyHD (position(); z; �) for some � 2 Bdgs
, x 2 SanyHD (position(); z; �)

and � completes some �0 2 Bdgs by free(position()) (which is empty):

Analogously for last().

18. arithmetics: analogously to predicates.

19. aggregation: trivial (all free variables are required to be safe). 2

6.3 Semantics of Queries

According to De�nition 6.1, XPathLog queries are conjunctions of XPathLog literals. In the
following, the evaluation of safe queries is de�ned. The de�nition of safety guarantees that a left-
to-right evaluation of the body is well-de�ned (i.e., all variable evaluations in De�nition 6.8(15)
are safe). De�nition 6.8(12) already applied left-to-right propagation when evaluating �lters.

The evaluation QB de�ned in De�nition 6.8 is extended to atoms by

QBHD : (Atoms�Var Bindings)! Var Bindings
(A;Bdgs) 7! QBHD(A; root; Bdgs)

(instead of root, any v 2 V can be used since A contains only absolute location paths.

Corollary 6.3 (Correctness: Evaluation of Atoms)

Queries consisting of only one atom can be evaluated without propagation, and QB returns the
answer bindings:

� For every safe query ?- refExpr which consists of a single reference expression,

(HD; �) j= refExpr :, � 2 QBHD(refExpr ; ;)) :

� For every safe query ?- pred(args) which consists of a single predicate,

(HD; �) j= pred(args) :, � 2 QBHD(pred(args); ;)) : 2

De�nition 6.9 (Evaluation of Literals)

The evaluation of negated literals L is de�ned wrt. a set of input bindings which must cover the
free variables in L, similar to negation in �lters in De�nition 6.8(11):

QBHD(not A;Bdgs) := Bdgs { f� 2 Bdgs j there is a �0 2 QBHD(A;Bdgs) s.t. � � �0g :

2

De�nition 6.10 (Evaluation of Queries)

The evaluation of a safe query

?- L1, . . . , Ln.
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is de�ned similar to the evaluation of conjunctive �lters in De�nition 6.8(12):

QBHD : Conj Literals! Var Bindings
QBHD(L1 ^ : : : ^ Li) :=

QBHD(L1 ^ : : : ^ Li{1) ./ QBHD(Li; (QBHD(true ^ L1 ^ : : : ^ Li{1))jfree(Li))

where QBHD(true) = ftrueg, using left-to-right propagation. 2

Theorem 6.4 (Correctness: Evaluation of Queries)

For all safe XPathLog queries Q,

� 2 QBHD(Q) , (HD; �) j= Q :
2

Proof. Induction over the number of literals; base cases are provided by Lemma 6.2. 2

De�nition 6.11 (Answer set of a query)

Given a DOM Herbrand Structure HD, the answer to a query

?- L1, . . . , Ln.

is the set
answersHD(L1, . . . , Ln) := QBHD(L1 ^ : : : ^ Ln)

of variable bindings. Recall that in the Herbrand-style context, the variables are bound to elements
of the Herbrand universe. 2

Note again that the semantics of formulas is not based on a Herbrand structure consisting of
ground atoms (as \usual" Herbrand semantics are), but on the interpretations AHD of the axes
in the DOM Herbrand structure.
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In logic programming, rules are used for a declarative speci�cation: if the body of a clause evaluates
to true for some assignment of its variables, the truth of the head atom for the same variable
assignment can be inferred. Depending on the intention, this semantics can be used for (i) checking
if something is derivable from a given set of facts, or (ii) extending a given set of facts by additional,
derived knowledge. The second aspect is followed by rule-based approaches, which use rules for
the speci�cation of updates to a database or, generally, a situation.

Independent from the above, for logic programs, two evaluation strategies can be distinguished:

� Top-Down: refute or validate a claim, or compute an answer variable binding for a query.

� Bottom-up: collect all facts which can be derived from a given set of facts.

Note that bottom-up evaluation can also be applied for validating a claim or computing answers:
the claim and the answers must be contained in the derived knowledge. Nevertheless, if only
a single query is to be answered, the target-driven top-down evaluation which checks only the
relevant parts of the input data is in general more e�cient. On the other hand, from the database
point of view, it is more common to derive all facts �rst (i.e., to extend the database), and then
to answer questions.

In this work, we investigate the bottom-up strategy, regarding XPathLog as an update language
for XML databases.

The body of an XPathLog rule is a set of XPathLog expressions. The evaluation of the body
wrt. a given structure yields variable bindings which are propagated to the rule head where facts
are added to the model.

7.1 Bottom-up Evaluation: Positive Programs

Positive XPathLog programs (i.e., the rules contain only positive literals; also �lters may only
contain positive expressions) are evaluated bottom-up by a TP -like operator, providing a minimal
model semantics. We �rst give the de�nition of TP as de�ned for Prolog and Datalog:

De�nition 7.1 (Deductive Fixpoint Semantics: The TP -Operator)

For a Datalog program P and a Herbrand structure H,

TP (H) := H [ fh j (h b1; : : : ; bn) is a ground instance of some rule of P
and bi 2 H for all i = 1; : : : ; ng ;

T 0
P (H) := H ;

T i+1
P (H) := TP (T

i
P (H)) ;

T!
P (H) :=

�
limi!1 T i

P (H) if the sequence T 0
P (H); T

1
P (H); : : : converges,

? otherwise.

The application of a Datalog program P to a given database D is de�ned as

P (D) = T!
P (D) : 2

Preview. This de�nition is adapted in De�nition 7.5 for XPathLog programs after explaining the
semantics of insertions and updates. 2

109
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7.1.1 Atomization

In this section, another, nearly equivalent (it is equivalent for de�nite XPathLog atoms (cf. Def-
inition 6.1), i.e., which do not contain negation, disjunction, quanti�ers, and proximity position
predicates ; cf. Theorem 7.1) semantics of queries is de�ned which provides the base for the con-
structive semantics of reference expressions in rule heads. The semantics is de�ned by resolving
reference expressions into their constituting atomic steps.

Remark 7.1

The counterpart of the resolving of expressions into atomic steps is followed by several approaches
which store XML data in relational databases [DFS00, SGT+99, FK99], by 
attening the XML
instance to one or more universal relations and augmenting it by indexes. For these approaches,
see Section 16.1. 2

The function
atomize : XPathLogAtoms! 2XPathLogAtoms

resolves a de�nite XPathLog atom into atoms of the form node[axis::nodetest!result] and predi-
cates over variables and constants. It will be used in De�nition 7.5 for specifying the semantics of
rule heads. atomize is de�ned by structural induction corresponding to the induction steps when
de�ning SX :

De�nition 7.2 (Atomization of Formulas)

The mapping
atomize : XPathLogAtoms! 2XPathLogAtoms

resolves a de�nite XPath-Logic atom into a set of atomic expressions. In the following, path stands
for a locationPath (or a variable), and name for a name (or a variable).

� the entry case:
atomize(=remainder) := atomize(root=remainder)

� Paths are resolved into steps and �lters are isolated (since proximity position predicates are
not allowed in de�nite atoms, it can be assumed that there is at most one �lter, optionally
preceded by a variable assignment; cf. Proposition 5.5):

atomize(path=axis :: nodetest! var[�lter] =remainder) :=
atomize(path[axis :: nodetest! var]) [ atomize(var[�lter]) [ atomize(var=remainder) ;

atomize(path=axis :: nodetest[�lter] =remainder) :=
atomize(path[axis :: nodetest! X ]) [ atomize( X [�lter]) [ atomize( X=remainder)
where X is a new don't care variable.

� Conjunctions in �lters are separated:

atomize(var[pred1and : : : and predn]) := atomize(var[pred1]) [ : : : [ atomize(var[predn])

� Predicates in �lters (including the case var[expr]; recall that quanti�ers, negation, and dis-
junction are not allowed in de�nite XPath-Logic atoms):

atomize(var[pred(expr1; : : : ; exprn)]) := atomize(equality(var; expr1; X1)) [ : : :
atomize(equality(var; exprn; Xn)) [
fpred( X1; : : : ; Xn)g

where equality(var; expr;X) is de�ned as follows (if expri is a constant, it is not replaced by
a variable):

{ equality(var; expr;X) = \expr ! X" if expr is of the form ==remainder, or
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{ equality(var; expr;X) = \var=expr ! X" if expr is of the form axis :: nodetest remainder.

� Predicate atoms are handled in the same way. Note that here all arguments are absolute
expressions (rooted, or starting at a constant). 2

Example 7.1 (Atomization)

?- //organization!O[name/text()!ON and
@seat = members/@country[name/text()!CN]/@capital].

is atomized into

?- root[descendant::organization!O], O[name! ON], ON[text()!ON],
O[@seat! S], O[members! M], M[@country! C], C[@country! Cap], S = Cap,
C[child::name! CN], CN[text()!CN].

Since for every de�nite XPathLog atom expr, atomize(expr) is a valid XPathLog query, the se-
mantics given in De�nitions 5.9 and 6.8 also applies to atomized expressions.

Example 7.2 (Atomization)

The XML instance given in Example 5.1 veri�es the following atoms (the extended syntax
host[axis(i)::name!value] is used in rule heads for specifying the position where to insert a new
child or sibling, cf. Section 7.2).

mondial [child(42)::country!belgium]
belgium[@car code!\B"] belgium[@capital!brussels]
belgium[@memberships!eu] belgium[@memberships!nato] . . .
belgium[child(1)::name!belgium-name] belgium[child(2)::name!belgium-pop]
belgium[child(3)::city!brussels] belgium[child(4)::city!...]
belgium-name[child(1)::text()!\Belgium"] belgium-pop[child(1)::text()!10170241]

brussels[@country!belgium] brussels[@id!\city-brussels"]
brussels[child(1)::name!brussels-name] brussels[child(2)::population!brussels-pop]
brussels-name[child(1)::text()!\Brussels"] brussels-pop[child(1)::text()!951580]

mondial [child(45)::]country!germany ]
germany [@car code!\D"] germany [@capital!berlin]
germany [@memberships!eu] germany [@memberships!nato] . . .

mondial [child(179)::organization!eu]
eu[@id!\org-eu"] eu[@seat!brussels]
eu[child(1)::name]!eu-name] eu-name[child(1)::text()!\European Union"]
eu]abbrev[child(2)::abbrev!eu-abbrev ] eu-abbrev [child(1)::text()!\EU"]
eu[child(3)::members!eu-mem-mem]

eu-mem-mem[@type!\member"]
eu-mem-mem[@country!belgium] eu-mem-mem[@country!belgium] . . .
eu[child(4)::members]!eu-mem-appl ]
eu-mem-appl [@type!\mem. appl."] eu-mem-appl [@country!albania] . . .

mondial [child(180)::organization!nato]
nato[@id!\org-nato"] nato[@seat!brussels]

(plus atoms for derived axes)

Theorem 7.1 (Correctness of atomize)

The above semantics is equivalent to the one presented in De�nition 6.8 for all de�nite XPathLog
atoms A and every DOM Herbrand structure HD, i.e.

answersHD(A) = answersHD(atomize(A))
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(recall that don't care variables are not considered in the answer.) 2

Again, the theorem uses a lemma which encapsulates the structural induction. In De�nitions 5.9
and 6.8, a logical and an algebraic semantics of XPath-Logic and XPathLog have been de�ned
and shown to be equivalent in Theorem 6.1 and Lemma 6.2. Here, the logical semantics is used
for showing the correctness of atomize.

Lemma 7.2 (Correctness of atomize: Structural Induction)

For every DOM Herbrand structure HD and every de�nite XPath-Logic atom A,

� for every variable assignment � of free(A) such that (HD; �) j= A, there exists a variable
assignment �0 � � of free(atomize(A)) such that (HD; �0) j= atomize(A), and

� for every variable assignment �0 of free(atomize(A)) such that (HD; �0) j= atomize(A),
(HD; �0jfree(A)) j= A. 2

Proof. Structural induction.

� entry case (using � = �0):

(HD; �) j= =p
Def:5:10
, (SHD(=p; �)) 6= ;

Def:5:9
, (SHD(p; root; �)) 6= ;

Def:5:9
, (SHD(root=p; �)) 6= ;

Def:5:10
, (HD; �) j= root=p

IH
, (HD; �) j= atomize(root=p)
Def
, (HD; �) j= atomize(=p) :

� Paths are resolved into steps and �lters are isolated (the case where a don't care variable is
introduced is shown; w.l.o.g., path is an absolute location path)

(HD; �) j= path=axis :: nodetest[�lter] =remainder
, SHD(path=axis :: nodetest[�lter] =remainder; �) 6= ;
, SHD(path=axis :: nodetest[�lter] =remainder; root; �) 6= ;
, concaty2Sa

HD
(path=axis::nodetest[�lter];root;�)(S

any
HD (remainder; y; �)) 6= ;

, there is a node v 2 SaHD(path=axis :: nodetest[�lter]; root; �)
s.t. SanyHD (remainder; v; �) 6= ;

, there is a node v 2 listy2Sa
HD

(path=axis::nodetest;x;�)(y j QHD(�lter; y; �))
s.t. SanyHD (remainder; v; �) 6= ;

, there is a node v s.t. v 2 SaHD(path=axis :: nodetest; x; �)
and QHD(�lter; v; �) and S

any
HD (remainder; v; �) 6= ;

, there is a node v s.t. v 2 SaHD(path=axis :: nodetest! X; x; �vX)
and QHD(V[�lter]; v; �vX) and S

any
HD (V=remainder; v; �vX) 6= ;

, there is a node v s.t. v 2 SaHD(path[axis :: nodetest! X ]; x; �vX)
and QHD(V[�lter]; v; �vX) and S

any
HD (V=remainder; v; �vX) 6= ;

, there is a node v s.t. SaHD(path[axis :: nodetest! X ]; x; �vX) 6= ;
and QHD(V[�lter]; v; �vX) and S

any
HD (V=remainder; x; �vX) 6= ;

, there is a node v s.t. QHD(path[axis :: nodetest! X ]; �vX)
and QHD(V[�lter]; �vX) and QHD(V=remainder; �vX)

IH
, there is a node v s.t. QHD(atomize(path[axis :: nodetest! X ]); �vX )

and QHD(atomize(V[�lter]); �vX) and QHD(atomize(V=remainder); �vX)
, there is a node v s.t. QHD(atomize(: : :); �vX) :

� Conjunctions in �lters: obvious.



7.2. LEFT HAND SIDE 113

� Predicates in �lters: W.l.o.g., consider a unary predicate with a relative argument expression:

(HD; �) j= V [pred(expr)]
, SHD(V [pred(expr)]; �(V ); �) 6= ;
, listy2Sa

HD
(V;�(V );�)(y j QHD(pred(expr); y; �)) 6= ;

, (�(V ) is the only element in SaHD(V; �(V ); �))
QHD(pred(expr); �(V ); �)

, there is an x 2 SHD(expr; �(V ); �) such that pred(x) 2 HD
, there is an x s.t. x 2 SHD(V=expr ! X; root; �xX) and (HD; �xX) j= pred( X)
, there is an x s.t. (HD; �xX) j= V=expr ! X and (HD; �xX) j= pred( X)
IH
, there is an x s.t. (HD; �xX) j= atomize(V=expr ! X)

and (HD; �xX) j= pred( X)
, there is an x s.t. (HD; �xX) j= atomize(V [pred(expr)]) :

Predicate atoms: analogous. 2

7.2 Left Hand Side

Since the right hand side of rules has already been handled in Section 6.1, the semantics of the
left hand side is now investigated based on the atomization of expressions.

Using logical expressions for specifying an update is perhaps the most important di�erence to
approaches like XSLT, XML-QL, or Quilt/XQuery where the structure to be generated is always
speci�ed by XML patterns (this implies that these languages do not allow for updating existing
nodes1 { e.g., adding children or attributes { but only for generating complete nodes). In contrast,
in XPathLog, existing nodes are communicated via variables to the head, where they are modi�ed
when appearing at host position of atoms.

The head of an XPathLog rule is a set of de�nite XPathLog atoms. When used in the head,
the \/" operator and the \[. . . ]" construct specify which properties should be added or updated
(thus, \[. . . ]" does not act as a �lter, but as a constructor). Recall that for the left hand side,
proximity position predicates are not allowed; instead the position where a child or sibling should
be inserted can be speci�ed by

host[axis(i) :: name! value]

where axis is either child or a sibling axis (cf. Example 7.2 and De�nition 7.4). If no position is
speci�ed, the new element is appended at the end of the axis.

De�nition 7.3 (Enumerating Axes)

The notation host[axis(i) :: name! value] is de�ned as a \shortcut" for

host[axis :: �[i][name() = name]! value]

which states that value is the ith subelement, and that it is a name-subelement. 2

Note that the (pure) language does not allow to delete or replace existing elements or attributes2

{ modi�cations are always monotonic in the sense that existing \things" remain (although, chil-
dren may be inserted between already existing children which makes the evaluation of proximity
position predicates non-monotonic; similar to the evaluation of aggregration operators in related
approaches).

1A proposal for extending XML querying languages based on variable bindings will be published in [TIHW01]
(see Section 3.12).

2suitable extensions, e.g., atoms of the form delete(element,property,value) can be de�ned as extensions. In this
case, the handling of dangling references must be de�ned. Such extensions which would turn XPathLog into a
\classical" procedural language are not handled in this work.



114 7. XPATHLOG PROGRAMS

Modi�cation of Elements. When using the child or attribute axis for updates, the host of
the expression gives the element to be updated or extended; when a sibling axis is used, e�ectively
the parent of the host is extended with a new subelement.

Generation or Extension of Attributes. A ground atom of the form n[@a!v] speci�es that
the attribute @a of the node n should be set or extended with v. If v is not a literal value but a
node, a reference to v is stored.

Example 7.3 (Adding Attributes)

We add the data code to Switzerland, and make it a member of the European Union:

C[@datacode!\ch"], C[@memberships!O] :-
//country!C[@car code=\CH"], //organization!O[abbrev/text()!\EU"].

results in

<country datacode=\ch" car code=\CH" industry=\machinery chemicals watches"
memberships=\org-efta org-un org-eu . . . "> . . . </country>

We discuss insertion of new subelements below, after showing how to create elements.

Creation of Elements. Elements can either be created as free elements by atoms of the form
/name[...] (meaning \some element of type name" { in the rule head, this is interpreted to create
an element which is not a subelement of any other element), or as subelements.

Example 7.4 (Creating Elements)

We create a new (free) country element with some properties (cf. Figures 7.1 and 7.2):

/country[@car code!\BAV" and @capital!X and city!X and city!Y] :-
//city!X[name/text()=\Munich"], //city!Y[name/text()=\Nurnberg"].

Note that the two city elements are linked as subelements. This operation has no equivalent in
the \classical" XML model: these elements are now children of two country elements. Thus,
changing the elements e�ects both trees. Linking is a crucial feature for e�cient restructuring and
integration of data (see Section 11).

Insertion of Subelements and Attributes. Already existing elements can be assigned as
subelements to existing elements by using �lter syntax in the rule head: A ground instantiated
atom n[child :: s ! m] makes m a subelement of type s of n. In this case, in the Herbrand
representation, m is linked as n=s at the end of the children list.

Example 7.5 (Inserting Subelements)

The following two rules are equivalent to the above ones:

/country[@car code!\BAV"].
C[@capital!X and city!X and city!Y] :-

//city!X[name/text()!\Munich"], //city!Y[name/text()!\Nurnberg"],
//country!C[@car code=\BAV"].

Here, the �rst rule creates a free element, whereas the second rule uses the variable binding of C
to this element for inserting subelements and attributes.

In the above case, the position of the new subelement is not speci�ed. If the atom is of the form
h[child(i)::s!v] or h[following/preceding-sibling(j)::s!v], this means that the new element to be
inserted should be made the ith subelement of h or jth following/preceding sibling of h.
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root

germany @name=\Germany"

@capital=�

berlin nurnberg munich

b-name b-pop n-name n-pop m-name m-pop

\Berlin" 3472009 \N�urnberg" 495845 \Munich" 1244676

country

city
city city

name populationname population
name population

text() text() text() text() text() text()

Figure 7.1: Linking { before

Once-for-each-Binding. In contrast to classical Logic Programming where it does not matter
if a fact is \inserted" into the database several times (e.g., once in every round, conforming with
the formal de�nition of the TP operator), here subelements must be created exactly once for each
instantiation of a rule (cf. Example 7.8). We consider this with de�ning a revised TP -operator in
De�nition 7.5.

Generation of Elements by Path Expressions. Additionally, subelements can be created
by path expressions in the rule head which create nested elements which satisfy the given path
expression. The atomization introduces local variables which occur only in the head of the rule, i.e.,
the result is not a valid Logic Programming rule. Here, we follow the semantics of PathLog [FLU94]
which is implemented in [LHL+98] for object creation. After the atomization, the resulting atoms
are processed in an order such that the local variables are bound to the nodes/objects which are
generated. Thus, the rules are in fact safe.

Example 7.6 (Inserting Text Children)

Bavaria gets a (PCDATA) subelement name:

C/name[text()!\Bavaria"] :- //country!C[@car code=\BAV"].

Here, the atomized version of the rule is

C[name! N], N[text()!\Bavaria"] :- root[descendant::country!C], C[@car code=\BAV"].

The body produces the variable binding C/bavaria. When the head is evaluated, �rst, the fact
bavaria[child::name!x1] is inserted, adding an (empty) name subelement x1 to bavaria and binding
the local variable N to x1. Then, the second atom is evaluated, generating the text contents to
x1.

Using Navigation Variables for Restructuring For data restructuring and integration, the
intuitiveness and declarativeness of a language gains much from variables ranging not only over
data, but also over schema concepts (classically, relations and columns, as, e.g., in SchemaSQL
[LSS96b]). Such features have already been used for HTML-based Web data integration with
F-Logic [KLW95,LHL+98].
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root
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Figure 7.2: Linking { after

Extending the XPath wildcard concept, XPathLog also allows to have variables at name posi-
tion. Thus, it allows for schema querying, and also for generating new structures dependent on the
data contents of the original one. Here, the we de�ne the semantics of XPathLog to cast strings
into names when a variable is bound to a string in the body, and occurs at name position in the
head:

Example 7.7 (Restructuring, Name Variables)

Consider another data source which provides data about waters according to the DTD

<!ELEMENT terra (water+, . . . )>
<!ELEMENT water (...)> <!ATTLIST water name CDATA #REQUIRED . . . >

which contains, e.g., the following elements:

<water type=\river" name=\Mississippi"> ... </water>
<water type=\sea" name=\North Sea"> ... </water> .

This tree should be converted into the target DTD

<!ELEMENT geo ((riverjlakejsea)*)>
<!ELEMENT river (. . . )> <!ATTLIST river name CDATA #REQUIRED . . . >

(analogously for lakes and seas)

The �rst rule,

result/T[@name!N] :- //water[@type!T and @name!N].

creates

<river name=\Mississippi"/> and <sea name=\North Sea"/> .

Attributes and contents are then transformed by separate rules which use @name for identi�cation.
Properties are copied by using variables at element name and attribute name position:

X[@A!V] :- //water[@type!T and @name!N and @A!V], //T!X[@name!N].
X[S!V] :- //water[@type!T and @name!N and S!V], //T!X[@name!N].

Then, result is a valid geo element.
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7.3 Semantics of Positive XPathLog Programs

An XPathLog program is a declarative speci�cation how to manipulate an XML database, starting
with one or more input documents. The semantics of XPathLog programs is de�ned by bottom-
up evaluation based on a TP operator similar to Datalog. Thus, the semantics coincides with the
usual understanding of a stepwise process.

For implementing the once-for-each-binding approach, the TP operator has to be extended
with bookkeeping about the instances of inserted rule heads. Additionally, the insertion of subele-
ments adds some nonmonotonicity: adding an atom n[child(i)::e!v] (or n[following/preceding-
sibling(i)::e!v]) adds a new subelement at the ith position (or as ith sibling), making the original
ith child/sibling the i+1st etc. In case of multiple extensions to the same element, the indexes are
evaluated wrt. the original structure. If several insertions e�ect the same position, the subelements
are inserted according to the occurrence in the document order. Note that this does not exchange
the i-th child/sibling (which would possibly produce dangling references).

De�nition 7.4 (Extension of DOM Herbrand Structures)

Given a DOM Herbrand structure HD and a set I of atoms as obtained from atomize which are
to be inserted, the new DOM Herbrand structure

HD0 = HD � I

is obtained from HD as follows:

� initialize
AHD0(child; x) := AHD(child; x) ;
AHD0(attribute; x) := AHD(attribute; x) ;
preds(HD0) := preds(HD) [ fp j p 2 I is a predicate atomg

for all node identi�ers x.

� for all elements of AHD(child; x),

�(AHD(child; x)[i]) := AHD0(child; x)[i]

(� maps the indexing from the old list to the new one).

� for all atoms p[child(i) :: e! y] 2 I, insert (y; e) into AHD0(child; p) immediately after
�(AHD(child; p)[i]).

� for all atoms p[child :: e! y] 2 I, append (y; e) at the end of AHD0(child; p).

� for all atoms x[following-sibling(i) :: e! y] 2 I s.t. p[child(j) :: e0 ! x] 2 H, insert (y; e) into
AHD0(child; p) immediately after �(AHD(child; x)[j+i]).

� for all atoms x[preceding-sibling(i) :: e! y] 2 I s.t. p[child(j) :: e0 ! x] 2 H, insert (y; e) into
AHD0(child; p) immediately after �(AHD(child; x)[j{i]).

� for all atoms p[@a! y] 2 I, append (y; a) to AHD0(attribute; p). 2

Proposition 7.3 (Extension of DOM Herbrand Structures)

The extension operation is correct: HD � I j= I, i.e., when querying the inserted atoms, the
query evaluates to true. 2

With the correctness of the atomize operation, the insertion of rule heads performs correctly:

Corollary 7.4 (Correctness of Insertions)

For inserting the ground-instantiated head of a rule, it is correct to insert the atomized head: For
all ground XPathLog atoms A,

HD � atomize(A) j= A :
2
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De�nition 7.5 (TXP -Operator for XPath-Logic Programs)

The TX-operator works on pairs (HD; Dic) where HD is a DOM Herbrand structure, and Dic is
a dictionary which associates to every rule a set � of bindings which have been instantiated in the
current iteration:

(HD; Dic)+(f(r1; �1); : : : ; (rn; �n)g) := (HD � f�i(atomize(head(ri))) j 1 � i � ng;
Dic:insert(f(r1; �1); : : : ; (rn; �n)g)) ;

(HD; Dic) #1 := HD :

For an XPathLog program P and a DOM Herbrand structure HD,

TXP (HD; B) := (HD; B)+f(r; �) j r = (h b) 2 P and HD j= �(b), and (r; �) =2 Bg ;
TX0

P (HD) := (HD; ;) ;

TX i+1
P (HD) := TXP (TX

i
P (HD)) ;

TX!
P (HD) :=

�
(limi!1 TX i

P (HD)) #1 if the sequence TX0
P (HD); TX

1
P (HD); : : : converges,

? otherwise.

2

The input to an XPathLog program is an XML document, respectively, the corresponding DOM
Herbrand structure (recall that only the attribute axis and the child axis are stored which then
unambiguously represent the tree structure).

Remark 7.2

Note that for pure Datalog programs P , evaluation wrt. TXP does not change the semantics, i.e.,

TX!
P (HD) = T!

P (HD) : 2

Proposition 7.5 (Properties of the TXP operator)

The TXP operator extends the well-known TP operator. For all XPathLog programs P , the
following holds:

� TX!
P (HD) j= P ,

� for positive XPathLog programs, and without considering proximity position predicates, the
TXP operator is monotonous, i.e.,

{ for all XPathLog queries A which do not use negation, aggregation, or proximity position
predicates,

HD j= A ) TXP (HD) j= A ;

{ TXP is order-preserving: for all XPathLog reference expressions expr which do not use
negation, aggregation, or proximity position predicates, SHD(expr) is a sublist of
STXP (HD)(expr). 2

Proof. Both properties follow immediately from the de�nition. The child and attribute axes
are extended solely by appending and inserting new \facts". 2

By its short, concise syntax, and exploiting the built-in semantics of the TXP operator, XPathLog
even allows for much shorter programs than, e.g., in XSLT for many tasks.

Example 7.8 (Inverting a Relationship)

Consider inverting the relation (country,language) given by the CIA data source according to the
DTD (cf. Appendix D)
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<!ELEMENT country (ethnicgroups�, religions�, languages�, . . . )>

<!ELEMENT ethnicgroups (#PCDATA)>
<!ATTLIST ethnicgroups name CDATA #REQUIRED

<!ELEMENT religions (#PCDATA)>
<!ATTLIST religions name CDATA #REQUIRED>

<!ELEMENT languages (#PCDATA)>
<!ATTLIST languages name CDATA #REQUIRED>

to match the following DTD:

<!ELEMENT languageList (language+)>
<!ELEMENT language (spoken+)> <!ATTLIST language name CDATA #REQUIRED>

<!ELEMENT spoken (EMPTY)>
<!ATTLIST spoken country CDATA #REQUIRED percent CDATA #REQUIRED>

Whereas in XSLT, the most common language for XML restructuring, this is a non-trivial task,
it solely needs 2 1/2 rules in XPathLog:

//languageList!langs.
langs//language[@name!N] :- //country/languages[@name!N].

creates a language element for every language (note that this rule �res only once for each binding
of the variable N) which is then �lled by

L/spoken[@country!C and @percent!P] :-
//country[@name!C]/languages[@name!N and text()!P],
langs//language!L[@name!N].

and yields

<languageList>
<language name='German'>

<spoken country='Switzerland' percent='65'/>
<spoken country='Germany' percent='100'/>

</language>
<language name='French'> . . . </language>
...

</languageList>

7.4 Semantics of General XPathLog Programs

For logic programs which use negation (or similar nonmonotonic features, such as aggregation),
there is no minimal model semantics. Instead, their semantics is de�ned wrt. perfect models,
well-founded models, or stable models.

For practical use - especially when considering bottom-up evaluation { the notion of perfect
models and strati�cation [Prz88] provides a solution to the problems raised by negation and other
nonmonotonic features (such as e.g., aggregation). Strati�cation expresses the intuitive notion of
process which executes as a sequence of steps:

\... negation always refers to an already known relation. More speci�cally, �rst some
relations should be de�ned (perhaps recursively) in terms of themselves without the use
of negation. Next, some new relations can be de�ned in terms of themselves without
the use of negation and in terms of the previous ones possibly with the use of negation.
This process can be iterated."
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De�nition 7.6 (Strati�cation in Datalog)

A Datalog program P is strati�ed, if it can be partitioned into strata P1; : : : ; Pn such that for
i = 1; : : : ; n,

� If a relation symbol R occurs positively in the body of a rule in Pi, then all rules containing
R in their heads are contained in

S
k�i Pj .

� If a relation symbol R occurs negatively in the body of a rule in Pi, then all rules containing
R in their heads are contained in

S
k<i Pj .

Then, P is strati�ed via P1 [ : : : [ Pn, and every Pi is a stratum of P . 2

So far, the de�nition for Datalog. Note that not all Datalog programs are strati�able { it is simply
a syntactical criterion which is sometimes satis�ed.

As long as variables are not allowed at the property position, a reasonable notion of strati�-
cation can be de�ned based on the names occurring at property position. With variables allowed
at property position, it has been showed in [Fro98] that programs are in general not strati�able.
Since (i) even without variables at property position, there are many programs which are not
syntactically strati�able, and (ii) variables at the property position prove to be very useful for
data integration (cf. Example 7.7), syntax-based strati�cation is not suitable for our approach.

Since the intention of XPathLog programs is in general to implement a stepwise process (which
is also mirrored by the bottom-up evaluation strategy), often there is a natural, user-de�ned
strati�cation. User de�ned strati�cation is supported in the LoPiX system [LoP] (cf. Section 15).

For strati�ed { including user-de�ned strati�cation { programs, the semantics is computed in
the same way as for positive programs by iterating the TXP operator.



8 A FIRST ANALYSIS OF

XPATHLOG

The pure XPathLog language as presented up to now provides a data manipulation language for
XML. As a �rst conclusion, XPathLog is compared with some XML querying and transformation
languages and concepts which have been presented in the introduction.

8.1 Comparison with other XML Languages

8.1.1 XPathLog vs. Requirements

In [FSW99], XQL, XML-QL, and the languages YATL [CDSS99] and Lorel [AQM+97a,GMW99]
are compared and essential features of an XML querying language have been identi�ed. XPathLog
relates to their requirements as follows:

� existence of some kind of pattern clause, �lter clause, and constructor clause: pattern and
�lter clause are the same as in XPath, extended with variable bindings. The path patterns
are superior to XML patterns (as e.g. used in XML-QL) since they allow for dereferencing
(cf. page 37) and navigation along di�erent axes. The constructor clause uses the same
XPath-based syntax.

� constructs for imposing nesting and order: nested elements in the result tree are generated
by subsequent rules which stepwise generate the result. Grouping (via stepwise generation)
and order (via child(i)::name) is supported.

� use of a join operator to combine data from di�erent sources: supported (for the handling of
several sources, see Section 11).

� tag variables or path expressions: tag variables are supported, path expressions are not
included in the basic XPathLog language (also not in XPath; any addition to XPath also
translates to XPathLog). They are de�nable as derived relations.

� processing of alternatives: alternatives are expressible using a separate rule for each alterna-
tive.

� checking for absence of information: existence or non-existence of properties can be tested
using negation, e.g. //country[not @indep date].

� external functions: aggregation, string functions and some data conversion is built-in; the
set of functions is extensible.

� navigation along references: implicit dereferencing is supported.

8.1.2 XQL

The ideas of XPath-Logic and XPathLog show some similarities with the XQL extensions [RLS98,
Rob99] (cf. Section 3.3) to XSL Patterns/XPath: the use of join variables, similar to Prolog,
Datalog, F-Logic, and similar languages, has been �rstly applied in the XML world in XQL.

Since in XQL the querying expression also serves as generating expression for the result, the
restructuring functionality is only limited. The distinction between querying (rule bodies) and

121
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generating (rule heads) in XPathLog by communicating variable bindings allows for a more 
exible
restructuring, including

� the generated result tree may contain element types on arbitrary tree levels which did not
exist in the original tree,

� adding subelements and attributes to existing ones (update functionality).

8.1.3 XML-QL

XML-QL [DFF+99b] (see also Section 3.5) shares its declarative, \rule-based" nature with XPathLog.
In some sense, using XML patterns in head (CONSTRUCT) and body (WHERE) clause, it is the XML-
pattern-counterpart to the XPath-based XPathLog.

Non-Nested Queries. XML queries without nesting are comparable to individual XPathLog
rules (without �xpoint evaluation): an XML query without nesting is actually a logic rule

CONSTRUCT xml-pattern :- WHERE xml-pattern IN document.

Both languages match an XML document against a pattern (XML patterns in XML-QL, and
XPath patterns in XPathLog) for generating variable bindings. Then, the second part of the
\rule" (the CONSTRUCT part in XML-QL, and the head in XPathLog) generates a result.

Nested Expressions. Nested expressions in the WHERE - IN clause have to be translated into
rules which are executed before for creating intermediate result trees. If the nested query is not
too complex, it is also often possible to rewrite it and incorporate it into the rule body.

Nested queries in the CONSTRUCT clause which serve for grouping are not directly translatable
into the logic rule representing the main query. Instead, result grouping is done in XPathLog by
having a set of rules which together create a complex tree. Here it is crucial that XPathLog is
a database programming language instead of a pure querying or transformation language such as
XQL and XML-QL: XPathLog rules

� update the underlying database instead of generating an isolated XML tree, and

� in this way, subsequent rules can be used to re�ne the results of previous ones.

Example 8.1 (Grouping in XML-QL and XPathLog)

Consider two data sources. Source 1 provides information about countries, source 2 provides
information about cities (having an attribute country = \name"). The result should be a document
which nests city elements in country elements.

The XML-QL query

WHERE <country name=$cname> </>

IN source1
CONSTRUCT

<country name=$cname>

WHERE <city country = $cname name=$cityname> </>

IN source2
CONSTRUCT

<city name=$cityname> </>
</>

is equivalent to the XPathLog program

result/country[@name!CName] :- source1/country[@name!CName].
C/city[@name!Cityname] :- result/country!C[@name!CName],

source2/city[@country!CName and @name!Cityname].
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where the �rst rule creates country elements and the second rule adds the city elements to the
appropriate country elements.

The above example did not copy the complete element contents, but the result contained only the
names of the country and the cities. A similar transformation, adding the whole element contents
to the result can be speci�ed in XPathLog as follows:

result/country!C :- source1/country!C.
C/city!City :- result/country!C[@name!CName],

source2/city[@country!CName].

which simply links the elements to the result tree. In contrast, XML-QL runs into problems since
the country element should be copied completely, and it should be updated:

WHERE <country name=$cname> </> ELEMENT AS $country
IN source1

CONSTRUCT
<country name=$cname ?? > <!{ How to copy all attributes? {>

WHERE <$a>$v</>in $country <!{ copy all subelements {>

CONSTRUCT <$a>$v</>

WHERE <city country = $cname>$c</> ELEMENT AS $city
IN source2

CONSTRUCT
$city

</>

Here, it is not clear how to iterate over all attributes and add them to the generated element.

The generation of the result tree by linking elements as subelements to another element is impor-
tant for data integration (see Section 11). Note that although the XML-QL data model presented
in [DFF+99b] as an edge-labled model would allow for linking, this is not supported by the XML-
QL language (at least as long as XML-QL does not support updates at all; a potential combination
of XML patterns and updates is not obvious).

In contrast to XPathLog, XML-QL does not support recursive queries. Recall also that the
XML-QL patterns for selecting elements do not support the XML axes except the child axis, and
indirectly the descendant by regular path expressions. On the other hand, regular path expressions
are not yet supported in XPathLog (the syntax de�nition would allow an extension).

8.1.4 Quilt/XQuery.

XQuery (see Section 3.11) is the W3C's favorite XML querying language. The principal idea is the
same both in XQuery and XPathLog (and also in SQL and OQL): generating variable bindings,
and constructing results.

Translation from XQuery to XPathLog.

Non-Nested Queries. Similar as for XML-QL, Quilt/XQuery FLWR expressions without nest-
ing can be regarded as logical rules

RETURN xml-pattern :- FOR . . . LET . . . WHERE . . . .

Since XQuery also uses XPath expressions for binding variables, an even closer translation of the
rule body can be given:

For an XQuery FLW statement (note that a mixed sequence of FOR and LET statements is
allowed for binding variables to the result of other ones) where
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� x1; : : : ; xn are the variables de�ned by FOR - LET clauses (the de�nition of xi may use
x1; : : : ; xi{1),

� FOR vari1 IN xpath-expri1 , . . . , FOR varik IN xpath-exprik where (i1; : : : ; ik) is a subsequence
of (1; : : : ; n) are the FOR clauses, and

� LET varj1 IN xpath-exprj1 , . . . , LET varjl IN xpath-exprjl where (j1; : : : ; jk) is a subsequence
of (1; : : : ; n) are the LET clauses
(thus, for every x 2 1; : : : ; n, x belongs either to the sequence (i1; : : : ; il) or to (j1; : : : ; jk))

� without loss of generality, every varjx (i.e., variable which is bound by a LET statement) is
bound to a result set containing more than one element - otherwise a FOR would be equivalent.

� filter is the body of the WHERE clause,

the XPathLog rule body contains

� the atom \xpath-expri!vari" where vari is bound by a FOR clause,

� the atom \xpath-expri!vari" where vari is bound by a LET clause, and is used in an IN

clause,

� the filter, where all aggregations over variables aggrfct(vari) s.t. vari is bound by a LET

clause, are replaced by \aggrfctf vari [var1; : : : ; vari{1]; xpath-expri!varig.

Proposition 8.1 (Variable Bindings in XPathLog and XQuery)

The XPathLog rule body constructed above produces the same variable bindings as the XQuery
FLW statement except of the variables which are bound to node sets in a LET clause. 2

Proof. By induction over the number of FOR/LET clauses: n = 1 is obvious, the step from n to
n+1 uses the variable bindings of previous steps. 2

If the RETURN clause does not contain variables which are bound to node sets in a LET clause, the
xml-pattern in the RETURN clause can be rewritten into a suitable complex XPathLog rule head,
inserting the corresponding structures for all variables which are bound to individual nodes. Due
to the above proposition, the inserted tree fragments are the same as for XQuery.

Variables bound by LET statements to node sets which occur in the RETURN clause must be
handled by successive rules, adding each element of the result set separately to the result tree.

Nested Expressions. Similar to XML-QL, nested expressions in the FLW clause have to be
translated into rules which are executed before for creating intermediate result trees. If the nested
query is not too complex, it is also often possible to rewrite it and incorporate it into the rule
body.

For the RETURN clause, the same restrictions as for XML-QL hold: Nested FLWR clauses have
to be postponed to later updates of the database. The handling of variables which are bound to
node sets has also to be postponed to a second, re�ning step.

Translation from XPathLog to XQuery.

XPathLog reference expressions are atomic components of XPathLog queries.

Proposition 8.2 (Mapping XPathLog Reference Expressions to XQuery queries)

� Every XPathLog reference expression refExpr can be translated into an equivalent XQuery
FOR� WHERE expression which binds all variables occurring in refExpr.

� Every conjunction of XPathLog reference expressions can be translated into an equivalent
XQuery FOR� - WHERE expression. 2
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Proof Sketch. For the �rst step, the reference expression is stepwise resolved into subexpres-
sions similar to the atomize mapping. Note that join variables and �lter conditions can optionally
be handled in the WHERE clause. For the second step, the FOR clauses are collected. The resulting
WHERE clause collects the generated WHERE clauses and handles cross-literal join variables (although
these sometimes can also be included into the FOR clauses). 2

Proposition 8.3 (Mapping XPathLog Reference Expressions to XQuery RETURN clauses)

Every XPathLog reference expression (in the head of an XPathLog rule) which does not use sibling
axes can be translated into an equivalent XQuery RETURN clause. 2

Proof Sketch. Rewrite it into a suitable XML pattern (note that this is not possible for sibling
axes). 2

Since an individual XPathLog rule cannot create a nested structure with grouping (instead, a
sequence of rules has to be used where each rule adds subelements or attributes to the elements
generated by previous rules), the translation does not need nested FLWR expressions in the RETURN
clause.

Recursive Queries. XQuery has the same problem as SQL: it cannot express recursive queries,
e.g., creating a tree which represents a transitive closure. With XPathLog which comes with
iteration as built-in in its �xpoint semantics, such computations are possible.

Thus, although, each individual rule can be mapped into an XQuery FLWR statement, the
semantics of XPathLog programs is not covered by XQuery. Note that YAXQL [Moe00] provides
a construct for recursive queries.

XQuery does also not (yet) provide an update clause in the style of the SQL UPDATE - SET -

WHERE; a proposal will be published in [TIHW01] (cf. Section 3.12).

8.1.5 XSLT

XSLT is a pattern-based XML transformation language: Similar to XPath rules, each XSLT
pattern contributes to the �nal result. XSLT is less declarative than XML-QL, Quilt, or XPathLog
which declaratively specify the outcome of a query or transformation. Instead, XSLT uses explicit
apply-pattern, if-then, and for-each commands to control the generation process. Since XSLT
employs XPath as addressing mechanism, there is no implicit dereferencing; the id function has
to be used.

As already stated in Section 3.4, one of the main drawbacks of XSLT as a database language is
that it is not possible to update the result tree. When an element of the result tree is constructed,
it is not possible to re�ne it later. Here, di�erent implementations provide the (yet proprietary)
nodeset() extension which allows to access the result tree generated so far as an input source. For
\real" data integration, it would be necessary to run a sequence of XSLT stylesheets, each one
using the result of the previous one and the original sources, which is ine�ective since the whole
result tree is copied in each step.

As a conclusion wrt. XSLT, XSLT is suitable for handling documents, transforming them,
merging them, etc., when the result document can be \collected" in one turn. Here, the complexity
is low, and the possible cases are easy to grasp. In contrast, in data integration, there are more
complex cases, and exceptions. Thus, an incremental process is more suitable.

Excelon [eXc] extends XSLT with an update language XUL (XML Update Language, cf. Sec-
tion 3.13) which allows to specify updates on elements which are selected by XPath expressions.

8.2 Order

As stated in Section 4, the order of elements in the result tree is relevant from the document point
of view, whereas in the database area, it can often be dropped for the bene�t of optimizations.
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The XML querying and transformation languages which have been described above use an
order-preserving semantics. For the \pioneer" languages XQL and XML-QL which have been
presented before the XPath proposal, their semantics has been de�ned in this way \from scratch".
The more recent languages (e.g., XSLT and Quilt/XQuery) are syntactically based on XPath
which does not impose any constraints on the order of element in its result sets (although most
of the implementations are order-preserving), but semantically they presume result lists which
contain the elements in document order { thus, implementations rely on an implementation-
dependent, optional \feature" (or they have to reorder the result set according to document order
by themselves).

� XQL queries are order-preserving if no explicit sequencing is speci�ed. It is not based on
XPath (in contrast, it is one of the \predecessors" of XPath).

� XSLT uses XPath for selecting elements for applying patterns by its <xsl:apply-templates
select=\xpath-expr"> elements. Here, it is implicitly assumed that xpath-expr returns the
elements in document order.

� XML-QL is also not based on XPath, but on evaluating XML patterns. There exists an
order-preserving semantics, and a non-order-preserving semantics.

� The XML Query Algebra [XMQ01a, Section 2.8] explicitly distinguishes an ordered and an
unordered model.

� Quilt/XQuery use XPath in the FOR - LET clauses. Here, the nesting of the clauses deter-
mines the order of elements in the result. Again, it is assumed that the XPath expressions
return the elements in document order.

� The XML update operators proposed in [TIHW01] also distinguish between ordered and
unordered semantics.

When regarding a graph database, even the notion of order becomes ambiguous:

1. Global, document order: all nodes in a tree are ordered globally. This is the case for the
DOM and XML Query Data Model. The extension to multiple trees in a database is not
clear (seems to be arbitrary, depending on the order of parsing documents).

2. With the multi-tree overlapping model and restructuring of documents by linking (cf. Sec-
tion 11), the global ordering is sometimes too strong. Thus, XPathLog enumerates the
children of a node locally, not imposing a global order (see Section 5.3). As a consequence,
it is e.g. allowed that e1 is the �rst child of a node x, and e2 is the second child, whereas for
another node y, e2 is the �rst child and e1 is the second child. This may be useful when the
contents of a source has to be reordered.

3. When navigating along reference attributes, another \navigation order" arises, enumerating
elements in the order they are \found" by the evaluation: An IDREFS attribute is itself an
ordered list of references, and it can be useful to return the referenced nodes in the order
of the referencing nodes (i.e., where for //organisation/@seat!city, the cities are enumerated
as a sequence consisting of the seat of the �rst organization, then the seat of the second
organization, etc.).

The current proposals all use (1). XPath does not specify any order of the result (always returning
result sets). Thus, applications based on XPath have to use the global document order. Especially,
XSL(T), XML-QL, and Quilt/XQuery, return the result of applying the id() function according
to the order of the referenced nodes in the document.

In contrast, the semantics de�nition given for XPathLog in Sections 5 and 6 use the above
\navigation order" which preserves the local order of children and of items in reference attributes.
If additionally a global document order is given, the results can be reorderd accordingly.
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8.3 XPathLog vs. XML-QL Data Model

The XPathLog data model by X-structures has some similarities with the XML-QL data model
(cf. Section 3.5): Both (the XML-QL data model has been in
uenced by the Strudel/StruQL
[FFK+98] project) emerged from general semi-structured models. Both are graph-based (instead of
strictly tree-based) and edge-labeled (with a single type of properties/relationships), but originally
unordered. For both models, references based on object identity are a native built-in concept of the
data model. On the other hand, the migration to the XML world required to extend the models
to distinguish attributes and elements, and to augment the subelement relationship with ordering.
For XML-QL, the ordered model extends the unordered one by associating an order of the complete
set of nodes (i.e., the order of the outgoing edges of (i.e., children) of each node is induced by this
global order). In contrast, in the XPathLog data model, the order of the subelements is associated
with the parent node.

In contrast to tree models, the graph models allow { at least theoretically { for having more
than one parent of an element. The pure XML tree model does not use this opportunity, so the
data models are somehow \too rich" { but they cover the XML model. With XPathLog, the
possibility of having several parents is exploited in Sections 11 and 12 for XML data integration:
it allows for generating an XML database which contains multiple overlapping trees and tree views
from several sources and then to distinguish result views as XML trees.

8.4 XPathLog vs. XML Query Data Model

The XML Query Data Model is a special case of a W3C Requirement: a data model is speci�ed
which is intended to serve as a formal background for XML querying languages. Some constraints
(see Section 3.9.2) con
ict with the requirements for data restructuring and integration.

X -structures have been de�ned in Section 5.3 as the formal data model underlying XPath-
Logic, based on the notion of a navigation graph (cf. De�nition 5.4). For an XML document,
the induced navigation graph contains the XML tree and cross edges which represent reference
attributes.

In contrast to the XML Query Data Model,

� XPathLog does not use text nodes, attribute nodes, and reference nodes (note that the actual
semantics of reference nodes is also not de�ned in the XML Query Data Model, except that
they may be used for handling reference attributes { the XPathLog data model does not need
such auxiliary constructs). Instead, there are literal values which are used to represent text
children and literal-valued attributes. Attributes are directly represented by (sets of) literals
or references to element nodes.

� the navigation graph is edge-labeled, i.e., the names of the subelements and attributes are
annotated to the edges, not to the nodes. This allows for de�ning overlapping tree views
where the same elements may occur under di�erent names

� arbitrary \subelement" edges from element nodes to other element nodes can be added to
the graph (thus, even the subelement relationship does not necessarily induce a tree).

Example 8.2 (Overlapping Tree Views)

The database contains the Mondial XML tree which includes a subelement edge labeled with city
from the element node germany to the element node representing berlin. Additionally, the user may
de�ne a \metropole view" on the database by

result[metropole!C] :- cia/city!C[population > 1000000].

which adds a subelement edge labeled with metropole from result to berlin (cf. Figure 10.1).
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Thus, the navigation graph is not intended to represent \the XML document", but a database
where XML documents may be de�ned as \tree views" { some of the views are the original XML
trees (see Section 11).

8.5 Data Manipulation in the DOM/XMLQuery Data Model

As already stated in Section 3.9.2 and 8.4, the DOM and XML Query Data Model severely restrict
the design of XML data manipulation languages. The XPathLog data model is a compatible
extension to the XML/DOM data model, i.e., the \restriction" of XPathLog to the features
supported by the node-labeled tree models is a well-de�ned querying and restructuring language
for XML trees :

� XPathLog rule bodies are a complete XML querying language which allows for querying all
properties of XML documents in the DOM model.

� Since the XML/DOM Data model requires elements to have at most one parent node, it is
not possible to restructure a given XML tree in-place. Instead, any notion of restructuring
involves the creation of a result tree by deep-copying elements (as done implicitly by XSLT,
XML-QL, and Quilt/XQuery). Note that obviously, the same IDs occur in the original tree
and in the result tree.

For these and similar problems, the DOM model provides reference nodes. The Xerces DOM
implementation (which has been used in [Beh01] for the DOM-based implementation variant
of LoPiX described in Section 15.2) automatically maintains copied trees to point their
references also in the copied tree { which is a solution as long as the reference target also
belongs to the fragment which is deep-copied. Copying cross-references in Xerces yields
unintended results.

� Thus, for a comparison, the semantics of XPathLog heads must be (temporarily) restricted
and rede�ned as follows:

{ rule heads may only update the result tree, i.e., all elements occurring as start nodes of
expressions in rule heads are required to belong to the result tree,

{ nodes which are bound to variables are deep-copied when instantiating the rule head,

{ during the computation, the result tree may contain dangling reference attributes. As long
as there is no target of the reference attribute in the result tree, it has to be evaluated
wrt. the corresponding element in the original tree (which is guaranteed to exist since the
original tree is not changed).

We allow for queries accessing the temporary result tree, corresponding to use variables
bound by previous FOR/LET clauses in Quilt/XQuery.

{ after the computation, all reference attributes in the result tree have to be checked (i.e.,
it has to be checked if result is a root according to De�nition 5.6).

Note that this is also the case for XML-QL and Quilt/XQuery { their results can also
contain dangling references.

With the above de�nitions, XPathLog can be implemented based on a DOM API implementation
(cf. Section 15.2). Nevertheless, maintaining reference attributes during complex restructuring
and integration tasks yields di�cult problems:

Example 8.3 (Updates with Restrictions)

Assume two trees A and R(esult), where subtrees A1 and A2 which reference each other will be
copied during the process to R.

First, A1 is copied from A to A01 in R, duplicating it. It is reasonable to adapt all references
inside the copied fragment A1 to A01. Since A2 is not yet copied (even not known to be copied
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later), references from A01 to A2 cannot be adapted; they still point to A2 in A. Wrt. R they are
dangling.

Then, some other operations are done.

Later, A2 is copied to A02 somewhere in R, its internal references are adjusted. Now, references
from A01 in R to nodes in A2 could be adjusted to A02:

\adjust all references in the target tree which point into the subtree which is copied."

This is not correct in the general case when a tree R1 is copied inside R to R2 { here only the
internal references should be adjusted. Re�ne the above with

\... if the subtree to be copied is not part of the target tree."

Now, A02 in R contains references to A1 in A { wrt. R, they are dangling now.

How is it possible to adjust the references from A2 to A1 into references from A02 to A01? Note
that A1, A2, and A01 may be changed in the meantime.

Thus, by using an edge-labeled graph instead of the node-labeled graph in the XML data model,
and refraining from the \unique-parent" constraint of the DOM and XML Query Data Model,
XPathLog gains its expressiveness as an XML data manipulation and integration language. The
proposal for updating XML in [TIHW01] has to solve the copying problem described above.

8.6 An XML Syntax for XPathLog

The XML Query Requirements [XMQ01c] demand for an XML-syntax language binding for an
XML querying/manipulation language. Similar to XSLT and YAXQL, elements with the semantics
of the required constructs, the notions of rule, stratum, and program can be de�ned. The xpathlog:
namespace contains the following elements:

Program: a program is a sequence of strata with optional querey in-between,

Stratum: a stratum is a sequence of rules and facts in arbitrary order. For optimization, it may
be speci�ed if it is su�cient to evaluate all rules once (one TXP round), or if the full TX1

P

computation is needed.

Rule: a rule consists of a head and a body.

Head: a head is a list of atoms.

Body: a body is a list of literals.

Atom: an atom has a body which is an XPathLog expression (CDATA).

Literal: a literal may be negated and has a body which is an XPathLog expression (CDATA).

Fact: a fact is an atom. It is su�cient to insert it once.

Query: a query consists of a set of literals.

The elements of the language are speci�ed by the following DTD:

<!ELEMENT program ((stratumjquery?)+)>
<!ELEMENT stratum ((factjrule)*)>

<!ATTLIST stratum once (YESjNO) DEFAULT \NO">
<!ELEMENT rule (head,body)>

<!ATTLIST rule once (YESjNO) DEFAULT \NO">
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<!ELEMENT head (atom+)>
<!ELEMENT body (literal+)>
<!ELEMENT atom EMPTY>

<!ATTLIST atom body CDATA #REQUIRED
<!ELEMENT literal EMPTY>

<!ATTLIST literal negation (YESjNO) DEFAULT \NO"
body CDATA #REQUIRED>

<!ELEMENT fact (atom) EMPTY>

<!ATTLIST fact once (YESjNO) \YES">
<!ELEMENT query (literal+)>

The elements may e.g. be augmented with information about program details which serve for opti-
mization or semantical checks. For example, atoms, literals, heads and bodies can have additional
attributes vars and safevars. A rule is safe, if all variables in the head occur positively in the body.
Additionally, such information can be used for syntactical goal reordering. Perhaps the XML syn-
tax is suitable to make people like rule-based programming who do not like Prolog notation. A
more general approach for representing inference rules in XML is described in [RML01].



9 CLASS HIERARCHY AND

INHERITANCE

XPathLog is extensible in two orthogonal directions:

� Extending the approach to multiple trees and tree views of the XML database,
combined with a projection mechanism.

� The data model can be extended by additional conceptual notions, e.g., a class
hierarchy, or signature information which can also be integrated into the language.

The following sections describe extensions to the basic XPathLog language. Thus, the
presentation is given mainly on the level of DOM Herbrand structures instead of X-
structures.
An extension to a class hierarchy and inheritance is presented in Section 9. Then, a
lightweight signature concept using signature speci�cations is de�ned in Section 10. Both
extensions are adaptations from the experiences in data modeling with F-Logic/Florid
[LHL+98,MHLL99].
The signature is especially important for de�ning individual tree views as projections from
the database. The extension to multiple XML trees and data integration is described
in Section 11, followed by the case study in Section 12. The LoPiX system which
implements XPathLog with these extensions is presented in Section 15.

Types or classes (in general organized with a class hierarchy and equipped with some inheritance
concept) provide an important means for data modeling. Additionally, for data integration, rea-
soning on the meta level, i.e., signatures (possibly augmented by ontologies which provide meta
information about signatures) is a crucial requirement.

The pure XML data model does not directly include a notion of classes and class membership.
For XML, signature and structure information is usually given either by DTDs or by XML Schema
instances. For the XPathLog data model, we renounce from de�ning a special extension for
describing structure, but restrict ourselves to a \lightweight" representation of signature, i.e., on
the relationships between types and properties (cf. Section 10).

In XPathLog, the signature provides a metadata description which can be used in queries,
updated by rule heads, and especially serves for de�ning projections of the database to one or
more result trees which thus can be regarded as views on the whole database (cf. Section 11).

9.1 Classes

The element types induce a notion of classes:

� Elements are complex types, thus it makes sense to regard them as objects:

{ every element type t de�nes a class which is a subclass of the most general object class
object,

{ for every instance e of element type t, e is a t.

� text contents and attribute values are simple types (recall that XPath-Logic silently splits
NMTOKENS into their individual values): Every such value is a member of the class literal
which is further partitioned into numeric and string.

131
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Here (as long as no signatures are used, cf. Section 10), the subclass relationship just induces
transitivity of subclass relation and class membership.

From the formal point of view, the X-structures are extended:

De�nition 9.1 (X-Structure with Classes)

An X-structure with classes is an X-structure (cf. De�nition 5.3) extended as follows:

� the signature contains a set �Cl of class names (often identical with the element type names),

� N additionally contains two (disjoint) sets NCE and NCL of element class names and literal
class names,

� X-structures (cf. De�nition Def-canonical-x-structure) interprete class names by

IC : �Cl ! NCE [NCL

� the class membership is represented by C as two (partial) mappings

CV : V ! 2NCE ;

mapping each node/vertex n to a set C of object classes denoting that n belongs to all classes
in C, and

CL : L ! 2NCL ;

mapping each literal ` to a set C of literal classes denoting that ` belongs to all classes in C,
and

� the subclass relationships are represented by SC, also as two (partial) mappings

SCE : NCE ! 2NCE ;

mapping each object class c to a set C of object classes, denoting that c is a subclass of all
classes in C, and

SCL : NCL ! 2NCL ;

mapping each literal class c to a set C of literal classes, denoting that c is a subclass of all
classes in C.

� C and SC satisfy a closure requirement (transitivity of the class hierarchy):

{ if d 2 SC(c) and c 2 SC(b), then d 2 SC(b), and

{ if d 2 SC(c) and c 2 C(b), then d 2 C(b). 2

The canonical X-structure to an XML document is also extended with the class information. Here,
it depends whether the class information is derived from the XML instance or the DTD, or from
an XML Schema description.

De�nition 9.2 (Canonical X-Structure with Classes for XML and DTD)

Given an XML instance D, the canonical X-structure XD (see De�nition 5.5) is extended with an
interpretation of C and SC. NE = NCE is the set of element names occurring in the XML instance
or in its DTD.

C(v) =

8<
:
fnameg if v 2 V and name(�{1(v)) = name
fliteralg where v 2 L represents a text node or an NMTOKEN or

a CDATA attribute value

SC(x) = fobjectg if x 2 NCE is an element class.
2



9.1. CLASSES 133

The de�nition exploits the fact that element and attribute names are full citizens of the model
which may also occur at host and result positions of atoms and in predicates.

If an XML Schema instance is given, the class hierarchy does not use the element names, but
the element types (simpleTypes and complexTypes ; see Section 10.2.2); then, NE and NCE are in
general not the same.

Example 9.1 (X-Structure with Classes)

The X-structure (see Example 5.5) of the XML instance given in Example 5.1 contains the follow-
ing class memberships:

C(mondial) = fmondialg, C(un) = forganziationg,
C(ch) = fcountryg, C(un-name) = fnameg,
C(ch-name) = fnameg, C(un-abbrev) = fabbrevg,
C(bern) = fcityg, C(un-mem-mem) = fmemberg,
C(bern-pop) = fpopulationg, C(un-mem-obs) = fmemberg,

SC(class) = fobjectg for all the above classes.

and C(`) = fliteralg for all text contents and attribute values ` 2 L.

Class Hierarchy in XPath-Logic. XPath-Logic seamlessly integrates class membership and
subclass information via class atoms which are special (in�x) predicates satisfying the above
closure property:

� XPath-Logic subclass atoms are of the form

class1 subcl class2

which denotes that the class class1 is a subclass of class2:

� XPath-Logic class membership atoms are of the form

node isa object class resp. value isa literal class

which denotes that the element node is a member of the object class object class (which in
turn is a subclass of object), or that value is a member of the class literal class.

Concerning the DOM Herbrand structure, we write A 2 HD for isa/class atoms instead of A 2
preds(HD) since they represent built-in notions.

The formal de�nition of the semantics of formulas is extended appropriately:

De�nition 9.3 (Semantics of XPath-Logic Class Atoms)

The semantics of XPath-Logic class atoms is de�ned as follows in the style of special predicates:

� interpretation of class names: for cl 2 �Cl, de�ne SX (cl; �) := IC(cl) for all variable assign-
ments �.

� truth values (cf. De�nitions 5.9 and 5.10):

(X ; �) j= expr1 subcl expr2 :, SX (expr; �) 2 SC(SX (expr; �))
(X ; �) j= expr1 isa expr2 :, SX (expr; �) 2 C(SX (expr; �))

� answer variable bindings (cf. De�nition 6.8; similar to predicates)

QB(expr1 subcl expr2; Bdgs) :=
[

(x1;�1)2SB
any

HD
(expr1;Bdgs);:::;

(xn;�1)2SB
any

HD
(expr2;Bdgs);

(x1subclx2)2HD

�1 ./ �2

analogous for isa . 2
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The transitivity of C and SC is maintained by the TXP -Operator:

De�nition 9.4 (Closure Axioms: Extended TXP -Operator)

For a DOM Herbrand Structure HD, the closure operator, C̀ (HD) is de�ned as

� if u1 subcl u2 2 HD and u2 subcl u3 2 HD then u1 subcl u3 2 C̀ (HD) (subclass transitivity),

� if u1 subcl u2 2 HD and u2 subcl u1 2 HD then u1 = u2 2 C̀ (HD) (subclass acyclicity),

� if u1 isa u2 2 HD and u2 subcl u3 2 HD then u1 isa u3 2 C̀ (HD) (instance-subclass
dependency),

The TXP -Operator (cf. De�nition 7.5) is extended to a TXP;C̀ -Operator:

TXP;C̀ (HD; B) := C̀ (TXP (HD; B))

where

C̀ (HD; B) := (C̀ (HD); B)

completes the DOM Herbrand structure component and leaves the dictionary of bindings un-
changed. 2

Note that in an implementation, the C̀ operator and the class memberships of literals are not
necessarily implemented by materializing the derived atoms. The LoPiX implementation (cf.
Section 15) does not materialize the closure, but includes it into the evaluation of queries and rule
bodies.

When using a DTD, classes provide an alternative speci�cation of all elements of a given
element type. A class c at least contains all nodes n such that name(n) = c. For the canonical
DOM Herbrand structure HD to an XML document, the answer set (cf. De�nition 6.11) to an isa
query yields all these elements:

answersHD(//name!C) = answersHD(C isa name)

Additionally, the class hierarchy can be changed by XPathLog rules. Note that with overlapping
trees, a node may belong to several classes (wrt. di�erent tree views).

9.2 Class Hierarchy and Inheritance

In the basic XML model, the notion of �xed and default values of attributes de�ned in the DTD
provides a very restricted notion of monotonic and nonmonotonic inheritance. In the object-
oriented data model, inheritance is combined with a class hierarchy. After extending XML with
a class hierarchy in the previous section, the inheritance model is described now.

De�nition 9.5 (X-Structures with Inheritance)

For X-structures, the mapping A (attributes) is extended with two more (partial) mappings

A� : NCE �NA ! 2V [ 2L and A�� : NCE �NA ! 2V [ 2L

which specify the default (A�) and �xed (A��) values. v 2 A�(class; attrname) denotes that v is
a default value of attribute attrname of elements of class class1.

The monotonic inheritance semantics of FIXED attributes adds another closure requirement
(whereas for non-monotonic inheritance, the semantics of Default Logics applies, which is added
to the evaluation, see Section 9.2.1):

1for a multivalued default, A� may contain several elements.
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� if v 2 A��(class; attr) and class 2 SC(sub), then v 2 A��(sub; attr) (propagation to sub-
classes), and

� if v 2 A��(class; attr) and class 2 C(x), then v 2 A(x; attr) (propagation to instances). 2

In contrast to A, E , and C, the extension of these mappings is not contributed by the XML
instance, but by the DTD (or by the XML Schema de�nition, see Section 10.2.2):

De�nition 9.6 (Canonical X-Structure with Inheritance (DTD))

Given an XML instance D using a DTD dtd, the canonical X-structure XD (cf. De�nitions 5.5
and 9.2) is extended with an interpretation of C, A�, and A��:

� For an element declaration

<!ELEMENT element contentsmodel> ,

object 2 SC(element), and

� for attribute declarations,

A�(name; attr) =

8>>>>>><
>>>>>>:

fv j A(v; attr0) = refi where attr
0 is the ID attribute of v

if dtd speci�es
<!ATTLIST name attr IDREF(S) \ref1 : : : refn" > g

f` j ` is a value item in value if dtd speci�es
<!ATTLIST name attr attr type \value" >

as a non-reference attribute. g

Analogously for A�� and FIXED. 2

Example 9.2 (DTD, Default and Fixed values cont'd)

Consider again the DTD fragment given in Example 2.4.

<!ELEMENT name EMPTY>

<!ATTLIST name attr1 CDATA \value"
attr2 IDREFS #FIXED \id1 id2">

As already mentioned, a valid XML document which contains some node n of type name must
provide some nodes n1 and n2 with ID attributes a1 and a2 and such that ni[@ai = idi] as reference
targets. Then,

A�(name; attr1) = fvalueg and A��(name; attr2) = fn1; n2g :

In the Herbrand structure and in XPathLog, A� and A�� are represented by atoms similar to the
atoms for specifying attribute values and subelement relationships:

elementtype[@attribute �!result] and elementtype[@attribute ��!result]

The semantics j= and QB of these atoms are de�ned straightforwardly based on evaluating terms
and checking A� and A��, or HD, respectively.

9.2.1 Evaluation with Inheritance

The monotonic inheritance semantics of FIXED attributes is directly added to the closure operator,
whereas non-monotonic inheritance of defaults is added to the evaluation. In [MK98,MK01], it
has been shown that this semantics coincides with the standard semantics of Default Logic (which
then also applies to the X-structure level).
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De�nition 9.7 (Closure Axioms: Extended TXP -Operator)

Extending De�nition 9.4, for a DOM Herbrand Structure HD, the closure operator, C̀ (HD) is
rede�ned as

� if u1 subcl u2 2 HD and u2 subcl u3 2 HD, then add u1 subcl u3 (subclass transitivity),

� if u1 subcl u2 2 HD and u2 subcl u1 2 HD, then add u1 = u2 (subclass acyclicity),

� if u1 isa u2 2 HD and u2 subcl u3 2 HD then add u1 isa u3 (instance-subclass dependency),

� if c[@a��!v] 2 HD and c0 subcl c 2 HD then add c0[@a��!v] (monotonic inheritance to
subclasses),

� if c[@a��!v] 2 HD and node isa c 2 HD then add (v; a) to AHD(attribute; node) (monotonic
inheritance to instances),

�� if c[@a��!v] 2 HD and c0 subcl c 2 HD, then there is no w s.t. c0[@a��!w] 2 HD and not
c[@a��!w] 2 HD,

�� if c[@a��!v] 2 HD and node isa c 2 HD, then there is no w s.t. (w; a) 2 AHD(attribute; node)
and not c[@a��!w] 2 HD,

� if one of the (��) conditions is violated, then C̀ (HD) = ?, i.e., HD is inconsistent.

Again, the TXP;C̀ -Operator de�nes the semantics of a program. 2

For the semantics of non-monotonic inheritance, the semi-declarative semantics which has been
de�ned for F-Logic in [KLW95] is adopted and implemented in Florid [FLO98,FHK+97]; it has
been carried over to LoPiX. In [MK98,MK01], it has been shown that this semantics coincides
with the standard semantics of Default Logic [Poo94] and Inheritance Networks [Hor94]. Non-
monotonic inheritance is implemented via a trigger mechanism in a deduction precedes inheritance
manner: The evaluation of a program is de�ned by alternatingly computing a classical deductive
�xpoint and carrying out a speci�ed amount of inheritance. The strategy is formally characterized
as follows, based on inheritance triggers [KLW95], for proofs see [MK01]:

De�nition 9.8 (Inheritance Triggers)

Let HD be a DOM Herbrand structure.

� An inheritance trigger in HD is a pair (n]c;@a�!v) such that (n]c) 2 HD and c[@a�!v] 2
HD, and there is no n 6= c0 6= c such that fn]c0; c0 subcl cg � HD (where ] stands for isa or
subcl ).

� An inheritance trigger (n isa c;@a�!v) or (c0 subcl c;@a�!v) is active in HD if there is no
v0 such that (v0; a) 2 AHD(attribute; n) or c0[@a�!v0] 2 HD, respectively.

� T(HD) denotes the set of active inheritance triggers in HD.

� An inheritance trigger (n isa c;@a�!v) or (c0 subcl c;@a�!v) is blocked in HD if (v0; a) 2
AHD(attribute; n) or c

0[@a�!v0] 2 HD, respectively, for some v0 6= v.

Note that this de�nition depends only on HD, not on a program. 2

An attribute value is inherited from a class to a node or a subclass only if no other value for this
attribute can be derived for the node or the subclass, respectively. Hence, inheritance is done after
classical deduction, leading to an alternating sequence of (deductive) �xpoint computations and
inheritance steps.
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De�nition 9.9 (Firing a Trigger)

For a DOMHerbrand structureHD and an active trigger t = (n isa c;@a�!v) or t = (c0 subcl c;@a�!v),
the DOMHerbrand structure after �ring t, t(HD), is obtained by adding (v; a) toAHD(attribute; n)
or adding fc0[@a�!v]g to HD, respectively.

In accordance to [KLW95], for a DOM Herbrand structure HD and an active trigger t, ItP (HD) :=
TX!

P;C̀ (t(HD)) denotes the one step inheritance transformation. 2

Proposition 9.1 (Correctness of One-Step-Inheritance)

Let P be a program and HD a DOM Herbrand structure which is a model of P (i.e., HD j= h b
for every rule in P ). For every t 2 T(HD), if ItP (HD) = T!

P (t(HD)) is consistent, then it is also
a model of P . 2

Note that the notion of a model of an XPathLog program does not require closure wrt. inheritance.

Analogous to [KLW95] for F-Logic, inheritance-canonic models of XPathLog programs are de�ned:

De�nition 9.10 (Inheritance-Canonic Model)

For an XPathLog program P , a sequence M0;M1; : : : ;Mn of DOM Herbrand structures is an
IP -sequence ifM0 = T!

P (;) and for all i, there is a ti 2 T(Mi) such thatMi+1 = I
ti
P (Mi).

An DOM Herbrand structureM is an inheritance-canonic model of P if there is an IP -sequence
M0;M1; : : : ;M 6= ? such thatM has no active triggers. 2

Obviously, an XPathLog program P can have several inheritance-canonic models.

Corollary 9.2 (Correctness of Inheritance-Canonic Models)

Let P be an XPathLog program. Then, for every IP -sequence M0;M1; : : : ;Mn, everyMi is a
model of P . 2

Note that further problems with inconsistent results due to scalarity requirements in F-Logic which
have been described in [MK01] have not to be considered for XPathLog.

An example will be given below, after de�ning a syntax how to express subclass relationships in
a DTD.

Remark 9.1

From the database point of view (i.e., without considering the order of subelements and using a
multi-parent model), it is also possible to extend inheritance to the subelement relationship. 2

9.2.2 Proposal: Class Hierarchy in XML/DTD

<!SUBCLASS elementtype elementtype (contentsdecl)>

where contentsdecl is optional. If no contents declaration is given, the subclass inherits the contents
model from the superclass; otherwise the contents model of the subclass is required to re�ne
the contents model of the superclass (see Sections 10.3 and 10.4). A subclass may also have
an <!ATTLIST . . . > declaration which then extends and re�nes the attribute de�nitions of the
superclass.

The following example illustrates the subclass hierarchy, nonmonotonic inheritance, and the trigger
mechanism:

Example 9.3 (Default Values and Inheritance)

Consider the following DTD \zoo.dtd"

<!{ XML DTD \zoo.dtd" {>
<!ELEMENT zoo (animal�)>
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<!ELEMENT animal EMPTY>

<!ATTLIST animal name CDATA #IMPLIED

y CDATA \no">

<!ELEMENT bird EMPTY>

<!ATTLIST bird 
y CDATA \yes"
laying eggs CDATA \yes">

<!ELEMENT penguin EMPTY>

<!ATTLIST penguin 
y CDATA \no">

<!SUBCLASS bird animal>
<!SUBCLASS penguin bird>

with a small instance:

<!DOCTYPE mondial SYSTEM \zoo.dtd">
<zoo>

<penguin name=\tweety"/>
<bird name=\lora"/>

</zoo>

After parsing the XML instance, and evaluating it (i.e., since the program is empty, computing
the closure of the class hierarchy and handling inheritance) it can be queried:

?- zoo/M[name!N and 
y!F].
M/penguin N/\tweety" F/\no"
M/bird N/\lora" V/\yes"

The evaluation process proceeds as follows. The starting point is the canonical DOM Herbrand
structure

HD0 = fbird subcl animal.
bird subcl animal.
penguin subcl bird.
zoo isa zoo.
tweety isa penguin.
lora isa bird.
A�(attribute,animal) = ((\no",
y)),
A�(attribute,bird) = ((\yes",
y)),
A�(attribute,penguin) = ((\no",
y)),
A(attribute,tweety) = ((\tweety", name)),
A(attribute,lora) = ((\lora",name)),
A(child,zoo) = ((tweety, penguin), (lora,bird)),
A(child,tweety) = (),
A(child,lora) = (),
A(attribute,zoo) = (),
A(attribute,tweety) = ((\tweety", name)),
A(attribute,lora) = ((\lora",name)) g

Applying the closure operator yields

C̀ (HD0) = HD0 [ fpenguin subcl animal.
tweety isa bird.
tweety isa animal.
lora isa animal. g
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with the set of triggers

T(C̀ (HD0)) = f(tweety isa penguin,@
y�!\no"); (penguin subcl bird,@laying eggs�!\yes")g :

Firing the �rst one and applying the TXP operator (which does nothing since there is no program),
we get

HD1 = TX!
P;C̀ (HD0 � ftweety[@
y!\no"]g)

i.e., C̀ (HD0) where A(attribute,tweety) is now ((\tweety", name), (\no",
y)). Then,

T(HD1) = f(penguin subcl bird,@laying eggs�!\yes")g ;

resulting in
HD2 = TX!

P;C̀ (HD1 � fpenguin[@laying eggs�!\yes"]g)

with
T(HD2) = f(tweety isa penguin,@laying eggs�!\yes")g

and
HD3 = TX!

P;C̀ (HD2 � ftweety[@laying eggs�!\yes"]g) :

Now T(HD3) = ;. The sequence (HD0, HD1, HD2, HD3) is a maximal IP -sequence.
The �nal structure HD3 coincides with C̀ (HD0) except

� A(attribute,tweety) is now ((\tweety", name), (\no",
y), (\yes",laying eggs)) and

� A�(attribute,penguin) is now ((\no",
y), (\yes",laying eggs)).

The result tree does not contain the inheritable properties of classes (since it does not contain the
classes at all), but the inherited properties of the instances:

<!DOCTYPE mondial SYSTEM \zoo.dtd">
<zoo>

<penguin name=\tweety" 
y=\no" laying eggs=\yes"/>
<bird name=\lora" 
y=\yes" laying eggs=\yes"/>

</zoo>

The proposal is continued in Section 10.4 with considerations on re�ning element types, structural
inheritance, and the representation of such element types in XML instances.
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10 SIGNATURES IN

XPATH-LOGIC

Signature information in XPathLog is used both as a data dictionary in the SQL-style which is
uniformly accessible and extensible by XPathLog rules, and for de�ning views on the internal
database as projections.

XPath-Logic seamlessly integrates signature information via signature atoms : For every ele-
ment type (\class"), a signature is speci�ed which gives the result types of its properties (subele-
ments and attributes). Thus, XPathLog's signature is not a complex type speci�cation as DTDs,
XML Schema, or the types of the XML Query Algebra, but a \lightweight" formalism, in
uenced
by the experiences with F-Logic. There are no complex type de�nitions, it does even neither
specify order nor cardinalities.

Following the object-oriented tradition, the notion of classes is used for modeling and classifying
objects (isa-hierarchy), whereas the notion of types covers the more formal, structural aspects. In
this work, the class hierarchy and the type hierarchy coincide. In this chapter, the notion of classes
is used, emphasizing the modeling aspect of signatures.

10.1 Representation of Signatures

The representation of signatures by signature atoms is only concerned with the names in X-
structures as de�ned in De�nition 5.3 using

� NE : element names,

� NA: attribute names,

� NC : partitioned into NCE and NCL for element and literal classes (cf. De�nition 9.1).

Using the DTD metadata model, NE and NCE coincide.

De�nition 10.1 (X-Structures with Signatures)

For including signatures, X-structures are again extended with two more (partial) mappings:

E) : NCE �NE ! 2NC and A) : NCE �NA ! 2NC

which specify the result types of applying a property to an object of some type/class: fcl1; : : : ; clng �
E)(cl; el) denotes that subelements with \name" el of elements of class cl are (conjunctively) of
types/classes cl1; : : : ; cln; analogously for attributes.

Similar to De�nition 9.5, the monotonic (structural) inheritance of signatures adds another
closure requirement (propagation to subclasses):

� if c 2 E)(class; attr) and class 2 SC(sub), then c 2 E)(sub; attr), and

� if c 2 A)(class; attr) and class 2 SC(sub), then c 2 A)(sub; attr). 2

Again, the extension of these mappings is not contributed by the XML instance, but by the DTD
(or by the XML Schema de�nition, see Section 10.2.2).

141
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De�nition 10.2 (XPath-Logic Signature Atoms)

XPath-Logic is extended for handling signature knowledge as follows:

� XPath-Logic signature atoms are of the form

class1[subelement)class2] or class1[@attribute)class2]

for class2 2 E)(class1; subelement), or class2 2 A)(class1; attribute).

� Similar to A� in the previous section, the semantics j= and QB of these atoms are de�ned
straightforwardly based on evaluating terms and checking E), A), or HD, respectively. 2

Remark 10.1

The above signatures mirror the di�erences between the edge-labeled XPath-Logic data model, the
basic XML tree model, and the data model used in XML Schema:

� Attributes: for non-reference attributes, the result class is always literal or a subclass of it
(number, string).
For reference attributes (which are resolved automatically when parsing an XML document),
the result class is always object or a subclass of it (i.e., element classes or user-de�ned classes).

� Subelements: When using a DTD, E)(el; subelement) = subelement since element names
and element types are not distinguished. When using an XML Schema metadata description,
the name of the subelement relationship in general di�ers from the name of the subelement
type. The same may happen when executing updates and linking an element of original type
type as subelement 6= type-subelements. 2

Example 10.1 (Overlapping Trees)

Consider again an excerpt of the running example. For

result isa metropoles. <!{ (document) type of result {>

result[metropole!C] :- cia/city!C[population > 1000000].

(regarding population as an annotated literal (see Section 5.6, and Example 3.3 for the same in
XPath)), the result signature is speci�ed by the atom

metropoles[metropole)city].
city[name)name]. name[text())string].
city[population)population]. population[text())numeric]. population[@year)numeric].

Then, e.g., berlin originally is a city element in the mondial tree, but occurs as a metropole
element in the result tree (cf. Figure 10.1). Note that wrt. the result tree, the reference attribute
berlin/@country is a dangling reference.

10.2 Deriving the Signature

Often, XML documents provide a metadata description in form of a DTD or an XML Schema
instance which both provide a much more detailed description than needed for signature atoms.
The signature atoms can be derived from these sources.

10.2.1 DTD

DTDs (see Section 2.2) are not directly accessible by most XML tools since they are not in XML
syntax, and there is no natural translation into the XML data model. Note that even the DOM
model does not allow for accessing metadata about a stored document (which has been used when
parsing the document). It is even not possible to check which attributes are declared as ID [Beh01].
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<metropoles>
<metropole id=\city-berlin"

country=\D">
<name>Berlin</name>
<population year="95">

3472009
</population>

</metropole>
</metropoles>

mondial result

germany

berlin @country=�

@id=\city-berlin"

bln-name bln-pop @year=1995

\Berlin" 3472009

country

metropole

city

name

population

text() text()

Figure 10.1: Element with multiple parents

Validating XML parsers implicitly parse the DTD for obtaining information on the attribute types
(for resolving ID/IDREF attributes). Commercial tools allow to access the DTD as a metadata
speci�cation via their user interfaces.

Using the LoPiX system (see Section 15), a DTD accessible by an url url can be transformed
into signature atoms using the built-in activeWeb access method url.parse@(dtd) (see Section 15.3).
The mapping is de�ned as follows:

Element declarations: For an element declaration

<!ELEMENT element contentsmodel> ,

� object 2 SC(element), and

� for every elementtype type occurring in contentsmodel , type 2 E)(element,type) , and

� if contentsmodel is either (#PCDATA) or mixed as (#PCDATA|...), then
literal 2 E)(element,text())

Attribute declarations: For an attribute declaration

<!ATTLIST element attribute1 attr type1 attr constr1
: : :
attributen attr typen attr constrn>

� literal 2 A)(element,attributei) if attr typei is CDATA, NMTOKEN, NMTOKENS, or ID ,

� object 2 A)(element, attributei) if attr typei is IDREF or IDREFS ,

� new type 2 A)(element, attributei) if attr typei is an enumeration. In this case, where
new type is de�ned to contain all values (as constants, not as strings) of the enumeration
(see Example 10.2).

Since DTDs do not contain any information about the target type of IDREF attributes, the result
type is always only known to be object. Similarly, CDATA and NMTOKENS are only known to result
in type literal.

Note again that cardinalities and order are not considered in XPathLog signature atoms.

Example 10.2 (Enumeration types)

The representation of rivers in Mondial is given in the DTD as follows:
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<!ELEMENT river (name,to?,located*,length?)>
<!ATTLIST river id ID #REQUIRED

country IDREFS #REQUIRED>

<!ELEMENT to EMPTY>

<!ATTLIST to watertype (riverjseajlake) #REQUIRED
water IDREF #REQUIRED>

where river, sea, and lake are the elementtypes describing waters. An instance is, e.g.,

<river is=\river-rhein" country=\CH A FL D F NL">
<name>Rhein</name>
<to watertype=\sea" water=\North Sea">

</river>

Initially, the new class has only an internal name, and the three watertypes are members of it:

\mondial-2.0.dtd".parse@(dtd). % parses the DTD
?- to[@M)V].

M/watertype V/f0 143
M/water V/object

?- X isa f0 143.

X/sea
X/river
X/lake

When parsing the corresponding XML instance, the attribute values are set appropriately:

\mondial-2.0.xml".parse@(xml). % parses the XML instance
?- //river[name/text() = \Rhein" and

to[@watertype!WT1 and @water[name/text()!N] isa WT2]].
WT1/sea N/\North Sea" WT2/sea

In XML/XPath, there is no such direct connection between element names and literals. For an
example dealing with this aspect, see Example 14.4.

Remark 10.2

The above design decision as implemented in LoPiX can be criticized: an enumeration may also
constrain the range of a string-valued attribute, e.g., for the state codes of a US database:

<!ELEMENT city (. . . )>
<!ATTLIST city state (ALjAKjARjAZjCAj. . . ) #REQUIRED

. . . >

A re�ned implementation could use the following heuristics: if the items of the enumerations are
names occurring the the DTD (as in the above example, sea, river, and lake), the enumeration
items are interpreted as objects, whereas in the other case, they are simply values. 2

Example 10.3 (Mondial Signature and DTD)

The complete DTD mondial-2.0.dtd (describing a hierarchically structured document type which
contains examples for most XML constructions) can be found in Appendix A. The signature which
is extracted by the above mapping is similar to the one given in Appendix C (which is extracted
from the XML Schema). An important di�erence is that the DTD does not allow for local type
de�nitions. In Mondial, this concerns e.g. the population elements (cf. Example 3.16). Here,
the DTD and the derived signature contain only the global, general type:
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country [name)name and population)population and ...].
city [name)name and population)population and ...].
population[text())literal and @year)literal].

For the more detailed metadata information about Mondial in XML Schema, see the subsequent
section, especially Example 10.4.

10.2.2 XML Schema

XML Schema [XML99a] (see also Section 3.7) instances are valid XML instances. Thus, they can
be queried in XPathLog. XML Schema distinguishes element types (which de�ne a type in the
sense of datatypes) from element names (which occur in the tags of the ASCII representation, and
which are used for navigation).

XML Schema documents are translated as follows into signature atoms (the rules are not
exactly those used in the actual program given in Appendix C), but a stripped version which
illustrate the core procedure. The actual program introduces a constant for every datatype):

� the primitive datatypes of XML Schema are subclasses of literal, note that multivalued sim-
pleTypes (e.g., NMTOKENS) are split on the data level.

� types de�ned as simpleTypes also become subclasses of literal:

ST subcl literal :- //simpleType!ST.

� types de�ned as complexTypes become subclasses of object:

CT subcl object :- //complexType!CT.

� <element> and <attribute> declarations de�ne properties (yet, of nothing, simply properties)
by de�ning a name and a result data type.

E.g., the global attribute de�nition

<attribute name=\area" type=\
oat"/>

is (virtually) translated into [@area)
oat] { which is not yet an XPathLog signature atom,
but will become one when used by a host class.

� XML Schema complexTypes : As already stated in Section 3.7, the base and derivedBy rela-
tionships induce a hierarchy on types which is incorporated into the class hierarchy, i.e., a
complexType becomes a subclass of the type from which it is derived.

{ ComplexTypes can be derived from a simpleType (which then de�nes the text contents):

CT subcl ST, CT[text())ST] :- //complexType!CT[base!ST], ST isa simpleType.

(see example below for the consequences on the model, leading to annotated literals, cf.
Section 5.6.)

{ ComplexTypes can be derived from a complexType (which then de�nes contents and at-
tributes) by extension and/or re�nement. The signature of the type which is used also
applies to the derived type (structural inheritance, see also Section 10.3):

(i) CT subcl BT:- //complexType!CT[base!BT], BT isa complexType.
(ii) CT[S)TT] :- //complexType!CT[@base!BT], BT isa complexType, BT[S)TT].
(iii) CT[@A)AT] :- //complexType!CT[@base!BT], BT isa complexType, BT[@A)AT].
(iv) CT[@A�!V] :- //complexType!CT[@base!BT], BT isa complexType, BT[@A�!V].
(v) CT[@A��!V] :- //complexType!CT[@base!BT], BT isa complexType, BT[@A��!V].

Here, (ii) and (iii) are closure properties which are not necessarily materialized in an
implementation. The handling of (iv) and (v) has been described in Section 9.2.
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{ extensions to the contents model and the attributes are speci�ed by referring to properties
(or de�ning them locally) and specifying a cardinality and optionally a default or �xed
value of the property:

CT[E)T] :- //complexType!CT//element/@ref[@name!E and @type!T].

{ de�ne additional content model particles (appended to the content model of the type
which is extended). Since cardinalities and order are not considered in XPathLog signature
atoms, only the names of subelements and their types are queried:

CT[E)T] :- //complexType!CT//element[@name!E and @type!T].

{ de�ne additional attributes:

CT[@A)T] :- //complexType!CT//attribute/@ref[@name!E and @type!T].
CT[@A)T] :- //complexType!CT//attribute[@name!E and @type!T].
CT[@A�!V] :- //complexType!CT//attribute/@ref[@use!\default" and @value!V].
CT[@A�!V] :- //complexType!CT//attribute[@use!\default" and @value!V].
CT[@A��!V] :- //complexType!CT//attribute/@ref[@use!\�xed" and @value!V].
CT[@A��!V] :- //complexType!CT//attribute[@use!\�xed" and @value!V].

The complete program is given in Appendix C, handling types by introducing constants for iden-
tifying classes instead of associating the signature directly with the nodes of the XML Schema
instance (as would be done if using the above rules). The complete derived signature can also be
found in Appendix C.

The class hierarchy induced by XML Schema speci�cations also uses the notion of annotated
literals which have been investigated in Section 5.6:

Example 10.4 (Annotated Literals: Signature and Instances)

Consider again the fragment of the Mondial XML Schema description given in Example 3.16
which di�erent population element types for countries and cities:

<complexType name= \country" >

<attribute name=\car code" ... />

<element name= \population" type=\integer" . . . />

...
</complexType name=\country">

<complexType name= \city" >

<element ref=\name"/>
...

<element name= \population" . . . >

<complexType base=\integer" derivedBy=\extension">
<attribute name=\year" type =\date" use=\optional"/>

</complexType>
</element>

...
</complexType>

Both the local types city:population and country:population are subclasses of a general type popula-
tion and of the literal type integer. Thus, their instances are both objects (as elements) and literals
(as values). (Note that it is even possible to de�ne a global type population which then re�ned by
city.population by providing an additional year attribute.)
The corresponding XPathLog signature atoms are
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country[name)name and population)country:population and @car code)string].

city[name)name and population)city:population and . . . ].

country:population subcl literal.
country:population subcl object.
country:population subcl integer.
country:population [text())integer].

city:population subcl object.
city:population subcl literal.
city:population subcl integer.
city:population [text())integer and @year)date].

As a consequence of both population types being subclasses of literal and object, instances of these
types are expected to act as integers, and as complex objects. It is possible to compare them with
integer values

//country[population > 5000000]/name/text()

and to query the year attribute of country.population, e.g.,

//city[population[@year < 1990] > 5000000]/name/text() .

as annotated literals (cf. 5.6).

10.3 Structural Inheritance

In presence of a class hierarchy, the structural information of superclasses is inherited to subclasses.
For the lightweight schema information (instead of strict typing), this means that signature atoms
which hold for a class also hold for its subclasses. Structural inheritance is { in contrast to
behavioral (value) inheritance { monotonic: The semantics of rede�ning a signature for a subclass
is not overriding, but re�ning (recall that multiple signature atoms class[property)class1] and
class[property)class2] are interpreted conjunctively in De�nition 10.2).

Structural inheritance of signature atoms is added to the closure operator:

De�nition 10.3 (Closure Axioms: Extended TXP -Operator)

Further extending De�nition 9.7, for a DOMHerbrand StructureHD, the closure operator, C̀ (HD)
is extended by

� if c subcl d 2 HD and d[e)f ] 2 HD then add c[e)f ] to HD,

� if c subcl d 2 HD and d[@a)f ] 2 HD then add c[@a)f ] to HD.

Again, the TXP;C̀ -Operator de�nes the semantics of a program. 2

Recall that the C̀ operator is not necessarily implemented by materializing the derived atoms.

Example 10.5 (Signature: Structural Inheritance)

Consider again the zoo DTD given in Example \zoo.dtd", inducing the following signature:

zoo[animal)animal].
animal[name)literal].
animal[
y)literal].
bird[
y)literal].
bird[laying eggs)literal].
penguin[
y)literal].
bird subcl animal.
penguin subcl bird.
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Here, the closure adds the following atoms by monotonic, structural inheritance:

bird[name)literal].
penguin[name)literal].
penguin[laying eggs)literal].

10.4 Proposal: Structural Re�nement and Inheritance in
XML

Since (i) the XML data model does not support a class hierarchy, and (ii) the de�nition of a type
de�nition hierarchy on metadata level in DTDs and XML Schema is not completely satisfying (see
below), a proposal for extending the XML model with classes has been developed (extending the
proposal described in Section 9.2.2 for adding class information to DTDs).

10.4.1 Structural Inheritance

When using a type hierarchy, subtypes inherit their structure from their supertypes (depending on
the model, it may be allowed to have several lowest supertypes), called structural inheritance (the
proposal described in Section 9.2.2 describes how to extend DTDs to specify a class hierarchy).

Since DTDs don't know a type hierarchy, there is also no notion of structural inheritance. The
XML Schema working draft includes structural inheritance with the de�nitions of simpleTypes
and complexTypes (cf. Section 10.2.2):

� derived simpleTypes inherit all constraints (expressed via facets) from the supertype,

� the inheritance step from a simpleType supertype to a complexType subtype is more involved,
inheriting the supertype's constraints to the text contents of the subtype (see Section 5.6).
The same holds when an element declaration directly uses a simpleType.

� if the supertype (and then also the subtype) is a complexType, the subtype inherits all
attribute declarations (and may add its own ones) and inherits the contents model of the
supertype.

Here, especially inheriting a contents model has to be investigated. In XML Schema, the subtype's
contents model is obtained by adding the additional contents model speci�cations of the subtype at
the end of the contents model speci�cation of the supertype [XML99b, Section 2.2.1.3] which is an
at least questionable approach:

� a re�nement of the contents model in the sense of stronger structure requirements, or requir-
ing �ner types for some properties is not possible.

� similar, an overwriting of attribute speci�cations is not possible.

� the e�ect of \rede�ning" an element or attribute declaration which has already been de�ned
for a supertype is unde�ned in [XML99b].

Thus, the type de�nition hierarchy of XML Schema is not compatible to the notion of type
inheritance in object-oriented models such as ODMG [CB00].

Proposal for a type hierarchy in XML. For de�ning a notion of subtyping wrt. the above
aspects, the formalism in the DTD is more suitable: when a subtype is de�ned, either

� no contents model is given. Then, the subtype uses the same contents model as the supertype.

� a re�ning contentsmodel is given, i.e., which (i) strengthens the structural requirements or
(ii) uses subtypes of the element types requires in the supertype contents model at some
positions.
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10.4.2 Representation of Class Membership in XML Instances

Having a detailed class hierarchy as known from object-oriented models, the detailed modeling
has also to be implemented by the basic XML concepts such as the DOM and XML Query data
model, the DTD and XML Schema metadata speci�cations, the ASCII representation of XML,
and XPath.

Consider the following situation: the concept person has numerous specialized, in general over-
lapping subclasses: john may be a person, having a name, a birth date, a social security number,
an address (or more addresses wrt. given dates). As a person, he also has father and mother
relationships and perhaps children relationships. Additionally, he is male which presumably adds
some information on military service etc. He is also a professor, having an o�ce, an education,
some projects etc. Perhaps he is also an amateur musician, which de�nes additional properties.

The relevant aspect now is that every such class de�nes a signature describing the properties
of a person from the point of view of this individual subclass. From the XML point of view, every
class corresponds to an element type which de�nes a contents model. At the end, objects which
belong to many classes do not satisfy the contents model of any of these classes, but the \union"
of all its contents models. As a consequence, it is hard to represent such objects (e.g., john) in
order to be valid to any DTD. There are two possibilities:

� Collecting: There is one element, representing john with all his properties. When john is
seen as a professor, there is a reference to this element. The object does not satisfy the
contents model of any of the classes where it belongs to, but it satisfy a kind of \union" of
all their contents models.

� Distributed: john is distributed over several elements. There is a //persons/person element,
a //university/sta�/professor element, a //culture/concert/musician element etc. All of them
represent john. How to search for a professor who is able to play piano and less than 50 years
old?

Collecting. In object-oriented frameworks, an object which belongs to multiple classes is casted
to the class which is currently needed: e.g., (professor)john.project addresses his project members.
The proposal for XML is the same, casting the properties:

<persons>

<person id= \person-1234" name=\John" birthday=\31.2.1950" . . .

(professor)a�liation=\univ-1234" (professor)room=\. . . " . . .
(musician)amateur=\yes">

<address > . . . </address>
<? xclasses cast role=\professor"?> <!{ XML processing instruction {>

<project> . . . </project>
<project> . . . </project>

<? xclasses cast=\musician"?>
<performance concert=\concert-4321" . . .> . . . </performance>
<performance . . . > . . . </performance>
...

</persons<

<university>

<sta� professor=\ person-1234 . . . ">

...
</sta�>
...

</university>
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<culture>
<concert id=\concert-4321" date=\1.1.2002"

place=\Town Hall" musician=\ person-1234 . . . ">

...
</concert>
...

</culture>

The processing instructions tell an xclasses-aware application that the following properties apply
to john as an instance of a specialized subclass.

Querying is as usual in XML and XPath, e.g.,

//university/sta�/@professor[name!N and course=\CS9876"]/project

Queries (although neither XPath nor XPathLog are type-checking) may also cast navigation steps,
e.g., the query

//person[age()>50 and @name!N and (professor)@a�litation]/
(musician)performance/@concert[place!\Town Hall"]/date!D.

checks if there is a person over 50 who is a professor at some institute and gives a concert in the
town hall, and outputs the name and the date.

For checking validity of the XML instance, every element is projected to the subclasses where
it it casted to, and veri�ed wrt. the contents model and attribute list of the subclass.

The above mechanism has some similarities with the namespace concept; in some sense it is
a continuation in the direction of data integration: namespaces allow for describing a concept
from di�erent points of view. In course of data integration, instances from di�erent sources have
to be handled in a single instance. Here a solution is to fuse their instantiations, resuting in an
element which collects the properties of both sources (cf. Section 11.6). On the signature level, the
resulting element is of an element type which combines the structural de�nitions of both types.

Distributed. Here, the elements which represent an object in its di�erent roles/subclasses must
be connected in some way. Using the same id or key (XML Schema), it is left to the implementation
how to handle this situation internally (e.g., using an equational theory, or mapping it to the above
collecting model).

An XML instance looks as follows:

<persons>

<person id=\person-1234" name=\John" birthday=\31.2.1950" . . . >

<address > . . . </address>
</person>

...
</persons>

<university>
<sta�>

<professor id=\person-1234" room=\. . . ">

<project> . . . </project>
<project> . . . </project>

</professor>
...

</sta�>
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...
</university>

<culture>
<concert date=\1.1.2002">

<place> . . . </place>

<musician id=\person-1234" amateur=\yes">

<instrument> . . . </instrument>
</musician>

...
</concert>

...
</culture>

Validation of the document proceeds as usual: each element instance describes only the properties
which are required in the current context. In contrast to the XML model, an ID now does not
identify a unique element, but is used for identifying several elements.

Querying is also as usual, but the implementation of navigation is more involved since it must
be searched which of the \element fragments" contains information relevant to the query.

Concerning an XPathLog implementation, the collecting model is recommended. Then, only
the export functionality for generating the ASCII representation must be tailored to the \external"
model.
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11 DATA INTEGRATION:

HANDLING MULTIPLE

XML TREES

As a consequence of the conclusions drawn in Section 4, the order of subelements is in general
not relevant for information integration aspects from the database point of view. Thus, in this
section, the order is not dealt with, but the approach can also be applied to the ordered model.

As described in De�nition 5.4, XPath-Logic and XPathLog are not based on a tree model, but
on X-structures which induce a navigation graph (cf. Figure 5.1). In contrast to the node-labeled
DOM and XML Query data models, the navigation graph is edge-labeled, i.e., the names of the
subelements and attributes are annotated to the edges, not to the nodes. This allows for de�ning
overlapping tree views where the same elements may occur under di�erent names, as illustrated in
Example 10.1. For another example consider Examples 7.4 and 7.5 where the cities Munich and
N�urnberg are city subelements of Germany and of Bavaria.

Thus, the navigation graph is not intended to represent \the XML document", but a database
where XML documents may be de�ned as \views" { some of the views are the original XML
trees. In general, an X-structure may represent several trees which even may be overlapping, i.e.,
subtrees can belong to several trees.

This data model covers the XML data model: for the canonical X-structure (cf. De�nition 5.5)
to an XML instance, the navigation graph is a tree.

The above-mentioned examples just illustrated the feature of having multiple parents by small
examples. In the following, we focus systematically on the modeling aspect of multiple trees for
data restructuring and integration. The presented strategies show the 
exibility of the XPath-Logic
data model. The strategies are then applied in the case study described in Section 12.

11.1 Projection By Signature

Usually, database languages de�ne the output as a projection of an intermediate result (or of the
database), e.g., the SQL SELECT clause:

SELECT name, area, population
FROM country;

Projection in XML trees is more involved since not only the name of a property, but also the tree
structure must be considered. Quilt and XQuery (see Sections 3.10 and 3.11) provide the FILTER
operator for applying a projection on a tree. This operator is not exactly a projection, but a
projection-and-omitting.

In XPathLog, a projection of a tree is speci�ed by giving a root node and a signature as de�ned
in Section 10. Starting from the root node, the navigation graph is traversed by following all links
which are covered by the given signature.

De�nition 11.1 (XML Tree View)

For an XML database X , a set Sig of signature atoms, and a node r, the tree view rooted in r,
Y := X (r; Sig) is de�ned as the graph

153
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� r 2 VY ,

� if n 2 VY and n isa c, then

{ for all signature atoms c[e)c0] 2 Sig: if E(n; e; i) = v for some i and v, the edge E(n; e; i)
belongs to Y { and v 2 VY , and

{ for all signature atoms c[@a)c0] 2 Sig, A(n; a) belongs to Y .

� for all v 2 VY , CY(v) = fc 2 C(v) j there is a signature atom c[: : :] 2 Sigg
(collecting the relevant classes only). 2

Note that the result view may contain dangling references to nodes which are not part of the tree
(cf. Section 11.8).

In contrast to the Quilt/XQuery FILTER operator, projection by signature does not change
the tree structure, but completely prunes subtrees and attributes. Changing the tree structure by
omitting intermediate elements can be done by adding direct links.

Example 11.1 (Mapping Quilt Filtering to XPathLog Tree Views)

The Quilt �lter given in Example 3.26 is expressed in XPathLog as follows:

<!{ bridge intermediate elements {>

C[city!Cty] :- //country!C[descendant::city!Cty].
<!{ move names into text contents {>

C[text()!N] :- //country!C[name/text()!N].
C[text()!N] :- //city!C[name/text()!N].
<!{ specify signature {>

mondial[country)country].
country[@car code)string].
country[text())string].
country[city)city].
city[text())string].

Exporting the subtree rooted in mondial yields the same output as given in Example 3.26.

11.2 Generating an Isolated Result Tree

The projection described in the previous paragraph involved only one tree in the database from
which a \result" tree was de�ned as a projection. Projection is only suitable if a property should
be handled homogeneously for all elements in the tree. The \opposite" strategy is to create
the result tree completely from scratch by collecting nodes (in the extreme case, only literals, i.e.
attribute values and text contents) and structuring them by creating new elements and subelement
relationships.

Example 11.2 (Isolated Result Tree)

The following program creates a result tree consisting of all organizations which have at least one
member with a gross domestic product per persona of more than 1000$. Each organization contains
all members as subelements with name, gdp, population, and gdp/persona (gdpp) subelements.

The �rst rule,

result/organization[@abbrev!A] :-
//organization[abbrev/text()!A]/members/@country

[gdp total/text()! G and population/text()! P],
X = G * 1000000 div P, X > 1000.
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creates new organization elements (by the path expression result/organization[. . . ]) in the result
tree and sets their abbrev attribute. The second rule then creates new country subelements of these
organizations:

O/country[name!T and gdp!G and gdpp!X] :-
result/organization!O[@abbrev!A],
//organization[abbrev/text()!A]/members/@country

[name/text()!T and gdp total/text()!G and population/text()!P],
X = G * 1000000 div P, X > 1000.

The result projection is de�ned by the following signature

result[organization)organization].
organization[@abbrev)string].
organization[country)country].

name subcl textonly.
gdp total subcl textonly.
gdpp subcl textonly.
textonly[text())string].

country[name)textonly].
country[gdp total)textonly].
country[gdpp)textonly].

Building a separate tree is the recommended strategy if the structure of the result is very di�erent
from the original tree.

11.3 Generating a Result Tree by Selecting and Linking
Subtrees

As a compromise between the above \extreme" strategies, a result tree can be created by linking
subtrees of the original document to it, extending them appropriately, and projecting the result.

Example 11.3 (Linked Result Tree View)

Consider again the task given in Example 11.2. The result tree can also be generated by linking:

� the appropriate organization elements become children of the result node,

� the appropriate countries become subelements of the organizations and are extended by gdpp.

The result tree is constructed by the following program:

C[gdpp!X] :-
//country!C[gdp total/text()!G and population/text()!P],
X = G * 1000000 div P, X > 1000.

result[organization!O[@abbrev!A and country!C]] :-
//organization!O[abbrev/text()!A]/members/@country!C[gdpp].

The output signature is the same as above.

Note that in the whole database, there exists only one country element for each country. On the
other hand, the original tree is also changed (the gdpp subelements also belong to the original tree):

?- //country[name/text()!N]/gdpp!X.

yields the gdp per persona for all countries such that gdpp>1000.

The above strategy needs much less storage than generating a completely new tree.
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11.4 Namespaced Input and Multiple Input Trees

As described in Section 2.3, namespaces can be used for distinguishing elements originating from
di�erent sources. Especially for data integration, namespaces are an important feature allowing to
distinguish di�erent source trees (even when elements of di�erent trees are fused (see below) during
integration) and also possibly generating several result trees as views on the internal database.

When integrating multiple input trees, namespaces are associated with groups of documents.
Documents which semantically belong together and use the same DTD also share the same name-
space. The actual decision depends on the situation, e.g., if the task consists of combining consis-
tent sources describing di�erent but overlapping application domains (e.g., a 
ight database and
hotel bookings), or combining sources containing possible inconsistencies on the same application
domain (e.g., integrating catalogs from di�erent suppliers).

Note that even if two sources use the same ontology, but represent di�erent views, e.g., di�erent
timepoints, it is recommended to use di�erent namespaces.

Example 11.4 (Namespaced Input)

Consider the Mondial database distributed over the following sources:

1. CIA countries: a source which contains all countries

2. CIA organizations: a source which contains all organizations

3. GlobalStatistics: a separate country source for each country

Then, e.g., the following namespaces can be used:

1. cia: for the �rst page,

2. orgs: for the second page,

3. gs: for all Global Statistics pages.

Note that then, about 250 country trees exist using the gs: namespace { since they also use a
common DTD and describe the same properties.

The edge-labeled navigation graph model allows to combine the namespace concept with multiple
overlapping trees.

The integration process starts with parsing all source trees augmented with suitable name-
spaces. Then, the result tree is constructed based on nodes and literals of these trees by the
following operations which are described in the sequel:

1. Synonyms: identifying and renaming properties,

2. Element fusion: identifying elements in di�erent sources which represent the same object in
the application domain,

3. Linking and Collecting: elements and tree fragments are linked together to de�ne a result
tree view.

11.5 Synonyms

In contrast to the pure DOM model, the names are also elements of the universe which can be
bound to variables, used in predicates, and especially equated with other names and synonyms.
The latter proves very useful in data integration: When elements from a source are integrated into
the result tree, in general also some of their properties should completely become properties of
the result view. Here, synonyms are an e�cient means for taking a whole property from a source
tree (and namespace) to the result tree: By equating
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namespace:name1 = name2.

the property name2 is de�ned to have the same extension as the original property namespace:name1.
E.g.,

cia:name = name.
cia:area = area.
cia:population = population.

de�nes the name, area, and population properties of countries of the result view. This does not
introduce new children or attribute nodes, but \only" de�nes alternative access paths.

Using this strategy, the internal database can be seen as a \two-level" model: the source(s)
provide tree structures which may be used. The result tree is then de�ned using parts of this
structure, and extending it.

Example 11.5 (Namespaced Input and Synonyms)

Consider once again the task given in Example 11.2. Now, we associate the original XML tree
with the \cia:" namespace (cf. Section 15.3 for the implementation in LoPiX). Then, the result
tree is de�ned as a projection and re�nement from the namespaced tree, mainly using nodes which
are already present in the source tree:

� from the countries, the name and gdp subelements are used (introducing the synonyms
gdp total and name for cia:gdp total and cia:name); also the cia:text() relationship is accessible
by text().

� the gdpp subelement is added for the relevant countries,

� the result tree structure is de�ned by appropriately linking some of the organization and
country elements.

<!{ input: the source tree uses the namespace "cia:" {>

gdp total = cia:gdp total.
name = cia:name.
text() = cia:text().

C[gdpp!X] :-
//cia:country!C[gdp total/text()!G and cia:population/text()!P],
X = G * 1000000 div P, X > 1000.

result[organization!O[@abbrev!A and country!C]] :-
//cia:organization!O[cia:abbrev/text()!A]/cia:members/@cia:country!C[gdpp].

The projection of the result tree with the signature given in Example 11.2 yields the desired view.

In the above example, the unique original tree was equipped with a namespace to allow for a
projection by synonyms from the original tree. In the following, the strategy is applied to multiple
input trees.

11.6 Fusing Elements and Subtrees

When integrating data from several sources, there are often elements in di�erent sources which
represent the same real-world entity, e.g., countries in CIA and in GlobalStatistics. In the re-
sulting database, the information of these elements should be collected in a single element. With
XPathLog, such elements can be fused into an element which
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1. is still an element of both source trees, i.e., positive queries against the original tree using the
original namespace still yield at least the original answers,

2. collects the attributes of both original elements,

3. collects the subelements of both original elements.

(1) is easily satis�able in XPathLog by adding appropriate links to the navigation graph. (2) does
also not cause any problems: if the original elements use di�erent namespaces, the attributes are
simply collected, otherwise for the attributes which are present for both original elements, their
values are accumulated. Attributes are not ordered, and also the values of multivalued attributes
are not ordered. Only (3) needs a further speci�cation, how the order of subelements is dealt with.
Regarding the problem from the database point of view, this aspect can be ignored, accepting any
kind of union of two lists (cf. Section 4). (As an extension, if a DTD or XML Schema description
is given which uniquely de�nes how to order the children, this may be used).

Example 11.6 (Integration: Object Fusion)

See the description of the Mondial data sources in Section 12 and excerpts of the trees with name-
spaces as shown in Figure 11.1. Both sources, cia and gs, describe countries: where cia contains
information about name, area, population, capital, and languages, and gs contains information
about cities. An obvious and typical integration step is to unify the countries in the cia tree with
the countries in the gs tree and link them to the result tree root node:

result[country!C1], C1 = C2 :-
cia/cia:country!C1[@cia:name!N], gs/gs:country!C2[@gs:name!N].

The above rule makes the fused country a child of the result node: For every country c which
is present in both databases (there are some cia \countries" which are not actual countries but
territories, sometimes even unpopulated), the country elements representing c in cia and gs are
identi�ed and the result is then an element of three trees: cia, gs, and result (cf. Figure 11.2). The
example is continued below.

Often, the identi�cation of corresponding elements is non-trivial, including resolving di�erent
ontologies, searching for keys and comparing them, and excluding exceptions and con
icts. Addi-
tionally, entities which are represented in only one of the sources probably must be collected.

The resulting elements are linked to the result tree, and the properties which should be con-
tained in the result view are de�ned. This can be done either by introducing a synonym in the
result namespace for a property in one of the source namespaces, or by adding appropriate links
parallel to the already existing link (if a property is copied only for some of its instances).

Example 11.7 (Integration: Synonyms)

Consider the situation obtained in Example 11.6. After de�ning the synonyms

cia:name = name. gs:city = city.
cia:area = area. gs:name = name.
cia:population = population. gs:population = population.
cia:language = language gs:text() = text().

the result tree fragment as given in Figure 11.2 is obtained. Adding the capital reference attributes
with

C[@capital!City] :-
result/country!C[@cia:capital!Name and city!City[name/text()=Name]].

completes the �rst step.

XML-QL supports a similar functionality by using skolem functions for generating ids (cf. Sec-
tion 3.5, page 37); here the order of children is given by the global order of all nodes in a document.
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cia gs

cia-germany
@cia:name=\Germany"

@cia:area=356910
@cia:population=83536115

@cia:capital=\Berlin"

gs-germany @gs:name=\Germany"

d-lang-ger @cia:name=\German" berlin hamburg

100 bln-name bln-pop h-name h-pop

\Berlin" 3472009 \Hamburg" 1705872

cia:country

cia:language

cia:text()

gs:country

gs:city gs:city

gs:name gs:population
gs:name gs:population

text() text() text() text()

Figure 11.1: Element fusion { before

11.7 Integration Strategies: Summary

The above strategies of element fusion, linking, and synonyms allow for powerful integration
concepts for generating a result tree (or even several result trees) from a set of sources (e.g.,
demonstrated by the case study described in Section 12). When the integration and restructuring
process is completed, the projection strategy described in Section 11.1 is used to de�ne a result
view of the internal database. The result view is again a tree, rooted at a given element.

A crucial feature of a data integration language is that these tasks can be speci�ed in an
intuitive, understandable way, and that the language is powerful enough to allow for short and
concise statements. The DOM model is not suitable for such operations:

� elements in a tree cannot be linked to another parent - thus, only copying is possible for
restructuring, which raises the problems described in Section 8.5.

� every element can only have one unique parent, thus there is no way to de�ne views as
\overlays" on the source trees,

� every element has a unique name. Thus, expecially synonyms (which provide a simple, but
powerful means) are not supported.

The edge-labeled data model underlying the present approach which also makes names �rst-class
citizens of the model (and the language, respectively), supports data integration by equating on
di�erent levels:

� by equating elements, which represent the same real-world entity in di�erent sources (\fusing"
objects), these can be made a single element in the internal database, and

� by equating names, synonyms for properties can be de�ned which allow for an e�cient
integration of properties from several original namespaces.

Note that by using namespaces, the parent wrt. a given namespace is in general unique. Thus,
namespaces also support the implicit de�nition of views. The namespaces can also be used to �lter
the properties of the original elements: for a fused element, the expression /child::namespace:*
selects the children which originate from the source which has been associated with namespace.

The use of the integration strategies is illustrated in the Mondial case study described in
Section 12.
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cia result gs

cia-germany
@name=\Germany"

@area=356910
@population=83536115

@cia:capital=\Berlin"

@capital=�

d-lang-ger @name=\German" berlin hamburg

100 bln-name bln-pop h-name h-pop

\Berlin" 3472009 \Hamburg" 1705872

cia:country country gs:country

language

text()

city

city

name population name population

text() text() text() text()

Figure 11.2: Element fusion { after

11.8 Checking Dangling References

As already stated, result trees in most XML querying languages may in general contain dangling
references when elements are deep-copied from the source tree(s), and the targets of references are
not copied.

The XPathLog result tree de�ned by the projection strategy using a signature follows only
the children relation when collecting tree nodes. Thus, dangling references can occur in the result
view. The following XPathLog program checks if the tree rooted in the node result and projected
wrt. a stored signature contains dangling references:

reachable(result).
reachable(Y) :- reachable(X), X/M!Y, X isa C, C[M)D], Y isa D.
?- sys.strat.doIt.
dangling :- reachable(X), X isa C, C[@A)RC], not C subcl literal,

X[@A!V], V isa RC, not reachable(V).

11.9 Combining Data and Schema Information

For representing metadata, XML provides the concepts of DTDs and XML Schema [XML99c].
DTDs can be transformed into signature atoms by the mapping described in Section 10.2.1. Nev-
ertheless, the DTD data does not actually become part of the XML (graph) database.

In contrast, XML Schema documents are valid XML instances, thus they can be mapped
directly to XML trees in the database, and associated with an entry constant. Then, the integration
rules can homogeneously use the data trees and the metadata trees.

Example 11.8 (Combining Data and Metadata Trees)

Consider the following excerpt of a XML Schema speci�cation of the cia source (for the DTD, see
Appendix D.1):
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<schema xmlns ='http://www.w3.org/1999/XMLSchema' ...>
<complexType name='cia'>

<element name='continent' type='continent T' minOccurs='1' maxOccurs='*'/>
<element name='country' type='country T' minOccurs='1' maxOccurs='*'/>

</complexType>
<complexType name='continent T' > . . . </complexType>
<complexType name='country T'>

<attribute name='name' type='CDATA' use='required'/>
<attribute name='continent' type='IDREF' use='required'/>
...
<element name='borders' minOccurs='0' maxOccurs='*' >

<complexType base='string' derivedBy='extension'>
<attribute name='country' type='IDREF' use='required'/>

</complexType>
</element>

</complexType>

After adding this XML tree to the database under the constant ciaSchema, it can be mapped to
signature atoms as described in Section 10.2.2 and Appendix C. Then, this knowledge can be used
for detecting the classes of elements (in this step, it is also possible to validate the instance wrt.
the XML Schema):

cia isa cia.
E isa ET :- Parent isa PT, Parent[SE!E], PT[SE)ET].

Then, e.g., the target types of reference attributes can be detected and added to the XML Schema
tree:

A[@target!TTS] :-
ciaSchema//complexType/element[@name!ENS and @type!ETS],
ciaSchema//complexType[@name!ETS]/attribute!A[@name!ANS and @type=\IDREF"],
% now ANS is an IDREF attribute name of elements with name ENS,
string2Object(ENS, EN), string2Object(ETS,ET), string2Object(ANS,AN),
% two-way built-in mapping predicate, e.g., string2Object(\country",country) holds
cia//EN[@AN!Target], Target isa TargetType, string2Object(TTS, TargetType).

The above rule makes the following extensions to the internal representation of the ciaSchema tree:

<complexType name='country T'>

<attribute name='continent' type='IDREF' target='continent' />

...
<element name='borders' . . . >

<complexType . . . >

<attribute name='country' type='IDREF' target='country' />

</complexType>
</element>

</complexType>

As the above example shows, identifying complexType elements with class names in NCE allows
for complex interaction between data level and meta level. Similarly, e.g., links between elements
and schema elements representing element types can be added to the database.

Further reasoning on the metadata level can be performed when ontologies which are accessible
in XML format are also added as XML trees to the database in order to guide the integration
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process. In this setting, rules can be speci�ed which use (i) data, (ii) metadata like XML Schema,
and (iii) additional ontology databases. Then, XPathLog rules can be used for reasoning on the
meta-level, and then these results can be exploited for integrating the data given by the instances:

� Metadata + ontology: search for related concepts in di�erent data sources, and identify
concept overlappings and disjoint parts which extend each other.

� Data + results from above + graph matching algorithms: identify data overlappings (e.g., in
a database on cities in european countries, and a database on economics in the G7 countries)
and use them for integrating databases, also using analogy reasoning.



12 Mondial: THE CASE

STUDY IN

INTEGRATION

The practicability of the approach is illustrated by integrating the Mondial database from the
XML representations of its sources (which have been created by Florid wrappers in [May99a]);
the DTDs can be found in Appendix D, the complete case study with the source �les is available
at [May01a]. The data sources have already been described in the introduction. Each of the
sources is associated with a namespace:

The CIA World Factbook: The CIAWorld Factbook Country Listing (cia:, http://www.odci.
gov/cia/publications/pubs.html) provides political, economic, and social and some geo-
graphical information about the countries.

A separate part of the CIA World Factbook provides information about political and eco-
nomical organizations (orgs:).

Here, the data sources overlap by the membership relation: with every organization, the
member countries are stored in orgs by name (using the same names as in the cia part).

Global Statistics: Cities and Provinces: TheGlobal Statistics data (gs:, http://www.stats.
demon.nl) provides information about administrative divisions (area and population, some-
times capital) and main cities (population with year, and province).

The information in gs is grouped by countries, using the same country names as in cia. Many
cities are capitals of countries or seats of political organizations; here already di�erent names
of the cities can be used.

Qiblih: Geographical Coordinates: The Qiblih pages (qiblih:, http://www.bcca.org/misc/
qiblih/latlong.html) provide the geographical coordinates of many cities around the world.

For many of the cities given in gs, the geographical coordinates can be found here, but there
are also cities which are contained in only one of the databases.

The Terra Database: The Terra1 database (terra:) also contains information about countries,
administrative divisions, cities, and organizations, and additionally geographical data about
waters, mountains, deserts etc.

Terra describes the situation in 1987. Thus, only some information can be used: population
of cities in 1987, and the information about geographical objects (in which country and
province they are located). The problem here is that some countries changed in the meantime.
Additionally, Terra uses german names for countries.

Thus, another data source relates english and german names and car codes:

Country Names and Codes: An additional Web page (codes:) has been used which gives the
country names in di�erent languages and the country codes.

1derived from the SQL training Terra database of the Institut f�ur Programmstrukturen und Datenorganisation

der Universit�at Karlsruhe.
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The Integration Process

The integration program in XPathLog is described below, applying the strategies described in the
previous section. The integration process shows that actually the above strategies are used for
the \generic" tasks but have to be complemented by application-speci�c rules for handling details,
exceptions, inconsistencies, and sometimes incomplete information.

Preparations.
During the execution, the computation { especially the use of equating objects { is monitored.

?- sys.theOMAccess.debugOn.

?- sys.theOM.eqTraceOn. % trace derived equalities

First, the data sources are parsed as XML trees with their namespaces and associated to constants:

gs[@xml->"file:/home/may/Mondial/Mondial-Sources/gs.xml" isa url].

cia[@xml->"file:/home/may/Mondial/Mondial-Sources/cia.xml" isa url].

orgs[@xml->"file:/home/may/Mondial/Mondial-Sources/orgs.xml" isa url].

terra[@xml->"file:/home/may/Mondial/Mondial-Sources/terra.xml" isa url].

qiblih[@xml->"file:/home/may/Mondial/Mondial-Sources/qiblih.xml" isa url].

codes[@xml->"file:/home/may/Mondial/Mondial-Sources/codes.xml" isa url].

mondial.system = "mondial-3.0.dtd".

mondial[@dtd->"file:/home/may/Mondial/Mondial-Sources/mondial-3.0.dtd" isa url].

?- sys.strat.doIt.

U.parse@(xml,S) :- S[@xml->U].

S = X :- S[@xml->U], U.parse@(xml,S) = Doc, Doc[S:S->X].

Now, the constants gs, cia etc. are root nodes of separate input trees. The result DTD is parsed
(generating signature atoms) and a result tree root node is de�ned:

U.parse@(dtd) :- mondial[@dtd->U].

result isa mondial.

?- sys.strat.doIt.

?- sys.garbageCollection.

Many properties are taken directly from the sources to the result by de�ning synonyms. Note that
the following steps do not e�ect any tree, but just prepare access methods which become usable
in the result view when their host objects are linked.

gs:population = population.

gs:country = country.

gs:province = province.

gs:capital = capital.

gs:area = area.

gs:population = population.

gs:year = year.

gs:name = name.

gs:text() = text().

cia:name = name.

cia:borders = border.

cia:ethnicgroups = ethnicgroups.

cia:religions = religions.

cia:languages = languages.

cia:area = area.

cia.population = population.

cia:datacode = datacode.
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cia:total_area = total_area.

cia:population_growth = population_growth.

cia:infant_mortality= infant_mortality.

cia:gdp_agri = gdp_agri.

cia:gdp_ind = gdp_ind.

cia:gdp_serv = gdp_serv.

cia:gdp_total = gdp_total.

cia:inflation = inflation.

cia:indep_date = indep_date.

cia:government = government.

codes:car_code = car_code.

qiblih:longitude = longitude.

qiblih:latitude = latitude.

orgs:abbrev = abbrev.

orgs:name = name.

orgs:established = established.

?- sys.strat.doIt.

From the Terra source, we cannot reuse complete properties but have to �lter wrt. the types
they apply to. All geographical entities with their properties are taken from Terra:

terra:mountain = mountain.

terra:height = height.

M[@longitude->L1 and @latitude->L2] :-

terra/mountain->M[@terra:longitude->L1 and @terra:latitude->L2].

terra:desert = desert.

D[@area->A] :- terra/desert->D[@terra:area->A].

terra:island = island.

I[@area->A] :- terra/island->I[@terra:area->A].

terra:lake = lake.

L[@area->A] :- terra/lake->L[@terra:area->A].

terra:river = river.

terra:to = to.

terra:type = type.

terra:water = water.

terra:length = length.

terra:sea = sea.

terra:depth = depth.

D[@name->A] :- terra/desert->D[@terra:name->A].

D[@name->A] :- terra/mountain->D[@terra:name->A].

D[@name->A] :- terra/island->D[@terra:name->A].

D[@name->A] :- terra/lake->D[@terra:name->A].

D[@name->A] :- terra/river->D[@terra:name->A].

D[@name->A] :- terra/sea->D[@terra:name->A].

?- sys.strat.doIt.

Some cities are not present in any of the sources, but are needed as seats for organizations or as
capitals:

C/city[name->"Abidjan"] :-

gs/gs:country->C[gs:name/gs:text()->"Cote dIvoire"].

C/city[name->"Jeddah"] :-

gs/country->C[gs:name/gs:text()->"Saudi Arabia"].

C/city[name->"El Aaiun"] :-

gs/gs:country->C[gs:name/gs:text()->"Western Sahara"].
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C[@capital->E] :-

gs/gs:country->C[gs:name/gs:text()->"Western Sahara"],

C/city->E[name->"El Aaiun"].

Integration of objects. Now, the construction of the result tree by linking elements and
properties is started.
The continents are taken from gs:

result[continent->C] :- gs/gs:continent->C.

?- sys.strat.doIt.

Countries. The CIA country listing provides the base for including countries into the result
tree. Only those countries are relevant, where a capital is given in cia (excluding many irrelevant,
sometimes even unpopulated territories):

C[@cia:rel_country->1] :- cia/cia:country->C[@cia:capital].

?- sys.strat.doIt.

Fusing CIA and GlobalStatistics Countries. The GlobalStatistics source uses the same
country names as CIA. The corresponding country elements are fused and incorporated into the
result tree, collecting the properties of both original elements:

result[country->C1], C1 = C2 :-

cia/cia:country->C1[@cia:rel_country and @cia:name->N],

gs/gs:country->C2[gs:name/gs:text()->N].

C[@name->N] :- result/country->C/@cia:name->N.

result[country->C[@cia:rel_country->1 and @name->"Serbia and Montenegro"]] :-

gs/gs:country->C[gs:name/gs:text()->"Serbia and Montenegro"].

?- sys.strat.doIt.

Cities. The GlobalStatistics source contains detailed information about cities. All cities from
gs are taken as result cities. Some cities are stored with two di�erent names (once as a city, and
once mentioned as the capital of a province or country): names like \Mexico", \Mexico City" and
\Ciudad de Mexico" denote the same object { same for Panama:

result[city->C[@name->N]] :- gs/gs:city->C[name/text()->N].

?- sys.strat.doIt.

C1 = C2 :-

gs/gs:city->C1[@gs:country->C and @name->N1],

gs/gs:city->C2[@gs:country->C and @name->N2],

strcat(N1," City", N2).

C1 = C2 :-

gs/gs:city->C1[@gs:country->C and @name->N1],

gs/gs:city->C2[@gs:country->C and @name->N2],

strcat("Ciudad de ", N1, N2).

?- sys.strat.doIt.

Fusing CIA and GlobalStatistics Cities. The capital property of countries is made a ref-
erence to the city objects: in the CIA country listing, the only cities mentioned are the capitals.
Some of them are stored under di�erent names than in GlobalStatistics.

city_synonym("Bucharest","Bucuresti").

city_synonym("Warsaw","Warszawa").

city_synonym("New Delhi","Delhi").

city_synonym("Tashkent","Toshkent").

city_synonym("Addis Ababa","Addis Abeba").
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city_synonym("La Hague","s'-Gravenhage").

C1 = C2 :-

gs/gs:city->C1[@gs:country->Ctry and @name->N1],

gs/gs:city->C2[@gs:country->Ctry and @name->N2],

city_synonym(N1,N2).

?- sys.strat.doIt.

not C/@gs:main_cities.

?- sys.strat.doIt.

Provinces. The provinces from GlobalStatistics are added to the result tree if they belong to
relevant countries. Recall that the country attribute of GlobalStatistics provinces already points
to the integrated (fused) country objects.

result[province->P] :- gs/gs:province->P/@country[@cia:rel_country].

?- sys.strat.doIt.

Now, the integration of the CIA country listing and the GlobalStatistics source is already �nished,
mainly using object fusion and linking elements to the result tree. The \detailed" properties of
the objects have been handled above by just de�ning synonyms used in the result tree (via the
result signature).

Organizations and Memberships. All organizations from the CIA organizations listing are
linked into the result tree:

result[organization->O] :- orgs/orgs:organization->O.

Note that the CIA country data and the CIA organizations data is not fully consistent: there are
71 memberships which are not mentioned in the country data, and there are 6 organizations which
are mentioned in the country data which do not exist in the organization data.

Since the organizations data is more detailed (membership type), the membership information
is taken from there. The membership lists contain the country names. Based on this information,
reference attributes are de�ned. Note that there are members which are no o�cial countries, mostly
international commissions or local interest groups. In case the member list enumerates a country
both as a member and as an associate member/observer (IFRCS), only the full membership is
taken:

O/members[@type->"member" and @country->C] :-

result/organization->O/orgs:member_names[@orgs:type="member"]/orgs:text()->CN,

result/country->C[@name->CN].

?- sys.strat.doIt.

O/members[@type->T and @country->C] :-

result/organization->O/orgs:member_names[@orgs:type->T]/orgs:text()->CN,

not O/orgs:member_names[@orgs:type="member"]/orgs:text()->CN,

result/country->C[@name->CN].

The seats of organizations (mentioned by country and name in the CIA organizations listing) are
linked to the respective cities:

O[@seat->Cty] :-

result/organization->O[@orgs:seatcity->N and @orgs:seatcountry->CN],

result/city->Cty[@name->N and @country/@name->CN].

?- sys.strat.doIt.
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Fusing CIA and codes source. In the next step, the codes data source is integrated which
contains the english, german, and local names of the countries and their car-codes. For most
countries, the CIA and english name coincides:

C1 = C2 :-

codes/codes:country->C1/codes:name[@codes:language = "english"]/codes:text()->N,

result/country->C2[@name->N].

?- sys.strat.doIt.

For other countries, the CIA name coincides with the german or local name:

C1 = C2 :-

codes/codes:country->C1/codes:name[@codes:language = "german"]/codes:text()->N,

result/country->C2[@name->N].

C1 = C2 :-

codes/codes:country->C1/codes:name[@codes:language = "local"]/codes:text()->N,

result/country->C2[@name->N].

As a side e�ect, for all result countries, also the attribute country/@car code is de�ned (taken from
codes).

Linking Qiblih-Cities to Countries. In the next steps, the qiblih source is integrated which
contains geographical coordinates for many cities. First, the qiblih cities are linked to the appro-
priate country and province elements.

In qiblih, the countries are only mentioned by a string-valued attribute city[@qiblih:country)country-
name]. All qiblih cities for which this attribute matches a name which occurs as country/@name
are linked to the respective country.

Cty[@country->C] :-

qiblih/qiblih:city->Cty[@qiblih:country->N], result/country->C[@name->N].

There are some CIA capitals which are also contained in qiblih, but not with the exact country
name. They are matched by city name, excluding the US and Canadian cities (which can be
detected since for them, city/@qiblih:province is de�ned).

Cty[@country->Country] :-

qiblih/qiblih:city->Cty[@qiblih:name->N], not Cty/@country,

not Cty/@qiblih:province,

result/country->Country[@cia:rel_country]/@gs:capital[@name->N].

For US and Canadian cities, qiblih knows the provinces (by name). These cities are also linked to
the corresponding province object using the province name:

Cty[@province->P] :-

qiblih/qiblih:city->Cty[@country->S and @qiblih:province->N],

gs//gs:province->P[@gs:country->S and @gs:name->N].

Merging Qiblih-Cities with GlobalStatistics main cities. Note that the qiblih cities are
not yet integrated to the result tree. Cities which exist in qiblih and in CIA/GlobalStatistics
are now merged. Qiblih also contains information about cities which are not mentioned in the
CIA/GlobalStatistics sources; these cities are ignored.

If no province is known in qiblih (all except US and CDN), cities are matched by name and country :

C1 = C2 :- qiblih/qiblih:city->C1[@qiblih:name->N and @country->Ctry

and not @qiblih:province],

result/city->C2[@name->N and @country->Ctry].

?- sys.strat.doIt.
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In the USA, qiblih and GlobalStatistics main cities are matched by (name,state,country):

C1 = C2 :- qiblih/qiblih:city->C1[@qiblih:name->N and not @name and

@country->Ctry and @province->P],

result/city->C2[@name->N and @province->P and @country->Ctry].

?- sys.strat.doIt.

For Canada, qiblih provides provinces, but GlobalStatistics does not. Cities are matched by name
and country :

C1 = C2 :- qiblih/qiblih:city->C1[@qiblih:name->N and not @name and

@country->CDN[@name="Canada"]],

result/city->C2[@name->N and @country->CDN].

?- sys.strat.doIt.

The fused cities now have a population property (with year) from GlobalStatistics, and (longi-
tude,latitude) data from qiblih.

Terra. The integration of the Terra database is a more complex task: Its countries, provinces,
and cities overlap with the CIA and GlobalStatistic ones. Terra represents the state of the world
in 1987, thus some of its information is outdated. Some of its cities and provinces (which are still
existing) which are not present in the other databases are added. The population information of
1987 is added for all cities (annotated with the @year=\1987" attribute). Additionally, Terra
contains information about geographic objects like mountains and waters which is completely
added to the result. For these objects, it is stored to which countries and provinces they belong,
thus, a mapping from the 1987 countries to the 1997 countries must be implemented, based on
knowledge about the application domain. Since Terra uses the german names of countries, the
additional information of the codes source proves useful here.

Terra Countries. The Terra countries are fused with the CIA/result countries. In most
cases, this can be done using the car code attribute.

L = C :- terra/terra:country->L[@terra:code->Code],

result/country->C[@car_code->Code].

?- sys.strat.doIt.

Others are fused by matching the Terra name with the german name given in the codes source,
or with the name given by CIA:

L = C :- terra/terra:country->L[@terra:name->N and not @car_code],

result/country->C/codes:name[@codes:language ="german"]/codes:text()->N.

L = C :- terra/terra:country->L[@terra:name->N and not @car_code],

result/country->C/@name->N.

If the name of a capital is the same in CIA/GlobalStatistics and Terra, the countries are also
the same:

L = C :- terra/terra:country->L[@terra:capital->CN and not @car_code],

result/country->C/@capital/@name->CN.

?- sys.strat.doIt.

The only remaining Terra countries are those of the USSR, GDR and CS (countries which have
been dissolved).
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Fusing Administrative Divisions. Terra contains information about cities belonging to
administrative divisions which are not contained in GlobalStatistics. This information is also
integrated. Some of the administrative divisions can be fused by country/name:

L = P :- terra/terra:province->L[@terra:country->CC and @terra:abbrev->AB

and @terra:name->N],

not CC = AB,

result/province->P[@gs:name -> N]/@country[@car_code->CC].

?- sys.strat.doIt.

For the remaining administrative divisions, the capital coincides with the capital of an adminis-
trative division in GlobalStatistics of the same country (which is already merged). Since Terra
contains the country itself as a province if no other provinces are known, these have to be excluded:

L = P :- terra/terra:province->L[@terra:country->CC and @terra:capital->CN],

not result/province->L,

count{X [CC]; terra/terra:province->X[@terra:country->CC]} > 1,

result/province->P[@capital[@name->CN] and

@country/@car_code->CC].

?- sys.strat.doIt.

The provinces of Finland and Norway are only contained in Terra. They are made administrative
divisions of their countries, the capital is made a city, and its reference attributes to the province
and to the country are set:

p(finland,"SF"), finland = C :- result/country->C[@car_code->"SF"].

p(norway,"N"), norway = C :- result/country->C[@car_code->"N"].

?- sys.strat.doIt.

result[city->Cap[@name->CN and @country->Ctry and @province->L]],

result[province->L[@country->Ctry and @name->N and

@capital->Cap and @population->E]] :-

p(Ctry,CC),

terra/terra:province->L[@terra:country->CC and @terra:abbrev->AB and

@terra:name->N and @terra:capital->CN and @terra:pop->E],

terra/terra:city->Cap[@terra:country->CC and

terra:province/terra:text()->AB and @terra:name->CN].

For the former USSR, all its administrative divisions (the SSRs) are now independent and are
fused with the respective country objects from CIA and GlobalStatistics. Here, the matching is
done by the �rst three letters of the (german) name. Note that this leads to objects which are
countries and terra:provinces.

L = C :- terra/terra:province->L[@terra:name->N1 and @terra:country->"SU"],

result/country->C/codes:name[@codes:language="german"]->N2,

not terra/terra:country->C,

pmatch(N1,"/\A(...)/","$1",N1short),

pmatch(N2,"/\A(...)/","$1",N2short), N1short = N2short.

?- sys.strat.doIt.

Continent Information. Terra contains information about the distribution of countries over
continents in its encompassed property. Note that this is not contained in CIA or GlobalStatistics
for countries which belong to two continents (Russia, Egypt, Turkey).

C/encompassed[@continent->CT and @percentage->Perc] :-

result/country->C/terra:encompassed[@terra:continent->CN]/terra:text()->Perc,

result/continent->CT[@gs:name->CN].
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C/encompassed[@continent->Asia and @percentage->80],

C/encompassed[@continent->Europe and @percentage->20] :-

result/country->C[@name->"Russia"],

result/continent->Europe[@gs:name->"Europe"],

result/continent->Asia[@gs:name->"Asia"].

?- sys.strat.doIt.

All other countries belong with 100% to the continent which is given in CIA/GlobalStatistics:

C/encompassed[@continent->Cont and @percentage->100] :-

result/country->C[@gs:continent->Cont and not encompassed].

?- sys.strat.doIt.

Fusing Terra Cities. Terra contains geographical coordinates for all its cities, many of them
are also contained in GlobalStatistics without coordinates and qiblih also does not provide their
coordinates. For countries where no administrative divisions are distinguished in Terra (i.e.
terra:city[@terra:country = @terra:province]), cities are merged by country and name:

S = C :- terra/terra:city->S[@terra:name->N and @terra:country->CC and

terra:province/terra:text()->CC],

result/country->Country[@terra:code->CC],

result/city->C[@country->Country and @name->N].

Cities where GlobalStatistics knows the province (US cities and capitals of provinces) are fused
using (name,province,country):

S = C :- terra/terra:city->S[@terra:name->N and @terra:country->CC and

terra:province/terra:text()->AB],

not CC = AB,

result/country->Country[@terra:code->CC],

terra/terra:province[@terra:name->PName and @terra:country->CC

and @terra:abbrev->AB],

result/city->C[@country->Country and @name->N],

result/province[@gs:name->PName].

?- sys.strat.doIt.

There are cities where Terra knows the province but GlobalStatistics does not know it although
the province as an object is known. These can be fused and linked using the Terra information:

S = C, C[@province -> P] :-

terra/terra:city->S[@terra:name->N and @terra:country->CC and

terra:province/terra:text()->AB],

not CC = AB,

result/country->Country[@terra:code->CC],

terra/terra:province->P[@terra:country->CC and @terra:abbrev->AB],

result/city->C[@country->Country and @name->N and not @province].

?- sys.strat.doIt.

Terra cities which are capitals are fused with the CIA/GlobalStatistics capital of the same
country. Here, all countries (i.e., Germany) where the capital changed must be explicitly excluded!

S = C :- terra/terra:city->S[@terra:name->N and @terra:country->CC],

result/country[@terra:code->CC and @terra:capital->N and @capital->C],

not result/city->S, not CC="D".

Provinces are handled in the same way:
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S = C :- terra/terra:city->S[@terra:name->N and @terra:country->CC and

terra:province/terra:text()->AB],

terra/terra:province[@terra:country->CC and @terra:abbrev->AB and

@terra:capital->N and @capital->C],

not result/city->S.

Again, the former USSR needs special treatment: capitals of SSRs are now the capitals of the new
countries:

S = C :- terra/terra:city->S[@terra:name->N and @terra:country->"SU" and

terra:province/terra:text()->AB],

terra/terra:province[@terra:country->"SU" and @terra:abbrev->AB and

@terra:capital->N and @capital->C].

?- sys.strat.doIt.

Non-capital USSR cities can only be matched by name (note that the former Terra provinces
have been equated with the new countries):

S = C :- terra/terra:city->S[@terra:name->N and @terra:country->"SU" and

terra:province/terra:text()->AB],

result/city->C[@country->Country[@terra:country->"SU" and

@terra:abbrev->AB] and

@name->N].

?- sys.strat.doIt.

Additional Terra Information. Terra contains some more data which has not yet been inte-
grated, e.g. cities which are not mentioned in any of the other databases, or additional information
about cities which are already known.

There are some countries where GlobalStatistics gives no main cities (except the capital), but
Terra gives some additional cities. Then, these cities can be added to the database without any
risk to have a city under two di�erent names. This also holds when all GlobalStatistics cities are
capitals of provinces and Terra also knows these provinces/capitals (then the capitals are already
fused).
First, all GlobalStatistics cities are determined which are no capitals:

C[@notcapital->true] :-

result/city->C[@country->X], not X[@capital->C],

not X/gs:adm_divs[@capital->C].

?- sys.strat.doIt.

For countries which have provinces in Terra, and GlobalStatistics knows no non-capital cities
(e�ectively, this implies that GlobalStatistics knows no provinces, these are only N and SF), all
Terra cities can be added with their province information:

result[city->S[@country->C and @province->P]] :-

result/country->C[@terra:code->CC],

not C/gs:main_cities[@notcapital],

terra/terra:city->S[@terra:country->CC and terra:province/terra:text()->AB],

not CC = AB, not result/city->S,

result/province->P[@country->C and @terra:abbrev->AB].

?- sys.strat.doIt.

Terra cities which are known with their province, where GlobalStatistics knows no non-capital
cities in this province, can be added with their province information:
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result[city->S[@country->C and @province->P]] :-

result/country->C[@terra:code->CC],

terra/terra:city->S[@terra:country->CC and terra:province/terra:text()->AB],

not CC = AB, not result/city->S,

result/province->P[@country->C and @terra:abbrev->AB],

N = count{City [P]; result/city->City[@province->P]}, N = 1.

For countries (except the former USSR) where GlobalStatistics knows no main cities and Terra
knows no provinces, these cities are added:

result[city->S[@country->C]],

C[@gs:main_cities->S] :- %% other countries

result/country->C[@terra:code->CC], not CC = "SU",

N = count{City [C]; C/@gs:main_cities->City}, N = 1,

terra/terra:city->S[@terra:country->CC and terra:province/terra:text()->CC],

not result/city->S.

?- sys.strat.doIt.

The longitude and latitude data of Terra cities is added if there is no other (qiblih) information:

C[longitude->Long and latitude->Lat] :-

result/city->C[@terra:longitude->Long and @terra:latitude->Lat],

not C/@latitude, not C/@longitude.

?- sys.strat.doIt.

Take the city name from Terra if there is no other name (cities which are taken from Terra
and not equated with any GlobalStatistics city):

C[@name->N and name->N] :- result/city->C[@terra:name->N and not name].

?- sys.strat.doIt.

The population data of Terra cities is added if there is no other (GlobalStatistics) information:

C/population[@year->87 and text()->E] :-

result/city->C[@terra:population->E and not population].

?- sys.strat.doIt.

For countries where the car-code is not yet given, it is taken from Terra (currently this is only
Burma and French Guiana):

C[@car_code->CC] :- result/country->C[@terra:code->CC and not @car_code].

Terra geo objects. The geographic objects (rivers, lakes, seas, deserts, mountains, islands) are
not described in the other sources. They are added to the result.

mountain subcl geo_obj.

desert subcl geo_obj.

island subcl geo_obj.

water subcl geo_obj.

lake subcl water.

river subcl water.

sea subcl water.

?- sys.strat.doIt.

result[Class->Obj] :- terra/Class->Obj, Class subcl geo_obj.

?- sys.strat.doIt.
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Terra geo objects locations. For the geographic objects, the country and province informa-
tion has to be integrated. Since the Terra countries and provinces are already fused with the
result countries and provinces (i.e., the complex ident�cation task has already been done), this
task consists mainly of generating appropriate reference attributes:

First, the countries are determined; for the former USSR, (SU,prov) is changed into (prov,null):

Obj[@country->C] :-

terra/Class->Obj/terra:located[@terra:country_code->CC],

Class subcl geo_obj,

not CC = "SU",

result/country->C[@terra:code->CC].

Obj[@country->C] :-

terra/Class->Obj/terra:located[@terra:country_code="SU" and @terra:province_id->AB],

result/country->C[@terra:abbrev->AB].

Obj[country->C] :-

terra/Class->Obj/terra:located[@terra:country_code="CS"],

result/country->C[@car_code="CZ"].

?- sys.strat.doIt.

As far as provinces are given, this information is also added:

L[@country->C and @province->P] :-

terra/Class/terra:located->L[@terra:country_code->CC and @terra:province_id->AB],

result/province->P[@terra:abbrev->AB and @country->C/@terra:code->CC].

?- sys.strat.doIt.

Additional Data. There are some cities and geo objects whose provinces are not given yet.
They are contained in an additional �le (created manually): The predicate addprov(name, pop,
code, provincename) gives the province for the city with name name in the country with the car
code code.

?- sys.load@("../Mondial-programs/mondial-addprovs.flp").

format.name="$out[0]=$in[0];

$out[0]=~tr//aaaaaEeeiiIOooouucn/".

?-sys.strat.doIt.

addprov2(N2,CC,PN2) :- addprov(N,_,CC,PN),

perl(format.name, N, N2), perl(format.name, PN, PN2).

?-sys.strat.doIt.

C[@province->P] :-

addprov2(N,CC,PN),

result/city->C[@name->N]/@country[@car_code->CC],

result/province->P[@name->PN]/@country[@car_code->CC].

?-sys.strat.doIt.

Obj[@country->C] :-

addgeocountry(Geo,Name,Code), Class subcl geo_obj,

terra/Class->Obj[@name->Name], result/country->C[@car_code->Code].

?- sys.strat.doIt.

For province information about geo objects, for every country, a semicolon-list of provinces is given
by addgeoprov(geotype, geoname, countrycode, prov1;prov2;. . . ).

addgeoprov(Geo, Name, Code, ProvName) :-

addgeo(Geo, Name, Code, Strg),

pmatch(Strg, "/([A-Za-z][^;]*)/g", "$1", ProvName).

?- sys.strat.doIt.
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Obj/located[@country->C and @province->P] :-

addgeoprov(Geo, Name, Code, ProvName),

terra/Class->Obj[@name->Name and @country->C[@car_code->Code]],

result/province->P[@country->C and @name->ProvName].

?- sys.strat.doIt.

Result restructuring. Some properties in the result are restructured internally on XML level:

E[text()->N and @percentage->P] :-

result/country->C/ethnicgroups->E[@cia:name->N and cia:text()->P].

R[text()->N and @percentage->P] :-

result/country->C/religions->R[@cia:name->N and cia:text()->P].

L[text()->N and @percentage->P] :-

result/country->C/languages->L[@cia:name->N and cia:text()->P].

?- sys.strat.doIt.

B[@country-> C and @length->L] :-

result/country/border->B[@cia:country-> C and cia:text()->L].

?- sys.strat.doIt.

The city and province elements which are still direct children of the result root node are linked as
a hierarchical structure country/province/city or country/city:

C[province->P] :- result/province->P[@country->C].

C[city->City] :- result/city->City[@country->C and not @province].

P[city->City] :- result/city->City[@province->P].

?- sys.strat.doIt.

Recall that above, the Mondial DTD has been parsed, yielding an export signature. The result
tree is now exported according to this signature:

?- sys.theOMAccess.export@("xml","mondial-3.0.xml","mondial","result").

Lessons Learnt

First, the principal objects (countries, provinces, cities, and organizations) have been collected.
The overlapping parts of the corresponding sources (CIA countries, CIA organizations, and Glob-
alStatistics) were well-de�ned. Here, the main tasks consisted of

� identifying corresponding elements in overlapping sources, and fusing them, and

� generating references between elements from the non-overlapping parts.

Exploiting the features of XPathLog for

� object fusion,

� multiple parents, and

� synonyms,

the rules could be kept short and declarative.

The integration of the small source providing country codes and names has also been done by
fusing objects.

With adding the Qiblih source as complementing knowledge, the \usual" integration problems
came up: For all \classes" of real-world objects described in Qiblih, some of the instances were
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already present in the result tree, some others were not. Additionally, di�erent names were used.
Thus, the principal tasks { fusing and linking { were the same, but exceptions had to be dealt
with.

The integration of the Terra source mirrors all problems of \autonomous" data sources: The
fact that Terra represents the world of 1987 can be regarded as an \inconsistency": some of its
information must not be used since it con
icts with the \valid" information extracted from the
CIA database (e.g., there is no country called \Soviet Union"). Additionally the use of di�erent
names for the same objects (german vs. english) is a typical problem which must be solved when
integrating arbitrary sources. Similar to the Qiblih problems, the overlappings were not easy to
identify: some Terra cities were also contained in the GlobalStatistics/CIA sources; here the
1987 population, and sometimes the geographical coordinates had to be added (if Qiblih did not
do it). The same holds for provinces. So, a complete integration required a thorough control which
objects were handled in a certain step, and to check why some objects remained still un-integrated
(cf. capitals of provinces in Norway and Finland).

Furthermore, knowledge about the application domain was necessary to handle the transition
of provinces of the former USSR to independent countries.

Concerning the relationship of the approach with automatical approaches to data integration,
the result is that the automatical generation of a program skeleton based on the source descriptions
(e.g., as a DTD, in XML Schema, or by RDF) seems to be promising: The integration of CIA
countries, CIA organizations, and GlobalStatistics could be done automatically if a suitable ontol-
ogy is provided. From the knowledge that country/@capital and organization/@seat must reference
cities, and information about potential key values, the rules could be created automatically.

In contrast, the integration of the other sources can probably not be performed automatically
in a satisfying way since it requires knowledge not only on the schema, but also on the data and
its real-world background.

Thus, data integration (not only in XML) requires a powerful language and a 
exible data
model. In XPathLog,

� the operations \fusion" and \linking", and synonyms,

� navigation-based (in this case, XPath-based) expressions which can bind variables to arbi-
trary nodes which are traversed by the navigation expression,

� the graph-based data model, and

� the projection mechanism

are the components which make up such a language. The nature of an XPathLog program as
a list of rules allows for grouping rules which together handle a certain task. The programs are
modular which also allows for adapting them to potential changes in the source structure.
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The XPointer and XLink working drafts [XPt00, XLi00] (see also Section 3.8) specify how to
express inter-document links in XML. There is not yet an o�cial proposal how to handle XLinks
in queries and applications.

As a running example in this section, again the distributed version of the Mondial database
given in Section 3.8 is used. The section starts with general considerations on XLinks, and then
describes an approach to handle XLinks in XPathLog.

Example 13.1 (Querying XLinks)

Consider again the query given in Example 3.4:

\Select all names of cities which are seats of an organization and the capital of one of
its members."

For the distributed database, the query has to be formulated in a di�erent way. The entry point
for the query in the distributed database is the document mondial-memberships.xml, iterating over
all membership elements (e.g., (\D",\EU")),

� following the link to the corresponding organization in mondial-organizations.xml, searching
for the <organization id=\org-EU"> element, which contains a (simple) xlink subelement seat.
The target of the link is a city element in mondial-cities-B.xml; the text contents of its name
has to be retrieved.

� following the link to the corresponding country in mondial-countries.xml, searching for the
<country car code=\D"> element, which contains another (simple) xlink subelement capital.
The target of the link is the city element

<city > <name>Berlin</name> </city>

in mondial-cities-D.xml; again, the text contents of its name has to be retrieved and compared
with the result from the �rst search.

13.1 General Considerations on Traversing XLinks

13.1.1 Data Model

Similar to IDREF(S), there are several strategies how a query language may support the resolving
of XLinks. For illustration, the XQuery syntax is used.

Uninterpreted. Current XML querying tools are restricted to evaluate XPath expressions wrt.
the DOM-resident XML tree (which may contain several documents). When a query is parsed,
the documents occurring in expressions of the form document(url) are added to the DOM to be
evaluated.

Elements with XLink functionality are handled like \normal" elements. They simple have an
attribute xlink:href which has a value which accidentally contains an url part (before the \#")
and an XPath/XPointer part (after the \#"). Resolving of the link must be done manually:
the XPointers giving the urls and XPath expressions are decomposed at runtime and are used to
formulate the subsequent subquery.

177
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Remark 13.1

Neither the XQuery working draft, nor the Quilt documentation speci�es if statements of the form

FOR $url IN . . . /linkelement/@href,

$var IN document( $url )/. . .

are allowed. For this section, we deliberately assume that it is allowed to use variables at document
position in subsequent FOR { LET clauses, in fact constructing a query in Dynamic SQL or JDBC
style:

FOR $xpointer IN . . . [xlink:type = \simple"]/@xlink:href,
LET $url = string-before(\#",$xpointer),

$path = string-after(\#",$xpointer),
FOR $result in document($url)/$path

...

Such queries are not supported by the current querying languages, and they also are not really
declarative. The above behavior can be implemented by XSLT [XSL99] patterns which resolve an
xlink:href into the url and the XPointer, and then use the document() extension function. 2

Explicit Dereferencing. Similar to IDREF(S) attributes which carry an internal semantics
allowing to dereference them, XLink elements can be equipped with a similar internal semantics.
Quilt/XQuery [XQu01] de�ne the IDREF(S) dereferencing operator \! nametest" as described in
Example 3.4. Similar, a dereferencing operator \; nametest" for following XPointers in xlink:href
attributes can be de�ned for inter-document navigation.

Example 13.2 (Querying XLinks: Explicit Dereferencing)

Using explicit dereferencing, the above query can be formulated as follows. For illustrating in
which XML document the current navigation step is applied, the namespaces ms: (in mondial-
memberships.xml), org: (in mondial-organizations.xml), ctry: (in mondial-countries.xml), and cty:
(in mondial-city-code.xml) are used:

FOR $ms IN document(\mondial-memberships.xml")//ms:membership,
$org IN $ms/@xlink:to!ms:organization/@xlink:href;org:organization,
$abbrev IN $org/@org:abbrev,
$seatname IN $org/org:seat/@xlink:href;cty:city/cty:name/text(),
$capname IN $ms/@xlink:from!ms:country/@xlink:href;ctry:country/

ctry:capital/@xlink:href;cty:city/cty:name/text(),
WHERE $capname = $seatname
RETURN <result org = $abbrev city = $seatname/>

The details of the implementation of the XLink dereferencing operator are the subject of the
following sections.

Transparent XLinks. In the above example, an explicit operator for dereferencing XLinks has
been introduced. Another possibility is to regard link elements to be transparent, i.e., the (ab-
stract) data model should silently replace XLink elements of the types xlink:simple, xlink:locator,
and xlink:arc by the result sets of their XPointers (for xlink:type=arc elements, the from and to
attributes are replaced by reference attributes whose name is the xlink:role type of the correspond-
ing xlink:locator nodes (if no role is given, the name of the locator node is taken instead)). Note
that these partially \virtual" elements must accumulate the attributes and contents of the original
XLink element (in case it has non-xlink contents) and of the linked element.
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Example 13.3 (Querying Transparent XLinks)

With transparent XLinks, the virtually linked XML trees look as follows:

In mondial-memberships.xml, the <country xlink:type=\locator" . . . > elements are \instantiated"
with the document(\mondial-countries.xml")/country elements resulting from the xlink:href attribute;
analogously for the <organization xlink:type=\locator" . . . > elements. In the <membership xlink:type=\arc">

elements, the xlink:from attribute is replaced by a country reference attribute (taking the name of
the element referenced by the xlink:from attribute); analogously for the xlink:to attribute:

<memberships>
<!{ xlink:type=\locator" xlink:href=\document(`.../countries.xml')/id('D')" {>
<country id=\D">

<!{ with attributes and contents of document(\.../countries.xml")/id('D') {>
</country>
<!{ xlink:type=\locator" xlink:href=\document(`.../organizations.xml')/id('org-EU')" {>
<organization id=\org-EU">

<!{ with attributes and contents of document(\.../organizations.xml")/id('org-EU') {>
</organization>
<membership

<!{ xlink:from=\D" xlink:to=\org-EU" + types of the from/to elements {>

country=\D" organization=\org-EU" membership type=\member"/>
...

</memberships>

Similarly, in mondial-organizations.xml, the <seat xlink:type=\simple"> subelements are resolved by
the corresponding document(\mondial-city-code.xml")/country elements:

<organization id=\org-UN">
<seat

<!{ href=\�le:cities-USA.xml#//city[name/text()=`New York']"{>
<!{ all attributes of

document(\.../mondial-cities-USA.xml")//city[name/text()=`New York'] {> >

<!{ element contents of
document(\.../mondial-cities-USA.xml")//city[name/text()=`New York'] {>

</seat>
...

</organization>

Analogously, the capital subelements in mondial-countries.xml are (virtually) resolved.

Then, the query in the virtual linked trees reads as

FOR $ms IN document(\mondial-memberships.xml")//ms:membership,
<!{ $ms is of the form <membership country=\D" organization=\org-EU"

membership type=\member"/> {>

$org IN $ms/@ms:organization, <!{ dereferencing the arc element {>

$abbrev IN $org/@org:abbrev,
$seatname IN $org/org:seat/cty:name/text(), <!{ dereferencing the simple link {>

$capname IN $ms/@ms:country/ctry:capital/cty:name/text()
<!{ dereferencing the arc and the simple link {>

WHERE $capname = $seatname
RETURN <result org = $abbrev city = $seatname/>

Using the transparent model with virtually linked trees in XPathLog (where the linking may be non-
virtually), (the constant memberships represents the root of the mondial-memberships.xml tree), the
query reads as
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?- memberships//ms:membership
[@ms:organization[@org:abbrev!A and org:seat/cty:name/text()!N] and
@ms:country/ctry:capital/cty:name/text()!N].

Another question is, whether virtual subelements via XLinks should be considered as descendants.
For transparency reasons, it is sometimes desirable to regard XLink-ed XML instances as one.
Then, queries are robust against suitable restructuring of information servers. On the other hand,
the set of descendants may become arbitrary large. Additionally, navigation using \//" has to
resolve (transitively) all XLinks. Thus, it is desirable that the behavior of an XLink in this aspect
can be de�ned.

So far, the considerations e�ect only the abstract data model and the syntax of a querying con-
struct.

13.1.2 XML Information Server Cooperation

An XPointer does in general not address a complete document, but gives an XPath expression1

which has to be evaluated to yield a node set. When such XLinks are resolved in distributed
documents provided by autonomous servers all over the Web, one of the main issues is, where the
computations are done:

� If only a plain XML document (e.g., as ASCII) is provided, the client which initiated the
query has to access the document and evaluate the XPointer expression by itself.

� If an information provider does not publish the XML document, but allows access only by
XPath expressions against his database, the answer must be computed by the server.

In general, when an XLink is found, it is not known to the processing instance which of the above
cases applies. As a straightforward strategy, the client will �rst try to send the complete XPointer
via HTTP to the server where it will be answered if the server is an XML database system. If
the query is not answered, the client will try to access the XML document, parse it into its own
database, evaluate the XPointer and process the result set. More involved strategies which are
tailored to the needs of a given application are described in the following.

13.1.3 Proposal: Evaluation Strategies for XLinks

The XLink working draft [XLi00] de�nes several attributes for XLink elements which specify the
behavior of the XLink element, i.e., when it should become \activated" and what happens then.
In the current version, this behavior is tailored to the use of XLinks when browsing, it does not
cover the requirements of querying XML instances. Given an XLink element of the form

<foo xlink:type=\simple" href=\url#xpointer" . . . />

there are several strategies what to do from the querying and database aspect:

Activating Event: The activating event of XLinks is considered in the XLink working draft with
the xlink:actuate attribute: the value \auto" states that the link is activated when it is parsed,
whereas \user" states that it is activated by the user (HTML: clicking).

In our context, \auto" would mean that the XPointer is evaluated when the node containing
it is parsed whereas \user" would mean that it is evaluated when it is used by a query.

We add an xlink:actuate=\noaction" alternative which does nothing: the unresolved link
remains in the answer tree, but without the xlink:actuate=\noaction" attribute. The intention
here is that the application/user which stated the query should decide (and possibly pay)
by himself when to �nally resolve the XLink. Especially, information servers will use this
alternative.

1in this work, the addressing part of XPointer is restricted to XPath expressions, returning a node set.
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Activated Action: The activated action of XLinks is in some sense considered in the XLink
working draft with the xlink:show attribute: the value \new" states that the target of the link
is opened in a new window, whereas \parsed" states that the target of the link is inserted
instead of the link.

In our context, there are more alternatives what to do:

� xlink:show=\complete" parses the whole target document (useful in case that there are
many XLinks to the document, such that it makes sense to regard it as a part of the
database).
When later a query traverses the link, it has only to evaluate the xpointer wrt. the al-
ready parsed document. Thus, xlink:show=\complete" has to be accompanied by another
speci�cation how the actual query is answered.

� xlink:show=\new" computes the result set of document(url)/xpointer and keeps it some-
where in the database (useful if the same XLink occurs at several places).

� adopt xlink:show=\parsed" for replacing the link by the result set of document(url)/xpointer
(i.e., materializing the answer as in Example 13.3).

� Additionally, xlink:show=\virtual" means that the result set is computed and used (tem-
porarily) for answering the query, but that it is not materialized.

Descendants strategy: The XLink working draft does not address this issue. We propose an
additional xlink:descendants attribute that can be used to specify if the XLink should be
transparent wrt. the descendant axis:

� the XLink itself may specify if it wants to be transparent wrt. the descendants relation,

� the application may specify which elements in virtual subtrees resulting from transparent
XLinks are regarded as descendants:

{ \all",

{ \none",

{ \sameserver": those resulting from XLinks where the target url is on the same server
as the source url,

{ \prede�ned": use the strategy given by the XLink.

The table given in Figure 13.1 shows which actions are necessary when a link is traversed the �rst
time, and all subsequent times (note that exactly for the policy (auto, parsed), the links are later
transparent, i.e., no additional action is required):

Note that di�erent speci�cations for di�erent XLinks in a document are allowed which can
lead to an optimized di�ering behavior (e.g., when another XLink already accessed the complete
document). It is even possible that another XLink has already precomputed the answer. Note
that also a virtual answer may be cached if it is useful for another XLink (de�ned as (user, new)
or (user, parsed)).

The combination xlink:show=\complete new" provides a kind of double central caching when
the target document is referenced with di�erent XPointers, covering large parts of the target
document (then the document is accessed only once by \complete"), and each of the XPointers
occurs in several links (each of the answers is precomputed and stored once).

With xlink:actuate=\auto", all XLinks in a subtree are processed when the subtree is parsed.
This will potentially compute many answers which in fact are never needed. Applied recursively,
xlink:actuate=\auto" and xlink:show=\complete" load transitively all documents which are reach-
able via XLinks (yet without evaluating individual pointers). This should only be done if it is
known that the number and size of XML documents which are reachable transitively is suitably
small, and that most of the XLinks will actually be queried. On the other hand, especially in the
combination xlink:actuate=\auto" and xlink:show=\new" or xlink:show=\parsed" (which precom-
putes and materializes all result sets of XLinks) the answering time for queries can be minimized.
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auto user
cn cp cv n p cn cp cv n p v

transparent { xx { { xx { -x oo { -x {
retrieve precomputed answer xx { { xx { ?x ?- oo -x ?- {
access doc { { { { { ?- ?- oo ?- ?- xx
store document in cache { { { { { ?- ?- oo { { ??
compute answer from parsed doc { { xx { { ?- ?- oo ?- ?- {
store answer in cache { { { { { ?- { oo ?- ?- ??
replace link by answer { { { { { { x- oo { x- {

o: makes no sense -: no action required x: action required

?: depends if the document is already cached and if the XPointer result is already
computed by another link

1st entry: �rst time, 2nd entry: all subsequent times

Figure 13.1: Required Actions when Traversing an XLink

The combination xlink:show=\complete virtual" speci�es that for every query which uses the
xlink, the answer is computed using the cached tree (saving space, but not redoing the Web ac-
cess). The combination xlink:actuate=\user" xlink:show=\virtual" speci�es that always the current
information of the remote information source is queried (even if another XLink cached the com-
plete document). In this case, the result set of an XLink has to be computed each time the link
is traversed. Nevertheless, for large result sets, or for links which are not used frequently, this
saves storage. The combination xlink:actuate=\auto" xlink:show=\virtual" makes only sense when
xlink:show=\complete" is also set (caching the complete document once and then answering the
query from it).

When xlinks:descendants=\yes" is used, the XLink must be considered whenever it is involved
in a descendant navigation step. Thus, it is often preferable to materialize it, or to use additional
metadata information to check if it may yield relevant answers (see below).

In practice, the services which provide the referenced documents constrain the possible alternatives:

\Hiding" Servers. If the referenced document is located on a server which does not pub-
lish the whole document, but only answers a (possibly even restricted) set of XPath queries,
xlink:show=\complete" is not applicable. The answer is always computed by the server.

\Lazy" Servers. If only a plain XML document (e.g., as ASCII) is provided, the client which
initiated the query has to access the document and evaluate the XPointer expression by itself. All
XLinks in the referenced document become { at least temporarily { references of local documents.
Then, the client has to decide if he accepts the XLink strategies de�ned in the document. In case
that the client speci�ed xlink:show=\virtual" for the link under consideration (assuming that the
server will do the processing) he probably now changes his mind to materialize the answers (after
having done the computation by himself).

If the client under consideration is an intermediate server, he probably decides not to resolve
the link under consideration in this case, but to do xlink:actuate=\noaction" and leave the resolving
to his client.

Costs. Additionally, for the user of information services, the costs associated with an informa-
tion source are relevant:

� xlink:show=\complete" may be expensive when the costs depend on the size of data,

� xlink:show=\new" or xlink:show=\parsed" may be expensive when the costs depend on the
number of queries.
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� xlink:show=\virtual" is potentially expensive in both cases. Since the result of resolving the
XLink serves only as a base for evaluating another query which traverses the link, it is often
cheaper to rewrite the XPointer expression given in the link together with the query to a
new XPath query against the service (see below).

Information Providers. For an information provider, xlink:actuate=\noaction" assures that
he will not have any e�ort (neither computational resources, nor costs) for resolving the links in
the documents he provides.

13.1.4 Optimizations

Resource Descriptions. If the provider of a referenced XML document also provides a resource
description, it is often even possible to decide whether the actual query may be successful.

Especially, when XLinks are regarded as transparent wrt. the descendant axis, for expressions of
the form . . . //nodetest, the simple information whether the linked document can contain elements
which satisfy the nodetest can save the expense of querying the linked data source.

Example 13.4 (Subelements \through" XLinks)

The XPath expression

document(\mondial-countries")//in
ation

(which selects all in
ation elements by following the XLinks to all documents described above) does
not need to follow the links to the city documents since these do not contain any in
ation element.

With a more detailed metadata description, e.g., in RDF (Resource Description Framework)
[RDF00], the evaluation of many queries can be optimized.

Virtual Evaluation. If an XLink

<foo xlink:type=simple href=url#xpointer . . . />

to an information service is speci�ed as xlink:show=\virtual", its result set is not materialized, but
only used for evaluating another query which traverses the XLink. Let remainder be the part of
the original XPath expression which remains when navigating from the node to which the query
is applied to the xlink element. Then, instead of the original query, the rewritten query

xpointer/remainder

can be stated against the information service at url to answer the original query. In general, the
result will be much smaller than when evaluating xpointer { and the computation is done at the
server which is potentially optimized wrt. its database.

Example 13.5 (Rewriting Queries through XLinks)

In the query given in Example 13.2, the source mondial-memberships.xml contains locator elements
like

< country id=\D" xlink:href=\document(`countries.xml')/id('D')" />

which are used when answering the query

(�) $capname IN $ms/@xlink:from! ms:country/@xlink:href ; ctry:country/

ctry:capital/@xlink:href;cty:city/cty:name/text() .

For the above XPointer, the whole ctry:country element with id \D" is returned, containing a
capital subelement which is a simple link:
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<country car code=\D" . . . >
<capital xlink:href=\document(`cities-D.xml')#//city[@id=`city-berlin']"/>

...
</country>

The ctry:country element is then queried by

ctry:capital/@xlink:href;cty:city/cty:name/text() .

which returns \Berlin". Instead, when resolving the �rst XLink, countries.xml the XPointer can
already be extended with the remaining query, i.e., evaluating

document(`countries.xml')/id('D')/ctry:capital/@xlink:href;cty:city/cty:name/text()

which will in turn query cities-D.xml with

city[id=\city-berlin"]/cty:name/text()

which just returns \Berlin" which is also the answer to (�).

XML-Aware Web Caches. Another possibility is to use XML-aware cache technology in the
Web which allows to store url-query-answer-tuples which occur frequently. This technology is
investigated in [LM01].

13.2 XLinks in XPathLog

If an XPathLog engine interprets XLinks transparently, the user is not concerned with their
handling: the underlying evaluation component silently evaluates the corresponding navigation
step according to the behavior speci�ed for the XLinks.

XPathLog rules can be used for prototypically investigating these strategies. Special built-in
functions are used to provide Web access (cf. Section 15); a prospective extension implements the
conversion and evaluation of XPath expressions given as strings into queries:

� url.parse@(xml): parses the XML document located at url and assigns its root to the reference
url.parse@(xml), and

� url.evaluate@(\xpath-expr",V ar): evaluates the query url.parse@(xml)/xpath-expr!V ar.

The following rules implement the xlink:actuate=\auto", xlink:show=\parsed" strategy:

X isa xlink :- X[@xlink:type].

URL.parse@(xml),X[@targeturl!URL and @select!XPath] :-
X isa xlink[@xlink:href=XPointer], substring-before(XPointer,\#", URL),
substring-before(XPointer,\#",XPath).

<!{ handle simple links {>

E[M!V] :-E/M!X, X isa xlink,
X[@xlink:type=\simple" and @targeturl!URL and @select!XPath],
URL.evaluate(XPath,V).

<!{ handle locators {>

E[M!V] :-E/M!X, X isa xlink,
X[@xlink:type=\locator" and @targeturl!URL and @select!XPath],
URL.evaluate(XPath,V).
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<!{ handle arcs {>

X[R!V] :-X isa xlink, X[@xlink:type=\arc" and @to!Loc],
X/sibling::*[@id!Loc and @xlink:role!R and

@targeturl!URL and @select!XPath],
URL.evaluate(XPath,V).

X[N!V] :-X isa xlink, X[@xlink:type=\arc" and @to!Loc],
X/sibling::*[@id!Loc and not @xlink:role and name()!N and

@targeturl!URL and @select!XPath],
URL.evaluate(XPath,V).

The �rst rule alone implements the xlink:show=\complete".

In all other cases, the evaluation component must (at least when a link is traversed the �rst time)
be extended with built-in actions (as given in Figure 13.1).
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14 XPATHLOG AND

F-LOGIC: A

COMPARISON

F-Logic [KLW95] is a deductive object-oriented database language. The experiences with F-Logic as
a formal framework and as a language for data extraction and integration from the Web [LHL+98,
May99a,MHLL99] provided the background for the design of XPath-Logic and XPathLog.

Already the syntax of XPath shows many similarities with the F-Logic syntax: complex ex-
pressions are built using navigation (in F-Logic written as country.population and country..city in
contrast to the XPath notation using country/population and country/city1) and �lters (written
in both languages as host[�lter ]). The main conceptual di�erence is that the semantics of XPath
expressions is given by result sets which are addressed by the expression, whereas F-Logic expres-
sions return variable bindings which can also return items which are considered anywhere on the
navigation path or in the �lter.

Thus, the design of XPathLog as a crossbreed between XPath and F-Logic, combining the
experiences with F-Logic as a successful (but \proprietary") language for data integration with the
world-wide use of XML and XPath was a well-grounded evolution step. The following conceptual
features tailored to data integration of XPathLog have been taken from F-Logic:

� property names as �rst-class citizens of the language (which e.g., can be equated to syn-
onyms),

� variables at property positions,

� object fusion,

� class hierarchy with inheritance,

� lightweight signatures.

The implementation of XPathLog in the LoPiX system (see Section 15) is also based on the
F-Logic system Florid.

14.1 F-Logic

F-Logic serves both as a logic and as a database querying and programming language (similar to
the relationship between XPath-Logic and XPathLog).

The F-Logic data model is an object-oriented, semi-structured data model: the basic data
model is based on objects which have properties (relationships between objects are regarded as
object-valued properties). Objects are grouped by classes. The F-Logic data model is a semistruc-
tured data model since there is no �xed schema, but arbitrary properties can be associated with
all objects. F-Logic supports class hierarchy, nonmonotonic inheritance, and signatures.

Since F-Logic strongly in
uenced the XPathLogic and XPathLog syntax, the presentation here
can be kept short (for the full syntax and semantics of F-Logic, the reader is referred to [KLW95]):

1note that \." and \.." both correspond to \/" in XPath. Due to its non-tree data model, F-Logic has no direct
equivalent to \//" { see below.
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� The language is based on variables, constants, and object constructors from which id-terms
are composed as usual. Id-terms are interpreted as elements of the universe. By convention,
object constructors start with lowercase letters whereas variables start with uppercase ones.
Ground id-terms play the role of logical object identi�ers (oids).

In the sequel, let O, C, D, Qi, S, Si, Sc, and Mv stand for id-terms.

� An is-a assertion is an expression of the form O : C (object O is a member of class C), or
C :: D (class C is a subclass of class D).

� The following are object atoms :

{ O[Sc@(Q1; : : : ; Qk) ! S]: applying the scalar method Sc with arguments Q1; : : : ; Qk to
O results in S,

{ O[Mv@(Q1; : : : ; Qk)�fS1; : : : ; Sng]: applying the multi-valued method Mv with argu-
ments Q1; : : : ; Qk to O results in S1; : : : ; Sn.

Note that inside �lters, the property position is always interpreted as an object, i.e., o[m1.m2!V]
is equivalent to o[(m1.m2)!V] and binds V to o.(m1.m2), not to (o.m1).m2 as it would be in
XPath and XPathLog; see also page 191.

� Signature atoms and atoms describing inheritable methods use the same syntax as de�ned
for XPathLog in Sections 9.1 and 10.

� A rule is a logic rule h  b over F-Logic's atoms, i.e., is-a assertions and object atoms; a
program is a set of rules.

Example 14.1 (F-Logic Database)

Below, a fragment of the database which is created by the application described in this paper is
shown. For readability, we use mnemonic oid's of the form oname.

obelg isa country[ name!"Belgium"; car code!"B"; capital!obrussels;
total area!30510; population!10170241; continent@(oeur)!100;
indep@(date)!"04 10 1830"; pop growth!#0.33; gdp total!197000;
adm divs�fop antwerp; op westfl,...g; main cities�fobrussels; oantwerp,...g;
ethnicgroups@("Fleming")!55; ethnicgroups@("Walloon")!33;
religions@("Roman Catholic")!75; religions@("Protestant")!25;
borders@(ofrance)!620; borders@(ogermany)!167;
borders@(oluxembourg)!148; borders@(onetherlands)!450].

obrussels isa city[name!"Brussels"; country!obelg ; province!op westfl;
longitude!#4.35; latitude!#50.8; population@(95)!951580].

oantwerp isa city[name!"Antwerp"; country!obelg ; province!op antwerp;
population@(95)!459072; longitude!#4.23; latitude!#51.1].

op antwerp isa prov[name!"Antwerp"; country!obelg ; capital!oantwerp;
area!2867; population!1610695].

op westfl isa prov[name!"West Flanders"; country!obelg ; capital!obrussels;
area!3358; population!2253794].

oeu isa org[abbrev!"EU";name!"European Union";establ@(date)!"07 02 1992";
seat!obrussels; members@("member")�fobelg ; ofrance,. . . g;
members@("membership applicant")�fohungary; oslovakia,. . . g].

The basic F-Logic syntax and semantics has been extended in [FLU94] with path expressions in
place of id-terms for navigating in the object-oriented model:
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� The path expression O.M is single-valued and refers to the unique object S for which O[M !
S] holds, whereas O..M is multi-valued and refers to every Si such that O[M�fSig] holds.

Example 14.2 (F-Logic Path Expressions)

In our example,

oeu.seat = obrussels , oeu.seat.province = op westfl .

The following query yields all names N of cities in Belgium:

?- C : country[name!"Belgium"], C..main cities[name!N].

Since path expressions and F-Logic atoms may be arbitrarily nested into molecules, a concise
and extremely 
exible speci�cation language for object properties is obtained { very similar to the
XPath syntax. For the design (and also the implementation) of XPathLog, the experiences with the
semantics of complex negated expressions in rule bodies, and the constructive semantics of complex
expressions in rule heads which are in F-Logic both based on atomization were useful. Additionally,
the F-Logic object algebra [Him94] which is implemented in Florid has some similarities with
the semantics de�ned for SB and QB in Section 6.2.

The semantics of F-Logic programs is de�ned by bottom-up evaluation, allowing for user-
de�ned strati�cation.

14.2 Comparison

The basic F-Logic data model and querying language provides the following concepts which are
not present in the XML/DOM data model:

1. the underlying data model for F-Logic (F-Structures) is a graph, all relationships are equally
represented by object-valued properties.

2. there is an unsorted universe of objects which can simultaneously play the roles as objects,
classes and properties. This allows for expressing complex correlations between the object
level and the meta-level,

3. there are parameterized properties, e.g., berlin[population@(95)!3472009],

4. F-Logic distinguishes scalar (e.g., germany [capital!berlin]) and multivalued properties, (e.g.,
germany [city�berlin]).
Scalar properties have a special equating semantics: From the facts

john[father!paul ] and john[father!mr X ],

the internal semantics derives that paul and mr X are the same object (which has all prop-
erties of the objects paul and mr X , similar as described in Section 11.6 for object fusion).

5. language: F-Logic allows variables to occur at arbitrary positions (i.e., especially, at property
position).

Here, (3) and (4) are minor details of the modeling which are not supported directly in XML, but
can easily be encoded:

ad 3) XML does not allow for parameterized properties. These can be encoded by attributes, e.g.,
the above example berlin[population@(95)!3472009], is represented by

<city id=\cty-Germany-Berlin" country=\D">
<name>Berlin</name>

<population year=\95">3472009</population>
</city>
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and queried by

?- //city[population[@year!Y]!P].

ad 4) The basic XML model does not distinguish scalar from multivalued properties; such con-
straints can be expressed in the DTD or XML Schema metadata speci�cation. For XPathLog,
the maintenance of scalarity by equating has to be encoded into suitable rules.

Example 14.3 (F-Logic: Maintaining Scalarity)

From a DTD or XML Schema metadata speci�cation, information about cardinalities can be de-
rived (extending the algorithms described in Section 10.2). Let

E.P[cardinality!C]

denote that P is a property of the element type E of cardinality C 2 fscalar, multivaluedg. Then,
the following rule maintains this scalarity by fusing objects:

X = Y :- Z isa E, Z[P!X and P!Y] and E.P[cardinality!scalar]

where E is bound to a class name (i.e., in pure XML terminology, an element type) and P is
bound to a property name (i.e., a subelement relationship name) and X, Y , and Z are bound to
objects (element nodes).

The remaining di�erences (1), (2) and (5) directly e�ect the expressiveness and 
exibility of the
data model (graph vs. tree) and the language (variable bindings) and their combination (names
and nodes vs. objects) and have been central \requirements" when designing XPath-Logic and
XPathLog.

Tree vs. graph model. The main di�erence in the data model is that the F-Logic model is
graph-based whereas the XML data model is tree-based.

� An F-Logic database consists of nodes which are connected by relationships. There is no
additional structure in the graph, navigation is allowed starting at arbitrary objects and
following arbitrary relationships. The graph-based F-Logic data model does not know a
notion of distinguished root objects to generate a result (tree).

� The XML data model is a tree consisting of named nodes. The tree structure is de�ned by
a distinguished subelement relationships. Additionally, reference attributes add subordinate
cross edges to the tree. Literal contents and properties can either be represented by text
nodes or by non-reference attributes.

The XPath axes have no counterpart in F-Logic since in its non-hierarchical model there is
no notion of children, parents, descendants, siblings etc.

The XPathLog data model combines the advantages of both models by distinguishing virtual trees
in a graph database:

� the navigation graph distinguishes subelements from attributes and provides a principal
hierarchical navigation structure which de�nes the tree axes, but also supports dereferencing
of attributes and navigation along these minor navigation structures.

� the navigation graph allows for multiple parents, de�ning overlapping trees. This has been
identi�ed as a crucial feature for data integration (cf. Section 11).

Order. The F-Logic data model is unordered. With the handling of HTML trees in F-Logic
[LHL+98,May99b], ordered trees have been encoded by using parameterized methods. Similar to
the development of XML-QL from Strudel/StruQL and the migration of Lorel to XML (cf.
Section 16), the DOM Herbrand structures augment the data model with order.
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Variable Bindings. XPath does not allow to bind variables. Variable references of the form
$var where var is bound by surrounding constructs (e.g., XSLT) are allowed at name positions and
at value positions in XPath location paths. For data manipulation, binding variables in a querying
clause and communicating them to an update clause has proven useful in many languages (also in
the XML area, cf. XML-QL and Quilt/XQuery). Using the logic programming style semantics of
declarative variable binding in expressions, XPathLog incorporates variable binding directly into
XPath syntax.

Filter/Molecule expressions. As stated above, the syntax and semantics inside the \[...]"
construct di�ers between F-Logic speci�cations and XPath/XPathLog's �lters : F-Logic speci�ca-
tions specify properties of the host object, i.e.,

o[m1!v1; m2�v2; . . . ]

describes the properties m1, m2 etc.; where m2 is always interpreted as an object acting as a
method: o[m1.m2!V] is equivalent with o[(m1.m2)!V] and binds V to o.(m1.m2). E.g., the query

?- germany[city.name!N] % F-Logic

results in false, since city.name is { in general { not de�ned. Here,

?- germany[city! C[name!N]] % F-Logic (*)

binds N to the names of german cities.

In contrast, XPath/XPathLog's �lters describe navigation in the subtree below the \host"
element, navigation along paths is always binding to the left, including the host: o[m1/m2!V]
binds V to (o/m1)/m2.

From the XML-navigation point of view, the XPath semantics is preferable, whereas the F-
Logic semantics allows for more complex databases, handling method names completely like ob-
jects, stating rules which select objects acting as methods in a complex way from the database.
Deeply nested F-Logic atoms { especially using complex expressions at property position { can
become very complex and powerful { but also very hard to understand.

The F-Logic evaluation component (which implements the object algebra [Him94]) is reused in
the LoPiX system. Here, a rewriting component on parse-tree level has been added which maps
relative location paths in �lters to single steps as shown in the above (*) query.

Names as �rst-order citizens of the language. Whereas F-Logic uses a non-sorted universe
where objects simultaneously act as objects, classes, and property names, the XML data model is
sorted: the data is represented by elements and literals. The names of properties (element names
and attribute names) are not part of the universe. Here, the XPath name() function (mapping
a node to the element name, e.g., berlin/name() returns \city") can be used for relating property
names with literals.

XPath does not allow to use the string resulting from the name method as nodetest in a query
(this has to be encoded again in a �lter, e.g. path/*[name()=$var] which makes such expressions
much less readable).

On the other hand, with DTDs and XML Schema, strings occurring as data items are seman-
tically directly connected with names, e.g., when de�ning enumerations in DTDs, or datatypes in
XML Schema. Thus, any formalism which should incorporate the metadata information, e.g., for
data integration, gains much from making names �rst-order citizens of the language:

Example 14.4 (Names as Data Items)

Recall Example 10.2 where the water types river, sea, and lake have been used as element types,
and as (enumeration) attribute values when describing the target watertype of a river:
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<!ELEMENT river (name,to?,. . . )>
<!ATTLIST river id ID #REQUIRED>

<!ELEMENT to EMPTY>

<!ATTLIST to watertype (riverjseajlake) #REQUIRED
water IDREF #REQUIRED>

<!ELEMENT sea (name,. . . )>
<!ATTLIST sea id ID #REQUIRED>

<river id=\river-rhein">
<name>Rhein</name>

< to watertype=\sea" water=\sea-north-sea" >

</river>

< sea id=\sea-north-sea" >

<name>North Sea</name>
</sea>

The following query returns all elements which violate this \integrity constraint":

XPath: //river[to[not(@watertype = id(@water)/name())]]
XPathLog://river[to[not(@watertype = @water/name())]]!R.

Object Identity. Whereas F-Logic (and other object-oriented frameworks) explicitly use the
notion of object identity, the XML data model does not use the term \object (or element) identity".
The XML Query Data Model adds a concept of node identity to the basic XML model for handling
references. The XML querying languages use { at least implicitly { an internal notion of object
identity, e.g., for implementing the id() function.

The navigation graph data model also uses an internal notion of object identity. For data
integration, object identity plays a major role when fusing and linking objects.

Further extensions. Additionally, XPathLog is extended with the concepts of class hierarchy,
non-monotonic inheritance and signatures known from F-Logic as described in Sections 9 and 10.
As shown in Section 12, the overall language is well-suited for nontrivial integration tasks.

14.3 Summary

The data model used by XPathLog for an XML database is in fact an XML-style \interpretation"
of a semistructured (i.e., without having a �xed schema) object-oriented data model:

� the basic object-oriented model has been equipped with two types of properties: ordered
subelements and unordered attributes (XML style),

� the data model is still a graph (non-XML style),

� there is a mechanism for de�ning multiple, overlapping tree views of the XML database.

� the navigational semantics of F-Logic has been adapted to the XPath style.

Thus, the data model covers the XML data model and embeds it into a more 
exible data model
for data integration and provides a powerful data manipulation language. The LoPiX system
which is described in the subsequent section implements this framework.
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XPathLog has been implemented in the LoPiX system [LoP] which extends the pure XPathLog
language with a Web-aware environment and additional functionality for data integration.

15.1 Architecture

LoPiX has been developed using major components from the Florid system [FLO98,LHL+98],
an implementation (in C++) of F-Logic [KLW95]. Due to the similarities between the F-Logic
data model and the XML data model in general, and XPathLogic's multi-overlapping-tree model
in particular, the Florid modules provided a solid base for an XPathLog implementation1. Espe-
cially, it was useful that the functionality of the complete module for the evaluation of a deductive
language over a data model with complex objects could be reused. The system architecture of
LoPiX is depicted in Figure 15.1 (which coincides with the Florid architecture except for the
internal structure of WebAccess).

Storage. The actual (extensional) database is stored in the ObjectManager, the ObjectManager-
Access provides a wrapper for the ObjectManager which is used by the Evaluation component.

The Florid ObjectManager implements a frame-based storage component which contains a
frame for every object. A frame contains slots for storing properties of an object, including its
class memberships and references to other objects. The frames are extensible to additional types
of properties. For XML, additional kinds of properties have been added: subelements have to
be distinguished from attributes, requiring the slot types for attribute data, attribute inheritance,
and attribute signatures.

For LoPiX, the ObjectManager implements the DOM Herbrand model HD (note that this
includes only the attribute and element axes), additionally, predicates, the class hierarchy, and
signature atoms are stored. All elements of the Herbrand universe are represented by internal
names (names and nodes by \arti�cial" ones { where we used mnemonic ids up to now, and
literals \by themselves").

Data Model. The ObjectManagerAccess implements the abstract data model based on the
database which is stored in the ObjectManager, i.e., the navigation graph extended with inten-
sional properties (derived axes, transitivity of class hierarchy, downwards closure of signatures wrt.
the class hierarchy, support for inheritance, object fusion, synonyms, built-in functionality for data
conversion, string handling including matching regular expressions, arithmetics, aggregation oper-
ators, and annotated literals). It provides iterator-based declarative access to the database. The
above intensional properties are not materialized, but implemented by the iterators. The LoPiX
adaptations of the Florid OMAccess module were mainly concerned with the following aspects:

� extension of the querying interface to attributes and derived axes,

� de�ne derived iterators for the derived axes based on the tree structure (induced by the
subelement relationship) and on the child iterators (implementing the de�nition of AHD as
de�ned in De�nition 5.7). Here, it proved useful to reuse the handling of implicit transitivity
of the class hierarchy also for the XML descendant relationship.

1all modules were subject to a profound reorganization of memory management and �xing several bugs which
even survived extensive case-studies with Florid in the area of Web data extraction.
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Figure 15.1: Architecture of the LoPiX System

� adaptation of insertion functionality to XML requirements.

The OMAccess is accessed declaratively from the Evaluation component by the following methods:

1. match(iname1,iname2,rel)

returns all pairs (iname1; iname2) such that rel 2 fmember, subclass, descendantg holds
between two internal names. member and subclass are concerned with the class hierarchy,
whereas descendant is concerned with the XML tree. The relations are de�ned intensionally
based on isa, subcl, and the child relation.

2. match([iname1; : : : ; inamearity], arity, axis, methodtype):

For arity = 3, this returns all anwers to the query ?- N[axis::Name;V]. For all XML axes,
the default methodtype is mvData (multivalued data), because multiple results are allowed.
For the attribute axis, additionally inhData (inheritable data) is allowed, and for the child
and attribute axes, also mvSig and inhSig (Signatures) are allowed.

Additionally, there is axis = noaxis which can be used for scalar data which is not part of the
tree. Here, arity > 3 is allowed for references of the form n:method@(arg1; : : : ; argarity{3)!
v (as, e.g., in url.parse@(xml)).

3. match(pred, [iname1; : : : ; inamearity])
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returns the extension of a predicate p(iname1; : : : ; inamearity). Built-in predicates for com-
parison, equality, arithmetics, and string handling are also supported for this call. Built-in
predicates have been extended for resolving annotated literals (cf. Section 5.6).

TheOMAccess evaluates these queries wrt. the ObjectManager. If inamei is a constant, indexes are
used for more e�cient answering. Queries using derived axes are answered by �rst determining the
nodes speci�ed by the axis and then selecting those which match the given pattern. In detail, (2)
implements the rules (3) and (4) of SB given in De�nition 6.8: node[axis::nodetest!C] translates
into

match([node,nodetest,undef ], 3, axis, mvData) .

Answers are not materialized, but returned as an iterator (in the above case, iterating over the
third position of the match pattern, i.e., replacing undef by ranging over possible values for C).

Insertions are handled analogously:

insert(iname1,iname2,rel)
insert([iname1; : : : ; inamearity], arity, axis, methodtype)
insert(pred, [iname1; : : : ; inamearity])

where for rel, only member and subclass are allowed (manipulating the class hierarchy) and for
axis, only child, sibling, attribute, and noaxis are allowed. Equality is managed internally:

equalize(iname1,iname2)

equates two internal identi�ers (replacing iname1 by iname2 in the ObjectManager and maintain-
ing a synonym table). The execution of inheritance steps is also implemented in the OMAccess
which identi�es an inheritable property and inserts the inherited fact (triggered by the Evaluation
component according to the de�nitions given in Section 9.2).

In the subsequent section, it is shown that only the OMAccess (even, only the iterators in
it) has to be adapted when complementing the proprietary ObjectManager with a native DOM
Object Manager.

Web Access. The WebAccess functionality is closely intertwined with the OMAccess module.
The Florid WebAccess module implements the basic features of accessing sources via internet,
and uses the SGML parser \SP" [Cla] for mapping SGML/HTML �les to a proprietary tree
representation in F-Logic [May00a].

Here, for LoPiX, additional parsing methods for mapping the XML tree to a representation
of the navigation graph have been de�ned (cf. Section 15.3). Additionally, a method for mapping
a DTD to XPathLog signature atoms based on the lex/yacc SGML DTD grammar [SM] has been
implemented (cf. Section 10.2.1).

Evaluation. The central Florid Evaluation module (LogicEvaluation, AlgebraicEvaluation,
and AlgebraicInsert) provides in fact a generic implementation of a deductive language over a
data model with complex objects.

LogicEvaluation implements a seminaive bottom-up evaluation of rules. AlgebraicEvaluation
translates rule bodies and heads into the underlying object algebra and evaluates the generated
algebraic expressions using the querying interface of OMAccess. The object algebra implements
the semantics of XPathLog queries described in Section 6.2, generating sets of tuples of variable
bindings. AlgebraicInsert instantiates the rule heads with the generated variable bindings and
adds the corresponding facts into the database using again the OMAccess interface, implementing
the semantics de�ned in Section 8. The evaluation of algebraic expressions does not materialize
any intermediate result, but is purely based on nested iterators.

The whole evaluation module is actually independent from the underlying language and data
model (assumed that the algebra itself and the mapping is given as a parameter).
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Whereas in F-Logic, inserting a fact is idempotent (i.e., inserting it twice into the database
did not matter), the generation of subelements by path expressions in XPathLog (cf. Section 7.2)
is not idempotent. The LogicEvaluation component has been extended by bookkeeping about
already inserted instantiations of every rule (cf. the dictionary extension to the TXP operator in
De�nition 7.5).

Language Parsing. The Parser maps programs and queries into internal parse-trees which are
processed by LogicEvaluation. The Florid F-Logic parser has been replaced by an XPathLog
parser. Exploiting the similarities between the F-Logic syntax and the XPathLog syntax, the
XPathLog parser (i.e., its lex/yacc inputs) has been in fact derived from the F-Logic parser. An
XPathRewriter module has been added for mapping XPathLog parse-trees to the F-Logic algebra
before feeding them into the Translator.

Output. The PrettyPrinter outputs answers in the variable bindings format known from Prolog,
or as an instantiation of the queries. Additionally, the result of queries which bind only a single
variable can be output in XML ASCII representation.

The export functionality of the Florid PrettyPrinter was very restricted, dumping the database
contents in frame format. Here, LoPiX version is extended with an XML tree export function
which exports the tree rooted in a given node according as a projection to a given signature as
described in Section 11.1 (cf. Section 15.4).

UserInterface. The UserInterface module allows to use LoPiX from the command shell, in-
cluding interactive queries and system commands. SystemCommands can also be executed in
programs, mainly controlling program execution (user-de�ned strati�cation), debugging and for-
matting.

15.2 Dual-Memory Architecture

As described above, the ObjectManager stores the DOM Herbrand structure, predicates, the
class hierarchy, and signature atoms in a frame-based model which is equipped with indexes for
optimized access. The OMAccess encapsulates this model and adds some intensional closure
properties. The proprietary ObjectManager module is not accessible by a native XPath interface.
On the other hand, there are native, open-source DOM/XPath implementations available (e.g.,
Xerces/Xalan). The modular architecture of LoPiX allows to combine the original ObjectManager
with a DOM implementation and an XPath interface as shown in Figure 15.2.

In the dual-memory architecture, the DOM stores the XML documents (i.e., it replaces the
DOM Herbrand structure from the ObjectManager), whereas predicates, class hierarchy and sig-
nature atoms remain in the ObjectManager (OM). Since the pure DOM model does not contain
any index structures, also the tree structure (which implicitly de�nes the derived axes) and some
index structures are stored in the OM.

As described in the previous section, the interface of OMAccess against Evaluation is com-
pletely declarative, accessing the abstract data model. The addition of a DOM storage component
does not change the abstract data model. Thus, it does also not a�ect the interface.

For the dual-memory model, the internal logic of OMAccess has been adapted to be a mediator
between the DOM/OM and the external queries. Nodes of the XML tree are stored in the DOM,
but their class information, the derived axes, and the indexes are stored in the OM. The connection
between both storage parts is provided by an additional data structure belonging to OMAccess for
mapping OM internal identi�ers to DOM nodes (implemented by two complementary dictionaries).

Queries on the child and attribute axes are mapped to queries against the DOM. As described
in the previous section, queries using derived axes are answered by �rst determining the nodes
speci�ed by the axis and then selecting those which match the given pattern. Here, the �rst part
of the task is still solved by querying the OM whereas the second part has to be answered by
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Figure 15.2: Dual-Memory Architecture of the LoPiX System

the DOM, connected by the OM/DOM identi�er mapping. Similarly, insertions of children or
attribute nodes are divided into a DOM and an OM part.

When parsing an XML source, the WebAccess module maps the tree into the DOM and
maintains the class hierarchy and indexes in the OM with every step. When parsing a DTD, the
signature information is added to the OM as before.

Problems. As already pointed out in Section 8.4, the DOM and XML Query data models
require an element node to have a unique parent. Thus, data restructuring and integration by
linking elements is not possible in the DOM model. Instead, elements (i.e., subtrees) have to
be copied for generating a separate result tree, leading to the problems with reference attributes
which have been described in Section 8.5.

Discussion. The dual-memory variant has been developed in [Beh01]. Here, the Florid ar-
chitecture and design proved useful as a generic framework and \infrastructure" to implement a
deductive language over a complex data model already for the non-DOM LoPiX variant. Even
more, the seamless integration of an open-source native DOM storage module shows the 
exibility
and extensibility of the Florid/LoPiX modules as a base for deductive languages.
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15.3 Accessing XML Documents

Every resource available in the Web has a unique address, called Uniform Resource Locator (URL),
which is used to initiate access to the document. There is a prede�ned class url containing Web
address strings. The class url provides a prede�ned built-in active method parse that, when applied
to a member of url, accesses the corresponding Web document and adds it to the database. The
signature for Web access is

(url subcl string)[parse ) xmldoc].

Whenever for an instance u of class url the method u.parse(. . . ) is called by a rule head, the
document at the address u is automatically loaded and analyzed according to the arguments.

XML documents. u.parse@(xml) parses the document located at u as an XML document
and generates the canonical DOM Herbrand structure as described in De�nitions 5.5 and 6.4 is
generated in the ObjectManager. The document node of this tree is associated with the reference
u.parse@(xml). u.parse@(xml) has a unique child node which represents the outermost element
node (e.g., the <mondial> element). Recall that multivalued attributes are split, and reference
attributes are resolved.

Additionally, the extensions to a class hierarchy as described in Section 9 are added:

� every element type is made a class (subclass of object), and

� every element is made an instance of its class.

Internally, appropriate indexes and the dictionary for resolving annotated literals are added. This
structure is then queried by XPathLog reference expressions.

Accessing DTDs. Similar to u.parse@(xml), u.parse@(dtd) accesses the document located at
u as a DTD, applying the transformation described in Section 10.2.1 and generating suitable
signature atoms.

Namespaces. As described in Section 11, when using several sources, it is recommended to
introduce namespaces : When parsing an XML instance by u.parse@(xml,namespace), all names in
the document are augmented with the given namespace. Analogously, u.parse@(dtd,namespace)
creates the signature augmented with the given namespace.

Data-driven Web Access. By evaluating rules of the form

u isa url, u.parse@(xml) :- <body> ,

the internal database is extended by new XML documents. Thus, loading Web documents is
completely data-driven. New documents are fetched depending on information and links (i.e.,
URLs or XLinks; cf. Section 13) found in already known documents.

As long as only a single document is considered, it is recommended to assign its (local) root
to the global constant root which is used for evaluating expressions of the form \//...":

mondial[@xml!\�le:smallmondial.xml" isa url].
U.parse@(xml) = root :- mondial[@xml!U].

If several documents have to be considered, it is useful to assign constants to their roots, e.g.

germany[@xml!\�le:germany.xml" isa url].
france[@xml!\�le:france.xml" isa url].
U.parse@(xml) = X :- X[@xml!U].

Then, the constants can be used as starting points for XPathLog reference expressions, e.g.

?- germany//city/name!C.

The above features are illustrated by the case study given in Section 12.
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15.4 Exporting XML Documents

For every node N , the active method

N .export@(doctype,\�lename"). % (in the head of a rule, or as a fact)

exports the XML ASCII representation of the subtree rooted in N , consisting of all subelements
and attributes which are speci�ed by the currently stored signature, to the given �lename. The
signature can either be given by parsing a DTD, processing an XML Schema instance (as described
in Section 10.2.2), or as facts in the program. The DTD metadata (public/system, and the url)
has to be set by methods, e.g.,

country isa doctype.
country.public = "mondial-europe-2.0.dtd".
?- sys.strat.doIt.
germany.export@(country,"exp1").
?- sys.strat.doIt.

If �lename is the empty string, the output is sent to standard output.

The signature can be exported with the system command

?- sys.theOMAccess.export@(\sig"). or
?- sys.theOMAccess.export@(\sig",\�lename").

When the result tree view is output, reference attributes are transformed back into IDREF attributes
(generating arti�cial ids from the internal names of the objects/nodes if no ids are given).

15.5 Built-In Functionality

LoPiX supports built-in predicates and functions for comparison, equality, arithmetics, aggrega-
tion, and string handling including matching regular expressions and data conversion:

� Comparison predicates : \<",\>", \<=" or \>=",

� Arithmetic operations : addition \+", subtraction \-", multiplication \*" and integer division
\/",

� Aggregation: aggfX[G1,. . . ,Gn];bodyg as described in Section 5.5.

� String operations :

{ string(arg) is true, if arg is a string.

{ strlen(string, value) holds if value (which can be given a constant or a variable) represents
the length of string.

{ strcat(string1, string2, string3) succeeds if string3 is the concatenation of string1 and
string2.

{ substr(string1, string2) holds if string1 is a substring of string2.

� Regular expression matching : pmatch(string, pattern, fmt-list, variable-list)

� Data Conversion: string2integer(A,B), string2
oat(A,B), string2object(A,B)

� the above functionality also handles annotated literals.

For details, see [May00b]. LoPiX is available for Solaris and Linux at [LoP].
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15.6 Performance Evaluations

Performance comparisons are still problematic in this area: the tools are incomparable, unstable,
insu�ciently documented, and sometimes simply too slow: Querying functionality can be com-
pared with several XSLT implementations, XML-QL, the Kweelt Quilt implementation, and the
commercial products eXcelon and Tamino. Although, the XPathLog query language is richer than
these languages, allowing for dereferencing, joins between literals, and returning variable bindings.

Update performance is currently not comparable: Carrying out theMondial data integration
case study in XSLT would require a completely di�erent program (according to the XSLT style
which does not allow for incremental updates, but creates the result tree in a one-pass approach).
Since XSLT does not allow for incremental updates, collecting a result view step-by-step, this
task is far from easy, and presumably results in a much less readable program as the one given
in Section 12 for XPathLog. As long as XML-QL and XQuery do not support updates, here also
the tree must be generated in a single, large query. Due to their weak performance, the XML-QL
and Kweelt systems are currently not suitable for such tasks. XQuery with updates (in case the
problems with maintaining IDREFS described in Section 8.5 will be solved) would be suitable for
data integration.

Tests have been run with a Sun Enterprise 350 workstation, 4 � 248MHz processors, 1.6GB
memory (although, only one processor is used by each of the systems) using top for two queries:

1. \Select the names of all capitals of countries",

2. \Select all names of cities which are seats of an organization and the capital of one of its
members." (cf. Example 3.4)

XSLT. Querying functionality has been compared with XT [Cla98]2

� Parsing mondial-2.0.xml: about 8 seconds.

� capital names:

id(//country/@capital)/name/text()

Answering time (including XML parsing and validating) for mondial-2.0.xml: about 11
seconds.

� organizations as in (2):

//organization[id(@seat) = id(id(members/@country)/@capital)]/abbrev

Answering time (including XML parsing) for mondial-2.0.xml: about 17 seconds.

� cities as in (2):

id(//organization[id(@seat) = id(id(members/@country)/@capital)]/@seat)/name/text()

Answering time (including XML parsing) for mondial-2.0.xml: about 17 seconds.

2as the \winner" of several performance comparisons (e.g., by S.Rahtz in 2000 posted on xsl-list, at that
time hosted by mulberrytech.com, and in March 2001 in a comparison given at www.xml.com/pub/a/2001/03/28/

xsltmark/index.html). XT is also my personal favorite since it is stable, fast, and compatible with the standard {
although (or because) it is a non-commercial experimental implementation since the �rst days of XSLT.
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Excelon. The eXcelon [eXc] XML database system is under evaluation in [Weh01] in the PS3.0
beta version3. As a \full-
edged" XML database system, it allows for user-de�ned optimizations
such as indexes. First experiments showed some instabilities (e.g., when trying to load a DTD;
here, also the online-documentation of the betatest version is insu�cient). After loading an XML
instance, e.g., mondial-2.0.xml, into the database, the document can be queried, and indexes over
attributes and elements can be de�ned. Queries which use either the descendant axis, joins, or
dereferencing (as long as the DTD cannot be included, IDREF attributes can only be used in joins)
show a poor performance.

� the simple query:

/mondial/country/@capital

needs some seconds.

� Selecting names of capitals by dereferencing via join:

city[@id=/mondial/country/@capital]/name

Answering time for mondial-2.0.xml: about 1:50 minutes, and about 10 seconds for
mondial-europe-2.0.xml.

� Selecting seats of organizations which are also capitals:

city[@id=/mondial/country/@capital][@id=//organization/@seat]/name

Answering time for mondial-2.0.xml: about 7 minutes, and about
10 seconds for mondial-europe-2.0.xml.

The slightly changed query (/mondial/organizations instead of //organizations)

city[@id=/mondial/country/@capital][@id=/mondial/organization/@seat]/name

needs about 2 minutes for mondial-2.0.xml.

Although eXcelon allows to de�ne indexes, it seems that they are not used: With de�ning indexes
on

� organization/@id (which should accelerate //organization and

� city/@id, country/@capital, and organization/@seat,

the above performance of the above query could not be changed. The product { at least the
delivered beta version { is not convincing.

XML-QL. The performance and the stability of XML-QL [DFF+99c]. is not really satisfying.
Especially, tests could only be run with the restricted database mondial-europe-2.0.xml. For the
full database, XML-QL failed with a system error.

� Parsing mondial-europe-2.0.xml: 25 seconds.

� Capitals, �rst version: since XML patterns do not naturally support dereferencing, the �rst
solution uses a join:

3Thanks to eXcelon Corp. for providing a betatest version.
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function bla() {

WHERE

<mondial>

<country capital=$cap></>

</>

IN "mondial-europe-2.0.xml",

<mondial>

<*>

<city id=$cap>

<name>$n</>

</>

</>

</>

IN "mondial-europe-2.0.xml"

CONSTRUCT <capital>$n</>

}

Answering time (including XML parsing) for mondial-europe-2.0.xml: about 1:10 minutes.

� the same with XML-QL's dereferencing-by-subelement style (note that @capital is handled
like a subelement in the XML pattern):

function bla() {

WHERE

<mondial>

<country> <capital> <name>$n</></></>

</>

IN "mondial-europe-2.0.xml"

CONSTRUCT <capital>$n</>

}

Answering time (including XML parsing) for mondial-europe-2.0.xml: about 25 seconds.

� seats, �rst version by join:

function bla() {

WHERE

<mondial>

<organization seat=$seat> </>

</>

IN "mondial-europe-2.0.xml",

<mondial>

<country capital=$seat> </>

</>

IN "mondial-europe-2.0.xml",

<mondial>

<*>

<city id=$seat>

<name>$n</>

</>

</>

</>

IN "mondial-europe-2.0.xml"

CONSTRUCT <city>$n</>

}
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Answering time (including XML parsing) for mondial-europe-2.0.xml: about 1:20 minutes.

� the same with XML-QL's dereferencing-by-subelement pattern:

function bla() {

WHERE

<mondial>

<organization seat=$seat> </>

</>

IN "mondial-europe-2.0.xml",

<mondial>

<country capital=$seat><capital><name>$n</></></>

</>

IN "mondial-europe-2.0.xml"

CONSTRUCT <city>$n</>

}

Answering time (including XML parsing) for mondial-europe-2.0.xml: about 28 seconds.

Kweelt. The Kweelt implementation is very slow when navigating along references; note that
the same tasks can be solved faster by joins.

� Parsing mondial-europe-2.0.xml: less than 5 seconds; parsing mondial-2.0.xml: less than 10
seconds.

� Selecting the ids of capitals:

<capitals>

(

FOR $s IN document("mondial-2.0.xml")/country/@capital

RETURN $s

)

</capitals>

Answering time (including XML parsing) for mondial-2.0.xml: about 10 seconds. Note
that this query does not dereference the IDREF values.

� Selecting names of capitals by dereferencing the IDREFs of country/@capital:

<capitals>

(

FOR $s IN document("mondial-2.0.xml")/country/@capital->{city@id}/name/text()

RETURN $s

)

</capitals>

Answering time (including XML parsing) for mondial-2.0.xml: about 5 hours, and about
10 minutes for mondial-europe-2.0.xml.

� Selecting names of capitals by join:

<capitals>

(

FOR $id IN document("mondial-europe-2.0.xml")/country/@capital

FOR $s IN document("mondial-europe-2.0.xml")//city[@id=$id]/name/text()

RETURN $s

)

</capitals>
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Answering time (including XML parsing) for mondial-2.0.xml: about 50 minutes, and
about 5 minutes for mondial-europe-2.0.xml.

� another query shows that the time does not very much depend on the size of the extension
of the target class of the reference (which is given in the dereferencing hint):

<borders>

(

FOR $s IN document("mondial-2.0.xml")

/country/border/@country->{country@car_code}/@car_code

RETURN $s

)

</borders>

Answering time (including XML parsing) for mondial-2.0.xml: about 70 minutes, and
about 1:45 minutes for mondial-europe-2.0.xml.

The above results show that obviously indexes are missing in Kweelt. In the current state, the
system cannot be used for non-trivial tasks.

LoPiX. Since LoPiX provides an interactive command-line interface, the answering time can
be checked independent from parsing.

� Parsing mondial-europe-2.0.xml: about 35 seconds.

� Parsing mondial-2.0.xml and storing it in the ObjectManager needs about 3:50 minutes since
it is not optimized for XML.

� Capitals:

?- mondial/country->C[name->N and @capital/name->CN].

Answering time for mondial-2.0.xml: less than 1 second processor time.

� Seats:

?- mondial/organization[@seat->C], mondial/country/@capital->C/name/text()->N.

Answering time for mondial-2.0.xml: less than 1 second processor time. Adding the check
if the country where the seat is placed is actually a member by

?- mondial/organization[@seat->S and

members/@country->C[@capital->S/name/text()->N]].

requires about 8 seconds for mondial-2.0.xml.

Here, the existence of reference attributes and indexes proves useful. There are queries which take
more time, e.g., searching for organizations which are seated in a country which is not a member:

?- /mondial/organization[abbrev->A and @seat[name->N]/@country->C

and not members/@country->C].

needs 6 seconds processor time. When the derived axes e.g., the descendants axis, are used such
that more candidate nodes have to be tested, the anwering needs more time, e.g.,

?- //organization[abbrev->A and @seat[name->N]/@country->C

and not members/@country->C].

takes 15 seconds. There is still optimization potential in the evaluation and matching component.
Although, as the above comparison shows, the answer times are tolerable for a research prototype,
allowing for running and experimenting with the Mondial case study.



16 RELATED WORK AND

CONCLUSION

16.1 Related Work

Much of the related work in the XML area has been presented in Section 3. Section 8 compared the
pure XPathLog language with XML-Query, XSLT, XQuery, and related notions. In Section 14, in
addition to the comparison of XPathLog with F-Logic, also some general comments and motiva-
tions on the data model have been stated. In Section 4.2 the data models used in other approaches
have been analyzed, concerning the document vs. database duality.

In the sequel, a summary of approaches in Web querying, data integration, semistructured
data and XML-related research is given.

16.1.1 Web Access, Web Querying, and Web Data Extraction

Although the present work does not focus on web access functionality, some related work is men-
tioned here since these languages and systems were the early predecessors of today's research in
this area. They served for applying the wrapper/mediator architecture [Wie92] which has origi-
nally been designed for integration of heterogeneous databases to the upcoming \databases" on the
Web (often as HTML pages). The early HTML web querying languages were not concerned with
application-level semantics and integration of data, but served mainly as wrapping languages for
Web contents. Some of them provide restructuring functionality within the internal data model.

As one of the �rst Web querying languages, WebSQL [MMM97] modeled the Web by two
virtual relations which exactly correspond to documents and hyperlinks. For documents, attributes
title, type, modif, length, and text { the latter containing the document source { are de�ned. Thus,
these relations represented a kind of Web skeleton. WebSQL allows queries on the Web structure
using this \virtual graph". The intra-document structure is not modeled, and therefore, cannot
be queried either; only text search in documents using the contains predicate is possible. The
SQL SELECT FROM WHERE syntax is extended with a SUCH THAT construct applied to every element
of the FROM-clause to de�ne the relevant portion of the Web to be materialized. The SUCH THAT

condition is either an url or of the form MENTIONS <string> (which can be checked against an
index); thus, the number of root documents for a query is �nite. Web access is implemented by a
query engine which { based on the FROM clause of the WebSQL query { either sends a request to an
index server, or accesses the document tree speci�ed by the WebSQL query via the http-protocol.

From the same group, WebOQL [AM98] additionally considers the internal structure of doc-
uments by making HTML parse-trees �rst-class citizens of the model that can be queried directly.
Similar to our approach, they use a uni�ed model of the inter-document level (Web) and the
intra-document level (parse-trees). Browsing is regarded as a function (corresponding to our Web
interface method parse) that maps urls to hyper-trees, or \webs". Thus, all HTML pages are han-
dled by a generic built-in interface that maps an HTML page to a hyper-tree without requiring
external wrappers. WebOQL queries are then performed against the current web; additionally,
new webs can be built.

One important distinction between WebOQL and current the XML data model is in the
\weight" of the data model: while the XML data model is a \lightweight" data model (i.e., there
is almost no �xed schema), the WebOQL hypertrees are based on a �xed generic tree schema.

205
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Similar to OQL, WebOQL is a purely functional language with additional operators for ma-
nipulating hypertrees; the results of WebOQL queries are always hypertrees.

W3QL/W3QS [KS95,KS98] is another early Web querying language/system. The basic data
model is rather simple and contains only the Web structure: The Web is mapped to a graph con-
sisting of nodes (Web documents) and links (hyperlinks). For HTML documents themselves, only
speci�c tags are evaluated, such as title, title.content, content-length, anchor[i] (the ith outgoing
hyperlink) { (similar to those which are extracted automatically by Florid's url.get method).
The syntax of W3QL is similar to SQL, with the FROM clause augmented to handle paths in the
Web graph, and the WHERE clause augmented to state conditions on the variables denoting Web
pages and hyperlinks. In

SELECT ... FROM n1, l1, n2 WHERE ...

n1 and n2 have to be bound with urls, and l1 has to be bound with a hyperlink from n1 to n2.
Special types of general path expressions are also allowed in the FROM clause. The WHERE clause
must contain a domain condition of the form n1 in <set-of-urls>, specifying a �nite set of urls to be
the roots of the search. In contrast to the other described approaches, all other conditions in the
WHERE clause (concerning the above-mentioned document properties) are not evaluated against an
internal data model, but by external W3QL-speci�c programs (e.g., SQLcond and Perlcond):

WHERE n1,n2: SQLCOND '(n1.format = HTML) AND

(n2.title = "Information Systems")'

WHERE l3,n4: PERLCOND

'(l3.content =~ /href\s*=\s*"(.*)"/i) &&

(n4.content =~ /$1/)'

Thus, in W3QL/W3QS, the facilities for querying the document structure are very restricted.

In contrast to the other Web querying approaches, W3QS has a non-integrated architecture
using external tools. Thus, it can be easily extended to additional �le types (LATEX, BibTEX,
postscript), and to more sophisticated condition-evaluating programs.

WebLog [LSS96a] is a deductive Web querying language operating in an integrated graph-
based framework. Although its syntax resembles F-Logic [KLW95], it is not fully object-oriented;
the only objects are \rel-infons" which simulate in some sense the nodes of the parse-tree. Using
rel-infons, atomic formulas describing HTML pages are of the form

<url>[<rel-infon-id>: <attr>!<val>] ,

that describe properties of a certain rel-infon on a Web page. Although, the data model does not
imply a direct mapping of parse-trees to rel-infons { the actual mapping is left to the user. It it
is left open whether or not this can be done in a generic way. Built-in predicates hlink and htext,
de�ne the semantics of hyperlinks. Thus, the actual data model is somewhere between the Web
skeleton and the extended Web skeleton. Navigation along hyperlinks is provided by the above
built-ins, but navigation in the parse-trees is not supported. Since the parse-tree is only partially
represented, the evaluation of pages is mainly based on substring matching. There is no reported
implementation of WebLog.

The above Web querying languages do not deal with the semantical analysis of document
contents, wrapping, or restructuring of information. Although, especially in WebOQL, wrapping
in a similar style as in our approach by generic queries should be possible.

Jedi [HFAN98] is a tool for manually specifying Web access and wrappers for HTML pages by
combining grammars and rules. W4F [SA99] is a toolkit for interactively generating wrappers for
HTML pages using HEL, a DOM-based language operating on the parse-tree of a document. Here,
comma-lists and name-value pairs are regarded as atomic { i.e., the result is not completely mapped
to the application domain, requiring a manually speci�ed application-speci�c postprocessing. HEL
focusses on wrapping single Web pages; Web exploration and information integration is left to the
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application. Another tool for interactive generation of wrappers using the DOMmodel is presented
in NoDoSE [Ade98]. [KWD97] present inductive learning methods for wrapping HTML pages
with a tabular layout. [ECY+98] present a tool for automatical matching-based wrapper generation
for data-rich and ontological narrow sources.

To complete the list of wrapping languages, F-Logic has been used in the Florid system for
wrapping HTML sources [LHL+98,MHLL99]; e.g., the original Mondial HTML sources have
been transformed into XML by using Florid [May99a].

Prolog-style (i.e., with cut and fail semantics), and Constraint Logic Programming approaches
for programming Web access and generation of HTML documents have been presented in [HC96,
Tar99]. Here, in contrast to the intuitive bottom-up semantics, the operational semantics of Prolog
evaluation is exploited in combination with imperative programming languages.

16.1.2 Semi-Structured Data and Data Integration

As already mentioned in Section 2, research on semistructured data since the mid 90s strongly
in
uenced the development of XML. Early approaches to semi-structured data, especially focusing
on semi-structured data as databases (in contrast to documents) were OEM/Lorel [GMPQ+97],
Strudel/StruQL [FFLS97,FFK+98], UnQL [BDHS96], and F-Logic [KLW95,LHL+98], using
\proprietary" semi-structured data models of the respective languages (in pre-XML times). The
focus of all these approaches was on mediation and data integration. With these, also Logic
Programming style languages have been used for manipulating and integrating semi-structured
data(bases).

The Tsimmis project [GMPQ+97] is a \typical" implementation of the wrapper/mediator ar-
chitecture [Wie92] for integration of heterogeneous databases, now also including Web databases.
Tsimmis usesOEM (Object ExchangeModel) as a common data model for the extracted, application-
level data. An OEM database consists of objects and subobjects without any �xed schema. The
OEM data model is an edge-labeled graph, which also has a textual representation:

Example 16.1 (OEM)

An excerpt of the Mondial database in OEM looks as follows:

<&cont1, continent, set, f&a1, &n1, &c1, &c2, &c3, . . . g>
<&n1, name, string, `Europe'>
<&a1, area, number, 9562488>
<&c1, country, set, fcn1, cc1, ca1, cp1, cap1, ctys1, n1g>
<&c2, country, set, fcn2, cc2, ca2, cp2, cap2, ctys2, n2g>

<&cn1, name, string, `Germany'>
<&cc1, code, string, `D'>
<&ca1, area, number, 356910>
<&cp1, population, number, 83536115>
<&cap1, name, string, `Berlin'>
<&ctys1, cities, set, fcty1, cty2, . . . g>
<&n1, neighbor, set, fc2, c3, . . . g>

<&cn2, name, string, `Belgium'>

In Tsimmis, the Web structure and the page markup is not modeled. Instead, it is presumed that
external wrappers are given that map Web pages to the OEM representation. Di�erent languages
are used for wrapper and mediator speci�cation (MSL and WSL, respectively), and for querying
(MSL and Lorel). In the wrapper speci�cation language WSL, rules specify which action has to
be executed on the resource for a given query, e.g., (possibly using external resources) to yield
OEM atoms. E.g., for a relational database or for a query form, rules look as follows:
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C :- <C country f<code $CODE>g>

//$$ := \select name
from country
where code=$CODE"//

C :- <C country f<code $CODE>g>

//$$ := \�nd-code $CODE"//

For ASCII or HTML sources, an additional external, non-WSL wrapper layer (e.g., by perl scripts)
would be necessary. MSL maps OEM data to OEM views, similar to F-Logic rules. E.g., all cities
which are stored as capital (names) in CIA, and are also stored in GlobalStatistics, are collected
by the MSL rule

<capital f<name Cap> <country CN> R g>@med :-
<country f<name CN> <capital Cap>g>@cia
AND <country f<name CN> <city f<name Cap> j Rg>g>@gs

The MedMaker tool [PGMU96] implements MSL as part of the Tsimmis project.

The Lorel language [AQM+97b] for querying semistructured data uses the graph-based OEM
data model. In OEM, data is represented in a graph whose nodes are objects, and whose edges
are labeled with attribute names. Complex objects are simply collections of objects; leaf nodes
have atomic values. Lorel provides SQL/OQL-like constructs, extended by powerful general path
expressions which are regular expressions for characterizing paths in an OEM model. E.g., the
following query selects all cities in countries which are reachable by land from Germany:

select X.city.name

from Mondial.country X, Mondial.country.Y

where Y.name = `Germany'

and Y.(border)+ = X

Lorel has been implemented in the Lore system [MAG+97]. In contrast to Web query lan-
guages/systems, Lore is not tailored to deal with Web pages { the OEM data is assumed to
be provided by source-speci�c wrappers that can be implemented in any language providing an
OEM interface, especially, the Tsimmis (described below) wrappers can be used. Lore has been
migrated to XML in [GMW99] (see below).

In the Strudel system [FFLS97,FFK+98], the Web is also mapped to a uni�ed internal, OEM-
like graph representation. The language StruQL is used both as a query and a transformation
language on this graph model. The StruQL language is based on a WHERE ... COLLECT ...

statement. The WHERE part speci�es conditions that determine which objects will be selected.
Similar to Lorel and UnQL, regular path expressions are allowed. During the evaluation, the
WHERE clause generates all variable bindings. The COLLECT clause places the results in collections
for further use (or returns them as the result of a query). The syntax is extended for Web page
generation with CREATE and LINK commands which generate nodes and links from the variable
bindings. Wrappers to the internal Strudel graph model have to be provided independently.
Strudel/StruQL provided the base for XML-QL [DFF+98,DFF+99b] (see Section 3.5) and its
implementation, which builts on top of Strudel: XML-QL queries are translated to StruQL
queries.

A similar light-weight data model is used in [AV97], with the main di�erence that the children
of each vertex are ordered. Integration based on (re)construction of data forests is done by
declarative rules, using tree terms.

UnQL [BDHS96] also uses an edge-labeled graph-based model for semistructured data and
de�nes a language for navigating and querying it. UnQL models can be restricted by graph
schemata that constrain the allowed paths in the graph. Graph schemata can be used for query
planning and optimization. UnQL queries also have an OQL-like syntax of the form SELECT ...

WHERE ...; instead of a FROM clause, reference expressions starting from the root node and other
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distinguished nodes are given in the SELECT part. Additionally, restructuring queries to construct
new trees are possible. Here, structural recursion is used. In contrast to the classical SELECT ...

FROM ... WHERE, this allows to express queries and data transformations also in the presence of
cycles in the graphs.

Other early projects were Garlic [CHS+95,RAH+96] for integration of heterogeneous sources
using an adaptation of the ODMG data model, and Disco [TRV96].

An interesting aspect here is that all of the above approaches used a graph-based data model
with only one type of relationships (cf. also Section 4.2).

As a non-graph based approach, the Araneus project [AMM97] uses a hypertext-based model
for Web site restructuring. This system uses di�erent languages to extract data and de�ne views
on it.

For a complete overview of these early systems, see [FLM98]. In the meantime, SGML had
moved into the focus as a semistructured data format.

There are some more approaches to semistructured data which also apply to XML, but do not use
the usual XML-relates concepts (such as XPath or XML patterns).

The YATL language of the YAT system [CDSS99] is a pre-XML proposal, already using
SGML and DTDs. Its trees provide a uni�ed model for relational, object-oriented (ODMG), and
semistructured/document data (SGML). The YATL language follows a pre-XML-style rule-based
design for complex objects in the style of MSL or F-Logic. In [CCS00], the YAT system is turned
into an XML system for data integration. Although YAT uses the XML data model, YATL does
not use any XML/XPath language constructs. After mapping an XML instance to a YAT tree,
there is no notion of attributes. Dereferencing is not explicitly supported, and it has no notion of
the XML axes (similar to the same issue for XML-QL); instead it supports regular path expressions
and tree algebraic operations. Thus, it is not directly comparable.

XDuce (\transduce") [HP00] is a functional-style tree transformation language which is based
on regular expression pattern matching. Here, regular expressions are an extension of (originally,
SGML) DTDs which are used to formulate queries against XML instances. Based on the pattern,
the language also associates a type with every query.

TQL (Tree Query Language) [CG01] is a proposal for querying trees based on ambient logic,
a modal logic.

16.1.3 XML & friends

Several XML querying and transformation languages have been presented in Section 3.

Data Model and Languages.

First implications on the data model considering di�erent requirements for documents and databases
have been stated in Section 4.2; concluding that ordered and unordered versions of data models
and languages are reasonable from di�erent points of view. The pure XPathLog has been compared
with the common XML languages and notions in Section 8.

Systems and Products.

Additional to and around these \basic" XML languages, there are several projects, dealing with
the design of XML environments and data integration, up to commercial B2B systems.

Kweelt [Sah00] (see also Section 3.10) implements Quilt over a standard DOM implementa-
tion. As a \pure" experimental implementation of a language, it is comparable to LoPiX (which
also does not claim to be a \product"). For a comparison of the systems see Section 15.6.

XML-GL [CCD+99] is a graphical language for handling XML data in a \Query by Exam-
ple" style. XML-GL introduces an explicit XML Graphical Data Model XML-GDM which rep-
resents DTDs and XML instances. XML instances are represented by node-labeled trees where
attributes and text contents are represented as leaves. The DTD uses the same representation,
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annotated with cardinalities and contents model information { yielding a generic pattern of the
valid instances. The language is directly based on this representation, based on extract-match-
clip-construct-queries ; the tasks of the individual steps are closely related to those in XML-QL or
XQuery: The extract part identi�es the scope of the query, the match part states additional con-
ditions which elements are relevant, the clip part accesses subelements and attributes of selected
items, and the construct part generates the result.

Lore [MAG+97] has been migrated to XML in [GMW99]. In several aspects, the migration is
similar to what has done from Florid to LoPiX: the original data model and the language have
been extended with the XML distinction between attributes and subelements.

The originally used OEM model has been adapted to the special properties of XML: An XML
element is a pair (eid; value), consisting of an ID and a value which again consists of four elements:
a tag, an ordered list of attribute-value pairs, a list of crosslinks, representing reference attributes,
and an ordered list of children in the form of (label; eid). Here, reference attributes are stored
twice: in a semantic representation as links, and in a literal representation as text-valued IDREF(S)
attributes.

The language is also adapted. The original Lorel language already supported path navi-
gation, thus only the selection between elements and attributes had to be added: expressions
of the form mondial/>country/>city navigate along the subelement relationship, whereas in mon-
dial/>country/@car code, the second step selects an attribute. In contrast to the XPathLog/LoPiX
migration Lorel does not support the other XML axes, but retains the regular expressions from
the original Lorel language. Comparisons are also augmented in the way described for annotated
literals in Section 5.6. Additionally, range quali�ers and skolem functions similar to MSL and
StruQL/XML-QL and YATL are introduced.

The MIX (Mediation in XML) system [BGL+99] uses the Xmas (XML Matching and Struc-
turing) language, derived from XML-QL for data integration in an architecture which has been
in
uenced by the mediator architecture [Wie92] of Tsimmis. Mix regards XML as a database
model instead of a document model. An XML view is de�ned in Xmas by the mediator admin-
istrator over one or more data sources. The sources themselves are not necessarily in XML; here
wrappers from the Tsimmis project can be employed. Additional to the Xmas querying language,
a graphical user interface, called BBQ, similar to XML-GL is provided. In [PV99] it is described
how to derive the DTD for a given Xmas view de�nition.

The SilkRoute system [FTS00] is closely related to the XML-QL project. The main goal of
the project is the automatical conversion from relational data to XML, conforming to arbitrary
DTDs. Applications express their queries in XML against the view provided by SilkRoute. Here,
XML-QL is extended to RXL (Relational to XML Transformation Language). On the relational
side, RXL has the full power of SQL, and on the XML side it has the full power of XML-QL: RXL
queries are of the form

FROM relations
WHERE sql-condition
CONSTRUCT xml-pattern

Similar to SQL, the FROM clause binds variables which are then used in the WHERE and CONSTRUCT

clause. The syntax of CONSTRUCT clause is the same as for XML-QL, except that nested queries
are again of the FROM - WHERE - CONSTRUCT form. Typical RXL queries are complex since they
map an external XML-QL query to the underying relational database using the prede�ned views.
Note that not the view is an RXL query, but the incoming XML query is composed with the RXL
query representing the view to the actual query against the database.

Software AG's Tamino [Sof] is a commercial XML platform for electronic business, consisting
of storage, development, and integration components for XML data and applications. Originally,
Tamino has been based on a hierarchical database model. The pure querying interface was �rst
XQL-based, and has then be adapted to the XPath standard (e.g., accessible by queries consisting
of the server url, and an XPath expression). Tools are provided for creating and manipulating
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XML documents, DTDs and XSL stylesheets. For building applications (e.g., B2B, document
management, electronic publishing), Java APIs are supported.

eXcelon [eXc] is another XML-based B2B product (originally based on ObjectDesign's Object-
Store platform). The basic XML server provides a direct querying interface for XPath (previously,
for XQL), and for XSLT stylesheets. The pure XSL language is extended with updates by XUL
(XML update language). Several Java APIs are provided (e.g., DOM Level 2) for application
development; additionally, B2B packages are available.

In the meantime, both products claim to use a \native" XML storage { whatever this means.
Both products include Web server functionality and support data exchange with relational database
and ERP products. The XML storage section is also designed in a large-scale database-system
style: the systems are able to store many individual documents persistently, maintaining and
applying access privileges, indexes etc.

The paper [TIHW01] does not only address updates in native XML languages, but also presents
algorithms for maintaining XML repositories based on relational database systems. In their
opinion, \most frequently-updated data tends to reside in relational systems". (Recall that the
SilkRoute project above deals with similar issues.) Thus, well-studied techniques for updating
complex XML structures which are mapped to relational systems are required.

The mapping between the relational data model and the XML data model has already been
investigated in several projects. In SilkRoute [FTS00] and Xperanto [CFI+00], an XML
mediator is placed over an (object-)relational database management system. In SilkRoute, an
SQL-to-XML view de�nition is given by the user. Then, XML queries against this view are
translated into SQL and submitted to the underlying database. In Xperanto, the underlying
database is mapped to a default XML view, and users de�ne their private views wrt. this view.
Internally, these views are translated into SQL queries.

Thus, the relational data is actually not mapped to XML, but XML queries are translated
into relational ones over a given, �xed relational schema. In contrast, [DFS00, SGT+99, FK99]
deal with XML databases over a relational core: the original schema is given in XML, and a
suitable (optimized) relational schema is generated from the input (and the input data is stored
accordingly). Here, two principal approaches emerged:

[FK99] prefer the edge and attribute approaches which both implement the idea of a universal
relation: In the edge approach, each element or attribute instance is stored as a tuple in a large
\edge" relation. In the attribute approach, each tag or attribute name de�nes an individual binary
relation. The disadvantage is that each element distributes over many tuples (and also relations
in the attribute approach) which requires large joins for evaluating queries. On the other hand,
by using a universal relation, the approach can also handle XML documents which do not have a
DTD or XML Schema description which could be used to generate an optimized schema.

In contrast, [DFS00, SGT+99] use the shared inlining method which tries to store as much
data of an element in a single tuple as possible. The main idea is the same as when deriving a
relational schema from an ER diagram: 1:1 or 1:n-relationships can be stored together with the
entity information on the 1-side. In the XML case, all subelement names which occur at most
once for an element, and all attributes can be stored with their element. Note that (in contrast to
the X-structures underlying the XPathLog/LoPiX data model) most approaches regard NMTOKENS
and IDREFS attributes as scalar which are split and resolved on-demand. Every such \element"
tuple also has an (internal) ID and a parentID attribute to store the tree structure (here again,
it must be decided if an ordered or unordered model is implemented).

[TIHW01] follows the shared inlining method and presents algorithms for translating updates
on the XML repository to its relational representation in the database. In addition to de�ning
language-independent update operations (see Section 3.12); these operations are incorporated into
XQuery, which is then used for evaluating the performance of the presented update algorithms.
The problem of handling (i.e., splitting and resolving) IDREFS is still left with XQuery. Similarly,
the problem of dangling references is addressed in the paper; since XQuery allows for dangling
IDREF attributes, they are also allowed for updates.
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Naturally, implementations of XML repositories over relational cores come also from the well-
known RDBMS vendors: Oracle's 9i ApplicationServer supports XML data exchange and Internet
communications; expecially, the XSQL package de�nes a �xed, canonical mapping from relational
data to XML. IBM's DB2 XML Extender does the same, additionally providing DADs (Data
Access De�nitions) for generating XML according to user-de�ned DTDs from the relational data.
Similar products are available for Microsoft SQL server.

Observation: Data Models.

The presented systems use several underlying storage mechanisms. Tamino and eXcelon claim to
use a (proprietary) \native" XML storage. Lorel migrated the Tsimmis OEM model to XML.
The \proprietary" XML-QL data model inherited from Strudel/StruQL is used by the Mix
project. In contrast, the XML-QL-based SilkRoute system does not use the XML-QL data
model, but applies the XML-QL language only as a language over abstract views, mapping the
actual queries to SQL queries against an underlying (object-)relational database system. The
\mainstream" (RDBMS vendors (naturally), but also the authors of [TIHW01] who developed
W3C XQuery and the W3C XML Query Data Model) also uses XML only as an intermediate
data model to the user and for data exchange, whereas the actual storage is a relational system.

There is (yet) no \serious" system which actually uses a DOM model and implementation
for storage. Only the research systems Kweelt and the dual-memory variant of LoPiX use a
DOM implementation (although, due to the linking/copying problems described in Section 8.5,
the proprietary ObjectManager variant of LoPiX seems to be preferable).

The data models used by the above systems di�er in characteristic properties:

� graph vs. tree

� edge-labeled vs. node-labeled

� node/object/element identity

Graph vs. tree. As already stated above, the approaches which have their roots in the pre-
XML time, i.e., OEM/Lore, Strudel/XML-QL, and F-Logic/XPathLog adapted graph models
to the XML specialties:

� subelement/attribute duality: the graph models knew only a single kind of relationship. The
data models have been extended appropriately with (name; value) pairs (where XPathLog
silently splits NMTOKENS and IRDEFS attributes), and the languages have been extended. For
XML-QL, dereferencing in the querying part is weak. Here, Lore provides a special feature
by allowing for a semantic and a literal view of IDREF(S) attributes.

� language adaptations: XPathLog uses the XPath syntax for selecting navigation axes. XML-
QL uses XML patterns, Lorel extends its original language { both do not support XML
axes, but regular path expressions.

� ordered nodes/children: XML-QL uses a global order of elements whereasLore and XPathLog
use a local order of children.

YAT/YATL is originally tree-based, but does not completely support XML notions such as at-
tributes, axes, and dereferencing.

Edge-labeled vs. node-labeled. The data models which originated from graph-based data
models (Lore, XML-QL, and XPathLog/LoPiX) are edge-labeled. As long as only trees are
regarded, it does not matter whether a data model is edge-labeled or node-labeled. But, when {
e.g., in case of data integration as shown in Section 11 { an element is allowed to have multiple
parents, an edge-labeled approach is preferable to represent di�erent child relationships wrt. the
same element. An interesting feature of the XML migration of Lore is that it is a mixture of a
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node-labeled and an edge-labeled model: each node has a tag, and, additionally, the relationship is
labeled with a name. This especially supports XML Schema where element types are distinguished
from the names of the child relationships. The XPathLog extension with classes supports similar
functionality: relationships are labeled with element names, and elements can be members of
classes.

The W3C XML data models, i.e., the DOM and XML Query data model, are node-labeled
trees, with the restrictive consequences wrt. data integration described in Section 8.5.

Node/object/element identity. The data models which originated from graph-based data
models (and from the object-oriented area) use object identity as a natural feature. The XML
data models do not know about any modeling concept like \element identity" { nevertheless, they
also have to use it for internal storage. Explicit element identity in form of skolem functions is
especially used in XML-QL and the Lorel XML migration.

Implementations and Performance. Performance comparisons are still problematic in this
area: the tools are incomparable, unstable, insu�ciently documented1, and sometimes simply too
slow. Querying functionality can be compared with several XSLT implementations, XML-QL, the
Kweelt Quilt implementation, and the commercial products eXcelon and Tamino. Although,
the XPathLog language is richer than these languages, allowing for dereferencing, joins between
literals, and returning variable bindings. Here, the XSLT tools which bene�t from using an
\established" language (tested: XT) showed the best and most stable performance for answering
XPath queries. As Tamino and Excelon are \full-
edged" XML database systems, their querying
performance heavily depends on user-de�ned optimizations such as indexes.

The other systems, i.e., XML-QL, Kweelt, and LoPiX are \research systems". The perfor-
mance of XML-QL is not really convincing, but acceptable. Kweelt is quite slow, it is obvious
that indexes are still missing. The performance of LoPiX is much better than Kweelt, and also
better than that of the XML-QL implementation { here it shows that LoPiX pro�ts from the
storage management and optimization techniques which are \inherited" from Florid (which are
partially also used in the DOM-based dual-memory version):

The original LoPiX version builds upon the frame-based ObjectManager storage module of
Florid which provides some optimizations using indexing (which are also used by the dual-
memory variant). The answer times are tolerable for a research prototype, allowing for running
and experimenting with the Mondial case study.

In contrast to Kweelt, the DOM of the dual-memory LoPiX is complemented by indexes
residing in the OM, which leads to an acceptable performance for queries.

Update performance is currently not comparable: Carrying out theMondial data integration
case study in XSLT would require a completely di�erent program (according to the XSLT style
which does not allow for incremental updates, but creates the result tree in a one-pass approach).
As long as XML-QL and XQuery do not support updates, here also the tree must be generated
in a single, large query. Due to their weak performance, the XML-QL and Kweelt systems are
currently not suitable for such tasks.

Some details can be found in Section 15.6.

16.2 Contributions

The present work de�nes an XML data model suitable for data integration, and the logic-based
language XPathLog which uses this data model for XML querying, manipulation, and integration.
The data model and the language are implemented in the LoPiX system. Its practicability has
been demonstrated by the Mondial case study.

Its principal di�erence to the XML Query Data Model and the DOM model is that it allows an
element to have multiple parents. This data model supports the notion of an XML database which

1the problems of instability and documentation seem to be related ...
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contains multiple, overlapping XML trees which represent (i) the sources, and (ii) result view(s)
over the sources. The database is queried and manipulated by XPathLog. Special operations,
i.e., linking, element fusion, de�nition of synonyms, and projection of result trees via an export
signature provide special functionality needed for data integration. Additionally, an expressive
extension with a class hierarchy for knowledge representation tasks has been de�ned.

XPathLog is completely XPath-based, i.e., both the rule bodies and the rule heads use an
extended XPath syntax, thereby de�ning an update semantics for XPath expressions. The close
relationship with XPath ensures that its declarative semantics is well understood from the XML
perspective. Especially the nature of rule based bottom-up programming is easily understandable
for XSLT practitioners, providing even more functionality. The Logic Programming background
provides a strong theoretical foundation of the language concept.

Up to the publication of [TIHW01] (SIGMOD 2001), XPathLog was the �rst declarative,
native XML language which allows for view de�nition and updates { at least, LoPiX [LoP] is the
�rst system allowing for updates in a \native" XML language which was made publicly available.
Still, XPathLog is the only approach which uses XPath syntax for generating or updating XML
structure.



A Mondial DTD

The structure of the Mondial XML database is described by the following DTD:

<!-- XML DTD "mondial-2.0.dtd":

(Wolfgang May, may@informatik.uni-freiburg.de, March 2000)

a hierarchical DTD for the MONDIAL database,

containing e.g.,

- scalar reference attributes (city/capital)

- multivalued reference attributes (organization/member/country)

- cross-references in both directions (organization/member/country,

country/memberships)

- a "boolean"/flag attribute: city/is_country_cap

- reference attributes with more than one target class

(river/to, references rivers, lakes, and seas) -->

<!ELEMENT mondial (country*,continent*,organization*,

mountain*,(sea*,river*,lake*,desert*,island*)*)>

<!ELEMENT country (name,population,

population_growth?,infant_mortality?,

gdp_total?,gdp_agri?,gdp_ind?,gdp_serv?,

inflation?,indep_date?,government?,encompassed+,

ethnicgroups*,religions*,languages*,border*,

province*,city*)>

<!ATTLIST country car_code ID #IMPLIED

area CDATA #IMPLIED

capital IDREF #IMPLIED

memberships IDREFS #IMPLIED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT area (#PCDATA)>

<!ELEMENT population (#PCDATA)>

<!-- note that population is also a subelement of city -->

<!ATTLIST population year CDATA #IMPLIED>

<!ELEMENT population_growth (#PCDATA)>

<!ELEMENT infant_mortality (#PCDATA)>

<!ELEMENT gdp_total (#PCDATA)>

<!ELEMENT gdp_ind (#PCDATA)>

<!ELEMENT gdp_agri (#PCDATA)>

<!ELEMENT gdp_serv (#PCDATA)>

<!ELEMENT inflation (#PCDATA)>

<!ELEMENT indep_date (#PCDATA)>

<!ELEMENT government (#PCDATA)>

<!ELEMENT encompassed EMPTY>

<!ATTLIST encompassed continent IDREF #REQUIRED

percentage CDATA #REQUIRED>

<!ELEMENT ethnicgroups (#PCDATA)>

<!ATTLIST ethnicgroups percentage CDATA #REQUIRED>
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<!ELEMENT religions (#PCDATA)>

<!ATTLIST religions percentage CDATA #REQUIRED>

<!ELEMENT languages (#PCDATA)>

<!ATTLIST languages percentage CDATA #REQUIRED>

<!ELEMENT border EMPTY>

<!ATTLIST border country IDREF #REQUIRED

length CDATA #REQUIRED

justice IDREF 'org-UN'>

<!ELEMENT province (name,area?,population,city*)>

<!ATTLIST province id ID #REQUIRED

country IDREF #REQUIRED

capital IDREF #IMPLIED>

<!ELEMENT city (name,longitude?,latitude?,

population*,located_at*)>

<!ATTLIST city id ID #REQUIRED

is_country_cap CDATA #IMPLIED

is_state_cap CDATA #IMPLIED

country IDREF #REQUIRED

province IDREF #IMPLIED>

<!ELEMENT longitude (#PCDATA)>

<!ELEMENT latitude (#PCDATA)>

<!ELEMENT located_at EMPTY>

<!ATTLIST located_at watertype (river|sea|lake) #REQUIRED

river IDREFS #IMPLIED

sea IDREFS #IMPLIED

lake IDREFS #IMPLIED>

<!ELEMENT organization (name,abbrev,established?,members*)>

<!ATTLIST organization id ID #REQUIRED

seat IDREF #IMPLIED>

<!ELEMENT abbrev (#PCDATA)>

<!ELEMENT established (#PCDATA)>

<!ELEMENT members EMPTY>

<!ATTLIST members type CDATA #REQUIRED

country IDREFS #REQUIRED>

<!ELEMENT continent (name,area)>

<!ATTLIST continent id ID #REQUIRED>

<!ELEMENT river (length?,name,to*,located*)>

<!ATTLIST river id ID #REQUIRED

country IDREFS #REQUIRED>

<!ELEMENT length (#PCDATA)>

<!ELEMENT to EMPTY>

<!ATTLIST to watertype (river|sea|lake) #REQUIRED

water IDREF #REQUIRED>

<!ELEMENT located EMPTY>

<!ATTLIST located country IDREF #REQUIRED

province IDREFS #IMPLIED>
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<!ELEMENT lake (name,area?,depth?,located*)>

<!ATTLIST lake id ID #REQUIRED

country IDREFS #REQUIRED>

<!ELEMENT depth (#PCDATA)>

<!ELEMENT sea (name,area?,depth?,located*)>

<!ATTLIST sea id ID #REQUIRED

country IDREFS #REQUIRED

bordering IDREFS #IMPLIED>

<!ELEMENT desert (name,area?,located*)>

<!ATTLIST desert id ID #REQUIRED

country IDREFS #REQUIRED

climate NMTOKENS #FIXED 'dry aride'

temperature NMTOKEN 'hot'

ground (sand|boulders|rocks|snow) 'sand'>

<!ELEMENT island (name,area?,longitude?,latitude?,located*)>

<!ATTLIST island id ID #REQUIRED

country IDREFS #REQUIRED>

<!ELEMENT mountain (name,longitude?,latitude?,height?,located*)>

<!ATTLIST mountain id ID #REQUIRED

country IDREFS #REQUIRED>

<!ELEMENT height (#PCDATA)>
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B Mondial XML SCHEMA

The XML Schema instance below describes the Mondial database.

<?xml version="1.0"?>

<schema xmlns ="http://www.w3.org/1999/XMLSchema"

<complexType name="mondial">

<element name="country" type="country" minOccurs="0" maxOccurs="unbounded"/>

<element name="continent" type="continent" minOccurs="0" maxOccurs="unbounded"/>

<element name="organization" type="organization" minOccurs="0" maxOccurs="unbounded"/>

<element name="mountain" type="mountain" minOccurs="0" maxOccurs="unbounded"/>

<element name="sea" type="sea" minOccurs="0" maxOccurs="unbounded"/>

<element name="river" type="river" minOccurs="0" maxOccurs="unbounded"/>

<element name="lake" type="lake" minOccurs="0" maxOccurs="unbounded"/>

<element name="desert" type="desert" minOccurs="0" maxOccurs="unbounded"/>

<element name="island" type="island" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

<complexType name="country">

<attribute name="car_code" type="ID" use="required"/>

<attribute name="capital" type="IDREF" use="optional"/>

<attribute name="memberships" type="IDREFS" use="optional"/>

<attribute name="industry" type="NMTOKENS" use="optional"/>

<element ref="name"/>

<element ref="area"/>

<element name="population" type="integer" minOccurs="0" maxOccurs="1"/>

<complexType name="country">

<attribute name="car_code" type="ID" use="required"/>

<attribute name="capital" type="IDREF" use="optional"/>

<attribute name="memberships" type="IDREFS" use="optional"/>

<attribute name="industry" type="NMTOKENS" use="optional"/>

<element ref="name"/>

<element ref="area"/>

<element name="population" type="integer" minOccurs="0" maxOccurs="1"/>

<element name="population_growth" type="decimal" minOccurs="0" maxOccurs="1"/>

<element name="infant_mortality" type="decimal" minOccurs="0" maxOccurs="1"/>

<element name="gdp_total" type="decimal" minOccurs="0" maxOccurs="1"/>

<element name="gdp_agri" type="decimal" minOccurs="0" maxOccurs="1"/>

<element name="gdp_ind" type="decimal" minOccurs="0" maxOccurs="1"/>

<element name="gdp_serv" type="decimal" minOccurs="0" maxOccurs="1"/>

<element name="inflation" type="decimal" minOccurs="0" maxOccurs="1"/>

<element name="indep_date" type="date" minOccurs="0" maxOccurs="1"/>

<element name="government" type="string" minOccurs="0" maxOccurs="1"/>

<element name="ethnicgroup" type="culturalInfo"

minOccurs="0" maxOccurs="unbounded"/>

<element name="religion" type="culturalInfo"
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minOccurs="0" maxOccurs="unbounded"/>

<element name="language" type="culturalInfo"

minOccurs="0" maxOccurs="unbounded"/>

<element name="encompassed" minOccurs="1" maxOccurs="unbounded" >

<complexType content="empty">

<attribute name="continent" type="IDREF" use="required"/>

<attribute name="percentage" type="decimal" use="required"/>

</complexType>

</element>

<element name="border" minOccurs="0" maxOccurs="unbounded" >

<complexType content ="empty">

<attribute name="country" type="IDREF" use="required"/>

<attribute name="length" type="decimal" use="required"/>

</complexType>

</element>

<element name="province" type="province" minOccurs="0" maxOccurs="unbounded"/>

<element name="city" type="city" minOccurs="0" maxOccurs="unbounded"/>

<key name="countrykey">

<selector>.</selector>

<field>@car_code</field>

</key>

<keyref name="country2capital" refer="citykey">

<selector>.</selector>

<field>@capital</field>

</keyref>

<keyref name="encompassed2continent" refer="continentkey">

<selector>encompassed</selector>

<field>@continent</field>

</keyref>

<keyref name="border2country" refer="countrykey">

<selector>border</selector>

<field>@country</field>

</keyref>

</complexType>

<complexType name="continent">

<element ref="name"/>

<element ref="area"/>

<attribute name="id" type="ID" use="optional"/>

<key name="continentkey">

<selector>.</selector>

<field>@id</field>

</key>

</complexType>

<complexType name="organization">

<attribute name="id" type="ID" use="required"/>

<attribute name="seat" type="IDREF" use="required"/>

<element ref="name"/>

<element name="abbrev" type="string"/>

<element name="established" type="date" minOccurs="0" maxOccurs="1"/>

<element name="member" minOccurs="0" maxOccurs="unbounded">

<complexType content="empty">
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<attribute name="type" type="string" use="required"/>

<attribute name="country" type="IDREFS" use="required"/>

</complexType>

</element>

<key name="organizationkey">

<selector>.</selector>

<field>@id</field>

</key>

<keyref name="org2seat" refer="citykey">

<selector>.</selector>

<field>@seat</field>

</keyref>

</complexType>

<complexType name="mountain">

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREFS" use="required"/>

<element ref="name"/>

<element ref="longitude" minOccurs="0" maxOccurs="1" />

<element ref="latitude" minOccurs="0" maxOccurs="1" />

<element name="height" type="integer" minOccurs="0" maxOccurs="1" />

<element ref="located" minOccurs="0" maxOccurs="unbounded" />

</complexType>

<complexType name="sea">

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREFS" use="required"/>

<element ref="name"/>

<element ref="area" minOccurs="0" maxOccurs="1" />

<element name="depth" type="integer" minOccurs="0" maxOccurs="1"/>

<element ref="located" minOccurs="0" maxOccurs="unbounded" />

</complexType>

<complexType name="river">

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREFS" use="required"/>

<element name="length" type="integer" minOccurs="0" maxOccurs="unbounded"/>

<element ref="name"/>

<element name="to" minOccurs="0" maxOccurs="1">

<complexType content="empty">

<attribute name="type" type="water" use="required"/>

<attribute name="ref" type="IDREF" use="required"/>

</complexType>

</element>

<element ref="located" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

<complexType name="lake">

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREFS" use="required"/>

<element ref="name"/>

<element ref="area" minOccurs="0" maxOccurs="1"/>

<element name="depth" type="integer" minOccurs="0" maxOccurs="1"/>
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<element ref="located" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

<complexType name="desert">

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREFS" use="required"/>

<element ref="name"/>

<element ref="area" minOccurs="0" maxOccurs="1"/>

<element ref="located" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

<complexType name="island">

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREFS" use="required"/>

<element ref="name"/>

<element name="islands" type="string" minOccurs="0" maxOccurs="1"/>

<element ref="area" minOccurs="0" maxOccurs="1"/>

<element ref="longitude" minOccurs="0" maxOccurs="1"/>

<element ref="latitude" minOccurs="0" maxOccurs="1"/>

<element ref="located" minOccurs="0" maxOccurs="unbounded"/>

</complexType>

<!-- auxiliary declarations -->

<complexType name="culturalInfo" base="string" derivedBy="extension">

<attribute name="percentage" type="decimal" use="required"/>

</complexType>

<element name="city" type="city"/>

<element name="name" type="string"/>

<element name="area" type="integer"/>

<element name="longitude" type="decimal"/>

<element name="latitude" type="decimal"/>

<element name="located_at">

<complexType content ="empty">

<attribute name="type" type="water" use="required"/>

<attribute name="river" type="IDREFS" use="optional"/>

<attribute name="sea" type="IDREFS" use="optional"/>

<attribute name="lake" type="IDREFS" use="optional"/>

</complexType>

</element>

<element name="located">

<complexType content ="empty">

<attribute name="country" type="IDREF" use="required"/>

<attribute name="province" type="IDREFS" use="optional"/>

</complexType>

</element>

<simpleType name="water" base="string">

<enumeration value="river"/>

<enumeration value="sea"/>
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<enumeration value="lake"/>

</simpleType>

<complexType name="province">

<element ref="name"/>

<element ref="area" minOccurs="0" maxOccurs="1"/>

<element name="population" type="integer" minOccurs="0" maxOccurs="1"/>

<element name="city" type="city" minOccurs="0" maxOccurs="unbounded"/>

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREF" use="optional"/>

<attribute name="country" type="IDREF" use="optional"/>

<attribute name="capital" type="IDREF" use="optional"/>

<key name="provincekey">

<selector>.</selector>

<field>@id</field>

</key>

<keyref name="province2capital" refer="citykey">

<selector>.</selector>

<field>@capital</field>

</keyref>

<keyref name="province2country" refer="countrykey">

<selector>.</selector>

<field>@country</field>

</keyref>

</complexType>

<complexType name="city">

<attribute name="id" type="ID" use="required"/>

<attribute name="country" type="IDREF" use="optional"/>

<attribute name="province" type="IDREF" use="optional"/>

<attribute name="is_country_cap" type="boolean" use="optional"/>

<attribute name="is_state_cap" type="boolean" use="optional"/>

<element ref="name"/>

<element ref="longitude" minOccurs="0" maxOccurs="1"/>

<element ref="latitude" minOccurs="0" maxOccurs="1"/>

<element name="population" minOccurs="0" maxOccurs="unbounded">

<complexType base="integer" derivedBy="extension">

<attribute name="year" type ="date" use="optional"/>

</complexType>

</element>

<element ref="located_at" minOccurs="0" maxOccurs="unbounded"/>

<key name="citykey">

<selector>.</selector>

<field>@id</field>

</key>

<keyref name="city2country" refer="countrykey">

<selector>.</selector>

<field>@country</field>

</keyref>

<keyref name="city2province" refer="provincekey">

<selector>.</selector>

<field>@province</field>

</keyref>

</complexType>
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</schema>



C MAPPING XML SCHEMA

TO SIGNATURE ATOMS

The XML Schema metadata description can be used for deriving XPathLog signature atoms.

The following XML Schema constructs are processed:

� ComplexTypes : they de�ne classes which have properties given by their element and attribute
children.

� Elements, Attributes : they de�ne properties, either local when occurring as children of a
complexType, or global to be used by children of a complexType via the ref attribute.

� maxOccurs and minOccurs de�ne the cardinality of elements,

� use de�nes the cardinality of attributes,

� type de�nes the result class of a property,

� key and keyref can be used for deriving the result class or reference attributes.

mondial.xsd = "file:mondial-2.0.xsd" isa url.

U.parse@(xml) :- U isa url.

schema = X :- U.parse@(xml) = B, B[schema->X].

?- sys.strat.doIt.

XML Schema prede�ned types are related to the XPathLog class hierarchy:

string subcl literal.

numeric subcl literal.

integer subcl numeric.

decimal subcl integer.

float subcl decimal.

nmtoken subcl string.

id subcl nmtoken.

nmtokens subcl string.

boolean subcl string.

simpletype subcl type.

complextype subcl type.

X isa simpletype :- X subcl literal.

date isa simpletype.

object[@idterm->object].

X[@idterm->X] :- X isa simpletype.

elementonly isa contentstype.

empty isa contentstype.
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mixed isa contentstype.

textonly isa contentstype.

mvd isa cardinality.

sc isa cardinality.

?- sys.strat.doIt.

Global vs. local declarations. Collect global element, attribute, and complexType de�nitions.
Note that only attributes and elements which have a name attribute are local (excluding <element
ref=\ " . . . > which is not a local declaration but a reference to a declaration):

X[@global->1] :- schema[M->X].

X[@uses_local->Y], Y[@local->1] :- X[complextype->Y], not X = schema.

X[@uses_local->Y], Y[@local->1] :- X[element->Y[@name->N]], not X = schema.

X[@uses_local->Y], Y[@local->1] :- X[attribute->Y[@name->N]], not X = schema.

Detect local declarations and propagate the use relation downwards (except if a \more local" thing
with the same name is de�ned):

C[@uses_local->X] :- N[complextype->C], N[@uses_local->X isa Type[@name->V]],

not N[@uses_local->_ isa Type[@name->V]].

C[@uses_local->X] :- N[element->C], N[@uses_local->X isa Type[@name->V]],

not N[@uses_local->_ isa Type[@name->V]].

C[@uses_local->X] :- N[attribute->C], N[@uses_local->X isa Type[@name->V]],

not N[@uses_local->_ isa Type[@name->V]].

?- sys.strat.doIt.

Associate id-terms or references with types: global types are associated with their names as
mnemonic constants, e.g.,

<complexType name="country">

is associated with the id-term country. Local types are associated with the reference type.name
where type is the type which de�nes them. They become a subclass of name.

Note that this leads to a \dirty" class hierarchy if a global type is \rede�ned" locally with a
local type which does not de�ne a subtype.

X[@idterm->I] :- X isa element[@name->EN], string2object(EN,I).

X[@idterm->I] :- X isa attribute[@name->AN], string2object(AN,I).

X[@idterm->I subcl object] :- X isa type[@global->1 and @name->N], string2object(N,I).

ComplexTypes which are de�ned local to type declarations (possibly inside local element declara-
tions):

X[@idterm->(T:I) subcl object], T:I subcl I :-

_T isa type[@idterm->T and @uses_local->X isa type[@name->N]],

string2object(N,I).

X[@idterm->(T:I) subcl object], T:I subcl I :-

_T isa type[@idterm->T]/element[@idterm->I and @uses_local->X isa type].

X[@idterm->(T:I) subcl object], T:I subcl I :-

_T isa type[@idterm->T]/attribute[@idterm->I and @uses_local->X isa type].

ComplexTypes which are de�ned local to global element declarations (i.e., which are not local to
any type):
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X[@idterm->T subcl object] :-

_E isa element[@idterm->T and @uses_local->X isa type], not X/@name,

not _ isa type[@uses_local->X],

not _ isa type/element[@uses_local->X].

?- sys.strat.doIt.

Element and Attribute Declarations.
Element and attribute declarations have the following properties:

element[@name)string and @resulttype )type and
@card)cardinality and @mincard)integer and
@minoccurs)string and @maxoccurs)string ].

For deriving the result types, the use of local de�nitions has to be considered.

First, declarations which de�ne a local type by themselves are handled, i.e.,

<element/attribute name="..."> <complex/simpletype .../> </element>

X[@resulttype->T] :- X isa element[complextype->T].

X[@resulttype->T] :- X isa element[simpletype->T].

X[@resulttype->T] :- X isa attribute[simpletype->T].

Some declarations use a local type de�ned by one of their ancestors by

<element/attribute type="..." ...>

X[@resulttype->T] :- X isa element[@type->TN],

X[@uses_local->T isa type[@name->TN]].

?- sys.strat.doIt.

All others use global declarations via the same form

<element/attribute type="..." ...>

� using de�ned types:

X[@resulttype->T] :- X isa element[@type->TN],

not X[@uses_local->_ isa type[@name->TN]],

T[@global->1 and @name->TN].

X[@resulttype->T] :- X isa attribute[@type->TN],

not X[@uses_local->_ isa type[@name->TN]],

T[@global->1 and @name->TN].

� using prede�ned simple types:

X[@resulttype->T] :- X[@type->TN],

not X[@uses_local->_ isa type[@name->TN]],

string2object(TN,T), T isa simpletype.

� for attributes which are of type IDREF or IDREFS, we do only know that the result is an
object:

X[@resulttype->object] :- X isa attribute[@type->"IDREF"].

X[@resulttype->object] :- X isa attribute[@type->"IDREFS"].

?- sys.strat.doIt.
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� If the given result type of a subelement is a literal type, it is in fact an element with PCDATA

contents. Create a new type with text contents as an \annotated literal type". The new type
is a subclass of the literal type:

E[@resulttype->E], E subcl ResType :-

E isa element[@global->1 and @idterm->I and

@resulttype->ResType subcl literal].

E[@resulttype->(T:I) subcl I[@idterm->(T:I) and text()=>ResType]],

I subcl object, (T:I) subcl ResType :-

E isa element[@local->1 and @idterm->I and @resulttype->ResType],

_ isa type[@idterm->T and @uses_local->E],

ResType subcl literal, not ResType subcl object.

� Analogously, complexTypes whose base type is a literal type (i) are a subclass (a re�nement)
of the base type and (ii) provide a text method for accessing the element contents which is
actually a literal value of the given base type:

I subcl BT, I[text()=>BT] :-

T isa complextype[@idterm->I and @base->B],

string2object(B,BT), BT subcl literal.

?- sys.strat.doIt.

Element and attribute de�nitions can also refer to other declarations.

<element/attribute ref="...">

Again, it must be checked if a global or a local declaration is referred to:

X[@name->EN and @idterm->I and @resulttype->T] :-

X isa element[@ref->EN and

@uses_local->_ isa element[@idterm->I and @name->EN and

@resulttype->T]].

X[@name->EN and @idterm->I and @resulttype->T] :-

X isa element[@ref->EN], not X[@uses_local->_ isa element[@name->EN]],

E isa element[@global->1 and @name->EN and @idterm->I and @resulttype->T].

X[@name->AN and @idterm->I and @resulttype->T] :-

X isa attribute[@ref->AN and

@uses_local->_ isa attribute[@name->AN and @idterm->I and

@resulttype->T]].

X[@name->AN and @idterm->I and @resulttype->T] :-

X isa attribute[@ref->AN], not X[@uses_local->_ isa attribute[@name->AN]],

A isa attribute[@global->1 and @name->AN and @idterm->I and @resulttype->T].

?- sys.strat.doIt.

Now, all <element> and <attribute> elements have a name (a string) and all <element> elements
have a xsd.resulttype (reference) property. Attributes do not yet have a result type.

?- sys.strat.doIt.

The cardinality of subelements is given by the @minoccurs and @maxoccurs attributes of <element>

elements:
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element[@minoccurs*->"1"].

X[@maxoccurs->MIN] :- X isa element[@minoccurs->MIN],

not X isa element[@maxoccurs->_], not MIN = "0".

?- sys.strat.doIt.

element[@maxoccurs*->"1"].

?- sys.strat.doIt.

Attribute cardinality is given by their use attribute: Note that IDREFS and NMTOKENS attributes
are multivalued in our approach.

X[@minoccurs->"1"] :- X isa attribute[@use->"required"].

X[@minoccurs->"0"] :- X isa attribute [@use->"optional"].

X[@minoccurs->"1"] :- X isa attribute [@use->"default"].

X[@minoccurs->"1"] :- X isa attribute [@use->"fixed"].

X[@minoccurs->"0"] :- X isa attribute [@use->"prohibited"].

attribute[@minoccurs*->"0"].

?- sys.strat.doIt.

X[@maxoccurs->"0"] :- X isa attribute [@use->"prohibited"].

X[@maxoccurs->"unbounded"] :- X isa attribute[@type->"NMTOKENS"],

not X[@use->"prohibited"].

X isa attribute[@maxoccurs->"unbounded"] :- X isa attribute[@type->"IDREFS"],

not X isa attribute [@use->"prohibited"].

X isa attribute[@maxoccurs->"1"] :- X isa attribute[@use->"required"],

not X isa attribute[@type->"NMTOKENS"],

not X isa attribute[@type->"IDREFS"].

X isa attribute[@maxoccurs->"1"] :- X isa attribute[@use->"optional"],

not X isa attribute[@type->"NMTOKENS"],

not X isa attribute[@type->"IDREFS"].

X isa attribute[@maxoccurs->"1"] :- X isa attribute[@use->"default"],

not X isa attribute[@type->"NMTOKENS"],

not X isa attribute[@type->"IDREFS"].

X isa attribute[@maxoccurs->"1"] :- X isa attribute[@use->"fixed"],

not X isa attribute[@type->"NMTOKENS"],

not X isa attribute[@type->"IDREFS"].

?- sys.strat.doIt.

attribute[@maxoccurs*->"1"].

?- sys.strat.doIt.

The @mincard and card 2 fscalar;multivaluedg properties are derived:

X[@mincard->MIN] :- X[@minoccurs->MIN].

X[@card->mv] :- X[@maxoccurs->M], string2integer(M,I), I > 1.

X[@card->sc] :- X[@maxoccurs->M], string2integer(M,I), I = 1.

X[@card->sc] :- X[@maxoccurs->M], string2integer(M,I), I = 0.

X[@card->mv] :- X[@maxoccurs->M], M = "unbounded".

?- sys.strat.doIt.

Now, all attributes and subelement properties are de�ned with name, cardinality, and result type.

Content Models.
First it is derived which types have empty, text-only, element-only, or mixed contents:

type[@contents=>contentstype and attribute=>attribute and element=>element].

If a type has an explicit contents speci�cation, take it:
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X[@contents->CSPEC] :- X isa type[@content->CSPEC].

If a there is no content attribute take the speci�cation from the base type:

X[@contents->CSPEC] :-

X isa type[not @content and @base/@content->CSPEC].

?- sys.strat.doIt.

Enumerations. Enumeration types de�ne classes. All enumerated values are members of that
class.

enumerated[@name=>string and @values=>object].

ENUM isa enumerated[@idterm->CL and @name->NA and @values->VAL isa CL] :-

X[@resulttype->ENUM[@name->NA and enumeration->ITEM]],

ITEM[@value->V], string2object(NA,CL),string2object(V,VAL).

?- sys.strat.doIt.

Signatures. Associate signatures with types. Global types de�ne classes by their name at-
tribute. Local types are local wrt. their environment type.

Take only the non-literal result types (recall that non-literal result types have already been
replaced by \annotated literals" having text-only contents):

Type[M=>Res] :-

_ isa complextype[@idterm->Type and

element->_[@idterm->M and @resulttype->ResType[@idterm->Res]]].

?- sys.strat.doIt.

Non-reference attributes have only literal result types, reference attributes have object results:

Type[@M=>Res] :-

_ isa complextype[@idterm->Type and

attribute->_[@idterm->M and @resulttype->ResType[@idterm->Res]]].

?- sys.strat.doIt.

?-sys.echo@("keys").

Keys. Keys are used as targets for reference attributes. Thus, they can serve for deriving the
signature of reference attributes (if these are described by keyref elements). First, for every key,
it is detected for which class it is a key:

K[@identifies->RS] :-

T isa type[@idterm->TI and key->K isa key[selector/text()->Sel]],

not Sel=".", string2object(Sel,SID),

TI[SID=>RS], not RS subcl literal.

K[@identifies->RS] :-

T isa type[@idterm->TI and key->K isa key[selector/text()->Sel]],

not Sel=".", string2object(Sel,SID),

TI[SID=>RS], not RS subcl literal.

K[@identifies->TI] :-

T isa type[@idterm->TI and key->K isa key[selector/text()->Sel]],

Sel=".".

?- sys.strat.doIt.

For every keyref element, it is detected which is the host class for the attribute it describes:
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KR[@hostclass->TI] :-

T isa type[@idterm->TI and keyref->KR isa keyref[selector/text()->Sel]],

Sel=".".

KR[@hostclass->X] :-

T isa type[@idterm->TI and keyref->KR isa keyref[selector/text()->Sel]],

not Sel=".",

T[@idterm->TI and element->E[@name->Sel and @idterm->MI]],

TI[MI=>X].

?- sys.strat.doIt.

Then, the method which is described by the key reference is derived:

KR[@method->MI] :-

KR isa keyref[@hostclass->TI and field/text()->F],

pmatch(F,"/\A@(.*)\Z/",["$1"],[Attr]),

HC[@idterm->TI and attribute->A[@name->Attr and @idterm->MI]].

?- sys.strat.doIt.

Finally, the key used by the foreign key reference is used for associating the result class (the one
identi�ed by the key) with the property (which is described by the keyref element):

TI[MI=>RS] :-

KR isa keyref[@hostclass->TI and @method->MI and @refer->KN],

TI[MI=>object],

K isa key[@name->KN and @identifies->RS].

?- sys.strat.doIt.

?- sys.theOMAccess.export@("sig","mondial-2.0-sig.lpx").

Mondial Signature

The XPathLog signature given below is extracted from the XML Schema speci�cation. Note that
the local type declarations are namespaced.

mondial :: object.

mondial [country => (country);

continent => (continent);

organization => (organization);

mountain => (mountain);

sea => (sea);

river => (river);

lake => (lake);

desert => (desert);

island => (island)].

country :: object.

country [name => (string, name);

area => (integer, area);

population => (integer,

country:population);

population_growth => (decimal,

country:population_growth);
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infant_mortality => (decimal,

country:infant_mortality);

gdp_total => (decimal,

country:gdp_total);

gdp_agri => (decimal,

country:gdp_agri);

gdp_ind => (decimal,

country:gdp_ind);

gdp_serv => (decimal,

country:gdp_serv);

inflation => (decimal,

country:inflation);

indep_date => (date);

government => (string,

country:government);

ethnicgroup => (culturalinfo);

religion => (culturalinfo);

language => (culturalinfo);

encompassed => (country:encompassed);

border => (country:border);

province => (province);

city => (city);

@car_code => (id);

@capital => (object);

@memberships => (object);

@industry => (nmtokens)].

continent :: object.

continent [name => (string, name);

area => (integer, area);

@id => (id)].

organization :: object.

organization [name => (string, name);

abbrev => (string, organization.abbrev);

established => (date);

member => (organization.member);

@id => (id);

@seat => (object)].

mountain :: object.

mountain [name => (string, name);

longitude => (decimal, longitude);

latitude => (decimal, latitude);

height => (integer, mountain.height);

located => (located);

@id => (id);

@country => (object)].

sea :: object.

sea :: water.

sea [name => (string, name);

area => (integer, area);

located => (located);
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depth => (integer, sea.depth);

@id => (id);

@country => (object)].

river :: object.

river :: water.

river [length => (integer, river.length);

name => (string, name);

located => (located);

to => (river.to);

@id => (id);

@country => (object)].

lake :: object.

lake :: water.

lake [name => (string, name);

area => (integer, area);

located => (located);

depth => (integer, lake.depth);

@id => (id);

@country => (object)].

desert :: object.

desert [name => (string, name);

area => (integer, area);

located => (located);

@id => (id);

@country => (object)].

island :: object.

island [name => (string, name);

area => (integer, area);

longitude => (decimal, longitude);

latitude => (decimal, latitude);

located => (located);

islands => (string, island.islands);

@id => (id);

@country => (object)].

province :: object.

province [name => (string, name);

area => (integer, area);

population => (integer, province.population);

city => (city);

@id => (id);

@country => (object);

@capital => (object)].

city :: object.

city [name => (string, name);

population => (city.population);

longitude => (decimal, longitude);

latitude => (decimal, latitude);

located_at => (located_at);
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@id => (id);

@country => (object);

@province => (object);

@is_country_cap => (boolean);

@is_state_cap => (boolean)].

culturalinfo :: string.

culturalinfo :: object.

culturalinfo [text() => (string);

@percentage => (decimal)].

city.population :: object.

city.population :: integer.

city.population [text() => (integer);

@year => (date)].

country:government :: string.

country:government :: object.

country:government [text() => (string)].

organization.abbrev :: string.

organization.abbrev :: object.

organization.abbrev [text() => (string)].

island.islands :: string.

island.islands :: object.

island.islands [text() => (string)].

country:population :: object.

country:population :: integer.

country:population [text() => (integer)].

mountain.height :: object.

mountain.height :: integer.

mountain.height [text() => (integer)].

sea.depth :: object.

sea.depth :: integer.

sea.depth [text() => (integer)].

river.length :: object.

river.length :: integer.

river.length [text() => (integer)].

lake.depth :: object.

lake.depth :: integer.

lake.depth [text() => (integer)].

province.population :: object.

province.population :: integer.

province.population [text() => (integer)].

country:population_growth :: object.

country:population_growth :: decimal.
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country:population_growth [text() => (decimal)].

country:infant_mortality :: object.

country:infant_mortality :: decimal.

country:infant_mortality [text() => (decimal)].

country:gdp_total :: literal.

country:gdp_total :: integer.

country:gdp_total [text() => (decimal)].

country:gdp_agri :: object.

country:gdp_agri :: integer.

country:gdp_agri [text() => (decimal)].

country:gdp_ind :: object.

country:gdp_ind :: integer.

country:gdp_ind [text() => (decimal)].

country:gdp_serv :: object.

country:gdp_serv :: integer.

country:gdp_serv [text() => (decimal)].

country:inflation :: object.

country:inflation :: decimal.

country:inflation [text() => (decimal)].
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D DTDS OF Mondial XML

SOURCES

The original HTML Mondial data sources (described in the introduction) have been wrapped
in [May99a] and exported into XML (available at [May01a]). The DTDs are given below.

D.1 CIA World Factbook Country Listing

<!-- XML DTD "cia-export.dtd":

(Wolfgang May, may@informatik.uni-freiburg.de, Oct 2000) -->

<!ELEMENT cia (continent*, country*)>

<!ELEMENT continent EMPTY>

<!ATTLIST continent id ID #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT country (ethnicgroups*, religions*, languages*, borders*, coasts*)>

<!ATTLIST country

id ID #REQUIRED

name CDATA #REQUIRED

datacode CDATA #IMPLIED

continent CDATA #IMPLIED

total_area CDATA #IMPLIED

population CDATA #IMPLIED

population_growth CDATA #IMPLIED

infant_mortality CDATA #IMPLIED

gdp_agri CDATA #IMPLIED

gdp_ind CDATA #IMPLIED

gdp_serv CDATA #IMPLIED

gdp_total CDATA #IMPLIED

inflation CDATA #IMPLIED

gdp_total CDATA #IMPLIED

indep_date CDATA #IMPLIED

government CDATA #IMPLIED

capital CDATA #IMPLIED>

<!ELEMENT ethnicgroups (#PCDATA)>

<!ATTLIST ethnicgroups name CDATA #REQUIRED>

<!ELEMENT religions (#PCDATA)>

<!ATTLIST religions name CDATA #REQUIRED>
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<!ELEMENT languages (#PCDATA)>

<!ATTLIST languages name CDATA #REQUIRED>

<!ELEMENT borders (#PCDATA)>

<!ATTLIST borders country IDREF #REQUIRED>

<!ELEMENT coasts (#PCDATA)>

D.2 CIA World Factbook Organizations

<!-- XML DTD "orgs-export.dtd":

(Wolfgang May, may@informatik.uni-freiburg.de, Oct 2000) -->

<!ELEMENT orgs (organization*)>

<!ELEMENT organization (member_names*)>

<!ATTLIST organization id ID #REQUIRED

abbrev CDATA #REQUIRED

name CDATA #REQUIRED

established CDATA #IMPLIED

seatcity CDATA #IMPLIED

seatcountry CDATA #IMPLIED>

<!ELEMENT member_names (#PCDATA)>

<!ATTLIST member_names type CDATA #REQUIRED>

D.3 Global Statistics

<!-- XML DTD "gs-export.dtd":

(Wolfgang May, may@informatik.uni-freiburg.de, Oct 2000) -->

<!ELEMENT gs (continent*, country*, city*, province*)>

<!ELEMENT continent EMPTY>

<!ATTLIST continent id ID #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT country (name+)>

<!ATTLIST country id ID #REQUIRED

capital IDREF #IMPLIED

population CDATA #IMPLIED

continent IDREF #IMPLIED

main_cities IDREFS #IMPLIED

adm_divs IDREFS #IMPLIED>

<!ELEMENT province EMPTY>

<!ATTLIST province id ID #REQUIRED
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name CDATA #REQUIRED

country IDREF #REQUIRED

capital IDREF #IMPLIED

population CDATA #IMPLIED

area CDATA #IMPLIED>

<!ELEMENT city (population*, name+)>

<!ATTLIST city id ID #REQUIRED

country IDREF #REQUIRED

province IDREF #IMPLIED>

<!ELEMENT population (#PCDATA)>

<!ATTLIST population year CDATA #REQUIRED>

D.4 Qiblih Coordinates

<!-- XML DTD "qiblih-export.dtd":

(Wolfgang May, may@informatik.uni-freiburg.de, Oct 2000) -->

<!ELEMENT qiblih (city*)>

<!ELEMENT city EMPTY>

<!ATTLIST city id ID #REQUIRED

name CDATA #REQUIRED

country CDATA #REQUIRED

longitude CDATA #REQUIRED

latitude CDATA #REQUIRED

province CDATA #IMPLIED>

D.5 Terra

<!-- XML DTD "terra-export.dtd":

(Wolfgang May, may@informatik.uni-freiburg.de, Oct 2000) -->

<!ELEMENT terra (country*, province*, city*,

(mountain, desert, island, river, lake, sea)*)>

<!ELEMENT country (encompassed*)>

<!ATTLIST country id ID #REQUIRED

name CDATA #REQUIRED

code CDATA #REQUIRED

area CDATA #REQUIRED

population CDATA #REQUIRED

capital CDATA #REQUIRED>

<!ELEMENT encompassed (#PCDATA)>

<!ATTLIST encompassed continent CDATA #REQUIRED>

<!ELEMENT province (#PCDATA)>

<!ATTLIST province id ID #IMPLIED

name CDATA #IMPLIED
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abbrev CDATA #IMPLIED

country CDATA #IMPLIED

pop CDATA #IMPLIED

capital CDATA #IMPLIED>

<!ELEMENT city (province*)>

<!ATTLIST city id ID #REQUIRED

name CDATA #REQUIRED

country CDATA #REQUIRED

population CDATA #IMPLIED

longitude CDATA #IMPLIED

latitude CDATA #IMPLIED>

<!ELEMENT river (to*, located*)>

<!ATTLIST river id ID #REQUIRED

name CDATA #REQUIRED

length CDATA #IMPLIED>

<!ELEMENT to EMPTY>

<!ATTLIST to type (river|sea|lake) #REQUIRED

water IDREF #REQUIRED>

<!ELEMENT located EMPTY>

<!ATTLIST located country_code CDATA #REQUIRED

province_id CDATA #REQUIRED>

<!ELEMENT lake (located*)>

<!ATTLIST lake id ID #REQUIRED

name CDATA #REQUIRED

area CDATA #IMPLIED>

<!ELEMENT sea (located*)>

<!ATTLIST sea id ID #REQUIRED

name CDATA #REQUIRED

depth CDATA #IMPLIED

bordering IDREFS #REQUIRED>

<!ELEMENT desert (located*)>

<!ATTLIST desert id ID #REQUIRED

name CDATA #REQUIRED

area CDATA #IMPLIED>

<!ELEMENT island (located*)>

<!ATTLIST island id ID #REQUIRED

name CDATA #REQUIRED

area CDATA #IMPLIED

longitude CDATA #IMPLIED

latitude CDATA #IMPLIED>

<!ELEMENT mountain (located*)>

<!ATTLIST mountain id ID #REQUIRED

name CDATA #REQUIRED

height CDATA #REQUIRED

longitude CDATA #IMPLIED
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latitude CDATA #IMPLIED>

D.6 Country Names and Codes

<!-- XML DTD "codes-export.dtd":

(Wolfgang May, may@informatik.uni-freiburg.de, Oct 2000) -->

<!ELEMENT codes (country*)>

<!ELEMENT country (name,name,name)>

<!ATTLIST country id CDATA #REQUIRED

car_code CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name language CDATA #REQUIRED>
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