
LoPiX
Logic Programming in XML

(Preliminary) User Manual

Wolfgang May

may@informatik.uni-freiburg.de

Institut f�ur Informatik, Universit�at Freiburg

Germany

January 2001

CONTENTS 2

Contents

Preface 3

1 Installation 4

1.1 Environment Variables . 4
1.2 Settings for LoPiX in Emacs . 5
1.3 LoPiX in the UNIX Shell . 5
1.4 Running LoPiX in Emacs . 6

2 Programming with LoPiX 7

2.1 System Commands . 7
2.1.1 Blocks and Strati�cation . 8

3 Document Access and Queries in LoPiX Programs 9

3.1 The XPathLog Language . 9
3.2 Accessing Documents . 10
3.3 Querying the Database . 11

4 XPathLog Rules 13

4.1 Left Hand Side . 13

5 Built-in Features 15
5.1 Handling of Literal Values . 16
5.2 Equality . 16
5.3 Integers, Comparisons and Arithmetics . 17
5.4 String handling . 18
5.5 Data Conversion . 18
5.6 Aggregation . 20
5.7 Output Handling . 21

6 Evaluation Semantics 21

6.1 Fixpoint Semantics . 22
6.2 Negation and Strati�cation . 23

7 Legacy: The Florid System 23

References 23

CONTENTS 3

Preface

LoPiX is an implementation of the XPathLog language; a logic-programming language based
on XPath. The LoPiX system employs the evaluation component of Florid, an implemen-
tation of F-Logic whose data model and language syntax has many similarities with XML
and XPath, respectively.

We assume that the reader of this tutorial is familiar with the basic concepts of deductive
databases, e.g., Datalog [AHV95, CGT90, Ull89], or F-Logic [KLW95].

XPath [XPa99] is the standard querying language for XML data. Most XML querying
an data transformation languages are based on XPath; e.g., XQL [Rob99], XSL(T) [XSL99],
XML-QL [DFF+99], Quilt [CRF00], and the XLink/XPointer proposals. XPathLog extends
XPath with logic-programming style variable and variable-binding concepts, and a semantics
for XPath expressions in rule heads for updating an XML database.

The evaluation of programs in LoPiX is based on a set-oriented bottom-up computation,
as an extension of the algorithm well known from Datalog [AHV95, CGT90, Ull89]. Here,
the evaluation component of the Florid system is employed.

We assume that the reader is familiar with the basic notions of XPath and Logic Pro-
gramming.
The structure of this manual is as follows:

The �rst part describes the installation and the environment of LoPiX: First, we give
describe the installation of LoPiX for working from the unix shell or from within emacs.
Section 1 describes how to run LoPiX in the unix shell or working with emacs. Section 2 gives
an overview of the structure of LoPiX programs: Section 3 describes how XML documents
in the Web can be accessed and presents the XPathLog query language. The syntax and
semantics of XPathLog rules is described in Section 4. Section 5 describes additional built-in
features, mainly concerning datatypes. Section 6 gives an overview of the theory of program
semantivcs and evaluation.

1 INSTALLATION 4

1 Installation

The binary distribution of LoPiX comes as a packed and compressed �le

lopix-<version-number>-<operating-system>.tar.gz.

In the following we refer to this �le simply as lopix.tar.gz. The �le is uncompressed by the
command

gunzip lopix.tar.gz

The resulting �le lopix.tar has to be unpacked by entering

tar -xvf lopix.tar

Now the directory lopix is created. It has the following subdirectories:

lopix/bin/

lopix/environment/

lopix/sgml/

lopix/doc/

The directory lopix/bin contains the binary, lopix/environment contains several �les de�n-
ing the LoPiX environment:

� lopix.cfg.in: the source of the con�guration �le

� lopix.his: history lines to preload

� lpx.el: the emacs lpx-mode de�nition �le

First, the LoPiX con�guration has to be adapted to the local system by changing to the con�gure
LoPiXdirectory lopix/environment/ and calling ./configure { this generates lopix.cfg from

lopix.cfg.in.
The directory lopix/sgml contains several de�nitions needed when using SGML docu-

ments. The directory lopix/doc contains postscript �les of this manual (lopix.ps) LoPiX
are available from http://www.informatik.uni-freiburg.de/~dbis/Publications/.

1.1 Environment Variables

Shell environment variables are used to set paths leading to LoPiX's con�guration �les which
are needed when LoPiX is called. It is also possible to specify the paths by command line
options when calling LoPiX. The following variables should be set before starting LoPiX:

� LOPIXCFG

� LOPIXHIS

LOPIXCFG tells how to �nd the con�guration �le and LOPIXHIS points to the history �le to
preload. The con�guration �le is a sequence of system commands that create the objects
needed for a working system and then pass control to the user. If one of these variables is
not set and the respective command line option is missing, the system will print a warning. UNIX En-

vironment
Variables

In the following we assume that LoPiX's main directory lopix/ is located at /home/db/.
Then, the system environment variables have to be set to

� LOPIXCFG : /home/db/lopix/environment/lopix.cfg

� LOPIXHIS : /home/db/lopix/environment/lopix.his

Additionally, the environment variables

1 INSTALLATION 5

SP ENCODING=XML and
SGML CATALOG FILES=/home/db/lopix/sgml/xml.soc

have to be set for the sp SGML parser [Cla] which is employed in the current version for
parsing XML �les into LoPiX.

If you want to check if your settings are working, proceed with Section 1.3 now for a �rst
example.

1.2 Settings for LoPiX in Emacs

Additionally to the shell, emacs provides a very user-friendly interface to LoPiX via the
emacs
p-mode. The emacs lpx-mode is de�ned in the �le lpx.el which is located in lopix/ .emacs:
p

modeenvironment/. To make emacs load and use this mode, the local .emacs �le has to be
extended by the following lines:

;;; enter lpx mode if a file with the suffix ".lpx" is loaded

(setq auto-mode-alist (cons '("\.lpx$" . lpx-mode) auto-mode-alist))

;;; autoload "lpx.el" if the functions lpx-mode or run-lpx are executed

(autoload 'lpx-mode "lpx" "" t)

(autoload 'run-lpx "lpx" "" t)

To be sure that emacs actually �nds lpx.el, either the lines

(setq load-path

(cons "/home/db/lopix/environment/" load-path))

have to be added to the .emacs �le or lpx.el has to be put into a directory where emacs
looks for �les.
In lpx.el it has to be speci�ed where to �nd the lopix executable. If the lopix/bin/ .emacs: lpx

modedirectory is in the binary search path,

(defvar lpx-program-name "lopix"

"*Program name for invoking an inferior LoPiX with `run-lpx'.")

is su�cient. Otherwise, change it to the actual path.
Additionally, lopix/environment/default.his has to be copied to ~/.lopix-history for history �le
the private readline history. After these installation steps, emacs has to be started again to
let the changes take e�ect.

1.3 LoPiX in the UNIX Shell

LoPiX is started from the shell by simply typing lopix at the unix prompt. To give an
impression of the LoPiX system and its usage we present a short example session in the unix
shell:

Example 1 (Example Session)

The examples directory contains �les smallmondial.fxml,dtd,lpxg; a small XML �le, a suitable

DTD, and a LoPiXprogram. If you call

malta:~/db/lopix/examples> lopix smallmondial.flp

1 INSTALLATION 6

the program is executed. It should tell you that it parses smallmondial.xml (1783 bytes), and
then print some country names. You can leave LoPiX with

?- sys.end.

If the program does not work, check the four environment variables given in Section 1.1.

Command Line Options. When LoPiX is started in the unix shell, command line options
can be given. A list of possible options is printed with lopix -h. If -h or an unde�ned option
is given, LoPiX terminates after printing an appropriate message.

malta:~/lopix/bin> lopix -h

This is LoPiX

Options :

-h : display all options

-c <fileName> : use non-default configuration file

-his <fileName> : use non-default history file

-d : start in trace mode

-e <Integer> : set output level for errors

<list<fileName>> : start and consult files (separated by blank)

-q : quit after executing (no interactive mode)

-v : prints version number

The option -c denotes a con�guration �le to be used instead of the standard con�guration
�le speci�ed in the environment variable DEFAULTCFG. Similarly, the option -his loads the
given �le into the readline-history instead of the default in DEFAULTHIS. For operating LoPiX
with non-standard con�guration �les regularly, it is more convenient to change the environ-
ment variables (cf. Section 1.1). The option -q causes LoPiX to quit after execution of the
command line instead of entering the interactive mode. This is helpful if the user wants to
call LoPiX in batch mode, e.g., from a shell script: lopix -q test.lpx.

In addition to the options, a list of �lenames of F-Logic-programs can be given. LoPiX
consults them in a left-to-right order.

With option -d (debug), all rules read will be echoed to the console. This is useful for
tracing con�guration errors and locating errors in program �les.

1.4 Running LoPiX in Emacs

Running the system from the emacs not only o�ers high-level editing facilities but also inte-
grates LoPiX into an environment where all kinds of tools (mailreader, newsreader, several
compilers, TeX etc.) are used in a uniform way. In order to use LoPiX from emacs, the
con�guration steps in Section 1.2 must have been executed. When a �le ending with .lpx

is loaded into emacs, emacs automatically enters the XPathLog mode which provides syntax
highlighting facility to make XPathLog programs.

Additionally to editing capabilities, the lpx-mode de�nes several key codes for interaction
between the editor and LoPiX (see Table 1).
When the key combination Control-c Control-c is pressed in the program bu�er, a new
bu�er is created in the lower half of the current bu�er. In this bu�er LoPiX is started,

2 PROGRAMMING WITH LOPIX 7

C-c C-c Reset System and consult bu�er as �le
C-c C-a Consult additional (same as C-c C-c but without system reset)
C-c C-r Consult marked region (without reset)
C-c C-s System reset (clear database and program)
C-c C-b Consult whole bu�er as region (without reset)
C-c C-l Display bu�er *lpx* and jump there
C- Break evaluation or output
C-c C-i Quit LoPiX process

Table 1: Special keycodes in the lpx-mode

running the program given in the program bu�er. Load examples/smallmondial.lpx into the
emacs and type Control-c Control-c.

Then, the user can interact in the same way with LoPiX as described before for the
unix shell. Additionally, it is possible to step through the history by Meta-P (Previous) and
Meta-N (Next). The di�erence between C-c C-a and C-c C-b is that in the second case, the
bu�er's contents is not saved before calling LoPiX.

2 Programming with LoPiX

Programs are collections of facts and rules, similar to Prolog programs. In addition to logical
facts and rules, system commands can be used for user interaction with LoPiX.

After entering starting LoPiX with a program (or typing C-c C-c in an emacs program
bu�er holding the program), the following happens: LoPiX reads foo.lpx rulewise using the
XPathLog parser.

� Facts und rules are added to the current program held by the the interpreter. Note that no
evaluation takes place until the system query \?- sys.eval." or \?- sys.strat.doIt."
is encountered.

� Queries are answered immediately:

{ System queries are executed by sending messages to interface objects. Syntactically,
system commands are path expressions of the form:

?- sys.expression.

Most system commands which are relevant to the user are directly applied to the user
interface object called sys; e.g., for \?- sys.eval.", the current program is evaluated
wrt. the current state of the database.

{ Other queries are passed to the evaluation component which answers them according to
the current state of the database.

� In case of a syntax error, the process is terminated and the error is reported.

When the end of the program is reached, control is given back to the calling level. The
database then contains a model of the program evaluated so far.

2.1 System Commands

The following built-in system commands are provided:

2 PROGRAMMING WITH LOPIX 8

?- sys.consult@("foo.lpx"). read the program �le foo.lpx
?- sys.load@("foo.lpx"). load a program �le containing only

facts directly into the databases (e.g., for loading
predicates from ASCII representations)

?- sys.eval. evaluate the current program
?- sys.strat.doIt. evaluate a stratum (see Sec. 2.1.1)
?- sys.echo@("..."). print argument string
?- sys.break.doIt. stop program execution and get into

interactive mode
?- sys.return. continue program (entered in interactive mode

after sys.break.doIt.)
?- sys.end. exit LoPiX

A number of frequently used system commands are loaded to the readline history.

2.1.1 Blocks and Strati�cation

Sequences of queries (in practice, this concerns mainly system commands) can be combined in
a block : A block is an interface object providing the method doIt. This executes the queries
contained in the block. Of course, the same e�ect could be achieved by consulting a �le with
the commands or queries. But for short command series often recurring it is more convenient
to use a block as a shorthand without having to consult external �les.

Syntactically, a block declaration is a multivalued method de�nition with host object sys.
Between the curly braces stands a sequence of goals, i.e., queries (without \?-"). Note that
in contrast to the XPathLog semantics of multi-valued methods, the goals form a list here,
not a set, i.e., the order is relevant. Note that you can use logical queries (besides system
commands) in blocks, too, as far as they contain only one goal.

Strati�cation. The interplay between the database and the current program allows a user-
strati�cation of programs: a set of rules which is a part of a larger program, can be executed
by the two system queries

... some rules ...

?- sys.eval.

?- sys.forgetProgram.

... some more rules ...

?- sys.eval.

First, the �rst set of rules is evaluated by \?- sys.eval.", computing a database. Then,
forgetProgram clears the current program, the contents of the database remains unchanged
and the second set of rules is evaluated wrt. this database.

Thus, an important example is the de�nition of a block strat which makes strati�cation
of programs more readable. (This is done in con�g.lpx by default):

?- sys[strat->>{sys.eval,

sys.forgetProgram}].

Thus, calling

3 DOCUMENT ACCESS AND QUERIES IN LOPIX PROGRAMS 9

?- sys.strat.doIt.

executes \?- sys.eval." and \?- sys.forgetProgram." sequentially: to separate the
strata of a program, simply put the command between them.

Besides the method doIt, a block has the method display. It lists the contents of the
block as a list of queries (adding the query prompt \?-"). In the example above calling the
method \?- sys.strat.display." will print

Block("

?- sys.eval.

?- sys.forgetProgram.

")

Strati�cation is an important matter when dealing with negation, when facts have to be
computed completely before their negation is used. The system command \?- sys.strat.doIt."
may also be used in negation-free XPathLog programs to speed up the evaluation.

Interrupting an Evaluation. A running evaluation can be canceled without terminating
the whole system by pressing Control-\. Then, a QUIT signal is sent to the system, causing
a break
ag to be set. In order to return a somewhat consistent object world, the current
TP -round has to be �nished, such that it possibly takes some time before the system actually
halts. After canceling, the partial model evaluated up to this point can be examined by
querying. Calling \?- sys.eval." again will continue the evaluation process where it was
halted.

The pretty printer checks the QUIT signal, too, so that printing huge answer sets can be
stopped.

3 Document Access and Queries in LoPiX Programs

The internal data model of LoPiX is an (in the current version, restricted) XML data model
enhanced by some features known from the relational and the object-oriented data mod-
els: predicates, metadata (signatures and data for controlling document access), and a class
hierarchy.

3.1 The XPathLog Language

XPathLog is based on XPath. Constants are interpreted as names and elements of the
universe. For convention, constants start with lowercase letters whereas variables start with
uppercase ones.

� an XPathLog reference expression is an XPath expression which saties�es the following
conditions:

{ every element name or attribute name in a navigation step may be replaced by variable1,
name->variable2, or even variable1->variable2. Here, variable1 is bound to the name, ex-
tending the *" navigation wildcard, and variable2 is bound to the node(s).

{ for reference attributes @name, additional navigation steps may follow (implicit deref-
erencing).

3 DOCUMENT ACCESS AND QUERIES IN LOPIX PROGRAMS 10

{ the id function is not used (since XPathLog supports implicit dereferencing).

{ �lters do not contain logical or (to be replaced by two or more rules)

� arithmetic expressions, built-in predicates, and aggregations are described below.

� In the sequel, features which do not belong to the basic XML data model are described.
Let A, C, D, M , and Xi stand for XPathLog reference expressions.

� An is-a assertion is an expression of the form O isaC (object O is a member of class C),
or C subcl D (class C is a subclass of class D).
When parsing an XML document, for every element e of type t, e isat holds.

� A predicate is an expression of the form p(X1; : : : ;Xn). The special equality predicate is
written as X1 = X2.

� A signature atom is an expression of the form C[M=>D] or C[@A=>D]; denoting that
elements of type/class C have subchildren tagged with M of class D (if the class relation-
ships induced by XML documents is not changed, M = D), or that elements of type/class
C have an attribute named A which results in a instance of class D (if the class relation-
ships induced by XML documents is not changed, D 2 fliteral, objectg without further
distinction).

Signature atoms describe which properties apply to instances of certain classes. Signature
atoms together with the class hierarchy form the schema of an XPathLog database.

� Amethod application is an expression of the formX:m@(X1; : : : ;Xn). Method applications
are also references whose value is de�ned via equality. A special kind of method applications
are active methods (e.g., for accessing an url or for exporting a document) which are
described below.

� in the rule head, further restrictions apply to yield a well-de�ned semantics, they are also
described below.

3.2 Accessing Documents

Every resource available in the Web has a unique address, called Uniform Resource Locator

(URL), which is used to initiate access to the document. There is a prede�ned class url
containing Web address strings and a prede�ned built-in active method parse that, when
applied to a member of url, accesses the corresponding Web document and integrates it into
the database. The schema for Web access is:

(url subcl string)[parse => xmldoc].

Whenever for an instance u of class url the method u.parse(. . .) is called by a rule head, the
document at the address u is automatically loaded and analyzed according to the arguments:

� u.parse@("xml") parses the contents of u as an xml document and assigns its root to
the reference u.parse@("xml"). u.parse@("xml") has a child node which represents the
outermost document node. In course, this node has children and attributes and so on,
similar to the DOM representation (see below). This structure is then queried by XPathLog
reference expressions.

� u.parse@("dtd") parses u as a DTD and generates a suitable signature which applies to
every document which uses this DTD. The signature is queried by signature expressions,
or it can be dumped with the system command

?- sys.theOMAccess.export@("sig").

The example parse-dtd.lpx illustrates DTD parsing and its result.

3 DOCUMENT ACCESS AND QUERIES IN LOPIX PROGRAMS 11

By evaluating rules of the form

u isaurl, u.get :- <body> ,

the internal database is extended by new XML documents. Thus, loading Web documents
is completely data-driven. New documents are fetched depending on information and links
(i.e., URLs or XLinks) found in already known documents.

As long as only a single document is considered, it is recommended to assign its (local)
root to the global constant root which is used for evaluating expressions of the form //...; as
it is done in smallmondial.lpx:

mondial[@xml->\�le:smallmondial.xml" isa url].
U.parse@(xml) = root :- mondial[@xml->U].

If several documents have to be considered, it is useful to assign constants to their roots, e.g.

germany[@xml->\�le:germany.xml" isa url].
france[@xml->\�le:france.xml" isa url].
U.parse@(xml) = X :- X[@xml->U].

Then, the constants can be used as starting points for XPathLog reference expressions, e.g.

?- germany//city/name->C.

3.3 Querying the Database

In this section, we use the Mondial database [Mon] as an example (XML-�les: mondial-2.
0.xml and mondial-europe-2.0.xml; use lopix/examples/mondial-example.flx). The
�le is accessed by

mondial[@xml->\�le:mondial-europe-2.0.xml" isa url].
U.parse@(xml) = root :- mondial[@xml->U].

and can then be queried by XPathLog reference expressions.

Example 2 (XPathLog queries)

Pure XPath expressions: pure XPath expressions (i.e., without variables) are interpreted

as existential queries which return true if the result set is non-empty:

?- //country[name!text() = \Germany"]//city/name!text().
true

since the country element which has a name element with the text contents \Germany"

contains at least one city descendant with a name element with non-empty text contents.

Output Result Set: The query \?- xpath->N" for any xpath binds N to all nodes belonging

to the result set of xpath:

?- //country[name!text() = \Germany"]//city/name!text()->N.
N/\Stuttgart"
N/\Mannheim"
...

If the result set does not contain literals, but elements, their internal ids are returned:

?- //country[name!text() = \Germany"]//city/name!text()->N.
C/f0 1880
C/f0 1888
C/f0 1895
...

3 DOCUMENT ACCESS AND QUERIES IN LOPIX PROGRAMS 12

Additional Variables: XPathLog allows to bind all nodes which are considered by an ex-
pression (both by the access path to the result set, and in the �lters):

The following expression returns all tuples (N1; C;N2) such that the city with name N2
belongs to the country with name N1 and car code C:

?- //country[name!text()->N1 and @car code->C]//city/name!text()->N2.
N2/"Stuttgart" C/"D" N1/"Germany"
N2/"Mannheim" C/"D" N1/"Germany"
N2/"Karlsruhe" C/"D" N1/"Germany"
...

Local Variables: Queries can also contain local variables which are used for joins or con-

ditions; their bindings do not occur in the output; local variables are of the form X:
The following XPath expression returns all names of cities s.t. the city belongs to a coun-

try whose name is known and its population is higher than 100000, and its latitude is not

known:
?- //country[name!text()->N1]//city[@population-> P and not latitude]/name!text()->N2,

P > 100000.

The semantics of this query is a set of variable bindings for N1 and N2.

An equivalent expression without local variable is

?- //country[name!text()->N1]
//city[@population > 100000 and not latitude]/name!text()->N2.

Dereferencing: Reference attributes can be resolved in path expressions for navigating through

the XML database:

For every organization, give the name of the seat city and all names and types of members:

?- //organization[name!text()->N and @abbrev->A and @seat/name!text()->SN]
/members[@type->MT]/@country/name!text()->MN.

One element of the result set is e.g.,

N/\. . . " A/\UN" SN/\New York" MT/\observer" MN/\Switzerland"

The following query is equivalent, using a join of literals connected by the local variable

Org instead of navigation:

?- //organization-> Org[name!text()->N and @abbrev->A and @seat/name!text()->SN],
Org/members[@type->MT]/@country/name!text()->MN.

The following query yields the abbreviations of all organizations which are seated in the

capital of one of their members:

?- //organization[@abbrev->A and @seat = members/@country/@capital].

We can additionally add variables to bind the names of the organization, of the country,

and of the seat city:

?- //organization[name!text()->N and
@seat = members/@country[name!text()->CN]/@capital]

/@seat/name!text()->CN.

Negation in Filters: The following query yields all organizations which are not seated in a

city in some member country

?- //organization[name!text()->N and not @seat = members/@country//city].

The answer includes those where no seat is known, since the �lter predicate says \not those

where (i) the seat attribute is de�ned, and (ii) references a city in a country which is a

member".

4 XPATHLOG RULES 13

Navigation Variables: Variables can also range over element or attribute names:
Are there elements which have a name subelement with the pcdata contents \Monaco", and

of which type are they?

?- //Type->X[name!text()=\Monaco"]
Type/country X/country-monaco
Type/city X/city-monaco

Note that we use the \=" predicate for comparison with a constant in the �lter.

Axes: LoPiX support the axes self, child, parent, descendant, ancestor, attribute, and sibling.
Since the current version does not actively support the ordering of children (although the

evaluation strategy preserves that ordering in most cases) we do not distinguish preceding-

sibling and following-sibling.

The �le mondial-example.lpx contains many more instructive queries.

4 XPathLog Rules

XPathLog rules are logical rules of the form

head :- body.

over XPathLog expressions (where we additionally allow conjunctions in the rule head).
To cut long theory short, evaluation in LoPiX means bottom-up evaluation with user-de�ned
strati�cation; i.e., an intuitive, easy-to-grasp rule based semantics. Given a program, i.e., a set
of rules, the rule bodies (right-hand side) are evaluated like queries, yielding a result set. The
variables in the rule heads are instantiated according to the result sets, specifying the facts
to be added to the database. In a step, all rules in a program are evaluated simultaneously.
As long as they yield new facts, the process is iterated (TP operator of Logic Programming).

Programs can be cut into subprograms by strata (as introduced in Section 2.1.1). Then,
the strata are evaluated sequentially, each of tem starting with the database which results from
the evaluation of the previous one (see program reachable.flx for an example). Section 6
gives a more detailed overview of the semantics.

Right Hand Side. The body of an XPathLog rule is a conjunction of XPathLog expres-
sions. The evaluation of the body wrt. a given database yields variable bindings which are
propagated to the rule head where facts are added to the database.

4.1 Left Hand Side

Using logical expressions for specifying an update is perhaps the most important di�erence
to approaches like XSLT, XML-QL, or Quilt where the structure to be generated is always
speci�ed by XML patterns (this implies that these languages do not allow for updating existing
nodes { e.g., adding children or attributes {, but only for generating complete nodes). In
contrast, in XPathLog, existing nodes are communicated via variables to the head, where
they are modi�ed when appearing at host position of atoms.

The head of an XPathLog rule is also a conjunction of XPathLog expressions using only
the child and sibling axes, the // operator is allowed only in leftmost position, without
negation, disjunction, indexing, and built-in functions (because all these things would cause
ambiguities what update is intended). When used in the head, the / and / operators and the

4 XPATHLOG RULES 14

[. . .] construct specify which properties should be added or updated (thus, [. . .] does not act
as a �lter, but as a constructor).

Modi�cation of Elements. When using the child or attribute axis for updates, the host
of the expression gives the element to be updated or extended; when a sibling axis is used,
e�ectively the parent of the host is extended with a new subelement.

Generation or Extension of Attributes. An expression of the form X[@a->V] speci�es
that the attribute @a of the node X should be set or extended with V . If V is not a literal
value but a node, a reference to V is stored, and in case of generating output, @a is represented
as an IDREF attribute.

Example 3 (Attributes) We add the data code to Switzerland, and make it a member of

the European Union:

C[@datacode->\ch"], C[@memberships->O] :-
//country->C[car code=\CH"], //organization->O[abbrev!text()=\EU"].

results in

<country datacode=\ch" car code=\CH"
memberships=\org-efta org-un org-eu . . . "> . . .

</country>

We discuss insertion of new subelements below, after showing how to create elements.

Creation of Elements. Elements can either be created as free elements by atoms of the
form ==name[:::] (meaning \some element of type name" { in the rule head, this is interpreted
to create an element which is not a subelement of any other element) or as subelements.

Example 4 (Creation of a free element) We create a new (free) country element (re-
member that in Section 3.2, we equated root to the root node of the parsed Web page):

//country[name->\Bavaria" and @car code->\BAV" and
@capital->X and city->X and city->Y] :-

//city->X[name!text()->\Munich"], //city->Y[name!text()->\Nurnberg"].

Note that the two city elements are linked as subelements. This operation has no equivalent

in the \classical" XML model: these elements are now children of two country elements.

Copying elements is described below. Thus, changing the elements e�ects both trees. By

linking elements, it is possible to introduce cycles in the document hierarchy.

For the subsequent examples, we associate aliases with the \Bavaria" and \Germany"
elements:

C = bavaria :- //country->C[name!text()->\Bavaria"].
C = germany :- //country->C[name!text()->\Germany"].

Insertion of Subelements and Attributes As shown above, elements are extended with
subelements or attributes by using �lter syntax in the rule head:

Example 5 (Subelements) The following two rules are equivalent to the above ones:

5 BUILT-IN FEATURES 15

//country[name->\Bavaria"].
C[@car code->\BAV" and @capital->X and city->X and city->Y] :-

//city->X[name!text()->\Munich"], //city->Y[name!text()->\Nurnberg"],
//country->C[name!text() = \Bavaria"].

Here, the �rst rule creates a free element, whereas the second rule uses the variable binding

to C for inserting subelements and attributes.

Generation of Elements by Path Expressions. Additionally, subelements can be cre-
ated by path expressions in the rule head which create nested elements which satisfy the given
path expression.

Example 6 (Generation of Subelements) The ethnicgroups subelements of Germany are

copied as subelements of Bavaria:

bavaria/ethnicgroups[!text()->E and @percentage->P] :-
germany/ethnicgroups[!text()->E and @percentage->P].

Here, new elements are created which can be changed independently from the original ones.

Path expressions can be arbitrarily nested:

Example 7 (Generation of Nested Elements)

The path expression n/a/b/c[name->>m] generates the XML tree fragment
<a> <c>

<name attributes of m> contents of m </name>
</c>

In another example, we show how data can be restructured:

Example 8 (Creation of free elements) The use of variables allows to create elements

whose name is given by an attribute of another element (casting strings silently into names,

which is very useful for data restructuring and integration): From the elements
<water type=\river" name=\Mississippi"> ... </water>
<water type=\sea" name=\North Sea"> ... </water> ,

the rule //T[name!text()->N] :- //water[@type->T and name!text()->N]
creates <river name=\Mississippi"/> and <sea name=\North Sea"/> .

Attributes and contents are then transformed by separate rules which use name!text() for

identi�cation. Properties are copied by using variables at element name and attribute name

position:

X[@A->V] :- //water[@type->T and name!text()->N and @A->V], //T->X[name!text()->N].
X[S->V] :- //water[@type->T and name!text()->N and S->V], //T->X[name!text()->N].

5 Built-in Features

The LoPiX implementation of XPathLog provides some built-in features, namely a comfort-
able handling of PCDATA contents, the equality predicate, the built-in class integer, several
comparison predicates, the basic arithmetic operators, predicates for string handling, and
aggregate functions.

5 BUILT-IN FEATURES 16

5.1 Handling of Literal Values

Literal values can either be represented as attributes or as PCDATA contents. Similar to XPath
queries, XPathLog supports automatical casting from PCDATA-only elements into literals in
queries and in comparison predicates. Casting can be turned on and o� using the system
command

?- sys.annotatedLiterals@(\on").
?- sys.annotatedLiterals@(\o�").

When annotatedLiterals is on, variables which are bound to elements which PCDATA contents,
are output as literal values (this does not e�ect the variable binding which is used when
propagating values to the rule head { there, the variable is still bound to the node). Also, in
arithmetics and comparisons, the literal value is used.

Example 9 (Handling of Literals) Consider the following XML fragment (smallmondial.xml):
<country car code\D" >

<population year=\1997">83536115</population>
</country>

Here, population is an annotated literal, i.e., it can act as a literal or as an element:

?- //country[@car code->C and population->P[year->Y] > 1000000].
N/\CH" Y/1997 P/83536115

Note that the query

?- 83536115[year->Y].
false

does not yield any results.

In a rule, e.g.,

//bigcountry[@car code->C and population->P] :-
//country[@car code->C and population->P[year->Y] > 1000000].

P is bound to the node, and the new free element
<bigcountry car code\D" >

<population year=\1997">83536115</population>
</bigcountry>

is created (where the population subelement is not copied, but linked from the old one).

Example 10 The equality predicate \=" does not support annotated literals; instead, equiv
has to be used:

?- //country[@car code->C and population = 83536115].
false

?- //country[@car code->C and equiv(population,83536115)].
C/\D"

5.2 Equality

Objects in XPathLog are uniquely determined by their object identi�ers which are only used
internally and are invisible to the user, who has to access objects by their object names.
Every object name references exactly one object. However, there may be several object
names denoting the same object; often, such equalities are derived during program execution.

5 BUILT-IN FEATURES 17

Example 11 Consider two data sources, gs and terra, which provide geographical informa-
tion. cia uses english names, whereas and terra uses german names. Then, city objects can

be equated, fusing the contents:

X = Y :- gs//city->X[equiv(name,\Munich")], terra//city->Y[equiv(name,\Muenchen")].

or
X = munich :- gs//city->X[equiv(name,\Munich")].
X = muenchen :- terra//city->X[equiv(name,\Muenchen")].
muenchen = munich.

Then, in the scond case, the same element is addressed by the expressions

?- munich.
?- muenchen.
?- gs//city->X[equiv(name,\Munich")].
?- terra//city->X[equiv(name,\Muenchen")].

and has all subelements which the individual elements had before, and also the attributes are

the union of the original attributes:

?-munich/name!text()->N.
N/\Muenchen"
N/\Munich"

5.3 Integers, Comparisons and Arithmetics

Objects denoting integer or
oat numbers, or strings are di�erent from other objects because
the usual comparison operators are de�ned for them, as well as several datatype-speci�c func-
tions (arithmetics, string handling). There is no built-in class integer because it would contain
an in�nite number of instances. Instead there is a built-in predicate integer(<argument>) in
LoPiX; analogously for
oat and string.

Within a query or a rule body, relations between integer numbers may be tested with the
comparison predicates1 \<",\>", \<=" or \>=".

To guarantee safety variables that appear in a comparison P-atom have to be bound by
another atom or molecule in the rule body. Comparison predicates are not allowed in rule
heads.

The basic arithmetic operations addition \+", subtraction \-", multiplication *" and in-
teger division \/" are also implemented in LoPiX. Arithmetic expressions may be constructed
in the usual way, even complex expressions, e.g., \3 + 5 + 2" or \3 + 2 * 3" are possible.
Note that the blanks between an arithmetic operator and its operands are mandatory, 2+2
leads to a parser error message.

Arithmetic expressions are only allowed in (in-)equality-predicate atoms in a rule body or
in �lters, e.g., \X = Y + 2", \3 * X = Y + 4".
Objects denoting integers must not be equated to other integer or string objects because their
object identity is not independent from their object name. Unfortunately, avoiding this by a
static check is impossible since integer objects may be bound to variables in a rule head. If
an equation of two di�erent integer objects is derived during the evaluation of an XPathLog
program, an error is reported.

1Note that comparison predicates are used in in�x notation in contrast to other predicate symbols.

5 BUILT-IN FEATURES 18

5.4 String handling

Analogously to integers, there are several prede�ned operations for strings. These are provided
by the built-in predicates which all have a �xed arity. Using them with a wrong arity causes
a parser error message. Furthermore these predicates can only be used in rule bodies:

string(<arg>) is true, if <arg> is a string.

strlen(<string>, <value>) holds if <value> (which can be given a constant or a variable) rep-
resents the length of <string>. For practical reasons, variables at position of <string> have
to be bound by other molecules in the rule body (otherwise <strlen> fails), because a query
like \show all strings with a certain arity" e.g., \?- strlen(X,40)." may lead to an answer
set that is not in�nite but too huge to be handled. Normally strlen is used in the following
way to return the length of a given string:
\?- strlen("logic",X)."

strcat(<string1>, <string2>, <string3>) succeeds if <string3> is the concatenation of <string1>

and <string2>. E.g., \?- strcat("a","b",X)." returns the binding X/"ab" whereas \?- str-
cat("a",Y,"ab")." leads to Y/"b". If the arguments contain more than one variable, e.g.,
\?- strcat("a",Y,X).", either Y or X have to be bound by other molecules in rule body,
otherwise strcat fails. The reason for this limitation is the same as in the case of strlen.

substr(<string1>, <string2>) holds if <string1> is a substring of <string2>. Comparison be-
tween the two strings is case insensitive, for example \?- substr("DaTA","database")." re-
turns true. If the arguments contain any variable, it has to be bound by other molecules in
the rule body, otherwise substr fails. For \?- substr("logic",X)." the corresponding answer
set would be in�nite.

match(<string>, <pattern>, <fmt-list>, <variable-list>),

pmatch(<string>, <pattern>, <fmt-list>, <variable-list>) �nds all strings contained in <string>

(which may be a string or a Web document) which match the pattern given by a regular
expression in <pattern>. <fmt-list> is a format string describing how the matched strings
should be returned in <variable-list>. This feature is useful when using groups (expressions
enclosed in \(...\)) in <pattern>. In the format string <fmt-list>, groups are referred
to by their number: $n,where n ranges from 1 to 9. If <fmt-list> is the empty string
("") all groups are returned without formatting. With the exception of <variable-list>,
all arguments must be bound. pmatch does the same, using Perl regular expressions; we
recommend using pmatch.

For example,

?- match("linux98","\([0-9]\)\([0-9]\)","$2swap$1",X).

returns X/"8swap9" (the �rst and second match are swapped).

5.5 Data Conversion

LoPiX internally distinguishes objects (e.g., john from literals (e.g., 42, 3.14, or \John"). The
literal types are further distinguished: strings are always given in quotes (\john"), integer
objects are given as-is, and
oats have to be distinguished by #, from literals (#3.14).

Example 12 Note that 3.14 and #3.14 actually are di�erent things: In the �rst example,

#3.14 is interpreted as a
oat:

b[m->#3.14].

5 BUILT-IN FEATURES 19

?- sys.strat.doIt.

?- b[m->C].

?- b[m->C], D = C + 1.

% Answer to query : ?- b[m -> C].

C/#3.14

% Answer to query : ?- b[m -> C], D = C + 1.

C/#3.14 D/#4.14

In the second example, 3.14 is not a
oat:

a[m->#3.14].

?- sys.strat.doIt.

?- a[m->C].

?- a[m->C], D = C + 1.

% Answer to query : ?- a[m -> C].

C/3.14

% Answer to query : ?- a[m -> C], D = C + 1.

false

But, what happens there? Obviously, the program is syntactically correct. So, lets ask what

the database looks like then:

?- sys.theOM.dump.

3 [14 -> 3.14].

a [m -> 3.14].

... which is correct: 3.14 is interpreted as the result (an anonymous object) of applying the

method 14 to the object 3.

Often, a conversion between datatypes is needed. In LoPiX, data conversion is provided by
built-in predicates:

string2integer(A,B) is true, if B is the integer obtained when reading the string A from left
to right as far as possible. e.g., the following holds:

string2integer(\42",42).
string2integer(\3D",3).
string2integer(\3.14",3).

string2
oat(A,B) is true, if B is the
oat obtained when reading the string A from left to
right as far as possible (a leading # is ignored, so both \normal"
oats and the XPathLog
representation of
oats can be read). E.g., the following holds:

string2
oat(\42",42).
string2
oat(\3D",3).
string2
oat(\3.14",#3.14).
string2
oat(\#3.14",#3.14).
string2
oat(\3.14D",#3.14).

Note that integers are seamlessly integrated with
oats: LoPiX never prints 3 as #3, but
always understands #3 as 3.

string2object(A,B) is true, if B is the object whose id is A (converted to lowercase letters).

5 BUILT-IN FEATURES 20

?- string2object("john",O).

% Answer to query : ?- string2object("john",O).

O/john

?- string2object("John",O).

% Answer to query : ?- string2object("John",O).

O/john

?- string2object(S,john).

% Answer to query : ?- string2object(S,john).

S/"john"

If the given string denotes an integer or a
oat, B is the corresponding integer or
oat
object.

Note that the above predicates are \bidirectional", but at least one of the arguments has to
be bound:

?- string2float("3.14",B).

% Answer to query : ?- string2float("3.14",B).

B/#3.14

?- string2float(X,#3.14).

% Answer to query : ?- string2float(X,#3.14).

X/"3.14"

5.6 Aggregation

An aggregation term has the form

aggfX[G1,. . . ,Gn]; bodyg

where agg is one of the usual aggregation operators min, max, count, and sum and b is the
aggregation body (that is, a conjunction of literals).

aggfX[G1,. . . ,Gn]; bodyg

returns one value for every vector of values for [G1,. . . ,Gn]: All variable bindings satisfy-
ing body are calculated (intentionally yielding bindings for X,G1,. . . ,Gn). Then, the X's are
grouped by [G1,. . . ,Gn] and for every group, agg is calculated and returned.
The list of grouping variables [G1,. . . ,Gn] is optional and may be omitted, e.g.,

?- N = countfC; //country->Cg.

If the aggregation body contains other variables than the grouping variables, these are local
to the aggregation. The grouping variables may occur anywhere in the rule body (respectively
the higher level aggregation body).

Like arithmetic expressions, aggregation terms may only occur in the built-in predicates
\=", \<", \>", \<=", \>=". However, the aggregation body may contain built-in predicates
with other aggregation terms. Thus, aggregation can be nested.

The semantics of an aggregation term in a comparison predicate, e.g., the inequality V <
aggfX[G1; : : : ; Gn]; bodyg is de�ned as the conjunction V < Z;Z = aggfX[G1; : : : ; Gn]; bodyg.

Syntactic Restrictions For obvious reasons the following syntactic restrictions apply:

6 EVALUATION SEMANTICS 21

� The aggregation variable and all grouping variables must occur in the aggregation body.

� The variables X,G1,. . . ,Gn are pairwise distinct.

� The aggregation body has to obey the safety restrictions, i.e., no variable may represent
an in�nite answer set.

Violating these restriction will cause an error.
The operator count gives the total number of variable bindings to the aggregation variable.

Note that, di�erent from count, the operators min, max and sum ignore objects other than
integer without producing any error message or warning.

myset[item ->f10,40,apple,27,cheeseg].
?- Z = countfX; myset[items->X]g.
?- Z = sumfX; myset[items->X]g.

will yield 5 and 77.

Aggregates and Strati�cation As in the case of negation, the facts to be used in the
aggregation body has to be completely established before the actual aggregation.

5.7 Output Handling

For every node N , the active method

N .export@(doctype,\�lename"). % (in the head of a rule, or as a fact)

generates XML output of the subtree rooted in N , consisting of all subelements and at-
tributes which are speci�ed by the currently stored signature, to the given �lename. The
DTD metadata (public/system, and the url) has to be set by methods, e.g.,

country isa doctype.
country.public = "mondial-europe-2.0.dtd".
?- sys.strat.doIt.
germany.export@(country,"exp1").
?- sys.strat.doIt.

If �lename is the empty string, the output is done at standard output. Similarly,

?- sys.theOMAccess.export@("xml", "�lename", "doctype", "object").

as a system command allows to export a given element2. The example parse-dtd.lpx illus-
trates the export functionality. The signature can either be given by parsing a DTD, or as
facts in the program.

6 Evaluation Semantics

An XPathLog program is a collection of facts and rules in arbitrary order. Evaluating these
facts and rules bottom-up, an object base is computed which may then be queried. Note,
however, that queries are not part of a program. They are evaluated (respectively
executed in case of system commands) when parsing the program (respectively thze stratum)
{ before evaluating the program/stratum.

2note that the system command version can be given interactively; whereas only the fact version accepts

variables

6 EVALUATION SEMANTICS 22

Program evaluation. As already mentioned, LoPiX uses a bottom-up evaluation strategy.
This algorithm iteratively deduces new facts from already established facts using a forward
chaining technique [CGT90]: A program P gives rise to an operator TP on partial models (as
de�ned for XPathLog in []). This operator adds all those facts to the model which can be
derived from the already existing facts by a single application of a program rule (no recursion).
To evaluate recursive rules, it is necessary to iterate this operator. Starting with the empty
model (or a given �nite object world), TP is applied iteratively until a �xpoint T1

P
(;) is

reached.
A single application of TP can be achieved with \?- sys.tp.", although, the user will

in general use \?- sys.eval." for complete evaluation (which means iteration of deductive
�xpoints).

Note that the database is not cleared before applying TP , that is, the evaluation does not
start with the empty set, by default. This is an important feature for dividing large programs
into smaller parts or for user-strati�cation (using \sys.strat.doIt", see Section 2.1.1).

Semi-naive Evaluation: LoPiX includes an evaluation component providing a semi-naive
evaluation mode. The evaluation mode can be set by a system command:

?- sys.theEval.mode@("seminaive").

?- sys.theEval.mode@("naive").

Naive evaluation is the default setting (this may be changed in the con�guration �le lopix.cfg).
Evaluating in semi-naive mode is promising for recursive programs with many TP rounds to
make up for the overhead due to program analysis, rewriting and delta predicate maintainance.

Semi-naive evaluation will probably be slow for programs that frequently change the class
hierarchy or equate objects, because this makes dependancy analysis very hard. To see the
rewritten program, set the debug mode "program".

6.1 Fixpoint Semantics

The evaluation strategy for XPathLog programs (without inheritance) is basically the same
as for Datalog programs. The bottom-up evaluation of an XPathLog program starts with
a given object base. Initially, this is the empty object base. Facts are rules with an empty
body, therefore always considered as true. The rules and facts of a program are evaluated
iteratively in the usual way. If there are variable bindings such that the rule body is valid in
the actual object base, these bindings are propagated into the rule head. New information
corresponding to the ground instantiations of the rule head or deduced due to the closure
properties is inserted into the object base3. This evaluation of rules is continued as long as
new information is obtained. As in the case of Datalog, the evaluation of a negation-free
XPathLog program reaches a �xpoint which coincides with the unique minimal model of that
program4. The minimal object base of an XPathLog program is de�ned as the smallest set
of atoms such that all closure properties and all facts and rules of the program are satis�ed.

3To avoid redundancy, in LoPiX most of the information generated by the closure properties is not inserted

into the object manager explicitely, but deduced when retrieving information.
4Note that this �xpoint is not necessarily �nite.

7 LEGACY: THE FLORID SYSTEM 23

6.2 Negation and Strati�cation

Negation in LoPiX is handled according to the in
ationary semantics [KP88]. Remember
that in a safe rule, every variable in a negated subgoal has to be limited by other subgoals.
Thus, only ground instantiated negated subgoals have to be considered during the evaluation.
Such an instantiation of a negated subgoal is evaluated as true if and only if the intermediate
object base given in the moment of the evaluation of the rule does not contain the corre-
sponding information. In
ationary semantics often yields unintended results. Hence, there
are other concepts to handle negation in logic programs. One of the most general solutions is
the three-valued Well-Founded Semantics [VGRS91]. A very common approach is to stratify
logic programs and to compute the perfect model [ABW88, Prz88]. Unfortunately, due to the
powerful syntax of XPathLog, the class of strati�ed programs is very small. Thus, automatic
strati�cation cannot be done by LoPiX for a large class of programs. Instead, programs have
to be strati�ed explicitly by the user with the system command \?- sys.strat.doIt." which
divides a program into several strata. Information queried by a negated subgoal has always
to be derived in lower strata than the stratum of the rule containing the negated subgoal.
The strati�cation command causes the evaluation of the rules in the higher stratum to be
deferred until the �xpoint of the lower stratum is computed. Moreover, the rules of the lower
stratum are not considered any more during the further evaluation.

7 Legacy: The Florid System

LoPiX is based on components of the Florid system [FHK+97], an implementation of F-
Logic [KLW95]. When LoPiX is called with the -florid option, e.g.,

malta:~/db/florid/examples> lopix -florid test.flp

it acts as Florid.

Acknowledgements. First of all, we want to thank Georg Lausen, the head of our group.
Furthermore, our thanks go to the former team members J�urgen Frohn, Rainer Himmer�oder,
Paul-Th. Kandzia, Bertram Lud�ascher, Christian Schlepphorst, and Heinz Upho� who de-
veloped Florid up to version 2.0 together with the students Thomas Beier, Thorsten Pfer-
dek�amper, Bernhard Seckinger, Markus Seilnacht, and Till Westmann from the universities
at Mannheim and Freiburg.

References

[ABW88] K. R. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pp. 89{148. Morgan Kaufmann, 1988.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

[CGT90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. 1990.

[Cla] J. Clark. SP: An SGML System Conforming to International Standard ISO 8879
{ Standard Generalized Markup Language. http://www.jclark.com/sp.

REFERENCES 24

[CRF00] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. In WebDB 2000, pp. 53{62, 2000.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL:
A Query Language for XML. In 8th. WWW Conference. W3C, 1999. World
Wide Web Consortium Technical Report, NOTE-xml-ql-19980819, www.w3.org/
TR/NOTE-xml-ql.

[FHK+97] J. Frohn, R. Himmer�oder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst.
FLORID: A Prototype for F{Logic. 1997.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the ACM, 42(4):741{843, 1995.

[KP88] P. Kolaitis and C. Papadimitriou. Why not Negation by Fixpoint? pp. 231{239,
1988.

[Mon] The Mondial Database. http://www.informatik.uni-freiburg.de/~may/

Mondial/.

[Prz88] T. C. Przymusinski. On the Declarative Semantics of Deductive Databases and
Logic Programs. In J. Minker, editor, Foundations of Deductive Databases and

Logic Programming, pp. 191{216. Morgan Kaufmann, 1988.

[Rob99] J. Robie. XQL (XML Query Language). http://www.metalab.unc.edu/xql/

xql-proposal.html, 1999.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2.
Computer Science Press, New York, 1989.

[VGRS91] A. Van Gelder, K. Ross, and J. Schlipf. The Well-Founded Semantics for General
Logic Programs. Journal of the ACM, 38(3):620 { 650, July 1991.

[XPa99] XML Path Language (XPath). http://www.w3.org/TR/xpath, 1999.

[XSL99] XSL Transformations (XSLT). http://www.w3.org/TR/xslt, 1999.

