
Java API for XML Processing
Version 1.1 Public Review

Comments to: jsr63-comments@eng.sun.com

James Duncan Davidson

Rajiv Mordani

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto CA 94303 USA
650 960-1300

October 2, 2000



cted
er the

y.
ms

ree

e
and
forth
l

's
ffee

other
Java(TM) API for XML Processing (JAXP) Specification ("Specification")
Version: 1.1
Status: Pre-FCS
Release: September 28, 2000

Copyright 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described therein may be prote
by one or more U.S. patents, foreign patents, or pending applications. Except as provided und
following license, no part of the Specification may be reproduced in any form by any means
without the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if an
Any use of the Specification and the information described therein will be governed by the ter
and conditions of this license and the Export Control and General Terms as set forth in Sun's
website Legal Terms. By viewing, downloading or otherwise copying the Specification, you ag
that you have read, understood, and will comply with all of the terms and conditions set forth
herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-
exclusive, non-transferable, worldwide, limited license (without the right to sublicense) under
Sun's intellectual property rights to review the Specification internally for the purposes of
evaluation only. Other than this limited license, you acquire no right, title or interest in or to th
Specification or any other Sun intellectual property. The Specification contains the proprietary
confidential information of Sun and may only be used in accordance with the license terms set
herein. This license will expire ninety (90) days from the date of Release listed above and wil
terminate immediately without notice from Sun if you fail to comply with any provision of this
license. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun
licensors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, and the Java Co
Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY
CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE
CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR
ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS



ment

your

ith

ment
nd
th 48

48

ide
ietary
-up,
OR OTHER RIGHTS. This document does not represent any commitment to release or imple
any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS
AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be
governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING,
PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims based on
use of the Specification for any purposes other than those of internal evaluation, and from any
claims that later versions or releases of any Specification furnished to you are incompatible w
the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND
If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Govern
prime contractor or subcontractor (at any tier), then the Government's rights in the Software a
accompanying documentation shall be only as set forth in this license; this is in accordance wi
C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with
C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in
connection with your evaluation of the Specification ("Feedback"). To the extent that you prov
Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-propr
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid
irrevocable license, with the right to sublicense through multiple levels of sublicensees, to
incorporate, disclose, and use without limitation the Feedback for any purpose related to the
Specification and future versions, implementations, and test suites thereof.





SECTION 1 Overview 7

What is XML? 7
XML and the Java™ Platform 8
About this Specification 8
Who Should Read this Document8
Development of this Specification9
Report and Contact 10
Acknowledgements 10

SECTION 2 Endorsed Specifications11

W3C XML 1.0 Recommendation 11
W3C XML Namespaces 1.0 Recommendation12
Simple API for XML Parsing (SAX) 2.0 12
Document Object Model (DOM) Level 2 13
XSLT 1.0 13

SECTION 3 Plugability Layer 15

SAX Plugability 15
DOM Plugability 17
XSLT Plugability 19
Thread Safety 21

SECTION 4 Packages javax.xml.parsers and
javax.xml.transform 23

public abstract class SAXParserFactory23
public abstract class SAXParser26
public abstract class DocumentBuilderFactory32
public abstract class DocumentBuilder36
public abstract class TransformFactory39
public abstract class Transform40
public class FactoryConfigurationError42
public class ParserConfigurationException43



SECTION 5 Conformance Requirements45

SECTION 6 Change History47

From 1.0 Final Release to 1.1 Public Review47
From 1.0 Public Release to 1.0 Final Release48
From 1.0 Public Review to 1.0 Public Release48

SECTION 7 Future Directions 51

Updated SAX and DOM Support51
Update XSL Plugability Support 51
Plugability Mechanism Enhancements52



SECTION 1 Overview
It is a
n

y

, as

es it.

b-
L
80’s
cu-

with
1.1 What is XML?

XML is the meta language defined by the World Wide Web Consortium (W3C)
that can be used to describe a broad range of hierarchical mark up languages.
set of rules, guidelines, and conventions for describing structured data in a plai
text, editable file. Using a text format instead of a binary format allows the pro-
grammer or even an end user to look at or utilize the data without relying on the
program that produced it. However the primary producer and consumer of XML
data is the computer program and not the end-user.

Like HTML, XML makes use of tags and attributes. Tags are words bracketed b
the’<’ and’>’ characters and attributes are strings of the form’name="value"’

that are inside of tags. While HTML specifies what each tag and attribute means
well as their presentation attributes in a browser, XML uses tags only to delimit
pieces of data and leaves the interpretation of the data to the application that us
In other words, XML defines only the structure of the document and does not
define any of the presentation semantics of that document.

Development of XML started in 1996 leading to a W3C Recommendation in Fe
ruary of 1998. However, the technology is not entirely new. It is based on SGM
(Standard Generalized Markup Language) which was developed in the early 19
and became an ISO standard in 1986. SGML has been widely used for large do
mentation projects and there is a large community that has experience working
Java API for XML Processing Version 1.1 7



Overview

8

ce
uch

ver-
se

ML
rm
rs

and
rams.

er-

ni-
-
.

in

nd
SGML. The designers of XML took the best parts of SGML, used their experien
as a guide and produced a technology that is just as powerful as SGML, but m
simpler and easier to use.

XML-based documents can be used in a wide variety of applications including
tical markets, e-commerce, business-to-business communication, and enterpri
application messaging.

1.2 XML and the Java™ Platform

In many ways, XML and the Java Platform are a partnership made in heaven. X
defines a cross platform data format and Java provides a standard cross platfo
programming platform. Together, XML and Java technologies allow programme
to apply Write Once, Run Anywhere™ fundamentals to the processing of data
documents generated by both Java based programs and non-Java based prog

1.3 About this Specification

This document describes the Java API for XML Processing, Version 1.1. This v
sion of the specification introduces basic support for parsing and manipulating
XML documents through a standardized set of Java Platform APIs.

When this specification is final there will be a Reference Implementation which
will demonstrate the capabilities of this API and will provide an operational defi
tion of the specification. A Technology Compatibility Kit (TCK) will also be avail
able that will verify whether an implementation of this specification is compliant
These are required as per the Java Community Process 2.0 (JCP 2.0).

1.4 Who Should Read this Document

This specification is intended for use by:

• Parser Developers wishing to implement this version of the specification
their parser.

• Application Developers who use the APIs described in this specification a
wish to have a more complete understanding of the API.
October 2, 2000



Development of this Specification

.
is

ess
.

nd

ls
This specification is not a tutorial or a user’s guide to XML, DOM, SAX or XSLT
Familiarity with these technologies and specifications on the part of the reader
assumed.

1.5 Development of this Specification

This specification was developed in accordance with the Java Community Proc
2.0. It was developed under the authorization of Java Specification Request 63
More information about the Java Community Process can be found at:

http://java.sun.com/jcp/

The specific information contained in Java Specification Request 63 can be fou
at:

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_063_jaxp.html

The expert group who contributed to this specification is composed of individua
from a number of companies. These individuals are:

• James Duncan Davidson (co-lead), Sun Microsystems

• Rajiv Mordani (co-lead), Sun Microsystems

• Jeff Mischinkinsky, Persistence

• Todd Karakashain, BEA

• Tom Reilly, Allaire

• Tom Bates, Informix

• Miles Sabin, CromwellMedia

• Wolfram Kaiser, POET

• Paul Boutros, eBusiness Technologies

• Pier Fumagalli, Apache Software Foundation

• Stefano Mazzocchi, Apache Software Foundation

• Takuki Kamiya, Fujitsu Ltd
Java API for XML Processing Version 1.1 9



Overview

10

ur
unity

ma-

he

,

al-
1.6 Report and Contact

Your comments on this specification are welcome and appreciated. Without yo
comments, the specifications developed under the auspices of the Java Comm
Process would not serve your needs as well. To comment on this specification,
please send email to:

jsr63-comments@eng.sun.com

You can stay current with Sun’s Java Platform related activities, as well as infor
tion on ourxml-interest andxml-announce mailing lists, at our website
located at:

http://java.sun.com/xml/

1.7 Acknowledgements

Many individuals and companies have given their time and talents to make this
specification, or the specifications that this specification relies upon, a reality. T
author of this specification would like to thank (in no particular order):

• David Megginson and the XML-DEV community who developed the SAX
API

• The W3C DOM Working Group chaired by Lauren Wood

• The JSR-63 Expert Group listed above

• Graham Hamilton, Mark Hapner, Eduardo Pelegri-Lopart, Connie Weiss
Jim Driscoll, Edwin Goei, Costin Manolache, Mark Reinhold, Bill Shan-
non and Will Iverson all of whom work at Sun Microsystems and whose t
ents have all reflected upon the development of this API.
October 2, 2000



SECTION 2 Endorsed Specifications
ch
r-

rds
for

ng

d.
This specification endorses and builds upon several external specifications. Ea
specification endorsed by this document is called out together with the exact ve
sion of the specification and its publicly accessible location. All of these standa
have conformance tests provided in the Technology Compatibility Kit available
this specification.

2.1 W3C XML 1.0 Recommendation

The W3C XML 1.0 Recommendation specifies the core XML syntax by subsetti

the existing, widely used international SGML1 text processing standard. It is a
product of the W3C XML Activity, details of which can be found at:

http://www.w3.org/XML/

The XML 1.0 Recommendation can is located at:

http://www.w3.org/TR/1998/REC-xml-19980210

1. Standard Generalized Markup Language, ISO 8879:1986(E) as amended and correcte
Java API for XML Processing Version 1.1 11



Endorsed Specifications

12

s

ics
it

g

da-

ons
This specification includes by reference the XML 1.0 Recommendation in its
entirety for the purposes of defining the XML language manipulated by the API
defined herein.

2.2 W3C XML Namespaces 1.0 Recommendation

The W3C XML Namespaces Recommendation defines the syntax and semant
for XML structures required to be distinct from other XML markup. In particular,
defines a mechanism whereby a set of XML markup may have a distinguishing
"namespace" associated with it, and the responsibility of XML parser in handlin
and exposing such namespace information.

The XML Namespaces 1.0 Recommendation is located at:

http://www.w3.org/TR/1999/REC-xml-names-19990114/

This specification includes by reference the XML Namespaces 1.0 Recommen
tion in its entirety.

2.3 Simple API for XML Parsing (SAX) 2.0

The Simple API for XML (SAX) is a public domain API developed cooperatively
by the members of the XML-DEV mailing list. It provides an event-driven inter-
face to the process of parsing an XML document.

An event driven interface provides a mechanism for a "callback" notifications to
application’s code as the underlying parser recognizes XML syntactic constructi
in the document.

The SAX 2.0 API is located at:

http://www.megginson.com/SAX/index.html

The pre 1.0 version of SAX 2 extensions is located at:

http://www.megginson.com/Software/sax2-ext-1.0pre.zip

The details of the XML-DEV mailing list can be found at
October 2, 2000



Document Object Model (DOM) Level 2

s

f a
e
t

-
s

the

-

e

http://xml.org/xml-dev/index.shtml

As of this writing SAX2 extensions is in pre 1.0 stage. This specification include
by reference the SAX 2.0 API and the pre 1.0 version of SAX2 extensions in its
entirety.

The API packages included by reference are:

• org.xml.sax

• org.xml.sax.helpers

• org.xml.sax.ext

2.4 Document Object Model (DOM) Level 2

The Document Object Model (DOM) is a set of interfaces defined by the W3C
DOM Working Group. It describes facilities for a programmatic representation o
parsed XML (or HTML) document. The DOM Level 2 specification defines thes
interfaces using Interface Definition Language (IDL) in a language independen
fashion and also includes a Java Language binding.

The DOM Level 2 Core Proposed Recommendation is located at:

http://www.w3.org/TR/2000/PR-DOM-Level-2-Core-20000927/

As of this writing the DOM Level 2 Core specification is still in Proposed Recom
mendation. This specification includes by reference both the abstract semantic
described for the DOM Level 2 Core Proposed Recommendation interfaces and
associated Java Language binding. It does not include the optional extensions
defined by the DOM working group. The API package included by this specifica
tion is:

• org.w3c.dom

2.5 XSLT 1.0

The XSL Transformations (XSLT) describes a language for transforming XML
documents into other XML documents or other text output. It was defined by th
W3C XSL Working group.
Java API for XML Processing Version 1.1 13



Endorsed Specifications

14

y.
The XSLT 1.0 Recommendation is located at:

http://www.w3.org/TR/1999/REC-xslt-19991116

This specification includes by reference the XSLT 1.0 specification in its entiret
October 2, 2000



SECTION 3 Plugability Layer
f a
n

rm,

pli-

le-

ent,
The endorsed APIs provide broad and useful functionality. However, the use o
SAX or a DOM parser typically requires knowledge of the specific implementatio
of the parser. Providing the functionality of the endorsed APIs in the Java Platfo
while allowing choice of the implementation of the parser, requires a Plugability
layer.

This section of the specification defines a Plugability mechanism to allow a com
ant SAX or DOM parser to be used through the abstractjavax.xml.parsers

API.

3.1 SAX Plugability

The SAX Plugability classes allow an application programmer to provide an imp
mentation of theorg.xml.sax.DefaultHandler API to aSAXParser imple-
mentation and parse XML documents. As the parser processes the XML docum
it will call methods on the providedDefaultHandler .

In order to obtain aSAXParser instance, an application programmer first obtains
an instance of aSAXParserFactory . TheSAXParserFactory instance is
obtained via the staticnewInstance method of theSAXParserFactory class.
Java API for XML Processing Version 1.1 15



Plugability Layer

16

ta-
e.

o
n

d

r

a

This method uses the following ordered lookup procedure to determine theSAX-
ParserFactory implementation class to load:

• Use thejavax.xml.parsers.SAXParserFactory system property

• Use the JAVA_HOME (the parent directory where jdk is installed)/lib/
jaxp.properties for a property file that contains the name of the implemen
tion class keyed on the same value as the system property defined abov

• Use the Services API (as detailed in the JAR specification), if available, t
determine the classname. The Services API will look for the classname i
the file META-INF/services/javax.xml.parsers.SAX-
ParserFactory in jars available to the runtime.

• Platform defaultSAXParserFactory instance.

If the SAXParserFactory implementation class cannot be loaded or instantiate
at runtime, aFactoryConfigurationError is thrown. This error message
should contain a descriptive explanation of the problem and how the user can
resolve it.

The instance ofSAXParserFactory can optionally be configured by the applica-
tion programmer to provide parsers that are namespace aware, or validating, o
both. These settings are made using thesetNamespaceAware andsetValidat-

ing methods of the factory. The application programmer can then obtain aSAX-

Parser implementation instance from the factory. If the factory cannot provide
parser configured as set by the application programmer, then aParserConfigu-

rationException is thrown.

3.1.1 Examples

The following is a simple example of how to parse XML content from a URL:

SAXParser parser;
DefaultHandler handler = new MyApplicationParseHandler();
SAXParserFactory factory = SAXParserFactory.newInstance();
try {

parser = factory.newSAXParser();
parser.parse("http://myserver/mycontent.xml", handler);

} catch (SAXException se) {
// handle error

} catch (IOException ioe) {
// handle error

} catch (ParserConfigurationException pce) {
// handle error
October 2, 2000



DOM Plugability

e

tion

nd
}

The following is an example of how to configure a SAX parser to be namespac
aware and validating:

SAXParser parser;
DefaultHandler handler = new MyApplicationParseHandler();
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
factory.setValidating(true);
try {

parser = factory.newSAXParser();
parser.parse("http://myserver/mycontent.xml", handler);

} catch (SAXException se) {
// handle error

} catch (IOException ioe) {
// handle error

} catch (ParserConfigurationException pce) {
// handle error

}

An example of how one could pass the System property as a command line op
is shown below

java -Djavax.xml.parsers.SAXParserFac-
tory=org.apache.xerces.jaxp.SAXParserFactoryImpl
user.parserApp.

3.2 DOM Plugability

The DOM plugability classes allow a programmer to parse an XML document a
obtain anorg.w3c.dom.Document object from aDocumentBuilder implemen-
tation which wraps an underlying DOM implementation.

In order to obtain aDocumentBuilder instance, an application programmer first
obtains an instance of aDocumentBuilderFactory . TheDocumentBuilder-

Factory instance is obtained via the staticnewInstance method of theDocu-

mentBuilderFactory class.

This method uses the following ordered lookup procedure to determine theDocu-
mentBuilderFactory implementation class to load:
Java API for XML Processing Version 1.1 17



Plugability Layer

18

ta-
e.

o
n

user

ting,

t

te
• Use thejavax.xml.parsers.DocumentBuilderFactory system prop-
erty

• Use the JAVA_HOME (the parent directory where jdk is installed)/lib/
jaxp.properties for a property file that contains the name of the implemen
tion class keyed on the same value as the system property defined abov

• Use the Services API (as detailed in the JAR specification), if available, t
determine the classname. The Services API will look for the classname i
the file META-INF/services/javax.xml.parsers.Document-
BuilderFactory in jars available to the runtime.

• Platform defaultDocumentBuilderFactory instance.

If the DocumentBuilderFactory implementation class cannot be loaded or
instantiated at runtime, aFactoryConfigurationError is thrown. This error
message should contain a descriptive explanation of the problem and how the
can resolve it.

The instance ofDocumentBuilderFactory can optionally be configured by the
application programmer to provide parsers that are namespace aware or valida
or both. These settings are made using thesetNamespaceAware andsetVali-

dating methods of the factory. The application programmer can then obtain a
DocumentBuilder implementation instance from the factory. If the factory canno
provide a parser configured as set by the application programmer, then aParser-

ConfigurationException is thrown.

3.2.1 Reliance on SAX API

The DocumentBuilder reuses several classes from the SAX API. This does not
mean that the implementor of the underlying DOM implementation must use a
SAX parser to parse the XML content, only that the implementation communica
with the application using these existing and defined APIs.

3.2.2 Examples

The following is a simple example of how to parse XML content from a URL:

DocumentBuilder builder;
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
String location = "http://myserver/mycontent.xml";
try {
October 2, 2000



XSLT Plugability

be

tion
builder = factory.newDocumentBuilder();
Document document = builder.parse(location);

} catch (SAXException se) {
// handle error

} catch (IOException ioe) {
// handle error

} catch (ParserConfigurationException pce) {
// handle error

}

The following is an example of how to configure a factory to produce parsers to
namespace aware and validating:

DocumentBuilder builder;
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);
factory.setValidating(true);
String location = "http://myserver/mycontent.xml";
try {

builder = factory.newDocumentBuilder();
Document document = builder.parse(location);

} catch (SAXException se) {
// handle error

} catch (IOException ioe) {
// handle error

} catch (ParserConfigurationException pce) {
// handle error

}

An example of how one could pass the System property as a command line op
is shown below

java -Djavax.xml.parsers.DocumentBuilderFac-
tory=org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
user.parserApp.

3.3 XSLT Plugability

The XSLT Plugability classes allow an application programmer to obtain a
Transform object that is based on a specific XSLT stylesheet from aTrans-
formFactory implementation. In order to obtain aTransform object, a pro-
Java API for XML Processing Version 1.1 19



Plugability Layer

20

f

ta-
e.

o
n

d

tion
grammer first obtains an instance of theTransformFactory . The
TransformFactory instance is obtained via the static newInstance method o
theTransformFactory class.

This method uses the following ordered lookup procedure to determine the
TransformFactory implementation class to load:

• Use thejavax.xml.parsers.TransformFactory system property

• Use the JAVA_HOME (the parent directory where jdk is installed)/lib/
jaxp.properties for a property file that contains the name of the implemen
tion class keyed on the same value as the system property defined abov

• Use the Services API (as detailed in the JAR specification), if available, t
determine the classname. The Services API will look for the classname i
the file META-INF/services/javax.xml.parsers.Trans-
formFactory in jars available to the runtime.

• Platform defaultTransformFactory instance.

If the TransformFactory implementation class cannot be loaded or instantiate
at runtime, aFactoryConfigurationError is thrown. This error message
should contain a descriptive explanation of the problem and how the user can
resolve it.

3.3.1 Examples

The following is a simple example of how to transform XML content:

Transform transform;
TransformFactory factory = TransformFactory.newInstance();
String stylesheet = "/home/user/mystylesheet.xsl";
try {

transform = factory.newTransform(new File(stylesheet));
File in = new File("/home/user/sourcefile.xml");
File out = new File("/home/user/destfile.html");
transform.transform(in, out);

} catch (IOException ioe) {
// handle error

}

An example of how one could pass the System property as a command line op
is shown below
October 2, 2000



Thread Safety

t
of a

ey

pect
fac-
java -Djavax.xml.transform.TransformFac-
tory=org.apache.xerces.jaxp.TransformFactoryImpl
user.parserApp.

3.4 Thread Safety

Implementations of theSAXParser , DocumentBuilder andTransform abstract
classes are not expected to be thread safe by this specification. This means tha
application programmers should not expect to be able to use the same instance
SAXParser , DocumentBuilder or Transform in more than one thread at a time
without side effects. If a programmer is creating a multi-threaded application, th
should make sure that only one thread has access to any givenSAXParser , Docu-

mentBuilder or Transform instance.

Configuration of aSAXParserFactory , DocumentBuilderFactory or

TransformFactory is also not expected to be thread safe. This means that an
application programmer should not allow aSAXParserFactory or Document-

BuilderFactory to have itssetNamespaceAware or setValidating methods
from more than one thread.

It is expected that thenewSAXParser method of aSAXParserFactory imple-
mentation, thenewDocumentBuilder method of aDocumentBuilderFac-

tory and the newTransform method of a TransformFactory will be thread
safe without side effects. This means that an application programmer should ex
to be able to create parser instances in multiple threads at once from a shared
tory without side effects or problems.
Java API for XML Processing Version 1.1 21



Plugability Layer

22
 October 2, 2000



SECTION 4 Packages javax.xml.parsers
and javax.xml.transform
g-
This section defines the API of thejavax.xml.parsers and

javax.xml.transform packages.

4.1 public abstract class SAXParserFactory

TheSAXParserFactory defines a factory API that enables applications to confi
ure and obtain a SAX based parser to parse XML documents.

public abstract class SAXParserFactory {
protected SAXParserFactory();
public static SAXParserFactory newInstace();
public abstract SAXParser newSAXParser()

throws ParserConfigurationException, SAXException;
public void setNamespaceAware(boolean aware);
public void setValidating(boolean validating);
public boolean isNamespaceAware();
public boolean isValidating();

public abstract void setFeature(String name,
boolean value) throws

SAXNotRecognizedException, SAXNotSupportedException
public abstract boolean getFeature (String name) throws

SAXNotRecognizedException, SAXNotSupportedException
Java API for XML Processing Version 1.1 23



Packages javax.xml.parsers and javax.xml.transform

24

ide

an
-

use

are
}

4.1.1 protected SAXParserFactory()

An empty constructor is provided. Implementors of this abstract class must prov
their own public no-argument constructor in order for the staticnewInstance

method to work correctly. Application programmers should be able to instantiate
implementation of this abstract class directly if they want to use a specific imple
mentation of this API without using the static newInstance method to obtain the
configured or platform default implementation.

4.1.2 public static SAXParserFactory newInstance()

Returns a new instance of aSAXParserFactory . Every call tonewInstance
will return a unique instance ofSAXParserFactory .

Throws aFactoryConfigurationError if the class implementing the factory
cannot be found or instantiated. An Error is thrown instead of an exception beca
the application is not expected to handle or recover from such events.

4.1.3 public abstract SAXParser newSAXParser()

Returns a new configured instance of typeSAXParser .

Throws aParserConfigurationException if the SAXParser instance cannot
be created with the requested configuration.

Implementation of theSAXParser class is not affected by subsequent changes in
their factories configuration.

Throws aSAXException if the initialization of the underlying parser fails.

4.1.4 public void setNamespaceAware(boolean aware)

Configuration method that specifies whether the parsers created by this factory
required to provide XML namespace support or not.
October 2, 2000



public abstract class SAXParserFactory

e

ed

e

are
Note, if a parser cannot be created by this factory that satisfies the requested
namespace awareness value, aParserConfigurationException will be
thrown when the program attempts to acquire the parser via thenewSaxParser

method.

4.1.5 public void setValidating(boolean validating)

Configuration method whether specifies if the parsers created by this factory ar
required to validate the XML documents that they parse.

Note, that if a parser cannot be created by this factory that satisfies the request
validation capacity, aParserConfigurationException will be thrown when
the application attempts to acquire the parser via thenewSaxParser method.

4.1.6 public boolean isNamespaceAware()

Indicates if thisSAXParserFactory is configured to produce parsers that are
namespace aware or not.

4.1.7 public boolean isValidating()

Indicates if thisSAXParserFactory is configured to produce parsers that validat
XML documents as they are parsed.

4.1.8 public abstract void setFeatur e(String name, boolean value)

Configuration mechanism that specifies that the parsers created by this factory
configured with the given feature.This API was introduced in SAX 2.0 and allow
users to configure the underlying SAX parser.

Throws aSAXNotRecognizedException if the underlying parser can’t recognize
the option.

Throws aSAXNotSupportedException if the underlying parser recognizes but
doesn’t support the option.

4.1.9 public abstract boolean getFeature (String name)

Returns the value of the requested feature.
Java API for XML Processing Version 1.1 25



Packages javax.xml.parsers and javax.xml.transform

26

-

Throws aSAXNotRecognizedException if the underlying parser can’t recognize
the option.

Throws aSAXNotSupportedException if the underlying parser recognizes but
doesn’t support the option.

4.2 public abstract class SAXParser

Implementation instances of theSAXParser abstract class contain an implementa
tion of theorg.xml.saxParser interface and enables content from a variety of
sources to be parsed using the contained parser. Instances ofSAXParser are
obtained from aSAXParserFactory by invoking itsnewSAXParser method.

public abstract class SAXParser {
protected SAXParser();
public abstract void setProperty(String name,

Object value) throws
SAXNotRecognizedException, SAXNotSupportedException

public abstract Object getProperty (String name) throws
SAXNotRecognizedException, SAXNotSupportedException

public void parse(InputStream stream, HandlerBase base)
throws SAXException, IOException;

public void parse(InputStream stream, HandlerBase base,
String systemId)

throws SAXException, IOException;
public void parse(String uri, HandlerBase base)

throws SAXException, IOException;
public void parse(File file, HandlerBase base)

throws SAXException, IOException;
public void parse(InputSource source, HandlerBase base)

throws SAXException, IOException;
public void parse(InputStream stream, DefaultHandler dh)

throws SAXException, IOException;
public void parse(InputStream stream, DefaultHandler dh,

String systemId)
throws SAXException, IOException;

public void parse(String uri, DefaultHandler dh)
throws SAXException, IOException;

public void parse(File file, DefaultHandler dh)
throws SAXException, IOException;

public void parse(InputSource source, DefaultHandler dh)
October 2, 2000



public abstract class SAXParser

on-
lica-
throws SAXException, IOException;
public abstract org.xml.sax.Parser getParser();

throws SAXException;
public abstract org.xml.sax.XMLReader getXMLReader();

throws SAXException;
public abstract boolean isNamespaceAware();
public abstract boolean isValidating();

}

4.2.1 protected SAXParser()

An empty constructor is provided. Implementations should provide a protected
constructor so that their factory implementation can instantiate instances of the
implementation class. Application programmers should not be able to directly c
struct implementation subclasses of this abstract subclass. The only way a app
tion should be able to obtain a reference to aSAXParser implementation instance
is by using the appropriate methods of theSAXParserFactory .

4.2.2 public abstract void setProperty (String name, Object value)

Allows implementation specific properties to be set. This API was introduced in
SAX 2.0 and to allow users to configure the underlying SAX parser.

Throws aSAXNotRecognizedException if the underlying parser can’t recognize
the option.

Throws aSAXNotSupportedException if the underlying parser recognizes but
doesn’t support the option.

4.2.3 public abstract Object getProperty (String name)

Returns the value of the requested property.

Throws aSAXNotRecognizedException if the underlying parser can’t recognize
the option.

Throws aSAXNotSupportedException if the underlying parser recognizes but
doesn’t support the option.
Java API for XML Processing Version 1.1 27



Packages javax.xml.parsers and javax.xml.transform

28
4.2.4 public void parse(InputStream stream, HandlerBase base)

Parses the contents of the givenjava.io.InputStream as an XML document
using the specifiedorg.xml.sax.HandlerBase object.Use of the DefaultH-
andler version of this method is recommended.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.

4.2.5 public void parse(InputStream stream, HandlerBase base,
String systemId)

Parses the contents of the givenjava.io.InputStream as an XML document
using the specifiedorg.xml.sax.HandlerBase object. The systemId provides a
base for resolving relative URIs.Use of the DefaultHandler version of this method
is recommended.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.

4.2.6 public void parse (String uri, Ha ndlerBase base)

Parses the content of the given URI as an XML document using the specified
org.sax.xml.HandlerBase object.Use of the DefaultHandler version of this
method is recommended.
October 2, 2000



public abstract class SAXParser

ci-
Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.Throws ajava.io.IOException if any IO errors occur while
reading content located by the given URI.

Throws anIllegalArgumentException if the given URI is null.

4.2.7 public void parse(File file, HandlerBase base)

Parses the content of the given java.io.File as an XML document using the spe
fied org.sax.xml.HandlerBase object.Use of the DefaultHandler version of
this method is recommended.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO errors occur while reading content
from the givenFile .

Throws anIllegalArgumentException if the givenFile is null.

4.2.8 public void parse(InputSource source, HandlerBase base)

Parses the content of the givenorg.xml.sax.InputSource as an XML docu-
ment using the specifiedorg.sax.xml.HandlerBase object.Use of the Default-
Handler version of this method is recommended..

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO Errors occur while reading content
from the given InputSource.

Throws anIllegalArgumentException if the given InputSource is null.

4.2.9 public void parse(InputStream stream, DefaultHandler dh)

Parses the contents of the givenjava.io.InputStream as an XML document
using the specifiedorg.xml.sax.DefaultHandler object.
Java API for XML Processing Version 1.1 29



Packages javax.xml.parsers and javax.xml.transform

30

ci-
Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.

4.2.10 public void parse(InputStream stream, DefaultHandler dh,
String systemId)

Parses the contents of the givenjava.io.InputStream as an XML document
using the specifiedorg.xml.sax.DefaultHandler object. The systemId pro-
vides a base for resolving relative URIs.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.

4.2.11 public void parse (String uri, DefaultHandler dh)

Parses the content of the given URI as an XML document using the specified
org.sax.xml.DefaultHandler object.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.Throws ajava.io.IOException if any IO errors occur while
reading content located by the given URI.

Throws anIllegalArgumentException if the given URI is null.

4.2.12 public void parse(File file, DefaultHandler dh)

Parses the content of the given java.io.File as an XML document using the spe
fied org.sax.xml.DefaultHandler object.
October 2, 2000



public abstract class SAXParser

.

ed.
Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO errors occur while reading content
from the givenFile .

Throws anIllegalArgumentException if the givenFile is null.

4.2.13 public void parse(InputSource source, DefaultHandler dh)

Parses the content of the givenorg.xml.sax.InputSource as an XML docu-
ment using the specifiedorg.sax.xml.DefaultHandler object.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO Errors occur while reading content
from the given InputSource.

Throws anIllegalArgumentException if the given InputSource is null.

4.2.14 public abstract org.xml.sax.Parser getParser()

Returns the underlyingorg.xml.sax.Parser object which is wrapped by this
SAXParser implementation.Use of the getXMLReader method is recommended

Throws aSAXException if the underlying parser cannot be obtained.

4.2.15 public abstract boolean isNamespaceAware()

Returns whether or not this parser supports XML namespaces.

4.2.16 public abstract boolean isValidating()

Returns whether or not this parser supports validating XML content as it is pars
Java API for XML Processing Version 1.1 31



Packages javax.xml.parsers and javax.xml.transform

32

s

to
4.3 public abstract class DocumentBuilderFactory

TheDocumentBuilderFactory defines a factory API that enables applications
to configure and obtain a parser to parse XML documents into a DOMDocument

tree.

public abstract class DocumentBuilderFactory {
protected DocumentBuilderFactory();
public static DocumentBuilderFactory newInstance();
public DocumentBuilder newDocumentBuilder()

throws ParserConfigurationException;
public void setNamespaceAware(boolean awareness);
public void setValidating(boolean validating);
public void setIgnoreElementContentWhitespace(boolean

whitespace);
public void setExpandEntityReferences(boolean

expandEntityRef);
public void setIgnoringComments(boolean ignoreComments);
public void setCoalescing(boolean coalescing);
public boolean isNamespaceAware();
public boolean isValidating();
public boolean isIgnoreElementContentWhitespace();
public boolean isExpandEntityReferences();
public boolean isIgnoringComments();
public boolean isCoalescing();
public abstract void setAttribute(String name,

Object value)
throws IllegalArgumentException;

public abstract Object getAttribute(String name)
throws IllegalArgumentException;

}

4.3.1 protected DocumentBuilderFactory()

An empty constructor is provided by the API. Implementors of this abstract clas
must provide a public no-argument constructor in order for the staticnewIn-

stance method to work correctly. Application programmers should be able to
instantiate an implementation of this abstract class directly if they want to use a
specific implementation of this API without using the static newInstance method
obtain the configured or platform default implementation.
October 2, 2000



public abstract class DocumentBuilderFactory

use

are

d

d

4.3.2 public static DocumentBuilderFactory newInstance()

Returns a new instance of aDocumentBuilderFactory . Every call tonewIn-
stance will return a unique instance ofDocumentBuilderFactory .

Throws aFactoryConfigurationError if the class implementing the factory
cannot be found or instantiated. An Error is thrown instead of an exception beca
the application is not expected to handle or recover from such events.

4.3.3 public DocumentBuilder newDocumentBuilder()

Returns a new configured instance of typeDocumentBuilder .

Implementation of theDocumentBuilder class is not affected by subsequent
changes in their factories configuration.

Throws aParserConfigurationException if the DocumentBuilder instance
cannot be created with the requested configuration.

4.3.4 public void setNamespaceAware(boolean aware)

Configuration method that specifies whether the parsers created by this factory
required to provide XML namespace support or not.

Note that if a parser cannot be created by this factory that satisfies the requeste
namespace awareness, aParserConfigurationException will be thrown
when an attempt to obtain the parser via thenewSaxParser method is made.

4.3.5 public void setValidating(boolean validating)

Configuration method that specifies if the parsers created by this factory are
required to validate the XML documents that they parse.

Note that if a parser cannot be created by this factory that satisfies the requeste
validation capacity, aParserConfigurationException will be thrown when an
attempt to obtain the parser via thenewSaxParser method is made.
Java API for XML Processing Version 1.1 33



Packages javax.xml.parsers and javax.xml.transform

34

ble

an
i-
ode.

t (if

t

t

4.3.6 public void setIgnoreElementContentWhitespace(boolean
whitespace)

Configuration method which specifies that parsers created by this factory must
eliminate whitespace in element content (sometimes known loosely as 'ignora
whitespace') when parsing XML documents (see XML REC 2.10).

Note that only whitespace which is directly contained within an element that has
element only content model (see XML REC 3.2.1) will be eliminated. Due to rel
ance on the content model this setting requires the parser to be in validating m

4.3.7 public void setExpandEntityReferences(boolean expand)

Configuration method that specifies if the parsers created by this factory will
expand entity references in the XML documents that they parse as defined in
Appendix D of the XML recommendation

4.3.8 public void setIgnoringComments(boolean ignoreComments)

Configuration method that specifies if the parsers created by this factory are
required to ignore comments in the XML documents that they parse.

4.3.9 public void setCoalescing(boolean coalescing)

Configuration method that specifies if the parsers created by this factory are
required to convert CDATASections to a Text node and append it to the adjacen
any) text node.

4.3.10 public boolean isNamespaceAware()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
are namespace aware or not.

4.3.11 public boolean isValidating()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
validate XML documents as they are parsed.
October 2, 2000



public abstract class DocumentBuilderFactory

t

t

t

t

-
ue
he
4.3.12 public boolean isIgnoreElementContentWhitespace()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
ignore "ignorable whitespace" in XML documents as they are parsed.

4.3.13 public boolean isExpandEntityReferences()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
expand entity references in XML documents as they are parsed.

4.3.14 public boolean isIgnoringComments()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
ignore comments in XML documents as they are parsed.

4.3.15 public boolean isCoalescing()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
convert CDATA nodes to Text nodes and append it to the adjacent (if any) Text
node in XML documents as they are parsed.

4.3.16 public abstract void setAttribute(String name, Object value)

Allows the user to set specific attributes provided by the underlying implementa
tion. It is recommended that the name used to describe these attributes be uniq
and one way to achieve this could be to use the package naming convention. T
names beginning with java and javax are reserved by the specification

ThrowsIllegalArgumentException if the underlying implementation
doesn’t recognize the attribute.

4.3.17 public abstract Object getAttribut e(String name)

Returns the attribute value.

ThrowsIllegalArgumentException if the underlying implementation
doesn’t recognize the attribute.
Java API for XML Processing Version 1.1 35



Packages javax.xml.parsers and javax.xml.transform

36

not

on-
lica-
4.4 public abstract class DocumentBuilder

Instances ofDocumentBuilder provide a mechansim for parsing XML docu-
ments into a DOM document tree represented by anorg.w3c.dom.Document

object. ADocumentBuilder instance is obtained from aDocumentBuilder-

Factory by invoking itsnewDocumentBuilder method.

Note that DocumentBuilder uses several classes from the SAX API. This does
require that the implementor of the underlying DOM implementation use a SAX
parser to parse XML content into aorg.w3c.dom.Document . It merely requires
that the implementation communicate with the application using these existing
APIs.

public abstract class DocumentBuilder {
protected DocumentBuilder();
public Document parse(InputStream is)

throws SAXException, IOException;
public Document parse(InputStream is, String systemId)

throws SAXException, IOException;
public Document parse(String uri)

throws SAXException, IOException;
public Document parse(File f)

throws SAXException, IOException;
public abstract Document parse(InputSource is)

throws SAXException, IOException;
public abstract boolean isNamespaceAware();
public abstract boolean isValidating();
public abstract void setEntityResolver(EntityResolver er);
public abstract void setErrorHandler(ErrorHandler eh);
public Document newDocument();

}

4.4.1 protected DocumentBuilder()

An empty constructor is provided. Implementations should provide a protected
constructor so that their factory implementation can instantiate instances of the
implementation class. Application programmers should not be able to directly c
struct implementation subclasses of this abstract subclass. The only way a app
tion should be able to obtain a reference to aDocumentBuilder implementation
instance is by using the appropriate methods of theDocumentBuilder .
October 2, 2000



public abstract class DocumentBuilder

r

ent

t

t

4.4.2 public Document parse(Inpu tStream stream)

Parses the contents of the givenjava.io.InputStream as an XML document
and returns anorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.

4.4.3 public Document parse(Inpu tStream stream, St ring systemId)

Parses the contents of the givenjava.io.InputStream as an XML document
and returns anorg.w3c.dom.Document object. The systemId provides a base fo
resolving relative URIs.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.

4.4.4 public Document pars e(String uri)

Parses the content at the location specified by the given URI as an XML docum
and returns anorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur while reading the conten
specified by the URI.

Throws anIllegalArgumentException if the URI is null.

4.4.5 public Document parse(File file)

Parses the content of the givenjava.io.File as an XML document and returns
anorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur while reading the conten
from theFile .

Throws anIllegalArgumentException if the File is null.
Java API for XML Processing Version 1.1 37



Packages javax.xml.parsers and javax.xml.transform

38

ed.

ior.
4.4.6 public abstract Document parse(InputSource source)

Parses the content of the givenorg.xml.sax.InputSource as an XML docu-
ment and returns aorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur reading the content from
the InputSource .

Throws anIllegalArgumentException if the InputSource is null.

4.4.7 public abstract boolean isNamespaceAware()

Returns whether or not this parser supports XML namespaces.

4.4.8 public abstract boolean isValidating()

Returns whether or not this parser supports validating XML content as it is pars

4.4.9 public abstract void setEntityResolver(EntityResolver er)

Specifies theorg.xml.sax.EntityResolver to be used by thisDocument-

Builder . Setting theEntityResolver to null, or not calling this method, will
cause the underlying implementation to use its own default implementation and
behavior.

4.4.10 public abstract void setErrorHandler(ErrorHandler eh)

Specifies theorg.xml.sax.ErrorHandler to be used by thisDocument-

Builder . Setting theErrorHandler to null, or not calling this method, will cause
the underlying implementation to use its own default implementation and behav

4.4.11 public Document newDocument()

Creates an neworg.w3c.dom.Document instance from the underlying DOM
implementation.
October 2, 2000



public abstract class TransformFactory

in

use

ide

an
-

4.5 public abstract class TransformFactory

TheTransformFactory defines a factory API that enables applications to obta
a Transform object.

public abstract class TransformFactory {
public static TransformFactory newInstace();
protected TransformFactory();
public abstract Transform newTransform(

java.io.File stylesheet);
public abstract Transform newTransform(

java.io.InputStream stylesheet);
public abstract Transform newTransform(String url);
public abstract void setAttribute(String name,

Object value);
public abstract Object getAttribute(String name);

}

4.5.1 public static TransformFactory newInstance()

Returns a new instance of aTransformFactory . Every call tonewInstance
will return a unique instance ofTransformFactory .

Throws aFactoryConfigurationError if the class implementing the factory
cannot be found or instantiated. An Error is thrown instead of an exception beca
the application is not expected to handle or recover from such events.

4.5.2 protected TransformFactory()

An empty constructor is provided. Implementors of this abstract class must prov
their own public no-argument constructor in order for the staticnewInstance

method to work correctly. Application programmers should be able to instantiate
implementation of this abstract class directly if they want to use a specific imple
mentation of this API without using the static newInstance method to obtain the
configured or platform default implementation.

4.5.3 public abstract Transform new Transform(java.io.File
stylesheet)

Returns a new instance of typeTransform using the given stylesheet.
Java API for XML Processing Version 1.1 39



Packages javax.xml.parsers and javax.xml.transform

40

-
ue
he

g-

ss is
s-
Implementation of theTransform class is not affected by subsequent changes in
their factories configuration.

4.5.4 public abstract Transform new Transform(java.io.Inpu tStream
stylesheet)

Returns a new instance of typeTransform using the given stylesheet.

4.5.5 public abstract Transform new Transform(java.lang.String url)

Returns a new instance of typeTransform using the given stylesheet
at the location pointed by the url.

4.5.6 public abstract void setAttribute(String name, Object value)

Allows the user to set specific attributes provided by the underlying implementa
tion. It is recommended that the name used to describe these attributes be uniq
and one way to achieve this could be to use the package naming convention. T
names beginning with java and javax are reserved by the specification.

ThrowsIllegalArgumentException if the underlying implementation
doesn’t recognize the attribute.

4.5.7 public abstract Object getAttribut e(String name)

Returns the attribute value.

Throws IllegalArgumentException if the underlying implementation doesn’t reco
nize the attribute.

4.6 public abstract class Transform
Implements a Transform based on an XSLT stylesheet. An instance of this class can be
obtained from the TransformFactory.newTransform method. Once an instance of this cla
obtained, XML can be processed from a variety of sources with the output from the tran
form being written to a variety of sinks.

public abstract class Transform {
protected Transform();
October 2, 2000



public abstract class Transform

on-
lica-

via
public abstract void transform (java.io.File in,
java.io.File out)

throws SAXException, IOException;
public abstract void transform (java.io.InputStream in,

java.io.OutputStream out,
String systemId);

throws SAXException, IOException;
public abstract void setEntityResolver(EntityResolver er);
public abstract void setErrorHandler(ErrorHandler eh);
public abstract void setXSLTParam(String name, Object

value);
public abstract Object getXSLTParam(String name);

}

4.6.1 protected Transform()

An empty constructor is provided. Implementations should provide a protected
constructor so that their factory implementation can instantiate instances of the
implementation class. Application programmers should not be able to directly c
struct implementation subclasses of this abstract subclass. The only way a app
tion should be able to obtain a reference to aTransform implementation instance
is by using the appropriate methods of theTransformFactory .

4.6.2 public abstract void transform (java.io.File in, java.io.File out)

Applies the transform to the contents of the given inputFile and writes the result
to the given outputFile .

Throws ajava.io.IOException if any IO errors occur reading or writing to the
givenFiles .

4.6.3 public abstract void transform (java.io.Inpu tStream in,
java.io.OutputStream out, String systemId)

Applies the transform to the contents of the InputStream and returns the result
the OutputStream. The systemId provides a base for resolving relative URIs.

Throws ajava.io.IOException if any IO errors occur reading or writing to the
givenStreams .
Java API for XML Processing Version 1.1 41



Packages javax.xml.parsers and javax.xml.transform

42

ds to

ry
y a
ded
4.6.4 public abstract void setEntityResolver(EntityResolver er)

Specifies theorg.xml.sax.EntityResolver to be used by thisTransform .
Setting theEntityResolver to null, or not calling this method, will cause the
underlying implementation to use its own default implementation and behavior.

4.6.5 public abstract void setErrorHandler(ErrorHandler eh)

Specifies theorg.xml.sax.ErrorHandler to be used by thisTransform . Set-
ting theErrorHandler to null, or not calling this method, will cause the underly-
ing implementation to use its own default implementation and behavior.

4.6.6 public abstract void setXSLTParam (String name, Object value)

Allows the user to specify parameters for use by the stylesheet. This correspon
the xsl:param in stylesheets.

4.6.7 public abstract Object getXSLTParam (String name)

Returns the value of the parameter specified by the name.

4.7 public class FactoryConfigurationError

This error is thrown if there is a configuration problem when creating new facto
instances. This error will also be thrown when the class of a Factory specified b
system property, or the class of the default system parser factory, cannot be loa
or instantiated. Implementation or Application developers should never need to
directly construct or catch errors of this type.

public class FactoryConfigurationError extends Error {
public FactoryConfigurationError();
public FactoryConfigurationError(String msg);
public FactoryConfigurationError(Exception e);
public FactoryConfigurationError(Exception e, String msg);
public String getMessage();
public Exception getException();

}

October 2, 2000



public class ParserConfigurationException

that

are
in
4.7.1 public FactoryConfigurationError()

Constructs a newFactoryConfigurationError with no detail message.

4.7.2 public FactoryConfigurationError (String msg)

Constructs a newFactoryConfigurationError with the given detail message.

4.7.3 public FactoryConfigurationError(Exception e)

Constructs a newFactoryConfigurationError with the givenException as a
root cause.

4.7.4 public FactoryConfigurationError(Exception e, String msg)

Constructs a newFactoryConfigurationError with the givenException as a
root cause and the given detail message.

4.7.5 public String getMessage()

Returns the detail message of the error or null if there is no detail message.

4.7.6 public Exception getException()

Returns the root cause of the error or null if there is none.

4.8 public class ParserConfigurationException

This exception is thrown if a factory cannot configure a parser given its current
configuration parameters. For example, if a parser factory cannot create parsers
validate, but have been configured to do so, it will throw this exception when a
parser is requested to via the parser creation methods. Application developers
not expected to construct instances of this exception type, but must catch them
code that obtains parser instances from a factory.

public class ParserConfigurationException extends Exception {
public ParserConfigurationException();
public ParserConfigurationException(String msg);

}

Java API for XML Processing Version 1.1 43



Packages javax.xml.parsers and javax.xml.transform

44
4.8.1 public ParserConfigurationException()

Constructs a newParserConfigurationException with no detail error mes-
sage.

4.8.2 public ParserConfigurationException (String msg)

Constructs a newParserConfigurationException with the given detail error
message.
October 2, 2000



SECTION 5 Conformance Requirements
ns of
ed
ble

ble
sys-
.

of

on
rt
-

This section describes the conformance requirements for parser implementatio
this specification. Parser implementations that are accessed via the APIs defin
here must implement these constraints, without exception, to provide a predicta
environment for application development and deployment.

Note that applications may provide non-conformant implementations that are a
to support the plugability mechanism defined in the specification, however the
tem default processor must meet the conformance requirements defined below

All implementations of this specification need to be conformant as per Section 5
the XML 1.0 recommendation (http://www.w3.org/TR/1998/REC-xml-
19980210), Section 6 of the XML Namespaces recommendation (http://
www.w3.org/TR/REC-xml-names/) and Section 17 of the XSLT recommendati
(http://www.w3.org/TR/xslt). Parsers that support validation only need to suppo
DTDs. In addition to the above, implementations of the SAX 2.0, SAX2.0 exten
sions and DOM Level 2 core interfaces must be supported.
Java API for XML Processing Version 1.1 45



Conformance Requirements

46
 October 2, 2000



SECTION 6 Change History
spec-

Is.

ts,

.

This section lists the changes that have occurred over the development of this
ification.

6.1 From 1.0 Final Release to 1.1 Public Review

Added parameter systemId to all the parse and transform methods which take
Streams as parameters. This was done to provide a base to resolve relative UR

Added setIgnoreWhitespace, setExpandEntityReference, setIgnoringCommen
setAttributes and the corresponding getters to DocumentBuilderFactory.

Added get/setAttribute to TransformFactory.

Added setEntityResolver, setErrorHandler and get/setXSLParam to Transform

Added get/setFeature to SAXParserFactory.

Added get/setProperty to SAXParser.

Added SAX2 extensions.
Java API for XML Processing Version 1.1 47



Change History

48

..

e
nce.

ML
t is

e,

the
user

e

o

e

er
Added Transformations

Added more mechanisms to look up an implementation of the various factories

Removed conformance requirements from the specification and just refer to th
conformance requirements as required by the specifications included by refere

6.2 From 1.0 Public Release to 1.0 Final Release

The reservation of the java and javax namespace prefixes was removed. The X
Namespace specification is clear that a namespace is a collection of names tha
identified by a URI reference. The prefix is a local identifier for the URI referenc
therefore the reservation of the java and javax namespaces was in error.

6.3 From 1.0 Public Review to 1.0 Public Release

From the Public Review draft of this specification to the Public Release version,
specification was reordered and rewritten to address general feedback from the
community. This feedback indicated that the specification was too detailed in
describing the endorsed specifications and not detailed enough in describing th
plugability layer.

ThenewParser method of theSAXParserFactory abstract class was removed.
Feedback showed that it was confusing to be able to obtain both theSAXParser

wrapper and the underlying implementation from the factory. Removing this
method allows the API to be more understandable while preserving the ability t
access the underlying parser via thegetParser method of theSAXParser

abstract class.

ThegetLocale andsetLocale methods of the various classes were removed.
Instead it was felt that parser implementation authors should report errors in th
configured default locale of the execution environment.

A new exception namedParserConfigurationException was added so that a
parser factory can signal to an application that it can’t provide a parser with the
desired configuration. ThecheckXXX methods aren’t sufficient for this purpose as
a situation may arise where there is a mutually exclusive setting of various pars
October 2, 2000



From 1.0 Public Review to 1.0 Public Release

et-
setta-

he

al
properties. At this time, this problem is potentially minor as there are only two s
table properties on each of the parser types, but in the future as the number of
ble properties increases, the problem would get harder to solve without an
exception that could be thrown at parser creation time. As part of this change, t
setXXX property methods of the factories no longer throw anIllegalArgument-

Exception if they are set to a property which cannot be supported.

TheFactoryException class was renamed toFactoryConfigurationError .
This rename was undertaken to emphasize that such an error condition is a fat
condition that an application should not be reasonable expected to handle.
Java API for XML Processing Version 1.1 49



Change History

50
 October 2, 2000



SECTION 7 Future Directions
r
-

om-
ci-

that
This version of the Java API for XML Processing includes the basic facilities fo
working with XML documents using either the SAX, DOM and XSLT APIs. How
ever, there is always more to be done.

This section briefly describes our plans for future versions of this specification.
Please keep in mind that the items listed here are preliminary and there is no c
mitment to the inclusion of any specific feature in any specific version of the spe
fication. In addition, this list of items is by no means the only features that may
appear in a future revision. Your feedback is encouraged.

7.1 Updated SAX and DOM Support

As future versions of SAX and DOM evolve it will be incorporated into the future
version of this API.

7.2 Update XSL Plugability Support

XSL (eXtensible Stylesheet Language) is a language for expressing stylesheets
can be used with XML document. It consists of two parts:
Java API for XML Processing Version 1.1 51



Future Directions

52

ture
n
o a

d

• A language for transforming XSL documents (also known as XSLT)

• An XML vocabulary for specifying formatting specfics

XSL Transformations has been formalized as a W3C Recommendation. In a fu
version of the specification, we would like to provide a plugability API to allow a
application programmer to provide an XML document and an XSLT document t
wrapped XSLT processor and obtain a transformed result.

7.3 Plugability Mechanism Enhancements

Various ways of making the plugability mechanism work have been incorporate
into this version of the spec. However if there are other ways in the future to
enhance this, it will be included in the future versions of this API.
October 2, 2000


	Java API for XML Processing
	SECTION 1 Overview�7
	SECTION 2 Endorsed Specifications�11
	SECTION 3 Plugability Layer�15
	SECTION 4 Packages javax.xml.parsers and javax.xml.transform�23
	SECTION 5 Conformance Requirements�45
	SECTION 6 Change History�47
	SECTION 7 Future Directions�51
	SECTION 1 Overview
	1.1 What is XML?
	1.2 XML and the Java™ Platform
	1.3 About this Specification
	1.4 Who Should Read this Document
	1.5 Development of this Specification
	1.6 Report and Contact
	1.7 Acknowledgements

	SECTION 2 Endorsed Specifications
	2.1 W3C XML 1.0 Recommendation
	2.2 W3C XML Namespaces 1.0 Recommendation
	2.3 Simple API for XML Parsing (SAX) 2.0
	2.4 Document Object Model (DOM) Level 2
	2.5 XSLT 1.0

	SECTION 3 Plugability Layer
	3.1 SAX Plugability
	3.1.1 Examples

	3.2 DOM Plugability
	3.2.1 Reliance on SAX API
	3.2.2 Examples

	3.3 XSLT Plugability
	3.3.1 Examples

	3.4 Thread Safety

	SECTION 4 Packages javax.xml.parsers and javax.xml.transform
	4.1 public abstract class SAXParserFactory
	4.1.1 protected SAXParserFactory()
	4.1.2 public static SAXParserFactory newInstance()
	4.1.3 public abstract SAXParser newSAXParser()
	4.1.4 public void setNamespaceAware(boolean aware)
	4.1.5 public void setValidating(boolean validating)
	4.1.6 public boolean isNamespaceAware()
	4.1.7 public boolean isValidating()
	4.1.8 public abstract void setFeature(String name, boolean value)
	4.1.9 public abstract boolean getFeature(String name)

	4.2 public abstract class SAXParser
	4.2.1 protected SAXParser()
	4.2.2 public abstract void setProperty(String name, Object value)
	4.2.3 public abstract Object getProperty(String name)
	4.2.4 public void parse(InputStream stream, HandlerBase base)
	4.2.5 public void parse(InputStream stream, HandlerBase base, String systemId)
	4.2.6 public void parse(String uri, HandlerBase base)
	4.2.7 public void parse(File file, HandlerBase base)
	4.2.8 public void parse(InputSource source, HandlerBase base)
	4.2.9 public void parse(InputStream stream, DefaultHandler dh)
	4.2.10 public void parse(InputStream stream, DefaultHandler dh, String systemId)
	4.2.11 public void parse(String uri, DefaultHandler dh)
	4.2.12 public void parse(File file, DefaultHandler dh)
	4.2.13 public void parse(InputSource source, DefaultHandler dh)
	4.2.14 public abstract org.xml.sax.Parser getParser()
	4.2.15 public abstract boolean isNamespaceAware()
	4.2.16 public abstract boolean isValidating()

	4.3 public abstract class DocumentBuilderFactory
	4.3.1 protected DocumentBuilderFactory()
	4.3.2 public static DocumentBuilderFactory newInstance()
	4.3.3 public DocumentBuilder newDocumentBuilder()
	4.3.4 public void setNamespaceAware(boolean aware)
	4.3.5 public void setValidating(boolean validating)
	4.3.6 public void setIgnoreElementContentWhitespace(boolean whitespace)
	4.3.7 public void setExpandEntityReferences(boolean expand)
	4.3.8 public void setIgnoringComments(boolean ignoreComments)
	4.3.9 public void setCoalescing(boolean coalescing)
	4.3.10 public boolean isNamespaceAware()
	4.3.11 public boolean isValidating()
	4.3.12 public boolean isIgnoreElementContentWhitespace()
	4.3.13 public boolean isExpandEntityReferences()
	4.3.14 public boolean isIgnoringComments()
	4.3.15 public boolean isCoalescing()
	4.3.16 public abstract void setAttribute(String name, Object value)
	4.3.17 public abstract Object getAttribute(String name)

	4.4 public abstract class DocumentBuilder
	4.4.1 protected DocumentBuilder()
	4.4.2 public Document parse(InputStream stream)
	4.4.3 public Document parse(InputStream stream, String systemId)
	4.4.4 public Document parse(String uri)
	4.4.5 public Document parse(File file)
	4.4.6 public abstract Document parse(InputSource source)
	4.4.7 public abstract boolean isNamespaceAware()
	4.4.8 public abstract boolean isValidating()
	4.4.9 public abstract void setEntityResolver(EntityResolver er)
	4.4.10 public abstract void setErrorHandler(ErrorHandler eh)
	4.4.11 public Document newDocument()

	4.5 public abstract class TransformFactory
	4.5.1 public static TransformFactory newInstance()
	4.5.2 protected TransformFactory()
	4.5.3 public abstract Transform new Transform(java.io.File stylesheet)
	4.5.4 public abstract Transform new Transform(java.io.InputStream stylesheet)
	4.5.5 public abstract Transform new Transform(java.lang.String url)
	4.5.6 public abstract void setAttribute(String name, Object value)
	4.5.7 public abstract Object getAttribute(String name)

	4.6 public abstract class Transform
	4.6.1 protected Transform()
	4.6.2 public abstract void transform (java.io.File in, java.io.File out)
	4.6.3 public abstract void transform (java.io.InputStream in, java.io.OutputStream out, String sy...
	4.6.4 public abstract void setEntityResolver(EntityResolver er)
	4.6.5 public abstract void setErrorHandler(ErrorHandler eh)
	4.6.6 public abstract void setXSLTParam(String name, Object value)
	4.6.7 public abstract Object getXSLTParam(String name)

	4.7 public class FactoryConfigurationError
	4.7.1 public FactoryConfigurationError()
	4.7.2 public FactoryConfigurationError(String msg)
	4.7.3 public FactoryConfigurationError(Exception e)
	4.7.4 public FactoryConfigurationError(Exception e, String msg)
	4.7.5 public String getMessage()
	4.7.6 public Exception getException()

	4.8 public class ParserConfigurationException
	4.8.1 public ParserConfigurationException()
	4.8.2 public ParserConfigurationException(String msg)


	SECTION 5 Conformance Requirements
	SECTION 6 Change History
	6.1 From 1.0 Final Release to 1.1 Public Review
	6.2 From 1.0 Public Release to 1.0 Final Release
	6.3 From 1.0 Public Review to 1.0 Public Release

	SECTION 7 Future Directions
	7.1 Updated SAX and DOM Support
	7.2 Update XSL Plugability Support
	7.3 Plugability Mechanism Enhancements


