
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to:

The Java™ Architecture for XML Binding
User’s Guide

May 2001, Revision 01

Please
Recycle

Copyright (c) 2001 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

• Redistribution in binary form must reproduct the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS
SHALL NOT BE LIABLE FOR ANY DAMAGES OR LIABILITIES SUFFERED BY LIC-
ENSEE AS A RESULT OF OR RELATING TO USE, MODIFICATION OR DISTRIBUTION
OF THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICEN-
SORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDI-
RECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that Software is not designed,licensed or intended for use in the design, con-
struction, operation or maintenance of any nuclear facility.

1. Introduction to the JavaTM Architecture for XML Binding (JAXB)..........5
Why Use JAXB? ..5

JAXB Applications Use Java Technology and XML...............................6
JAXB Applications Guarantee Valid Data...6
JAXB Applications Are Fast ..7
JAXB Applications Are Easy to Create and Use7
JAXB Applications Can Convert Data...7
JAXB Applications Can Be Customized..8
JAXB Applications Are Extensible..8

Uses of JAXB...9
Scenario 1: Balancing a Checkbook...9
Scenario 2: Comparing Price Quotes from Suppliers...............................9

Getting the Most From this User’s Guide ..10
2. Before You Begin: XML Basics ..13

What is XML?..13
Document Type Definitions ...14

Element Declaration ...14
Attribute Declaration ..15

XML Documents..16
3. How JAXB Works..19

Overview ..19
Binding a Schema to Classes ...20
Building Data Representations...23

Unmarshalling ..24
Validation ...24
Marshalling...24

Working with the Data ...25
Limitations ...26

4. Binding a Schema to Classes ...27
The Example DTD: checkbook.dtd..27
Writing the Binding Schema ..29

Creating the Minimum-Required Binding Schema................................29
Understanding the Default Binding Declarations...................................30

The Element Binding Declarations...31
The Attribute Binding Declarations..32
The Content Binding Declarations ...33

Customizing the Binding Schema ..35
Specifying Types ..37

Specifying Non-Primitive Types ..37
Specifying Primitive Types...39

Creating Enumerated Types..39
Customizing Content Model Binding Declarations..........................40
Creating Interfaces..42

Managing Schema Evolution ...43
Generating the Java Classes ...44
Chapter 3

The Generated Java Source Files ...45
The Checkbook.java File..45
The Transactions.java File..46
The Entry.java File ...48
The Check.java File..48
The CheckCategory.java File ...50
The Pending.java File ...50

5. Building Data Representations ...53
The XML Document Instance: march.xml ..53
Setting Up Your Application..54
Building a Content Tree ...55

Unmarshalling...55
Instantiation ..56

Accessing Content..57
Validating ...59
Marshalling...60
Appending Content Trees...61

6. Working With The Data..63
The Example XML Document: checkbook.xml ..63
Setting Up the CheckbookBalance Class ...64
Extending the Derived Classes...65

Unmarshalling ..65
Dispatching ...65
Unmarshalling the Subclass..66

Adding Functionality..67
Using the New Functionality in Your Application.................................68

A. The Example DTD, XML Documents, and Binding Schema.......................71
B. The Application Files ...75
4 The JavaTM Architecture for XML Binding User’s Guide • May 2001

CHAPTER 1

Introduction to the
JavaTM Architecture for XML Binding
(JAXB)

JAXB provides a fast, convenient way to create a two-way mapping between XML
documents and Java objects. Given a schema, which specifies the structure of XML data, the
JAXB compiler generates a set of Java classes containing all the code to parse XML
documents based on the schema. An application that uses the generated classes can build a
Java object tree representing an XML document, manipulate the content of the tree, and re-
generate XML documents from the tree, all without requiring the developer to write complex
parsing and processing code.

Why Use JAXB?
Using JAXB for a data-processing application has many benefits because a JAXB
application:
• Uses Java Technology and XML
• Guarantees Valid Data
• Is Fast
• Is Easy to Use
• Can Constrain Data
• Is Customizable
• Is Extensible

This section explains all of these JAXB qualities in more detail.
5

JAXB Applications Use Java Technology and XML
The most important reasons to use JAXB are that JAXB applications are written in the Java
programming language and can process XML data. To understand the implications of these
features, you first need to understand why XML and Java technology are so important and
how they complement each other.

XML is an industry-standard and system-independent way to represent data. Data that is
represented using XML can be published in multiple media because, unlike HTML, XML
describes the structure of the data, not its format. XML data can be passed between
applications because the structure of the data can be specified in a schema, which allows a
parser to validate and process data that follows the schema. XML does not provide a set of
tags like HTML; you use the schema to define your own tags to describe your particular data.
XML data is easy to work with because it is written in a simple text format, readable by both
humans and text-editing software. For these reasons, XML is quickly becoming a common
method for data interchange between applications, especially business-to-business enterprise
applications.

Applications written in the Java programming language are portable: Any system with a Java
Virtual Machine1 can run the bytecode produced by compiling a Java application. With the
portable code that Java technology provides, XML is even more useful in the context of
sharing data between applications. Applications, especially web-based applications, need the
support of Java technology to parse and process the data in a platform-independent manner.
Likewise, Java applications need the platform-independent data format that XML provides in
order to communicate and share information.

Essentially, JAXB provides a bridge between these two complementary technologies. JAXB
includes a compiler that maps a schema to a set of Java classes. Once you have your classes,
you can build Java object representations of the XML data that follow the rules that the
schema defines. Just as an XML document is an instance of a schema, a Java object is an
instance of a class. Thus, JAXB allows you to create Java objects at the same conceptual
level as the XML data. Representing your data in this way allows you to manipulate it in the
same manner you manipulate Java objects, making it easier to create applications to process
XML data. Once you have your data in the form of Java objects, it is easy to access it. In
addition, after working with the data, you can write the Java objects to a new XML
document. With the easy access to XML data that JAXB provides, you only need to write the
applications that will actually use the data, rather than spend time writing code to format the
data.

JAXB Applications Guarantee Valid Data
Because JAXB maps schemas to classes, you must have a schema to use JAXB. Some XML
parsers and processors do not support schemas or do not require schemas. These processors
can be more flexible than JAXB, but without a schema they cannot guarantee that your data

1. As used in this guide, the terms “Java Virtual Machine” or “JVM” mean a virtual machine for the Java platform.
6 The JavaTM Architecture for XML Binding User’s Guide • May 2001

is valid. JAXB, on the other hand, can make this guarantee. In fact, it is impossible to use
JAXB to create a Java object tree from an XML document that is invalid with respect to the
schema used to create the classes.

JAXB Applications Are Fast
Two commonly-used XML parsing APIs are SAX (Simple API for XML) and DOM
(Document Object Model). A SAX parser is an event-driven parser, which means that it
reacts to pieces of the document as it is parsing it; it does not store any of the document in
memory. A DOM parser builds an in-memory data structure of the document whose contents
can be manipulated, but it is much slower than a SAX parser. A JAXB application, on the
other hand, has the speed of a SAX parser and the data-storage capability of a DOM parser.

Although SAX parsers are fast, early prototyping of JAXB has shown that JAXB can be
faster than SAX parsers. JAXB has faster parsing because the generated Java classes are
precompiled and contain the schema logic, thereby avoiding the dynamic interpretation that a
SAX parser must perform.

A JAXB application can build an in-memory data structure like a DOM parser. However,
unlike DOM, it does not include a lot of extra functionality for tree-manipulation. Unlike a
DOM application, a JAXB application is specific to one schema: You cannot use it to
process XML documents that are based on another shema. For these reasons, a JAXB
application uses memory much more efficiently than DOM.

JAXB Applications Are Easy to Create and Use
Since all the processing code is generated for you, JAXB is easier to use than most XML
parsers: You can just input a stream to access the content. In addition, most XML parsers are
limited to the data-typing offered by a DTD. A DTD is one kind of XML schema language.
You still need to provide the conversion code, which can be error-prone and difficult to
maintain. JAXB automatically generates code that you can customize to perform content
conversion for you.

If you know how to program with the Java programming language and have minimal
knowledge of XML, you will be able to use JAXB. Furthermore, the generated classes
conform to standard Java API conventions, so it’s even easier to start working with JAXB.

JAXB Applications Can Convert Data
Although an XML document is specified by a schema, at this time, a schema is limited in
how tightly it can specify the content of an XML document. Data-interchange applications
need formal data-typing. XML 1.0 does not explicitly provide data-typing beyond expressing
Chapter 1 Introduction to the JavaTM Architecture for XML Binding (JAXB) 7

types as attribute values; these attribute values must then be interpreted by parsing code that
you provide. In other words, you can enter any type of data you want between two tags, such
as integers or strings, as long as the structure of the document conforms to the DTD
specification. But frequently you’ll want is to be able to convert the data, for example, to
specify that only an integer can be contained between two <quantity> tags. The JAXB
facility provides both structure and content validation in the generated code, which you can
customize. More importantly, since JAXB generates Java code, you can assign types
exclusively from the Java programming language, such as Date and BigDecimal, to your
elements. For instructions on how to perform type conversions, see Specifying Types in the
Binding a Schema to Classes chapter.

JAXB Applications Can Be Customized
Before generating Java classes from your DTD, you write what is called a binding schema,
which contains instructions on how to generate the classes. The binding schema is written in
an XML-based binding language, whose constructs you use to write the binding schema so
that you can specify how your classes are generated. One of the more useful customizations
you can make is data-type conversions. For example, as the previous section mentions, you
can specify in the binding schema that the quantity element must only contain an integer. In
addition to data-type conversions, you can use the binding schema to control the names of
classes, packages, and types; and you can generate custom constructors, interfaces, and
enumerations.

The binding schema also allows you to manage schema evolution. If you anticipate that your
schema will change, the binding schema provides special constructs that define looser
bindings that allow more flexibility. When the schema evolves, all you need to do is edit your
binding schema and run the schema compiler again to create classes that reflect the changes.
If you tried to change your classes instead, once you ran the schema compiler again, your
changes would be overwritten. Because your binding instructions are specified in the binding
schema--separate from your schema and code--when your schema evolves, you will have a
much easier time maintaining your application. See the section Managing Schema Evolution
for more information.

JAXB Applications Are Extensible
Once you have generated your Java classes, you can use them without change, or you can
subclass them to provide additional functionality. The developers of JAXB designed the
binding process to make subclassing derived classes easy. See the Working With The Data
chapter for more information.
8 The JavaTM Architecture for XML Binding User’s Guide • May 2001

Uses of JAXB
JAXB has wide-ranging uses, especially with the advent of Web-based, business-to-business
enterprise applications. However, you don’t have to be a Web developer to appreciate JAXB
because JAXB provides an easy way to work with data, whether or not you intend to share it.
This section describes two scenarios to demonstrate how JAXB can be used in the real world.

Scenario 1: Balancing a Checkbook
You can use JAXB to create a simple desktop application for balancing checkbooks. A
schema that represents a checkbook could contain a set of transactions and a balance. With
the classes generated from the transactions schema you can create XML data for a set of
monthly transactions. Each month you could:

1. Create an object representation of the checkbook XML data.

2. Create an object representation of the transactions for the month.

3. Calculate the new balance with the objects.

4. Append the object data of the transactions to the object data of the checkbook.

5. Write out the updated checkbook to a new XML file.

Scenario 2: Comparing Price Quotes from Suppliers
Suppose that you are a shoe manufacturer and would like to find the shoelace supplier with
the best prices. In a Web-services environment, suppliers can do business over the Internet,
representing data such as price lists in XML. With standard schemas for representing data
shared through a repository, businesses can share this data. A customer could access the
standard schema from the repository and build a JAXB application from it. Once the
application is built, the customer can request the price lists from the various suppliers. These
price lists are in the form of XML and will be valid against the standard price list schema.
When the JAXB application retrieves the XML data, it creates separate Java object
representations of the data. With the objects, the JAXB application can compare the prices
for the products which interest the customer and can generate new XML data, which contains
only those items that she wants to purchase. If the customer also built a JAXB application
with a standard order form schema, she could edit her new price list XML data and add it to
the order form XML data, which she can send to the supplier with the lowest prices.
Chapter 1 Introduction to the JavaTM Architecture for XML Binding (JAXB) 9

To implement this first scenario, in addition to JAXB, you would need to use other
technologies, such as the JavaTM API for XML Messaging (JAXM) to send the data and the
JavaTM API for XML Registries (JAXR) to use the repository. The first scenario can be
implemented using only JAXB. Since this guide focuses on JAXB, the checkbook
application scenario is used as the example in this user guide. Starting with chapter 4,
Binding a Schema to Classes, this guide shows you how to build a JAXB application like the
checkbook example.

Getting the Most From this User’s Guide
This user’s guide teaches you everything you need to know to build a simple JAXB
application.

If you need a refresher on XML, you can read Chapter 2, Before You Begin: XML Basics.
Chapter 3 describes how JAXB works and provides more details on the architecture. Chapter
4, 5, and 6 provide step-by-step guides on building a JAXB application. These chapters use
the checkbook example described in the previous section.

While building the checkbook application, you will learn how to:
• Write a binding schema, which defines how your schema is bound to Java classes.
• Generate the Java classes from the provided schema and the binding schema.
• Build a Java object representation of XML data based on the schema.
• Generate new XML documents based on the schema.
• Work with the data.

This guide assumes that you know how to program with the JavaTM programming language
and that you have installed the JAXB implementation correctly. If you have not performed
the installation, see the release notes located in the docs directory of your download bundle.

To build the checkbook application, you will need the following files, which are located in
the examples/checkbook directory of your installation1 and the appendices of this guide:
• checkbook.dtd: A DTD specifying a list of checking account transactions and a balance.
• march.xml: The list of transactions for the month of March.
• checkbook.xml: A checkbook with a list of transactions and a balance.

The files that you will write with this guide are also available in examples/checkbook and
the appendices of this guide for your reference:
• checkbook.xjs: the binding schema.
• CheckbookApp.java: The main application.
• CheckbookBalance.java: The subclass of Checkbook, which is a class generated from

checkbook.dtd.
1. Note that the march.xml and the checkbook.xml files in the download bundle have bugs: The march.xml file has April

dates and the checkbook.xml file has March dates. This bug will be fixed for FCS. The files shown in Appendix A and in
chapters 5 and 6 of this guide are correct.
10 The JavaTM Architecture for XML Binding User’s Guide • May 2001

For more information on JAXB, see Java Specification Request, JSR-31, and the XML Data
Binding Draft Specification, version 0.2 at java.sun.com/xml/jaxb.
Chapter 1 Introduction to the JavaTM Architecture for XML Binding (JAXB) 11

http://java.sun.com/xml/jaxb
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html

12 The JavaTM Architecture for XML Binding User’s Guide • May 2001

CHAPTER 2

Before You Begin: XML Basics

This chapter explains the basic features of XML as used in this guide. If you already
understand simple XML, you can skip to the next chapter.

What is XML?
XML stands for “eXtensible Markup Language”, a language developed by the World Wide
Web Consortium (W3C). XML is actually a meta-language; a language used to describe
other languages. XML allows you to describe other languages through the use of extensible
markup tags, which add structure and meaning to documents. Although XML markup tags
look like HTML tags, they describe the content rather than the format of the text they
contain. More importantly, XML tags are extensible, which means you can define your own
tags to better describe your particular content.

The two pieces of a typical XML application are the document type definition (DTD) and a
set of XML document instances, which are specified by the DTD. The DTD is a schema that
contains the definitions of tags you use in your XML documents by specifying what a set of
tags can contain. DTDs define and declare tags and specify their contents; therefore, each
DTD is essentially a language specification, and the XML documents that a DTD specifies
are written in that DTD’s language. The XML 1.0 specification does not require a DTD;
parsers can recognize tags in an XML document and process the data, but without a DTD
cannot verify their validity.

Unlike the XML 1.0 Specification, the JAXB facility requires that you supply a DTD to
build a JAXB application. The JAXB schema compiler uses the constraints specified in the
DTD to build the Java classes. This section discusses only the basic features of DTDs and
XML documents as used in the examples of this guide. For more information about XML,
see The World Wide Web Consortium website.
13

http://www.w3c.org

Document Type Definitions
A document type definition is more commonly known as a DTD. A DTD defines the
structure and content of XML documents that it specifies. A DTD consists of a list of
declarations, each of which defines a building block of a document. The basic declarations
are the element declarations and attribute declarations. Element declarations define what a
particular set of tags in an XML document can contain. Attribute declarations accompany
element declarations and provide additional information about the element.

Element Declaration
An element declaration begins with <!ELEMENT and specifies the content of the tags defined
by this element. In XML, a tag is the realization of an element in a document. For example,
if book is an element, the book element tag is <book>.

All documents must have at least one root element, which is not contained by any other
elements declared in the document’s DTD. For example, suppose you have a DTD that
specifies a book. The DTD contains a declaration like this:

<!ELEMENT book
(titlepage, (prologue | preface), toc, chapter+, epilogue?, appendix*) >

The part of the declaration in the outer parentheses specifies what a book can contain and is
called the content model. The commas are called sequence connectors; they dictate that the
elements must appear in the XML document in the order listed. In this case, a book contains
in this order: a title page, either a prologue or a preface, a table of contents, one or more
chapters, an optional epilogue, and zero or more appendices. The part of the content model in
the inner set of parentheses represents a model group. This model group uses a choice
connector, |, dictating that only one of the elements in the group can appear in an instance of
the parent element in the XML document. In this case, any book element instance can only
contain either a prologue or a preface, but not both. The +, *, and ? are called occurrence
indicators. The + after chapter indicates that one or more chapters are allowed. The ? after
epilogue means that the epilogue is optional. The * after appendix indicates that zero or more
of these elements are allowed. Elements that have a * or + are sometimes called repeatable.

Each of these pieces of content in a book element are also elements, which must also be
declared:

<!ELEMENT titlepage (title, author) >
<!ELEMENT prologue (#PCDATA) >
<!ELEMENT preface (#PCDATA) >
<!ELEMENT toc (chaptitle+, appendixtitle*) >
<!ELEMENT chaptitle (#PCDATA) >
<!ELEMENT appendixtitle (#PCDATA) >
14 The JavaTM Architecture for XML Binding User’s Guide • May 2001

<!ELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA)>
<!ELEMENT chapter (chaptitle, body) >
<!ELEMENT body (#PCDATA) >
<!ELEMENT epilogue (#PCDATA) >
<!ELEMENT appendix (appendixtitle, body) >

The notation #PCDATA stands for “Parseable Character DATA”. PCDATA represents zero or
more characters. The content of any element either contains PCDATA, other elements, or a
combination of both. An element whose content is defined to have only PCDATA can only
contain text. Such an element is essentially a lowest common denominator of a DTD: it
cannot be broken down any farther.

As you can see from these example element declarations, specifying the content of an
element can be a complicated and error-prone task. You must be careful not to specify
content that might be ambiguous and confuse the parser. For example, if you must include
the choice connectors and the sequence connectors in one model group, you need to use
parentheses to separate the content using one connector rule from the rest of the group that
uses the other connector. This case is shown in the following element declaration in which
the (prologue | preface) model group uses a choice connector, but the rest of the model
group uses a sequence connector:

<!ELEMENT book
(titlepage, (prologue | preface), toc, chapter+, epilogue?, appendix*) >

See the XML Documents section to see how these element declarations are realized in an
XML document.

Attribute Declaration
Unlike element declarations, attribute declarations are optional in a DTD. Attribute
declarations accompany element declarations and provide additional information about the
element. For example, you can add an attribute to your book element that describes the
book’s type:

<!ELEMENT book
(titlepage, (prologue | preface), toc, chapter+, epiloque?, appendix*) >

<!ATTLIST book
type (fiction | travel | history | biography) #REQUIRED >

An attribute declaration includes the element name to which it applies. After the element
name, a list of attribute names are declared. In this case, there is only one attribute, which is
called type. Following the attribute name are the possible values to which the attribute can
be set. In this case, the type of book can be one of four types. The #REQUIRED keyword
Chapter 2 Before You Begin: XML Basics 15

indicates that the type attribute must always be used when the book element is used in an
XML document. If the type attribute were optional, #REQUIRED would be replaced with
#IMPLIED.

The next section explains how this attribute declaration is realized in an XML document.

XML Documents
An XML document is a text file containing XML markup tags, which are pieces of text
surrounded by a start-tag and an end-tag. The start-tag, enclosed text, and end-tag comprise
an element, which is declared in a DTD. For example, consider our chaptitle element
declaration from the Element Declarationsection:

<!ELEMENT chaptitle (#PCDATA) >

In an XML document, this declaration could be represented as:

<chaptitle>The Early Years</chaptitle>

These XML tags look similar to HTML tags, but they are different in significant ways: XML
tags are extensible and indicate the meaning of the text enclosed within them. For example,
you could not define a tag <chaptitle> in HTML; you must use tags already defined in the
HTML specification, and a set of HTML tags can only define the format of the text it
encloses. The <chaptitle> tag can indicate to a parser that the information contained within
it is a chapter title, which allows you to do much more with your data, including searching
and archiving. If you have a DTD that delares a chaptitle element, you can also restrict
what kind of data a chaptitle can contain.

This XML document is a realization of the DTD described in the Document Type Definitions
section:

<!DOCTYPE Duke SYSTEM “Book.DTD”>
<book type=”biography”>

<titlepage>
<title>Duke: My Life and Times</title>
<author>Duke</author>

</titlepage>
<prologue>I dedicate this book to ...</prologue>
<toc>

<chaptitle>The Early Years</chaptitle>
<chaptitle>The Later Years</chaptitle>

</toc>
<chapter>

<chaptitle>The Early Years</chaptitle>
<body>Blah blah blah</body>

</chapter>
<chapter>
16 The JavaTM Architecture for XML Binding User’s Guide • May 2001

<chaptitle>The Later Years</chaptitle>
<body>Blah blah</body>

</chapter>
</book>

The DOCTYPE declaration at the top of the document tells a validating parser that the document
instance must adhere to the rules defined in the Book.DTD. The book element has a type of
biography, indicating that this XML document represents a book that is a biography. As the
root element, the book element must enclose the entire document, which means that the
document must end with </book>, and no other elements can be contained outside of the
book element’s tags. Notice that the document contains more than one chapter element. In
the Book.DTD, the plus sign following chapter in the book element declaration indicates that a
book can contain one or more chapters. Also notice that this document contains no epilogue.
The question mark after epilogue in the book declaration specifies that an epilogue is
optional.

After this brief XML lesson, you should now be able to build a simple JAXB application.
Chapter 2 Before You Begin: XML Basics 17

18 The JavaTM Architecture for XML Binding User’s Guide • May 2001

CHAPTER 3

How JAXB Works

This chapter briefly describes how you use JAXB to:
• Bind the schema to Java classes.
• Build representations of data that follow the rules defined in the schema.
• Use the data in an application.

Overview
To start building a JAXB application all you need is an XML schema. JAXB version 1.0
requires that the schema be a DTD, as defined in the XML 1.0 specification, but later
versions will likely support other schema languages.

After you obtain your DTD, you build and use a JAXB application with these steps:

1. Write the binding schema, an XML document containing instructions on how to bind a
schema to classes. For example, the binding schema might contain an instruction on what
primitive type an attribute value should be bound in the generated class.

2. Generate the Java source files using the schema compiler, which takes both the DTD and
the binding schema as input. After compiling the source code, you can write an
application based on the resulting classes.

3. With your application, build a tree of Java objects representing XML data that is valid
against the DTD by either:

a. instantiating the generated classes, or

b. invoking the unmarshal method of a generated class and passing in the document. The
unmarshal method takes a valid XML document and builds an object-tree
representation of it. The object tree is called a content tree.

4. Use your application to access the data of the content tree and modify the data of the tree.
19

5. You can also generate an XML document from the content tree by invoking the marshal
method on the root object of the tree.

The next three sections go into more detail on building and using a JAXB application. The
Binding a Schema to Classes section describes steps 1 and 2. The Building Data
Representations section describes step 3. The section Working with the Data describes steps
4 and 5.

Binding a Schema to Classes
JAXB includes the schema compiler, which generates a set of Java source files from your
DTD and binding schema. The binding schema must be written in the binding language that
JAXB defines. After the Java source files are generated, you can compile them using the
Java compiler just as you would with any Java application.

You don’t need to provide a binding instruction for every declaration in your DTD to
generate Java classes. The schema compiler makes certain assumptions based on the DTD if
your binding schema does not completely specify how every declaration in your DTD should
be bound to the code. For example, the schema compiler uses a general name-mapping
algorithm to bind XML names to names that are acceptable in the Java programming
language. In this case, you can use the binding schema to cause the schema compiler to
generate different names. There are many other customizations you can make with the
binding schema, including:
• Name the package, derived classes, and methods.
• Assign types to the methods within the derived classes.
• Choose which elements to bind to classes.
• Decide how to bind each attribute and element declaration to a property in the appropriate

content class.
• Create custom constructors, interfaces, and enumerations.
• Choose the type of each attribute-value or content specification.

See Binding a Schema to Classes for more information on writing a binding schema.
FIGURE 3-1 illustrates the process of generating classes.
20 The JavaTM Architecture for XML Binding User’s Guide • May 2001

FIGURE 3-1 Generating Classes

Unless you specify otherwise in your binding schema, the schema compiler generates a class
for every element whose content contains other elements. Inside a class, the schema compiler
generates properties, which are methods that you use to access the content of child elements
and the values of attributes. These methods return and accept different types, depending on
the kind of declaration in the schema. For example, elements with #PCDATA content are
bound to properties that accept and return String values. As an example of binding a
schema to classes, consider a simplified version of the DTD from the previous chapter:

<!ELEMENT book (title, author, chapter+) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA)>
<!ELEMENT chapter (#PCDATA) >

In many cases, the schema compiler can generate an appropriate binding even when the
binding schema does not include a binding instruction for a particular declaration in the
DTD. In fact, to generate classes from the book DTD, all you need in your binding schema
is:

<xml-java-binding-schema>
<element name=”book” type=”class” root=”true” />

</xml-java-binding-schema>

From this DTD and binding schema, the schema compiler generates a class Book with this
constructor and these properties:

public void Book();
public String getTitle();
public void setTitle(String x);
public String getAuthor();
public void setAuthor(String x);
public List getChapter();
public void deleteChapter();
public void emptyChapter();
Chapter 3 How JAXB Works 21

Recall that the chapter element instance in the book content model has a + occurrence
indicator:

<!ELEMENT book (title, author, chapter+) >

Notice that this chapter element instance in the book element’s content is bound to a List
property. Earlier we said that all simple elements are bound to String properties. This
statement is still true for the chapter element. The List that is returned from getChapter is a
List of String values, each of which represents a different chapter element instance. Also
notice that the binding schema did not make reference to the occurrence indicator after the
chapter element instance. This is an example of how the schema compiler considers the
specifications in the DTD as well as the binding instructions in the binding schema when
generating classes.

The default bindings that the schema compiler assumes are usually adequate for simple
DTDs like the book example. More complicated DTDs will most likely require more
complete binding instructions. For example, consider the book DTD with an additional
choice model containing the simple elements prologue and preface:

<!ELEMENT book (title, author, (prologue | preface), chapter+) >
...
<!ELEMENT prologue (#PCDATA) >
<!ELEMENT preface (#PCDATA) >

Using the same binding schema with this new DTD, the schema compiler would produce this
constructor and this property:

public void Book();
public List getContent();
public void deleteContent();
public void emptyContent();

In this example, the property represents the entire content model of the book element. This
kind of property is not very useful if you want to access a particular piece of the content.
This is why you write a binding schema. With the binding schema, you can make many
customizations to your classes, including defining the way model groups are bound to
classes, creating interfaces, and converting types. The Binding a Schema to Classes chapter
shows you how to specify these customizations in the binding schema.

One binding schema that you could write for this DTD is:

<xml-java-binding-schema>
<element name=”book” type=”class” root=”true”>

<content>
<element-ref name=”title” />
<element-ref name=”author” />
<choice property=”prologue-or-preface” />

</content>
</element>

</xml-java-binding-schema>
22 The JavaTM Architecture for XML Binding User’s Guide • May 2001

The choice declaration binds the choice model group to an object property within the Book
class. The prologue and preface elements are each bound to separate classes. The element-
ref declarations will bind the elements to properties within the Book class.

Based on both the schema and the DTD, the schema compiler assumes that the desired class
name is Book and that the simple elements are bound according to these binding declarations:

<element name=”title” type=”value” />
<element name=”author” type=”value” />
<element name=”prologue” type=”class” />
<element name=”preface” type=”class” />
<element name=”chapter” type=”value” />

From the DTD and the binding schema, the schema compiler generates a class Book with this
constructor and these properties:

public void Book();
public String getTitle();
public void setTitle(String x);
public String getAuthor();
public void setAuthor(String x);
public List getChapter();
public void deleteChapter();
public void emptyChapter();
public MarshallableObject getPrologueOrPreface();
public void setPrologueOrPreface(MarshallableObject x);

The prologue-or-preface property returns and accepts a MarshallableObject, which
represents objects that can be marshalled and unmarshalled. The reason the property type is
not String is because you cannot determine if the String is a prologue or preface; with
MarshallableObject, you can because it will be either a Prologue or a Preface object.

The root element’s model groups in these example DTDs are simpler than the one shown in
the example in the previous chapter. The XML 1.0 model group specification is very
complex, reflecting the infinite number of ways that data can be ordered and represented. The
the next chapter explains in more detail how to bind more complicated model groups.

Building Data Representations
The Java classes that the schema compiler generates implement and extend the classes and
interfaces of the binding framework. The binding framework is the runtime API that the
generated classes use to support three primary operations:

• Unmarshalling: the process of producing a content tree from an XML document.
• Validation: the process of verifying that the Java object representation conforms to the

rules specified in the DTD.
Chapter 3 How JAXB Works 23

• Marshalling: the process of producing an XML document from Java objects.

To perform these operations, each generated class contains methods for unmarshalling data
and validating content, and extends the methods of the binding framework that perform
marshalling.

Unmarshalling
With the unmarshal methods, you can build a Java object tree from XML documents that are
instances of the schema used to generate the classes. The object tree built with JAXB is
called a content tree. Each object in the tree corresponds to an element in the XML
document. Similarly, each object in the tree is an instance of a class from the set of generated
classes. You can also build a content tree by instantiating objects from the classes because
the content tree binds to both the document and the classes. The chapter Building Data
Representations demonstrates how to use unmarshalling and instantiation to build a content
tree.

Validation
The unmarshalling process performs validation while it is building the content tree, so it is
impossible to unmarshal an XML document to a content tree that is invalid with respect to
the DTD. You can perform validation at any time after you have built your content tree by
using the validate or validateThis methods in each generated class. The validate method
validates the entire subtree rooted at the root object on which you invoke the validate
method; the validateThis method validates only one object in the tree.

Marshalling
Whether you built the content tree using unmarshalling or instantiation, you can marshal the
tree to a new XML document using the marshal methods. This means that JAXB also allows
you to create new XML documents that are valid with respect to the source DTD. The
marshalling process tests if the content tree has been validated before marshalling in case
you have made changes to the objects in the tree. So, just as it is impossible to unmarshal an
invalid document, it is impossible to marshal an invalid content tree.

FIGURE 3-2 illustrates the two ways to build data representations.
24 The JavaTM Architecture for XML Binding User’s Guide • May 2001

FIGURE 3-2 Building data representations

Continuing with the book example, you can unmarshal this document using the Book class
you generated:

<book>
<title>Duke: My Life and Times</title>
<author>Duke</author>
<chapter>The First Six Years ... </chapter>

</book>

The unmarshal method will return a Book object, say dukeBook, which is the root of the
content tree. Once you have the tree, you can begin working with the data.

Working with the Data
You can work with the objects in the content tree just as you would with any Java objects. In
this way, JAXB provides a Java programming interface of XML data, which you can use to
seamlessly integrate XML data into Java applications.

To access the content of the tree, you use the properties in the generated classes. For
example, to get the name of the author of the book Duke: My Life and Times, you simply
call getAuthor on the dukeBook object. Let’s say Duke’s book was actually written by a
disgruntled ghost writer. To smooth things over, you could call setAuthor(“Duke et. al.”)
on the dukeBook object. To validate the modified tree, you can call validate on dukeBook, and
to marshal it to a new XML document, call dukeBook.marshal().
Chapter 3 How JAXB Works 25

To provide application-specific functionality, you can extend the classes rather than only use
them directly. For example, in addition to accessing a piece of data, you might also want to
perform a calculation with the data or, in the dukeBook case, add the data to a catalog. You
can provide this functionality in a subclass of a derived class. The Working With The Data
chapter uses the checkbook example previously described in Scenario 1: Balancing a
Checkbook section to show you how to use the generated classes directly to access your
transaction data and how to extend them to balance your checkbook.

Limitations
Because this release of JAXB is an early-access release, it has some limitations, which are
likely to be addressed in future releases. Some of these limitations include:
• Support for only one schema language:

As more schema languages are developed and existing schema language specifications
become more defined, the developers of JAXB will try to support more schema languages
in later releases. For now, the DTD sublanguage of XML 1.0 is a natural choice for a
schema language because it is the mostly widely-used schema language and allows JAXB
to serve a greater number of developers.

• No support for XML Namespaces:
XML DTDs and XML Namespaces do not work very well together. Because this release
of JAXB requires a DTD, Namespaces are not supported.

• No support for Internal subsets, NOTATIONs, and the ENTITY, ENTITIES, and
enumerated NOTATION types from the XML DTD 1.0 sublanguage:
These constructs do not often appear in DTDs, so the developers chose not to support
them to simplify the binding language specification.
26 The JavaTM Architecture for XML Binding User’s Guide • May 2001

CHAPTER 4

Binding a Schema to Classes

This chapter demonstrates how to use JAXB to bind a DTD to a set of Java classes. To
generate the classes, you perform these steps:

1. Write a binding schema, which contains instructions on how to bind a DTD to classes.

2. Run the schema compiler with the DTD and binding schema as input to generate the
source code.

3. Compile the source code to generate the classes.

The next two chapters show you how to use the classes to build data representations from
XML documents and work with the data. The example that these chapters use is a simple
checkbook application described in Scenario 1: Balancing a Checkbook. With this
application, you will be able to record transactions in a checkbook and determine the balance
of the checking account.

The checkbook example uses the checkbook.dtd, which is located in the examples/checkbook
directory of your installation. The first section of this chapter explains the checkbook DTD.

The Example DTD: checkbook.dtd
Before creating the checkbook application, you should understand the DTD on which it is
based. This section briefly explains the checkbook.dtd shown here:

<!ELEMENT checkbook (transactions, balance) >
<!ELEMENT transactions (deposit | check | withdrawal)* >
<!ELEMENT deposit (date, name, amount)>
<!ATTLIST deposit
 category (salary | interest-income | other) #IMPLIED >
<!ELEMENT check (date, name, amount, (pending | void | cleared), memo?) >
<!ATTLIST check
 number CDATA #REQUIRED
27

 category (rent | groceries | other) #IMPLIED >
<!ELEMENT withdrawal (date, amount) >
<!ELEMENT balance (#PCDATA) >
<!ELEMENT date (#PCDATA) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT amount (#PCDATA) >
<!ELEMENT memo (#PCDATA) >
<!ELEMENT pending EMPTY >
<!ELEMENT void EMPTY >
<!ELEMENT cleared EMPTY >

An XML document must have exactly one root element, but the document can select which
element to use as its root element from its DTD. For our checkbook example, both checkbook
and transactions can be used as root elements by XML document instances of this DTD.
The Creating the Minimum-Required Binding Schema section shows you how to specify in
the binding schema which elements a valid XML document can use as root elements.

According to the DTD, a checkbook contains transactions that are made against the account
and a balance representing the amount of money that the account contains. The set of
transactions, according to the transactions element definition, contains zero or more
deposits, checks, or withdrawals.

A deposit transaction consists of:
• The date the deposit was made.
• The name of the person or business entity that provided the money for the deposit.
• The amount of the deposit.

The deposit element also has an attribute, called category, which describes the reason for the
deposit.

A check transaction consists of:
• The date the check was written.
• The name of the person or business entity receiving the check.
• The amount of the check.
• The check status: cleared, void, or pending (it has not been cashed).
• An optional memo.

The check also has two attributes: number and category. The number attribute represents the
number of the check. The category attribute represents the reason for writing the check.

The withdrawal transaction consists of only the date the withdrawal was made and the
amount of the withdrawal.

The balance, date, name, amount, and memo elements are defined to have character content.
This chapter shows you how to generate various types for the content of the balance, data
and amount elements.

The pending, void, and cleared elements do not have content, so they are defined to be
EMPTY.
28 The JavaTM Architecture for XML Binding User’s Guide • May 2001

Writing the Binding Schema
You do not need to provide a binding declaration for each component of your DTD. The
schema compiler assumes default binding declarations if a particular binding is not provided.
If you are not satisfied with the default bindings, however, you need to provide binding
declarations in the binding schema to generate the classes that you want.

This section shows you:

1. How to write the minimal binding schema, which is a binding schema that contains the
minimal binding declarations that will still allow the schema compiler to generate classes.

2. What code the schema compiler will generate based on the minimal binding schema and
the DTD.

3. How to add binding declarations to the minimal binding schema so that the schema
compiler will generate the code you want, not just the default code.

This guide explains in detail how to write the binding schema. The binding schema is what
you use to control what kind of code the schema compiler generates. Therefore, it’s
important that you understand how the schema compiler interprets the declarations that you
provide in the binding schema and what the schema compiler assumes if you do not provide
binding declarations for a declaration in the DTD. In addition, the binding language and the
schema compiler that interprets the binding schema are powerful enough to make reasonable
assumptions for you, but still allow you much flexibility in defining how your DTD is bound
to classes.

Although the schema compiler can produce a reasonable binding in the simple case, when
you see what kind of code the schema compiler generates based on the checkbook DTD and
a minimal binding schema, you will understand the importance of providing binding
declarations so that you can generate the code that is appropriate for your application.

Creating the Minimum-Required Binding Schema
Whether or not you want to accept the default binding declarations assumed by the schema
compiler, you need to provide a binding schema. To create the binding schema for the
checkbook DTD:

1. Create a new text file called checkbook.xjs.
Chapter 4 Binding a Schema to Classes 29

2. In checkbook.xjs, enter:

<xml-java-binding-schema version="1.0ea">

This tag identifies the file as a binding schema.

3. All binding schemas must declare at least one root element. In our example, we want to
declare two root elements: checkbook and transactions. To declare the root elements,
enter:

<element name=”checkbook” type=”class” root=”true” />
<element name=”transactions” type=”class” root=”true” />

To declare these root elements, you use the element binding declaration to bind an
element type to a class. The name attribute value must be the name of the element as it
appears in the DTD. The type attribute value is class in this case because these are root
elements and must be bound to classes. The root attribute equals true because you want
XML document instances of the checkbook DTD to be able to declare checkbook or
transactions as root elements.

4. Enter the end tag for the xml-java-binding-schema element:

</xml-java-binding-schema version="1.0ea">

You now have a legal binding schema from which the schema compiler can generate classes.
Based on the DTD, the schema compiler makes assumptions regarding how to bind the other
DTD declarations for which you did not provide binding declarations. The next section
explains the binding declarations assumed by the schema compiler based on the checkbook
DTD and the current binding schema. Once you understand what kind of code is produced
from a minimal binding schema, writing the rest of the binding schema is easy. The Writing
the Binding Schema section shows you how to add custom bindings to this minimal binding
schema to produce the code you want for your checkbook application.

Understanding the Default Binding Declarations
The binding declarations that the schema compiler assumes based on the checkbook DTD
and the minimal binding schema are:

<element name="checkbook" type="class" root=”true”>
 <content>
 <element-ref name="transactions"/>
 <element-ref name="balance"/></content></element>
<element name="transactions" type="class" root=”true”>

 <content property="content"/></element>
 <element name="deposit" type="class">
 <attribute name="category"/>
30 The JavaTM Architecture for XML Binding User’s Guide • May 2001

 <content>
 <element-ref name="date"/>
 <element-ref name="name"/>
 <element-ref name="amount"/></content></element>
 <element name="check" type="class">
 <attribute name="number"/>
 <attribute name="category"/>
 <content property="content"/></element>
 <element name="withdrawal" type="class">
 <content>
 <element-ref name="date"/>
 <element-ref name="amount"/></content></element>
 <element name="balance" type="value"/>
 <element name="date" type="value"/>
 <element name="name" type="value"/>
 <element name="amount" type="value"/>
 <element name="memo" type="value"/>
 <element name="pending" type="class"/>
 <element name="void" type="class"/>

<element name="cleared" type="class"/>

The rest of this section explains each of these binding declarations.

The Element Binding Declarations
The schema compiler assumes different binding declarations for elements depending on what
kind of content they have or if they have attributes. For simple elements, which have only
character content and no attributes, the schema compiler assumes that the elements are bound
to properties within the class of their parent element. The balance, date, name, and amount
elements are simple elements and so the schema compiler assumes these bindings for them:

<element name="balance" type="value"/>
 <element name="date" type="value"/>
 <element name="name" type="value"/>
 <element name="amount" type="value"/>
 <element name="memo" type="value"/>

The name attribute’s value must be the name of the element as it appears in the DTD. The
type attribute is value in these cases because these elements are bound to properties, not
classes. These binding declarations will cause the schema compiler to generate these
properties:

String getBalance();
void setBalance(String x);
String getDate();
void setDate(String x);
String getName();
void setName(String x);
String getAmount();
void setAmount(String x);
Chapter 4 Binding a Schema to Classes 31

String getMemo();
void setMemo(String x);

A String property is fine for the name and the memo elements. However, for balance and
amount, you need a type that better represents currency values. Similarly, the date element
should be bound to a property that accepts and returns some kind of type that better
represents a date. The Specifying Types section will show you how to generate properties
that accept and return different types.

For all other kinds of elements, the schema compiler assumes that the elements are bound to
classes. If an element contains anything other than character content or has attributes, the
schema compiler will bind it to a class. The deposit, check, and withdrawal elements all have
element content, and deposit and check have attributes. These elements are also bound to
classes. The default bindings for these elements are:

<element name="deposit" type="class" >
<element name="check" type="class" >
<element name="withdrawal" type="class" >

Notice that you do not need to specify the root attribute as you did in the Creating the
Minimum-Required Binding Schema section. The schema compiler assumes that the root
attribute value is false. You only need to specify the value of the root attribute as true if
you want the XML document instance to have the ability to use the element as a root
element. From the deposit element binding declaration the schema compiler generates this
class definition and constructor:

public class Deposit extends MarshallableObject {
public void Deposit();

The Check, and Withdrawal classes will look similar to this one.

The pending, void, and cleared elements have EMPTY content and are included in a choice
model group, and so they are bound to classes, as specified in their type attribute
declarations:

<element name="pending" type="class"/>
<element name="void" type="class"/>
<element name="cleared" type="class"/>

The Attribute Binding Declarations
The checkbook DTD defines three attributes. The deposit element has a category attribute,
and the check element has a number attribute and also has a category attribute:

<!ELEMENT deposit ...
<!ATTLIST deposit
 category (salary | interest-income | other) #IMPLIED >
<!ELEMENT check ...
<!ATTLIST check
32 The JavaTM Architecture for XML Binding User’s Guide • May 2001

 number CDATA #REQUIRED
 category (rent | groceries | other) #IMPLIED >

All of these attributes take atomic values, rather than compound values, and so the schema
compiler assumes that these attributes are bound to String properties, which these default
binding declarations specify:

<element name=”deposit” type=”class” >
<attribute name=”category” />

...
<element name="check" type="class">
<attribute name=”number” />
<attribute name=”category” />

...

Within the Deposit class, the schema compiler generates this property to represent the
category attribute:

void setCategory(String x);
String getCategory();

Within the Check class, the schema compiler generates these properties to represent the
number and category attributes:

void setNumber(String x);
String getNumber();
void setCategory(String x);
String getCategory();

Notice that the number property accepts and returns a String. The Specifying Types section
will show you how to customize your binding schema so that the schema compiler will
generate a number property that accepts and returns an int. Likewise, the Creating
Enumerated Types section will show you how to generate an enumerated type for the
category property.

The Content Binding Declarations
The content binding declaration is the most complicated, reflecting the infinite number of
ways you can specify content in XML, but JAXB makes it easy for you. The most common
kind of content model is a simple, non-repeating sequence, such as (a, b, c, d). If you use
this kind of content model, most likely you won’t need to specify a binding declaration for it
because the schema compiler generates a separate property for each element in the sequence,
which is usually what you want.

Most of the elements in checkbook.dtd have simple, non-repeating sequence content. For
those elements, the schema compiler assumes these binding declarations shown in bold:

<element name="checkbook" type="class" root=”true”>
 <content>
Chapter 4 Binding a Schema to Classes 33

<element-ref name="transactions"/>
<element-ref name="balance"/></content></element>

<element name="deposit" type="class">
 <attribute name="category"/>
 <content>

<element-ref name="date"/>
<element-ref name="name"/>
<element-ref name="amount"/></content></element>

<element name="withdrawal" type="class">
 <content>

<element-ref name="date"/>
<element-ref name="amount"/></content></element>

The element-ref binding declaration is used to bind an instance of an element in a content
model to a property in the parent element’s class. The element declaration corresponding to
the element instance binds the element itself, including the binding of the element to its type.
By default, the schema compiler generates String properties from all element-ref binding
declarations that refer to simple elements. The default property for the name element is:

public class Deposit {
...
String getName();
void setName(String x);

The schema compiler also generates a String property for balance, date, and amount. The
Checkbook class contains a property for the balance element. The Deposit and Withdrawal
classes both have properties for the date and amount elements. In the Specifying Types
section, you’ll see that the types of these properties change when you use the convert
attribute in the corresponding element binding declarations.

Because you specified that the transactions element is bound to a class, the element-ref
binding declaration for the transactions element will cause the schema compiler to generate
this property in the Checkbook class:

Transactions getTransactions();
void setTransactions(Transactions x);

If an element’s content is anything other than a simple, non-repeating sequence, the schema
compiler will assume the general-content property binding declaration, which is:

<content property=”content” />

The transactions and check elements do not have simple, non-repeating sequences as their
content, and so the schema compiler assumes these binding declarations for them:

<element name="transactions" type="class" root=”true”>
 <content property="content"/></element>
...
<element name="check" type="class">
 <attribute name="number"/>
 <attribute name="category"/>
 <content property="content"/></element>
34 The JavaTM Architecture for XML Binding User’s Guide • May 2001

The general-content declaration is used to bind an entire model group, including nested model
groups, to one property. This declaration is not very useful for our purposes because we want
to access the individual elements in these content models. This declaration is useful for
defining more flexible bindings if you anticipate that your DTD will change in the future.
For more information on this declaration, see the Managing Schema Evolution section.

From these binding declarations, the schema compiler generates this property in both the
Transactions class and the Check class:

List getContent();
void emptyContent();
void deleteContent();

The getContent method returns a mutable list containing the property’s current value. The
emptyContent method discards the values in the list and creates a new, empty list. The
deleteContent method discards the list.

Customizing the Binding Schema
Now that you understand what binding declarations the schema compiler will assume based
on your DTD and minimal binding schema, it’s easy to write the binding schema: All you
need to write are the binding declarations that are not assumed by the schema compiler. This
section explains each of the customizations you can make to the binding schema to get the
classes that you want.

The binding schema that you will use for the checkbook application is:

<xml-java-binding-schema version="1.0ea">
<element name="checkbook" type="class" root="true" />
<element name="transactions" type="class" root="true">
<content>

 <choice property="entries" collection="list" supertype="Entry" />
</content>

</element>
<element name="balance" type="value" convert="BigDecimal"/>
<element name="amount" type="value" convert="BigDecimal" />
<element name="date" type="value" convert="TransDate" />
<element name="deposit" type="class" >
<attribute name="category" convert="DepCategory" />

</element>
<element name="check" type="class" >

<content>
 <element-ref name="date"/>
 <element-ref name="name" />
 <element-ref name="amount" />
 <choice property="pend-void-clrd"/>

</content></element>
 <attribute name="number" convert="int" />
 <attribute name="category" convert="CheckCategory" />
Chapter 4 Binding a Schema to Classes 35

 </element>
<conversion name="BigDecimal" type="java.math.BigDecimal" />
<conversion name="TransDate" type="java.util.Date"

 parse="TransDate.parseDate" print="TransDate.printDate" />
 <enumeration name="DepCategory" members="salary interest-income other"/>
 <enumeration name="CheckCategory" members="rent groceries other"/>
 <interface name="Entry" members="Deposit Check Withdrawal"
 properties="date amount" />

</xml-java-binding-schema>

This section steps you through this binding schema as if you were writing it from scratch.
You already entered the root element bindings in the Creating the Minimum-Required
Binding Schema section, so let’s start with that.

1. Replace the empty element tag (/>) with a right-angle bracket (>) and add an end-tag for
the transactions root element binding declaration because you will be adding content
declarations to it:

<xml-java-binding-schema version="1.0ea">
 <element name="checkbook" type="class" root="true" />

<element name="transactions" type="class" root="true" >>>>
</element></element></element></element>

2. Before you start writing your custom binding declarations, the first declarations you need
in your binding schema are the element binding declarations for the deposit and check
elements because you will be specifying types for their attributes and customizing the
content model of the check element. The schema compiler needs these declarations so that
it can generate the properties for the attributes and the choice content in the correct class
and for the correct elements.

Within the root element of your binding schema, after the root element binding
declarations, enter:

<element name=”deposit” type=”class” >

</element>
...
<element name=”check” type=”class” >

</element>

You’ll add the custom attribute and content binding declarations within these element
binding declarations later.
36 The JavaTM Architecture for XML Binding User’s Guide • May 2001

Specifying Types
By default, the schema compiler generates get methods that return a String and set methods
that accept a String for all simple elements and attributes. For example, consider these
default binding declarations:

<element-ref name=”amount” />
...
<element name=”amount” type=”value” />

From these binding declarations, the schema compiler generates these two methods:

public String getAmount();
public void setAmount(String amount);

If you want to perform some calculations with the amount, you need to convert it from a
String to some other type that will allow you to use it in a calculation. For calculations
involving currency values, the BigDecimal type is a good choice because it represents
arbitrary-precision signed decimal numbers, and the BigDecimal class provides methods for
basic arithmetic.

To specify a type, you use the conversion declaration to define the conversion and the
convert attribute of the element or attribute declaration, depending on whether you are
converting the type of an element property or an attribute property, to reference the
conversion declaration.

Specifying Non-Primitive Types

To define a conversion from String to BigDecimal:

1. Add this conversion declaration anywhere at the top-level (within
<xml-java-binding-schema version="1.0ea"> tags) of your binding schema, perhaps after
the check element binding declaration:

<conversion name=”BigDecimal” type=”java.math.BigDecimal” />

Any element or attribute binding declaration that uses this conversion refers to it by the
name BigDecimal, as specified by the name attribute. The type attribute value is the actual
type to which a property is converted.

2. To instruct the schema compiler to generate an amount property with a BigDecimal type:

a. Add an element binding declaration for the amount element to the top level of your
binding schema:

<element name=”amount” type=”value” />
Chapter 4 Binding a Schema to Classes 37

b. Add a convert attribute to the amount element binding and set its value to BigDecimal:

<element name=”amount” type=”value” convert=”BigDecimal” />

These binding declarations produce these method signatures:

public java.math.BigDecimal getAmount();
public void setAmount(java.math.BigDecimal amount);

Declaring the conversion separately from an element binding allows you to reuse a
conversion with other element bindings. You can do this with the balance element, which
also needs to be bound to a BigDecimal property

To instruct the schema compiler to generate a balance property with a BigDecimal type:

1. Add an element binding declaration for the balance element to the top level of your
binding schema and assign “BigDecimal” to its convert attribute:

<element name=”balance” type=”value” convert=”BigDecimal” />

You can also convert the date element’s property type to a java.util.Date. Since a date can
be written so many different ways, you need to specify how the date should be parsed when
unmarshalled and printed when marshalled. The conversion declaration includes parse and
print attributes for this purpose.

To convert the date element’s property to a java.util.Date:

1. Add this conversion declaration to the binding schema:

<conversion name=”TransDate” type=”java.util.Date”
parse=”TransDate.parseDate” print=”TransDate.printDate”/>

The TransDate name refers to a Java class that you need to provide. This class contains a
static parseDate method specifying how to parse the date and a static printDate method
specifying how to print the date. The TransDate class is included in the examples/
checkbook directory of your installation.

2. To instruct the schema compiler to generate a date property with a the TransDate class,
add a convert attribute to the date element binding declaration and set its value to
TransDate:

<element name=”date” type=”value” convert=”TransDate” />

These binding declarations produce these method signatures:

public java.util.Date getDate();
public void setDate(java.util.Date x);
38 The JavaTM Architecture for XML Binding User’s Guide • May 2001

Specifying Primitive Types

When you specify primitive types, such as int, you don’t need to provide a separate
conversion binding declaration; you simply add the convert attribute to the element or
attribute binding declaration and assign the value to the primitive type.

Within the check element binding declaration, add an attribute binding declaration for the
number attribute and specify an int type for its property:

<element name=”check” type=”class” >
<attribute name=”number” convert=”int” />

</element>

Creating Enumerated Types
The convert attribute can also be used to specify an enumerated type. In the Java
programming language, you represent enumerated types with a typesafe enum, which is a
class whose instances represent a fixed set of values.

An attribute whose value can only be set to one of a fixed set of values is a good candidate
for an enumerated type. The checkbook DTD has two such attributes: the category attribute
of the deposit element and the category attribute of the check element:

<!ATTLIST deposit ...
category (salary | interest-income | other) #IMPLIED >

<!ATTLIST check ...
category (rent | groceries | other) #IMPLIED >

To generate typesafe enums for these attributes:

1. Enter two enumeration tags for each conversion at the top level of your binding schema, perhaps
after the TransDate conversion declaration:

<conversion name=”TransDate” ...
<enumeration
<enumeration

2. For the enumeration tag’s name attribute, you need to enter a unique name for each
enumeration because both of the enumerations are at the top level of the binding schema.
Enter DepCategory for the deposit category and CheckCategory for the check category.

<enumeration name="DepCategory"
<enumeration name=”CheckCategory”

These names will be the names of the classes to represent the typesafe enums.
Chapter 4 Binding a Schema to Classes 39

3. Add a members attribute to each enumeration declaration, and assign to it the possible
values of each attribute:

<enumeration name="DepCategory" members=”salary interest-income other” />
<enumeration name=”CheckCategory” members=”rent groceries other” />

4. Add attribute binding declarations within the deposit and check element binding
declarations and assign the appropriate enumeration declaration name to each convert
attribute of the attribute binding declaration:

<element name=”deposit” ...
<attribute name=”category” convert=”DepCategory” />

...
<element name=”check” ...

<attribute name=”category” convert=”CheckCategory” />

The schema compiler will generate this class from the binding of the check category
attribute:

public final class CheckCategory {
public final static CheckCategory RENT;
public final static CheckCategory GROCERIES;
public final static CheckCategory OTHER;
public static CheckCategory parse(String x);
public String toString();

}

You’ll see how to work with this class in the Building Data Representations chapter.

Customizing Content Model Binding Declarations
Content models can be very complex, and so the binding language defines many different
binding declarations to handle different kinds of content models. You define these bindings
with the content binding declaration.

You can use the content binding declaration to define two kinds of content model
declarations: the general-content property and the model-based content property. A general-
content property is used to bind an entire content model to one property. This declaration is
not used to bind anything in the checkbook DTD, but it is useful for defining more flexible
bindings if you anticipate that your DTD will change in the future. For more information on
this declaration, see the Managing Schema Evolution section.

A model-based content property declaration can contain four types of declarations to specify
different kinds of bindings for model groups:
• element-ref, which specifies the binding of one element instance within another

element’s content. The element construct specifies the binding of the element itself.
• choice, which specifies the binding of a nested choice model group to a property.
• sequence, which specifies the binding of a nested sequence model group to a property.
40 The JavaTM Architecture for XML Binding User’s Guide • May 2001

• rest, which is a more flexible binding declaration that you can use to specify any kind of
content. See the Managing Schema Evolution section for more information on the rest
binding declaration.

Remember from the Understanding the Default Binding Declarations section that the schema
compiler assumes a general-content property binding declaration for the check and
transactions element content because these elements do not have simple, non-repeating
sequence content models. Instead, these elements have choice model groups in their content
declarations:

<!ELEMENT transactions (deposit | check | withdrawal)* >
...
<!ELEMENT check (date, name, amount, (pending | void | cleared), memo?) >
...

This section shows you how to use the choice binding declaration to cause the schema
compiler to generate more useful properties for the content of these elements.

In the case of the transactions element content, we want to assign the entire group to one
choice property. To specify the binding of the transactions element content:

1. Inside the transactions element binding declaration, enter a content tag and a choice
binding declaration, and assign the value “entries” to the property attribute: :

<element name=”transactions” type=”class” root=”true” >
<content>

<choice property=”entries”

The schema compiler will generate a property called Entries. For example, the get
method will be called getEntries. The reason we use the name “entries” is because the
name refers to an interface declaration, which the section Creating Interfaces will show
you how to create.

2. Because the content model has a * occurrence indicator, we need to bind this content to a
collection property. Enter the collection attribute and give it a value of “list”:

<choice property=”entries” collection=”list” />

A collection property can represent either an array or a List. In this case, you should bind
the content to a List because a List, unlike an array, allows you to add more entries at
runtime.

3. Enter the end-tag for the content binding declaration:

</content>

These binding declarations will produce this property in the Transactions class:

public List getEntries();
Chapter 4 Binding a Schema to Classes 41

public void deleteEntries();
public void emptyEntries();

The getEntry method returns the entire list of entries. Once you get the list, you can iterate
through the list as you would with any List to get a particular Entry. The List returned from
getEntries is mutable: if you change an Entry in this list, it changes the Entry in the content
tree. The emptyEntries method discards the values in the list and creates a new, empty list.
The deleteEntries method discards the list.

To specify the binding of the nested choice model group in the check element content
model, within the check element binding declaration:

1. Enter the element-ref binding declarations for the date, name, and amount elements, and
insert the choice binding declaration as shown in bold within the check element’s content
binding declaration:

<element name=”check” type=”class” >
<attribute name=”number” convert=”int” />
<attribute name=”category” convert=”CheckCategory” />
<content>

<element-ref name=”date” />
<element-ref name=”name” />
<element-ref name=”amount” />
<choice property=”pend-void-clrd” />

</content>
</element>

The property attribute value is the name of the generated property. For example, the get
method will be called getPendVoidClrd. If the content also contains a choice, sequence, or
rest content binding declaration, you need to specify the default element-ref binding
declarations for the elements preceding this content; otherwise, the schema compiler
doesn’t know which elements are intended for which binding declaration.

Creating Interfaces
You might have noticed that the deposit, check, and withdrawal elements have some
common content. You might also have noticed that each represents an entry in a list of
transactions. When you have a group of classes that provide similar functionality and have
some common behavior and properties, you can use an interface to capture the similarities
between the classes. In the case of deposit, check, and withdrawal, they all have date and
amount elements. The date and amount will be the common properties in the interface.

To cause the schema compiler to generate an interface, which Deposit, Check, and
Withdrawal will implement:
42 The JavaTM Architecture for XML Binding User’s Guide • May 2001

1. Anywhere at the top level of your binding schema, perhaps after the enumeration
declarations, enter this interface declaration:

<interface name=”Entry” members=”Deposit Check Withdrawal”
properties=”date amount” />

The members attribute represents all of the classes that implement the interface. The
properties attribute represents the common content shared by the members of the
interface.

Because the deposit, check, and withdrawal elements occur in the transactions
element’s content model as a choice group, you need to reference Entry from the binding of
the choice group. You previously assigned the name of the interface to the property
attribute and the value “list” to the collection attribute. Assign the name of the interface to
the supertype attribute:

<element name=”transactions” type=”class” class=”Transactions >
<content>

<choice property=”entries” collection=”list” supertype=”Entry” />
</content>

</element>

The supertype attribute indicates a class or interface declared in the binding schema that
each of the element classes included in the choice property implements.

These binding declarations will produce an interface called Entry, which will include the date
and amount properties:

public interface Entry {
...
public int getAmount();
public void setAmount(int x);
public Date getDate();
public void setDate(Date d);

Managing Schema Evolution
As with any facility that generates code, a developer writing applications based on the code
needs to ensure that newly generated code does not break the applications. If you anticipate
that your DTD will change, you can use the more flexible binding declarations in the binding
language to protect the integrity of your applications.

The easiest way to manage schema evolution is to accept the default bindings that the
schema compiler produces. These bindings are very loose definitions of the DTD
declarations, and thus are more flexible to changes in the DTD. For example, any model
groups that do not consist of distinct elements in a non-repeating sequence are bound using a
Chapter 4 Binding a Schema to Classes 43

general content property declaration, which binds the entire content to one property. If
you were to add elements to this model group, these elements would still be represented by
the property, and the classes would not change.

You can use the general content property declaration for any model group. To bind content
using this declaration, you use the content construct:

<content property=”mygroup” />

This binding will generate this property:

public List getMygroup();
public void deleteMygroup();
public void emptyMygroup();

Another binding declaration you can use to manage schema evolution is the rest binding
declaration. This binding declaration is similar to the general content property
declaration in that it can represent any kind of content. By appending a rest declaration onto
an element content’s binding declaration, you can add other elements and groups to the
DTD’s content model in the future without affecting the generated classes. For example, you
can add a rest construct to the content binding of the withdrawal element:

<content>
...

<rest property=”rest” />

</content>

Because you have the rest property, you can add other content to the withdrawal element
without breaking your application. In addition, you can still individually access the old
content with the properties generated by the other declarations within the content
declaration. Only the new content, defined by the rest property, will be represented by a
List property.

Generating the Java Classes
Now that you’ve completed the binding schema, you can run the schema compiler to
generates the Java classes. This guide assumes that you have followed the instructions in the
release notes, located in the docs directory of your installation and have set your classpaths
correctly.

To generate the Java classes:
44 The JavaTM Architecture for XML Binding User’s Guide • May 2001

1. Run the schema compiler with checkbook.dtd and checkbook.xjs, the binding schema that you
created:

xjc checkbook.dtd checkbook.xjs

You should now see the files Checkbook.java and Entry.java in your current directory.

2. Compile the source files into Java classes:

javac *.java

The rest of this section explains the code generated in the files. If you don’t need an
explanation of the code, go to the next chapter, Building Data Representations to build
content trees using the classes.

The Generated Java Source Files
This section briefly explains some of the public methods and classes generated by the
schema compiler based on the checkbook DTD and the binding schema that you created in
the Writing the Binding Schema section. Since the Deposit, Check, and Withdrawal classes are
so similar, among these classes, this section only explains the Check class. Likewise, this
section only explains the CheckCategory enumerated class, and out of the Pending, Void, and
Cleared classes, this section only explains the Pending class.

The Checkbook.java File
The checkbook element from transactions.dtd is bound to the Checkbook class whose signature
is:

public class Checkbook extends MarshallableRootElement implements RootElement

Because checkbook is a root element, the Checkbook class extends MarshallableRootElement,
which is the class representing root element objects that can be marshalled and unmarshalled,
and implements RootElement. [why do we implement RootElement/Element again?]

Like every generated class, the Checkbook class contains a zero-argument constructor:

public Checkbook();

Recall that the checkbook element contains a transactions element and a balance element:

<!ELEMENT checkbook (transactions, balance) >
Chapter 4 Binding a Schema to Classes 45

The transactions and balance elements are bound to these properties in the Checkbook class:

// the transactions property
public void setTransactions(Transactions x);
public Transactions getTransactions();

// the balance property
public void setBalance(java.math.BigDecimal x);
public java.math.BigDecimal getBalance();

The transactions property accepts and returns a Transactions object because the
transactions element is also represented by a class. The balance property accepts and
returns a java.math.BigDecimal because of these binding declarations that you specified in
the Specifying Types section:

<element name="balance" type="value" convert="BigDecimal"/>
...
<conversion name="BigDecimal" type="java.math.BigDecimal" />

Although the MarshallableRootElement defines marshal methods, which the Checkbook
class uses by extension, it does not define any unmarshal methods. Thus, the schema
compiler generates these static unmarshal methods in the Checkbook class:

public static Checkbook unmarshal(InputStream in)
public static Checkbook unmarshal(XMLScanner xs)
public static Checkbook unmarshal(XMLScanner xs,
Dispatcher d)

When you unmarshal an XML document, you can invoke either unmarshal(InputStream)
or unmarshal(XMLScanner) in which the InputStream or the XMLScanner represents your
XML document.

Although unmarshalling performs validation for you, you need to perform validation after
you edit the content tree and before you marshal the tree back to an XML document. For
these purposes, the schema compiler generates these methods:

public void validateThis();
public void validate();

After you edit a piece of the content tree, you can use validateThis to validate the edited
object. Before you marshal the content tree to an XML document, you must use validate to
validate the entire content tree.

The Transactions.java File
The transactions element from the checkbook.dtd is bound to the Transactions class whose
signature is:
46 The JavaTM Architecture for XML Binding User’s Guide • May 2001

public class Transactions extends MarshallableRootElement implements RootElement

Like checkbook, transactions is a root element, and so the Transactions class extends
MarshallableRootElement, and implements RootElement.

The Transactions class contains a zero-argument constructor:

public Transactions();

The transactions element contains zero or more deposit, check, or withdrawal elements:

<!ELEMENT transactions (deposit | check | withdrawal)* >

When you followed the instructions in Customizing Content Model Binding Declarations,
you specified that the schema compiler bind the transaction element content to a List
collection property called “entries”. In the section Creating Interfaces, you specified that the
supertype of the entries property is the interface Entry:

<element name=”transactions” type=”class” class=”Transactions >
<content>

<choice property=”entries” collection=”list” supertype=”Entry” />
</content>

</element>

The interface binding declaration caused the schema compiler to bind the transactions
content to a list of deposits, checks, and withdrawals. The interface binding declaration
caused the schema compiler to generate an Entry interface, which the Deposit, Check, and
Withdrawal classes implement. The Entry interface is explained in the next section.

The entries property consists of three methods that you use to access the transactions
element content:

public List getEntries();
public void deleteEntries();
public void emptyEntries();

The getEntry method returns the entire list of entries. Once you get the list, you can iterate
through the list as you would with any List to get a particular Entry. The List returned from
getEntries is mutable: If you change an Entry in this list, it changes the Entry in the content
tree. The deleteEntries method deletes the current list of entries. The emptyEntries method
deletes the list’s values.

Any content of transactions (whether it’s two deposits or one deposit and five withdrawals)
implements Entry. Therefore, you do not need to perform instanceof tests or type casting on
the items in the List representing the entries, unless you are working with an element
contained in deposit, check, or withdrawal that is not one a member of the Entry interface.

Like the Checkbook class, the Transactions class contain the marshal, unmarshal and validate
methods that a user should invoke.
Chapter 4 Binding a Schema to Classes 47

The Entry.java File
The supertype of the transactions element content is the Entry interface, as specified in this
interface binding declaration:

<element name=”transactions” type=”class” class=”Transactions >
<content>
<choice property=”entries” collection=”list” supertype=”Entry” />

</content>
</element>

The Entry interface signature is:

public interface Entry {

The only common element content between the deposit, check, and withdrawal elements
is date and amount, and so you assigned these elements to the properties attribute of the
interface construct In the Creating Interfaces section:

<interface name=”Entry” members=”Deposit Check Withdrawal”
properties=”date amount” />

The Entry interface, therefore, includes the properties for the date and amount elements:

public int getAmount();
public void setAmount(int x);
public Date getDate();
public void setDate(Date d);

The amount property returns and accepts an int because you wrote a conversion binding
declaration for converting from String to BigDecimal and used the convert attribute in the
amount element binding declaration and assigned to it the value “BigDecimal”:

<element name=”amount” type=”value” convert=”BigDecimal” />
<conversion name="BigDecimal" type="java.math.BigDecimal" />

The Check.java File
The check element is bound to the Check class, which has this signature:

public interface Check extends MarshallableObject
implements Element, Entry{

The Check class extends MarshallableObject, which is the abstract class that represents any
object that can be marshalled or unmarshalled but is not necessarily a root element. The
Check class must implement Element because, unlike MarshallableRootElement, a
48 The JavaTM Architecture for XML Binding User’s Guide • May 2001

MarshallableObject does not have to be an object derived from an element and therefore
does not implement Element itself. Finally, Check implements Entry because you specified
Entry as the supertype of the transaction element content in the section Creating Interfaces.

The check element has two attributes and contains six elements:

<!ELEMENT check (date, name, (pending | void | cleared), memo?) >
<!ATTLIST check

number CDATA #IMPLIED
category (rent | groceries | other) #IMPLIED >

The date element is bound to a property that returns a Date object:

public Date getDate();
public void setDate(Date x);

The name, and memo elements, which only contain text are bound to these properties:

public String getName();
public void setName(String x);
public String getMemo();
public void setMemo(String x);

In the Specifying Types section, you specified a type of int for the number attribute,
producing this property:

public int getNumber();
public void setNumber(int x);

In the Customizing Content Model Binding Declarations section you specified that the choice
model group, (pending | void | cleared), is bound to a property, producing these methods:

public MarshallableObject getPendVoidClrd();
public void setPendVoidClrd(MarshallableObject x);

The pend-void-clrd property returns and accepts a MarshallableObject, which represents
objects that can be marshalled and unmarshalled. The reason the property type is not String
is because you cannot determine if a String is supposed to be a pending, void, or cleared
element; with MarshallableObject, you can because the MarshallableObject will be either a
Pending, Void, or Cleared object.

The Check class also contains a property for the checkCategory enumeration, which you
specified in the Creating Enumerated Types section:

<enumeration name=”CheckCategory” members=”rent groceries other” />
...
<attribute name=”category” convert=”CheckCategory” />

The property that this binding declaration generates is:

public CheckCategory getCheckCategory();
Chapter 4 Binding a Schema to Classes 49

public void setCheckCategory(CheckCategory x);

This property accepts and returns a CheckCategory object, which is an instance of the
typesafe enum class, CheckCategory. This class is discussed in the next section.

The CheckCategory.java File
The category attribute takes one of a fixed set of values represented by a choice group in the
attribute definition:

<!ATTLIST check ...
category (rent | groceries | other) #IMPLIED >

When following the instructions in the Creating Enumerated Types section, you specified a
binding of this attribute to a typesafe enum:

<enumeration name=”CheckCategory” members=”rent groceries other” />
...
<attribute name=”category” convert=”CheckCategory” />

A typesafe enum is a class that represents an enumeration consisting of an element or
attribute and its list of possible values, only one of which can be assigned to the class. The
name of the class corresponds to the element or attribute, and static fields represent the
values. Typesafe enum classes have many advantages, including compile-time type checking.
The typesafe enum generated from the category attribute is:

public final class CheckCategory {
public final static CheckCategory RENT;
public final static CheckCategory GROCERIES;
public final static CheckCategory OTHER;
public static CheckCategory parse(String x);
public String toString();

}

The parse method attempts to map a String argument to one of the accepted values. The
toString method returns the current value of a CheckCategory as a String.

The Pending.java File
The Pending class represents one of the members of the choice model group contained in the
check element declaration:

<!ELEMENT check (date, name, (pending | void | cleared), memo?) >
50 The JavaTM Architecture for XML Binding User’s Guide • May 2001

This element, as well as the void and cleared elements, are bound to their own classes
because they are part of this choice model group. As explained in the The Check.java File
section, the property that this group is bound to must return a MarshallableObject, which
must also be either a Pending, Void, or Cleared object, so that your application knows which
element it will encounter during unmarshalling or marshalling. The Pending, Void and
Cleared classes each have a zero-argument constructor.

The next chapter shows you how to work with these classes to build data representations.
Chapter 4 Binding a Schema to Classes 51

52 The JavaTM Architecture for XML Binding User’s Guide • May 2001

CHAPTER 5

Building Data Representations

This chapter demonstrates how to use the classes you generated in the previous chapter to:
• Unmarshal an XML document into a content tree.
• Instantiate the classes to build a content tree.
• Validate your content tree against the DTD.
• Marshal a content tree to a new XML document.
• Append a content tree onto another content tree.

The XML Document Instance: march.xml
The march.xml document is valid against checkbook.dtd. Remember from Before You Begin:
XML Basics that an XML document must have a root element that encloses all other
elements in the document. The root element of march.xml document is the transactions
element because march.xml represents a set of transactions for the month of March. As shown
here in march.xml, you only had one deposit, one check, and one withdrawal transaction for
the month of March:

<?xml version="1.0" encoding="US-ASCII"?>
<transactions>
 <deposit category=”salary” >
 <date>03-14-2001</date>
 <name>Me</name>
 <amount>3000.00</amount>
 </deposit>
 <check number="2" category="groceries">
 <date>03-15-2001</date>
 <name>Conglomerate Foods</name>
 <amount>34.95</amount>
 <pending/>
 <memo>food</memo>
 </check>
 <withdrawal>
53

 <date>03-16-2001</date>
 <amount>20.00</amount>
 </withdrawal>
</transactions>

This document is included in the examples/checkbook directory of your installation1. This
chapter shows you how to unmarshal this document into a content tree.

Setting Up Your Application
Before you can use JAXB to build data representations or work with the data, you need to
first create a Java application that will perform these functions. To set up your JAXB
application:

1. Create a file called CheckbookApp.java

2. Import these packages:

import java.io.*;
import java.util.*;
import javax.xml.bind.*;
import javax.xml.marshal.*;

The last two packages are part of the binding framework, which defines the unmarshal,
marshal, and validate methods.

3. Declare the CheckbookApp class:

public class CheckbookApp {
}

4. Initialize two Transactions objects:

public static Transactions marchTrans = new Transactions();
public static Transactions aprilTrans = new Transactions();

You’ll need to reuse these objects in your application.

5. Inside CheckbookApp, create your main method:

public class CheckbookApp {

1. Note that the march.xml file in your installation has April dates instead of March dates. This bug will be fixed for FCS.
The file shown in this chapter and in the appendix is correct.
54 The JavaTM Architecture for XML Binding User’s Guide • May 2001

public static void main(String args[]) throws Exception {
}

}

The completed CheckbookApp.java file is located in your examples/checkbook directory.

Building a Content Tree
JAXB allows you to build a content tree in one of two ways: by unmarshalling an XML
document or by instantiating the generated classes.

Unmarshalling
Once you have generated the classes from the DTD that specifies an XML document, you
can unmarshal the document into a content tree.

In your docs/examples/checkbook directory, find the file called march.xml, which
contains the transactions written in the month of March.

To unmarshal this XML document into a content tree in the CheckbookApp.java file:

1. Create a method called buildTrees:

public static void buildTrees() throws Exception {
}

2. In your new method read the XML file into a FileInputStream:

File march = new File("march.xml");
FileInputStream fIn = new FileInputStream(march);

3. Call the unmarshal method of Transactions, which is the class that represents the
transactions root element of checkbook.dtd:

try {
marchTrans = marchTrans.unmarshal(fIn);

} finally {
fIn.close();

}

4. Invoke the buildTrees method from your main method:

buildTrees();
Chapter 5 Building Data Representations 55

At this point, CheckbookApp generates a content tree from march.xml. The Accessing
Content section will show you how to manipulate the contents of the tree. The next section
shows you how to build a content tree by instantiating the generated classes.

Instantiation
If you have an XML DTD but no valid XML instance documents specified by the DTD, you
can create a valid XML document by building a content tree from the derived classes and
marshalling the tree to an XML document.

Suppose that you want to create a content tree representing a list of transactions for the
month of April.

To build this content tree with instantiation:

1. In the buildTrees method, after the call to unmarshal the march.xml file, get the list
of entries from the aprilTrans object, create a new Check object, representing the rent
check for the month of April:

List aprilEntries = aprilTrans.getEntries();
Check aprilRentCheck = new Check();
CheckCategory aprilRent = CheckCategory.RENT;
aprilRentCheck.setCategory(aprilRent);

2. Set the name of the entity to receive the check:

aprilRentCheck.setName(“Gilchrest Gardens Manor”);

3. Set the check number:

aprilRentCheck.setNumber(51);

You can pass an integer to the setNumber method because you specified in the binding
schema that the number property accepts and returns an int.

4. Set the date for the check:

aprilRentCheck.setDate(TransDate.parseDate(“04-12-2001”));

You use the parseDate method from the TransDate class that you provided in the
previous chapter because you specified your own format for the date, which is: MM-dd-
yyyy.

5. Set the amount for the check:

aprilRentCheck.setAmount(new java.math.BigDecimal(“1500.00”));

You can pass a java.math.BigDecimal to the setAmount method because you
56 The JavaTM Architecture for XML Binding User’s Guide • May 2001

specified in the binding schema that the amount property accepts and returns a
java.math.BigDecimal. When you start calculating the balance for the checkbook in
the next chapter, you will see the advantage of performing these type conversions.

6. Set the check status to pending:

Pending pending = new Pending();
aprilRentCheck.setPendVoidClrd(pending);

7. Add the Check to the list of entries in the aprilTrans content tree:

aprilEntries.add(aprilRentCheck);

The Entry object represents a list of transactions, which includes any number of deposits,
checks, and withdrawals. The Deposit, Check, and Withdrawal classes implement
Entry, which represents the common functionality of these three classes. After you create
a Check, Deposit, or Withdrawal, you add it to the Entries list. Since the list is
mutable, the transactions you add to it are automatically added to the content tree.

You now have two content trees: one for the March transactions, the other for the April
transactions. The next section demonstrates how to access content from the trees.

Accessing Content
Whether you built a content tree by unmarshalling an XML document or by instantiating
your classes, you access the content in the same way. This section will demonstrate accessing
the content of the content trees you created in the previous section.

In the march.xml file, you have a grocery check made out to Conglomerate Foods. You now
realize that you shopped at Mom and Pop Foods instead. You need to change the name of the
recipient on the grocery check to “Mom and Pop Foods.”

1. Create a new method called accessContent:

public static void accessContent() {}

2. In your accessContent method, invoke getEntries on the marchTrans object:

List entryList = marchTrans.getEntries();

The entryList contains all of the transactions in the content tree repesenting the data
from march.xml.
Chapter 5 Building Data Representations 57

3. Iterate through the list to find check transactions:

for(ListIterator i = entryList.listIterator(); i.hasNext();) {
Entry entry = (Entry)i.next();
if (entry instanceof Check){

4. Get the category of each check entry you find to determine if it is the groceries check:

CheckCategory category = ((Check) entry).getCategory();
if(category.equals(CheckCategory.GROCERIES)){

5. If the check is the groceries check, set the name of the recipient to “Mom and Pop Foods”
and add the closing curly braces:

((Check)entry).setName(“Mom and Pop Foods”);
break;

}
}

}

6. Invoke the accessContent method from the main method:

accessContent();

After you created your content tree for the April transactions, your landlord informs you that
he has increased the rent to $2000. So, you need to change the rent check amount in the
content tree representing your transactions for the month of April.

To change the amount of the rent check:

1. In the accessContent method, get the list of entries, but this time invoke getEntries on
the aprilTrans object:

List aprilEntries = aprilTrans.getEntries();

2. Iterate through the list to find the rent check, and set the amount to $2000:

for(ListIterator i = aprilEntries.listIterator(); i.hasNext();) {
Entry entry = (Entry)i.next();
if (entry instanceof Check){

CheckCategory category = ((Check) entry).getCategory();
if(category.equals(CheckCategory.RENT)){

entry.setAmount(new java.math.BigDecimal(“2000.00”));
}

}
}

58 The JavaTM Architecture for XML Binding User’s Guide • May 2001

Notice in the final step that you did not have to cast entry to a Check to set the amount of the
check. This is because you specified in the binding schema that amount is one of the
members of the Entry interface because it is one element that check, deposit, and
withdrawal all share. So, any Entry instance will have an amount. In step 4 of the first set
of steps, you had to cast entry to a Check to set the name because name is not one of the
members of the Entry interface. The reason you did not specify Entry to contain a name is
because withdrawal does not include name as one of its elements.

Because you have made changes to the content trees, you should make sure that your tree is
still valid before marshalling it. The next section explains how to validate the content trees.

Validating
Before marshalling a content tree to an XML document, you must ensure that the content tree
is valid with respect to the DTD. If you used unmarshalling rather than instantiation to build
your content tree, and you have not changed the tree, you do not need to validate before
marshalling because the unmarshalling process incorporates validation. If you used
instantiation to build the tree, you will always need to explicitly perform validation before
marshalling.

You have changed both content trees in the previous section, and so you must validate them
before marshalling.

To validate both content trees:

1. Create a method called validateTrees:

public static void validateTrees() throws Exception {}

2. Within the method, call validate on both marchTrans and aprilTrans:

marchTrans.validate();
aprilTrans.validate();

3. Invoke validateTrees from the main method:

validateTrees();
Chapter 5 Building Data Representations 59

Marshalling
After validating your content trees, you are ready to marshal them to new XML documents.
Whether you built a content tree using unmarshalling or instantiation, you marshal the tree in
the same manner.

To marshal the content trees:

1. Create a new method called marshalTrees:

public static void marshalTrees() throws Exception {}

2. In the marshalTrees method, create new files to contain the updated content for both
trees:

File march_new = new File(“march_new.xml”);
File april_new = new File(“april_new.xml”);

3. Create the OutputStream objects to send to the marshal method:

FileOutputStream fMOut = new FileOutputStream(march_new);
FileOutputStream fAOut = new FileOutputStream(april_new);

4. Invoke the marshal method on each tree:

try {
marchTrans.marshal(fMOut);
aprilTrans.marshal(fAOut);

} finally {
fMOut.close();
fAOut.close();

}

5. Invoke marshalTrees from the main method:

marshalTrees();

After you recompile your classes and run CheckbookApp, you will see the files
march_new.xml and april_new.xml in your directory. If you compare march.xml with
march_new.xml, you will find that the only difference between the two files is the name of
the groceries check, which you changed. JAXB preserves the equivalence between an XML
document and the same XML document marshalled from its content tree.

The next section shows you how to add the content tree representing the April transactions to
the content tree representing the March transactions.
60 The JavaTM Architecture for XML Binding User’s Guide • May 2001

Appending Content Trees
Since an object in a content tree can have more than one child, you can append content trees
together. We can employ this technique to append the April transactions to the March
transactions before adding the transactions to the checkbook as shown in the next chapter.

To append AprilTrans to Trans:

1. Create a new method called appendTrees:

public static void appendTrees() {}

1. In the new method, get the list of entries from each Transactions object:

List mEntries = marchTrans.getEntries();
List aEntries = aprilTrans.getEntries();

2. Use the List method, addAll, to add the entire list of April transactions to the list of
March transactions:

mEntries.addAll(aEntries);

3. Invoke appendTrees from the main method:

appendTrees();

The next chapter shows you how to extend the Checkbook class to provide functionality for
adding your March and April transactions to your checkbook and balancing the checkbook.
Chapter 5 Building Data Representations 61

62 The JavaTM Architecture for XML Binding User’s Guide • May 2001

CHAPTER 6

Working With The Data

This chapter shows you how to use extension to add application-specific functionality to
your JAXB application. We will continue with the CheckbookApp you created in the
previous chapter. In this chapter, we’ll create a new class, called CheckbookBalance. This
new class will extend the generated class Checkbook and will contain a method that adds the
transactions to the checkbook and computes the new balance. The CheckbookApp class calls
this new method to add the transactions from March and April (represented by the content
trees you created in the previous chapter) to the checkbook. In this chapter, we will work
with the checkbook.xml document, which represents the checkbook, the list of transactions
and the account balance.

The Example XML Document:
checkbook.xml
The checkbook.xml document defines a checkbook, which contains a set of transactions and
a balance, so instead of defining transactions as the root element, this document defines
the checkbook element as the root element, which contains the list of transactions and the
balance:

<?xml version="1.0" encoding="US-ASCII"?>
<checkbook>

<transactions>
<deposit category=”salary”>
<date>02-09-2001</date>
<name>Me</name>
<amount>2500.00</amount>

</deposit>
<check number="90" category="other">
<date>02-12-2001</date>
<name>My Local Bookstore</name>
<amount>34.95</amount>
63

<pending/>
<memo>Duke’s Book</memo>

</check>
<check number="91" category="rent">
<date>02-28-2001</date>
<name>Landlord</name>
<amount>1500.00</amount>
<void/>
<memo>February</memo>

</check>
</transactions>
<balance>50000.00</balance>

</checkbook>

Notice that your checkbook only has the February transactions in it. This chapter will show
you how to add the March and April transactions to the checkbook and update the balance.
The checkbook.xml file is also located in the examples/checkbook directory of your
installation.1

Setting Up the CheckbookBalance Class
To create the CheckbookBalance class:

1. Create a file called CheckbookBalance.java

2. Import these packages:

import java.io.*;
import java.util.*;
import java.math.*;

3. Declare the CheckbookBalance class so that it extends Checkbook:

public class CheckbookBalance extends Checkbook {
}

4. Inside CheckbookBalance, create the balanceCheckbook method:

public class CheckbookBalance extends Checkbook {
void balanceCheckbook(Transactions trans) throws Exception {
}

}

1. Note that the checkbook.xml file located in your examples/checkbook directory has a bug. The dates are supposed to be
February dates, not March dates. This bug will be fixed for FCS. The file shown in this chapter and in the appendix is
correct.
64 The JavaTM Architecture for XML Binding User’s Guide • May 2001

This method will contain all the code to add transactions to the checkbook and compute
the new balance. The CheckbookApp class will pass the entire list of transactions that you
created in the Appending Content Trees section to the balanceCheckbook method.

The completed CheckbookBalance.java file is located in your docs directory.

Extending the Derived Classes
In the Building Data Representations chapter, you learned how to use the derived classes
directly. Another way of using the derived classes is through extension. Extension involves
subclassing a derived class to provide application-specific functionality. This section
demonstrates extension by showing you how to balance your checkbook and add your
transaction entries to the checkbook.

Unmarshalling
Before you can perform the calculations, you need to unmarshal the file containing your
transactions into a content tree, just as you did in the Unmarshalling section of the previous
chapter. However, this time you are extending Checkbook rather than using it directly, which
means that you unmarshal a CheckbookBalance object, not a Checkbook object. If you do
not specify that CheckbookBalance must be unmarshalled, the unmarshalling process will
return a Checkbook object, not a CheckbookBalance object. To solve this problem, you need
to register CheckbookBalance with a Dispatcher.

Dispatching
A dispatcher maps element names to class names and sublass names to class names. The
unmarshalling process begins with the invocation of a dispatcher’s unmarshal methods. A
default dispatcher unmarshals XML content into instances of generated classes. For our
example, this means that the unmarshal method would return a Checkbook, not a
CheckbookBalance. To return a CheckbookBalance, you need to register
CheckbookBalance with the Dispatcher.

To register CheckbookBalance with a Dispatcher:

1. At the top of CheckbookApp.java, initialize a CheckbookBalance object:

public static CheckbookBalance chBook = new CheckbookBalance();
Chapter 6 Working With The Data 65

2. Create a new method in CheckbookApp.java called unmarshalSubclass:

public static void unmarshalSubclass() throws Exception{}

3. In the unmarshalSubclass method in CheckbookApp.java, acquire the default
Dispatcher from Checkbook:

Dispatcher d = Checkbook.newDispatcher();

4. Register CheckbookBalance with the returned Dispatcher:

d.register(Checkbook.class, CheckbookBalance.class);

This method registers the CheckbookBalance subclass with the Dispatcher so that it
unmarshalls a CheckbookBalance instead of a Checkbook.

5. Invoke unmarshalSubclass from the main method:

unmarshalSubclass();

Unmarshalling the Subclass
Because you registered CheckbookBalance with a dispatcher, you need to call the
dispatcher’s unmarshal method, not the CheckbookBalance object’s unmarshal method.

To unmarshal CheckbookBalance:

1. In the unmarshalSubclass method, read checkbook.xml into a FileInputStream:

File checkbookNew = new File(“checkbook.xml”);
FileInputStream fNewIn = new FileInputStream(checkbookNew);

2. Cast the object returned by the unmarshal method to a CheckbookBalance object:

try{
chBook = (CheckbookBalance)(d.unmarshal(fNewIn));

} finally {
fNewIn.close();

}

The next section demonstrates how to implement the checkbook-balancing calculations in
CheckbookBalance.java.
66 The JavaTM Architecture for XML Binding User’s Guide • May 2001

Adding Functionality
The CheckbookBalance.java file contains only one method: balanceCheckbook. This
section shows you how to implement balanceCheckbook to calculate your new balance
based on the previous month’s balance and add transactions from March and April.

To implement the balanceCheckbook method in the CheckbookBalance class:

1. Get the current balance recorded in your checkbook:

BigDecimal balance = this.getBalance();

2. Get the list of entries from the Transactions object that is passed into this method:

List tEntries = trans.getEntries();

3. Initialize a BigDecimal to keep track of the amount of each transaction:

BigDecimal amt;

4. Create a loop to iterate through the list of transactions and get the amount of each
transaction:

for (ListIterator i = tEntries.listIterator(); i.hasNext();) {
 Entry entry = (Entry)i.next();
 amt = entry.getAmount();

5. If the entry is a Deposit, add the amount of the deposit to the checkbook balance;
otherwise, subtract the amount of the transaction from the balance:

 if (entry instanceof Deposit){
balance = balance.add(amt);

 } else {
balance = balance.subtract(amt);

 }

6. After re-calculating the balance based on a transaction, add the transaction to the list of
transactions in the checkbook:

 this.getTransactions().getEntries().add(entry);
}

7. After you have looped through the list of transactions, check if the balance is negative. If
it is, warn the account holder that the account is overdrawn:

if(balance.compareTo(new BigDecimal(0.00)) == -1){
System.out.println("You are overdrawn.");

}

Chapter 6 Working With The Data 67

8. Print out the new balance and set the balance in the checkbook to the new balance:

System.out.println("Your balance is: "+balance);
this.setBalance(balance);

The next section shows you how to invoke the new functionality in CheckbookBalance from
CheckbookApp.java.

Using the New Functionality in Your Application
This section shows you how to use the balanceCheckbook method from CheckbookApp to
balance your checkbook and add the transactions from March and April to the checkbook.

The CheckbookBalance class is written in a generic way so that it can take any
Transactions object and add the transactions to a checkbook and calculate the new balance.
All you need to do from your application is call the balanceCheckbook method with your
particular Transactions object and marshal the result to a new checkbook file.

To update your checkbook with the new transactions and balance:

1. In the main method of the CheckbookApp class, call the balanceCheckbook method with
the marchTrans object:

chBook.balanceCheckbook(marchTrans);

The marchTrans object contains the list of transactions from March and April that you
created in the Appending Content Trees section.

The chBook object now contains the updated checkbook transactions and balance.

2. Create a new method in CheckbookApp called validateAndMarshalCheckbook:

public static void validateAndMarshalCheckbook() throws Exception {}

3. Since you edited the checkbook content tree, perform validation on chBook within the
new method you created:

chBook.validate();

4. Create a new XML file for the updated checkbook:

File checkbook_new = new File("checkbook_new.xml");
FileOutputStream fCOut = new FileOutputStream(checkbook_new);
68 The JavaTM Architecture for XML Binding User’s Guide • May 2001

5. Marshal the updated checkbook to the new XML file:

try {
chBook.marshal(fCOut);

} finally {
fCOut.close();

}

6. Invoke validateAndMarshalCheckbook from the main method of CheckbookApp:

validateAndMarshalCheckbook();

7. Save CheckbookBalance.java and CheckbookApp.java and recompile:

javac *.java

8. Run CheckbookAoo again:

java CheckbookApp

Your checkbook_new.xml file has the updated balance of $48065.72 and contains your
February, March, and April transactions.
Chapter 6 Working With The Data 69

70 The JavaTM Architecture for XML Binding User’s Guide • May 2001

APPENDIX A

The Example DTD, XML Documents,
and Binding Schema

The DTD: checkbook.dtd
<!ELEMENT checkbook (transactions, balance) >
<!ELEMENT transactions (deposit | check | withdrawal)* >
<!ELEMENT deposit (date, name, amount)>
<!ATTLIST deposit
 category (salary | interest-income | other) #IMPLIED >
<!ELEMENT check (date, name, amount, (pending | void | cleared), memo?)
>
<!ATTLIST check
 number CDATA #REQUIRED
 category (rent | groceries | other) #IMPLIED >
<!ELEMENT withdrawal (date, amount) >
<!ELEMENT balance (#PCDATA) >
<!ELEMENT date (#PCDATA) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT amount (#PCDATA) >
<!ELEMENT memo (#PCDATA) >
<!ELEMENT pending EMPTY >
<!ELEMENT void EMPTY >
<!ELEMENT cleared EMPTY >
 71

The March Transactions: march.xml
<?xml version=”1.0” encoding=”US-ASCII”?>

<transactions>
 <deposit>
 <date>04-14-2001</date>
 <name>Me</name>
 <amount>101.01</amount>
 </deposit>
 <check number=”2” category=”groceries”>
 <date>03-15-2001</date>
 <name>Conglomerate Foods</name>
 <amount>34.95</amount>
 <pending/>
 <memo>food</memo>
 </check>
 <withdrawal>
 <date>03-16-2001</date>
 <amount>0.34</amount>
 </withdrawal>
</transactions>

The Checkbook: checkbook.xml
<?xml version=”1.0” encoding=”US-ASCII”?>

<checkbook>
 <transactions>
 <deposit>
 <date>02-09-2001</date>
 <name>Me</name>
 <amount>1500.00</amount>
 </deposit>
 <check number=”90” category=”other”>
 <date>02-12-2001</date>
 <name>Faberge</name>
 <amount>34.95</amount>
 <pending/>
 <memo>Faberge Eggs</memo>
 </check>
 <withdrawal>
 <date>02-27-2001</date>
 <amount>20.00</amount>
72 The JavaTM Architecture for XML Binding User’s Guide • May 2001

 </withdrawal>
 <check number=”91” category=”rent”>
 <date>02-29-2001</date>
 <name>Landlord</name>
 <amount>1500.00</amount>
 <void/>
 <memo>February</memo>
 </check>
 </transactions>
 <balance>50000.00</balance>
</checkbook>

The Binding Schema: checkbook.xjs
<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<xml-java-binding-schema version=”1.0ea”>
 <element name=”checkbook” type=”class” root=”true” />
 <element name=”transactions” type=”class” root=”true”>
 <content>
 <choice property=”entries” collection=”list” supertype=”Entry” />
 </content>
 </element>
 <element name=”balance” type=”value” convert=”BigDecimal”/>
 <element name=”amount” type=”value” convert=”BigDecimal” />
 <element name=”date” type=”value” convert=”TransDate” />
 <element name=”deposit” type=”class” >
 <attribute name=”category” convert=”DepCategory” />
 </element>
 <element name=”check” type=”class” >
 <content>
 <element-ref name=”date”/>
 <element-ref name=”name” />
 <element-ref name=”amount” />
 <choice property=”pend-void-clrd”/>
 </content>
 <attribute name=”number” convert=”int” />
 <attribute name=”category” convert=”CheckCategory” />
 </element>
 <conversion name=”BigDecimal” type=”java.math.BigDecimal” />
 <conversion name=”TransDate” type=”java.util.Date”
 parse=”TransDate.parseDate” print=”TransDate.printDate” />
 <enumeration name=”DepCategory” members=”salary interest-income other”/>
 <enumeration name=”CheckCategory” members=”rent groceries other”/>
 <interface name=”Entry” members=”Deposit Check Withdrawal”

 properties=”date amount” />
</xml-java-binding-schema>
Appendix A The Example DTD, XML Documents, and Binding Schema 73

74 The JavaTM Architecture for XML Binding User’s Guide • May 2001

APPENDIX B

The Application Files

The Main Application File:
CheckbookApp.java
import java.io.*;
import java.util.*;
import javax.xml.bind.*;
import javax.xml.marshal.*;

public class CheckbookApp {

public static Transactions marchTrans = new Transactions();
public static Transactions aprilTrans = new Transactions();
public static CheckbookBalance chBook = new CheckbookBalance();

public static void main(String[] args) throws Exception{

// Build the content trees
buildTrees();

 // Access content of trees
 accessContent();

// Validate the trees
validateTrees();

// Marshal the trees
marshalTrees();

// Append the april transactions to the march transactions
appendTrees();
 75

// Unmarshal the checkbook subclass
unmarshalSubclass();

// Add the transactions to the checkbook and update the balance
chBook.balanceCheckbook(marchTrans);

 // Validate the updated checkbook and marshal it
 validateAndMarshalCheckbook();

 }

 // Building the content trees

public static void buildTrees() throws Exception{

 // Unmarshall the march.xml file
 File march = new File(“march.xml”);
 FileInputStream fIn = new FileInputStream(march);
 try {
 marchTrans = marchTrans.unmarshal(fIn);
 } finally {
 fIn.close();

 }

 // Instantiate a content tree for the April transactions
List aprilEntries = aprilTrans.getEntries();
Check aprilRentCheck = new Check();
CheckCategory aprilRent = CheckCategory.RENT;
aprilRentCheck.setCategory(aprilRent);
aprilRentCheck.setName(“Me”);
aprilRentCheck.setNumber(51);
aprilRentCheck.setDate(TransDate.parseDate(“04-12-2001”));
aprilRentCheck.setAmount(new java.math.BigDecimal(“1500.00”));

 Pending pending = new Pending();
 aprilRentCheck.setPendVoidClrd(pending);
 aprilEntries.add(aprilRentCheck);

}

 // Access content of trees
public static void accessContent() {

 // Edit the name on the groceries check in the Trans contenttree
 List entryList = marchTrans.getEntries();
 Entry entry;
 for (ListIterator i = entryList.listIterator(); i.hasNext();) {

 entry = (Entry)i.next();
 if(entry instanceof Check) {

 CheckCategory category = ((Check)entry).getCategory();
 if (category.equals(CheckCategory.GROCERIES)) {
 ((Check)entry).setName(“Mom & Pop Foods”);
 break;
76 The JavaTM Architecture for XML Binding User’s Guide • May 2001

 }
 }
 }

 // Edit the rent check in the aprilTrans content tree
 List aprilEntries = aprilTrans.getEntries();
 for (ListIterator i = aprilEntries.listIterator(); i.hasNext();

) {
 entry = (Entry)i.next();

 if (entry instanceof Check) {
 CheckCategory category = ((Check)entry).getCategory();
 if (category.equals(CheckCategory.RENT)) {
 entry.setAmount(new java.math.BigDecimal(“2000.00”));
 break;

 }
 }
 }

}

// Validate the trees
public static void validateTrees() throws Exception{
 // Validate the two content trees

 marchTrans.validate();
 aprilTrans.validate();

}

// Marshal the trees
 public static void marshalTrees() throws Exception {

 // Create output files for the two content trees

 File march_new = new File(“march_new.xml”);
 File april_new = new File(“april_new.xml”);
 FileOutputStream fMOut = new FileOutputStream(march_new);
 FileOutputStream fAOut = new FileOutputStream(april_new);

 // Marshal the two content trees to new XML documents
 try {
 marchTrans.marshal(fMOut);
 aprilTrans.marshal(fAOut);
 } finally {
 fAOut.close();
 }

}

// Append the april transactions to the march transactions
public static void appendTrees() {

 // Append the aprilTrans content tree to the Trans content tree
 List mEntries = marchTrans.getEntries();
 List aEntries = aprilTrans.getEntries();
Appendix B The Application Files 77

 mEntries.addAll(aEntries);
}

// Unmarshal the checkbook subclass
public static void unmarshalSubclass() throws Exception{

 // Register the subclass of Checkbook with a dispatcher
 Dispatcher d = Checkbook.newDispatcher();
 d.register(Checkbook.class, CheckbookBalance.class);

 // Unmarshal the checkbook.xml file
 File checkbookNew = new File(“checkbook.xml”);
 FileInputStream fNewIn = new FileInputStream(checkbookNew);

 // Unmarshal the checkbook file to a CheckbookBalance
 try {
 chBook = (CheckbookBalance) (d.unmarshal(fNewIn));
 } finally {
 fNewIn.close();
 }
}

 // Validate the updated checkbook and marshal it
public static void validateAndMarshalCheckbook() throws Exception{

 chBook.validate();

 // Create an output file for the updated checkbook
 File checkbook_new = new File(“checkbook_new.xml”);
 FileOutputStream fCOut = new FileOutputStream(checkbook_new);

 // Marshal the updated checkbook
 try {
 chBook.marshal(fCOut);
 } finally {
 fCOut.close();
 }

}
}

The Subclass: CheckbookBalance.java
import java.util.*;
import java.io.*;
import java.math.*;

public class CheckbookBalance extends Checkbook {
78 The JavaTM Architecture for XML Binding User’s Guide • May 2001

void balanceCheckbook(Transactions trans) throws Exception {

// Get the current balance of the checkbook
BigDecimal balance = this.getBalance();

// Get the list of transactions from the Trans object
List tEntries = trans.getEntries();

// Initialize a BigDecimal to track the amount of each transaction
BigDecimal amt;

// Iterate through the transaction list, recalculate the balance,
// and add the transaction to the checkbook
for (ListIterator i = tEntries.listIterator(); i.hasNext();) {
 Entry entry = (Entry)i.next();
 amt = entry.getAmount();
 if (entry instanceof Deposit){

balance = balance.add(amt);
 } else {

 balance = balance.subtract(amt);
 }
 this.getTransactions().getEntries().add(entry);
}

// Check if the balance is negative.
if(balance.compareTo(new BigDecimal(0.00)) == -1){

System.out.println(“You are overdrawn.”);
}

// Output the new balance
System.out.println(“Your balance is: “+balance);

// Update the balance in the checkbook.
this.setBalance(balance);

 }
}

Appendix B The Application Files 79

80 The JavaTM Architecture for XML Binding User’s Guide • May 2001

	Introduction to the JavaTM Architecture for XML Binding (JAXB)
	Why Use JAXB?
	JAXB Applications Use Java Technology and XML
	JAXB Applications Guarantee Valid Data
	JAXB Applications Are Fast
	JAXB Applications Are Easy to Create and Use
	JAXB Applications Can Convert Data
	JAXB Applications Can Be Customized
	JAXB Applications Are Extensible

	Uses of JAXB
	Scenario 1: Balancing a Checkbook
	Scenario 2: Comparing Price Quotes from Suppliers

	Getting the Most From this User’s Guide

	Before You Begin: XML Basics
	What is XML?
	Document Type Definitions
	Element Declaration
	Attribute Declaration

	XML Documents

	How JAXB Works
	Overview
	Binding a Schema to Classes
	Building Data Representations
	Unmarshalling
	Validation
	Marshalling

	Working with the Data
	Limitations

	Binding a Schema to Classes
	The Example DTD: checkbook.dtd
	Writing the Binding Schema
	Creating the Minimum-Required Binding Schema
	Understanding the Default Binding Declarations
	The Element Binding Declarations
	The Attribute Binding Declarations
	The Content Binding Declarations

	Customizing the Binding Schema
	Specifying Types
	Specifying Non-Primitive Types
	Specifying Primitive Types

	Creating Enumerated Types
	Customizing Content Model Binding Declarations
	Creating Interfaces

	Managing Schema Evolution

	Generating the Java Classes
	The Generated Java Source Files
	The Checkbook.java File
	The Transactions.java File
	The Entry.java File
	The Check.java File
	The CheckCategory.java File
	The Pending.java File

	Building Data Representations
	The XML Document Instance: march.xml
	Setting Up Your Application
	Building a Content Tree
	Unmarshalling
	Instantiation

	Accessing Content
	Validating
	Marshalling
	Appending Content Trees

	Working With The Data
	The Example XML Document: checkbook.xml
	Setting Up the CheckbookBalance Class
	Extending the Derived Classes
	Unmarshalling
	Dispatching
	Unmarshalling the Subclass

	Adding Functionality
	Using the New Functionality in Your Application

	The Example DTD, XML Documents, and Binding Schema
	The DTD: checkbook.dtd
	The March Transactions: march.xml
	The Checkbook: checkbook.xml
	The Binding Schema: checkbook.xjs

	The Application Files
	The Main Application File: CheckbookApp.java
	The Subclass: CheckbookBalance.java

