
EÆcient Evaluation of Regular Path Expressions

on Streaming XML Data

Zachary G. Ives� Alon Y. Levy Daniel S. Weld

fzives, alon, weldg@cs.washington.edu

University of Washington

Seattle, WA USA

Abstract

The adoption of XML promises to accelerate construction of systems that integrate dis-

tributed, heterogeneous data. Query languages for XML are typically based on regular path

expressions that traverse the logical XML graph structure; the eÆcient evaluation of such path

expressions is central to good query processing performance. Most existing XML query process-

ing systems convert XML documents to an internal representation, generally a set of tables or

objects; path expressions are evaluated using either index structures or join operations across the

tables or objects. Unfortunately, the required index creation or join operations are often costly

even with locally stored data, and they are especially expensive in the data integration domain,

where the system reads data streamed from remote sources across a network, and seldom reuses

results for subsequent queries.

This paper presents the x-scan operator which eÆciently processes non-materialized XML

data as it is being received by the data integration system. X-scan matches regular path expres-

sion patterns from the query, returning results in pipelined fashion as the data streams across

the network. We experimentally demonstrate the bene�ts of the x-scan operator versus the

approaches used in current systems, and we analyze the algorithm's performance and scalability

across a range of XML document types and queries.

1 Introduction

XML, the eXtensible Markup Language standard from the World Wide Web Consortium [XML98],

is increasingly being used as a protocol for the dissemination and exchange of information from

all types of data sources and applications. XML is quickly becoming the lingua franca for data

exchange, and nearly every vendor of data management tools has been racing to adopt it. The

strengths of XML lie in its simplicity, self-describing nature, and
exibility | particularly in its

ability to represent a graph structure, which allows it to encode both structured and semi-structured

data.

An XML document (see Figure 1 for an example) consists of pairs of matching open- and

close-tags (elements), each of which may enclose additional elements or data values (in the form of

\character data" strings). Additionally, an element tag may include attributes further describing

the element; attributes are single-valued and may have special meaning (e.g., they may serve as

�Supported in part by an IBM Research Fellowship

1

<db>

<lab ID="baselab" manager="smith1">

<name>Seattle Bio Lab</name>

<location>

<city>Seattle</city>

<country>USA</country>

</location>

</lab>

<lab ID="lab2">

<name>PMBL</name>

<city>Philadelphia</city>

<country>USA</country>

</lab>

<paper ID="Smith991231" source="baselab"

biologist="smith1">

<title>Autocatalysis of Spectral...</title>

...

</paper>

<biologist ID="smith1">

<lastname>Smith</lastname>

...

</biologist>

</db>

Figure 1: Sample XML document representing biology labs and publications

element identi�ers or references). In particular, XML elements may have special ID and IDREF

attributes, which serve to uniquely identify elements and to form links to them, respectively. This

linking capability allows XML to represent not only tree-structured hierarchical data, but also

graph-structured information.

Several query languages have been proposed for XML [RLS98, DFF+99, CCD+98, GMW99].

Since these languages treat XML data as a graph, variables in the query are mapped to XML

elements, which are nodes in the graph. The main paradigm underlying these languages is that

of selecting data by matching patterns described with regular path expressions against the XML

source. These path expressions describe traversals along subelement, attribute, and IDREF edges,

and variables get bound to nodes along these paths. Hence, a key operation in query processing

over XML is to produce a set of bindings for variables, given a pattern consisting of several regular

path expressions.

To date, most e�orts to build XML query processors have been based on �rst loading the data

into a local repository, building indexes on the repository, and then processing the query. The

approaches di�er on whether the repository is a relational database [FK99, SGT+99], an object-

oriented database [vZAW99, LAW98] or a repository for semi-structured data [GMW99].

In many applications involving XML, however, we must be able to process queries over streams

of incoming XML data, without having the luxury of �rst loading the data into a local repository.

In particular, data integration applications often involve processing data over sources on a wide-

area network whose contents change continuously, and hence storing the data locally is not a viable

approach. Furthermore, it is imperative that we produce results incrementally as the data streams

into the system, since queries are usually ad-hoc and interactive.

In this paper we describe XML-Scan, or x-scan, an operator that is used at the lowest level of

an XML query plan and supplies data to other operators. The input to x-scan is an XML data

stream and a set of regular path expressions occurring in a query; x-scan's output is a stream of

bindings for the variables occuring in the expressions. A key feature of x-scan is that it produces

these bindings incrementally, as the XML data is streaming in; hence, x-scan �ts naturally as the

source operator to a complex pipeline, and it is highly suited for data integration applications.

X-scan is motivated by the observation that IDREF links are limited to the scope of the current

document, so in principle, the entire XML query graph for a document could be constructed in a

single pass. X-scan achieves this by simultaneously parsing the XML data, indexing nodes by their

IDs, resolving IDREFs, and returning the nodes that match the path expressions of the query. The

key challenges involved in designing x-scan stem from need to (1) deal with possibly cyclic data,

(2) preserve order of elements, and (3) remove duplicate bindings that are generated when multiple

paths lead to the same data elements. We present a series of experiments to evaluate x-scan's

2

#1

db

baselab

lab2
 Smith991231

smith1

Seattle

Bio Lab

PMBL
Seattle

USA

Philadelphia

USA

Autocatalysis of...

#2
 #3

#4
 #5
 #6

#7

#8

#9

lab

name

location

city
 country

lab

name
 city

country

paper

title

biologist

biologist

#10

lastname

source

Smith

manager

Figure 2: XML-QL graph representation for Figure 1. Dashed edges represent IDREFs; dotted edges

represent PCDATA.

performance. The experiments show that the algorithm scales very well to handle XML �les of

signi�cant sizes (e.g., up to 14MB). An experimental comparison of x-scan with two systems (Lore

and a commerical XML query processor based on an object-oriented repository) shows that x-scan

signi�cantly outperforms both of them | sometimes even when the expensive loading time of the

other systems is ignored.

The organization of this paper is as follows. Section 2 provides a context for the path expression

evaluation problem by reviewing how XML is queried. Section 3 presents the x-scan algorithm and

its components, and Section 4 describes our experimental results. Section 5 discusses how the

x-scan operator relates to previous work. Finally, we conclude in Section 6 and suggest avenues of

future research.

2 A Data Model and Query Language

We begin by brie
y discussing the issues in choosing an XML data model and XML-QL, the

language we use for querying XML.

2.1 Data Model for XML

Several proposals have been made for data models for XML. They are all based on representing

XML as a graph, and di�er on whether they consider the order of the XML document, whether

they distinguish between subelement edges and attribute edges, and how they represent IDREFs in

the graph. In our discussion, we represent XML data as a graph, where each XML tag is an edge

(labeled with the tag name) that is directed towards a node (with a label equal to the tag's ID)1. A

given element node will have labeled edges directed to its attribute values, sub-elements, and any

other elements that it references via IDREF attributes. Figure 2 shows the graph representation for

the sample XML data of Figure 1. Note that IDREFs are shown in the graph as dashed lines and

are represented as edges labeled with the IDREF attribute name; these edges are directed to the

referenced element's node. In order to allow for intermixing of \parsed character" (string) data

and nested elements within each element, we create a PCDATA edge to each string embedded in the

XML document. These edges are represented in Figure 2 as dotted arrows pointing to leaf nodes.

In this paper we consider execution over an ordered XML graph, following the established

semantics of processing order in XML. There are certain cases in which XML ordering semantics

1This data model is derivative of the XML-QL model, but treats both elements and attributes as edges

3

WHERE <db>

<lab>

<name>$n</>

<_*><city>$c</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<center> <name> $n </>

<location> $c </>

</>

</>

Figure 3: XML-QL query that �nds the locations of labs. The WHERE clause speci�es a graph-
structured pattern of nested tags. Variables are pre�xed with a dollar sign, underscore denotes a
wildcard which matches any element or attribute, and asterisk is the Kleene star meaning \zero or
more."

are unde�ned or ambiguous (e.g. how data from di�erent sources should be ordered when it is
combined); we do not attempt to address these issues. Moreover, we observe that XML considers
subelements to be ordered but attributes to be order-free; in our model, we preserve order across
both attributes and subelements, but only allow queries to express ordering constraints among
subelements.

2.2 Querying XML

A variety of XML query languages have been proposed, mostly based on languages for querying
semi-structured data (XQL [RLS98], XML-QL [DFF+99], XML-GL [CCD+98], Lorel [GMW99]).
These languages are driving the current W3C Query Language Committee whose �nal recommen-
dation is likely to encompass features from each. The key features these languages have in common
is that they enable a user to match regular path expressions over the data, and, to varying extents,
have the ability to construct XML documents as a result of the query. In this paper we use XML-
QL, but the features of the language that are relevant to our algorithm are mostly found in the
other languages as well.

XML-QL uses a WHERE pattern1 IN source1, pattern2 IN source2, ... CONSTRUCT result syntax,
in which the pattern template is matched against the input XML data graph from source (a URI)
and the result de�nes the desired structure of the query output graph. An XML-QL pattern is
expressed as a set of nested tags with embedded variable names (pre�xed by leading dollar-signs)
that specify bindings of graph nodes to variables. Continuing the example of Figures 1 and 2, we
can issue the query of Figure 3, which returns a list of lab names and their city locations.

More precisely, this query searches for all lab elements which are immediately inside a db

element, with a child name element and a descendent city element. The query's CONSTRUCT clause
returns a set of name/city pairs. Note that in XML-QL, we can abbreviate each close-tag with a
</>. The WHERE template can be thought of as a set of tree-structured path expressions that get
\matched" across the input graph. Each variable name (l, c, and n above) is bound to the matching
node at the end of the path. In our example, we take a db edge from the document root. From
here, we �nd a lab edge and destination; the ELEMENT AS keyword after lab's close-tag causes this
destination node to be bound to variable l. Next, a name edge is traversed to a node we assign to
variable called n. Now, from the same db edge traversed earlier, we traverse any number of edges
and then a city edge, and assign the node to the variable c.

4

<result>

<center> <name> Seattle Bio Lab </name>

<location> Seattle </location>

</center>

<center> <name> PMBL </name>

<location> Philadelphia </location>

</center>

</result>

Figure 4: The result of applying the query from Figure 3 to the XML data in Figure 1.

The result of the WHERE clause of the query is a set of bindings for every possible combina-
tion of path expression matches. Note that for each combination of possible lab and city edges
under a common lab node l, that combination of n and c values should be returned; all three
variables can be represented as a 3-tuple. In the example, there are two possible binding tuples:
hl=baselab; n=#2; c=#4i and hl=lab2; n=#6; c=#7i. Note that a WHERE clause can consist of
several patterns, and each one can be posed over a di�erent document. The result of the WHERE
clause in this case would be the join of the binding tuples produced by each of the patterns.

The CONSTRUCT clause normally speci�es a tree-structured set of edges and nodes to add to
the output graph for each tuple of variable bindings. Wherever an input variable appears in the
CONSTRUCT clause, its associated node is inserted into the output. Additionally, we also \carry
forward" all other nodes transitively connected by edges radiating from the original node. In
essence, an XML-QL variable bound to an XML graph node always represents not simply the node,
but the entire subgraph to which the node transitively connects via \forward-pointing" edges. The
constructed output for query of Figure 3 over the data in Figure 1 is shown in Figure 4. Note
that the outermost (result) tag in the CONSTRUCT clause only appears once in the output; this is
because XML syntax requires a single \root" element enclosing all remaining content.

The goal of the X-scan operator is to produce a set of bindings for each pattern in the WHERE

clause. Hence, the x-scan operator is the bottommost operator in a query execution plan, and its
results are later fed into other operations such as joins, grouping and aggregation. As was described
above, the WHERE clause is a hierarchical description of path traversals; we can thus rewrite the
XML-QL template in a di�erent form using a more conventional dot-notation:

� El = root."db"."lab"

� En = El."name"

� Ec = El._*."city"

Note that expressions En and Ec are expressed in terms of El, since they are paths originating
from a given l node2. This hierarchical relationship occurs very commonly in XML-QL. Sometimes
there is an implicit rather than explicit set of dependencies | two XML-QL path expressions that
are siblings with a common parent must actually both have a common parent path expression, even
if an ELEMENT AS keyword is not speci�ed in the query, in order to preserve the correct structural
and ordering relationship. If l were not speci�ed in Figure 3, the query plan generator would need
to create a temporary variable with the same regular path expression, and would have expressed n

and c in terms of the temporary variable.

2Recall also that the underscore character , used in Ec denotes wildcard so * means zero or more edges of any

type.

5

Structural Index

. .
 .

ID index

<db>

 <lab ID=...

 <name>Seattle...

 <location>

 <city>Seattle...

 ...

XML Document

State Machines
Stack

l
 c

#1
 #3

BV Tables

Tuple

Bindings

ID2

. .
 .

ID1

ID3

Unresolved

IDREFs

. .
 .

Figure 5: Data structures used by x-scan. The algorithm takes an XML document and generates
an index of its structure, keeping track of IDs and �lling in unresolved IDREF targets as they are
encountered. Simultaneously, x-scan runs a series of state machines over the graph structure (using
a stack to backtrack to previous states) and generates tables of bindings for variables.

3 The X-scan Operator

Given the text stream of an XML document and a set of regular path expressions as inputs, x-scan
outputs a stream of tuples assigning binding values to each variable in the set of regular path
expressions. The stream of binding values is generated incrementally, and hence x-scan is suitable
for inclusion in a pipelined execution plan. The central mechanism underlying the operation of
x-scan is a set of state machines that traverse the XML graph, attempting to satisfy the path
expressions.

The data components of x-scan are illustrated in Figure 5. As the data streams into the system,
we create several structures:

� the data gets parsed and stored locally,

� a structural index of the XML graph is created to facilitate fast traversal across IDREFs
through the graph,

� an ID index records the IDs of all elements and their matching locations in the structural
index, and

� a list of references to not-yet-seen element IDs is maintained.

In parallel with the construction of these data structures, a set of �nite state machines (one per
regular path expression/variable) perform a depth-�rst search over the structural index. When a
machine reaches an accept state, a new value is added to the binding-value table associated with
the machine. These values are then combined to produce the binding tuples for the query. Each of
the state machines also maintains a stack of previously seen bindings along its current path, which
is used in order to avoid cycles in traversing the data.

As this section elaborates below, several aspects conspire to make x-scan more complex than
a simple application of state-machine searching applied to XML data. First, x-scan operates on
possibly cyclic, graph structured data. Second, although x-scan generates tuples as the input XML
is streaming into the system, it generates binding tuples in a way that preserves the XML order,
when necessary. X-scan includes an optional timestamp component that allows it to prune duplicate
bindings (which can be generated when nodes in the XML graph are reachable through multiple
paths) incrementally.

Section 3.1 describes the construction of the state machines used by x-scan, and Section 3.2
describes the graph index structure it creates. Section 3.3 describes the operation of the state

6

M
l
:

M
n
:

M
c
:

1
 2
 3

4

6

5

7

db
 lab

name

city

Figure 6: Three state machines (outlined in grey) generated for the path expressions in the XML-
QL query of Figure 3. Solid arcs denote state transitions and are labeled with the token required for
traversal; the self arc from state 6 is a wildcard and may followed for any token. Dashed arcs denote
dependencies between machines, and bold circles signify accept states. Note that, for simplicity,
we show non-deterministic �nite state machines here, but that x-scan execution actually uses the
equivalent deterministic machines.

machines over the data and the production of bindings. Section 3.4 describes how x-scan handles
cycles safely, Section 3.6 discusses handling larger-than-memory data sets, and �nally, Section 3.5
describes several eÆciency enhancements to the algorithm.

3.1 The State Machines

As described in Section 2, we create one regular expression for every variable in the XML-QL query;
we refer frequently to the variable of a path expression and its inverse, the expression of a variable.

The variables in an XML-QL query are typically expressed at di�erent levels in a hierarchical
template. We say that variable x is dependent on variable y if the expression of x refers to the
expression of y, and we say that y is the parent of x. In our example, both n and c are dependent on
l. Dependencies occur when a query binds one variable (e.g., l) to a node along one path expression,
and then binds another variable (e.g., c) to a node that at the end of a speci�ed path from the �rst
variable. X-scan must �rst �nd a binding for l before searching for bindings for n and c.

Given a set of regular path expressions, we build a �nite-state machine for each expression;
Figure 6 shows the three machines, Ml, Mn, and Mc, for our example. State transitions in these
machines correspond to edge traversals in the XML data graph. The end of the path expression
yields an accept state in the machine, which outputs instances of the corresponding variable. The
di�erent state machines are related according to the dependencies of the corresponding variables:
because c is dependent upon l, machineMc is dependent on Ml; this means that Mc is only enabled
once Ml reaches an accept state. In Figure 6 dependencies are shown as dashed lines.

3.2 Indexing the XML Graph

When x-scan is run on an XML source, it parses the XML and builds a graph-structured index of
the data. This index allows x-scan to quickly traverse the XML structure once it has seen some
portion of the document, and as a consequence, handle graph-structured data more eÆciently. In
addition, as we explain below, the construction of the structural index continues even when we
need to suspend the state machines because of unresolved IDREFs.

Each node in the index contains information about an element (its ID and an o�set into the
original XML data �le so that the node's source can be accessed quickly) as well as pointers to all
subelements, attributes, and IDREFs of the element. Essentially, the index structure looks like the
graph of Figure 2 except that data values such as those in the leaf (PCDATA) nodes are not stored.

7

In addition, x-scan creates an index on IDs that it has encountered so far, mapping from ID to
entry in the structural index. In addition, an index of all unresolved IDs is maintained, listing all
referrers to each unseen ID.

3.3 The Operation of X-Scan

X-scan proceeds by building the structural index and running a set of active state machines in
parallel. We now focus on the running of the state machines.

The set of active state machines is determined as follows. Initially, only the top-level machine
(Ml in our example) is active. When a machineM reaches an accepting state, it produces a binding
b for the variable associated with it. It then activates all of its dependent state machines, and they
remain active while x-scan is scanning b or any element accessible by a path from b. In our example,
the machines Mn and Mc remain active while we scan a given value of l.

Associated with each machine is a table for storing binding values. As a machine reaches an
accept state, it writes into this table a tuple containing its bound node value as well as the value
of its parent variable (thus providing a means of associating the variable and its parent)3. In our
example, Ml's table would just store values of l, while n and c would store name and city values,
respectively, paired with their corresponding l values. The �nal output of x-scan is the equi-join of
the tables maintained by the three machines.

We illustrate the execution of x-scan on our example. Suppose M1 is initialized to machine
state 1, which takes the XML root as binding value. There is one outgoing edge, and because
it is labeled db x-scan follows it, pushing Ml's old value on the stack and setting Ml to state 2
with value node #1. Next x-scan follows the �rst of four outgoing edges, pushing the old state
value, and setting Ml to state 3 with value baselab. Since Ml is now in an accepting state, x-scan
writes the value baselab into Ml's table, suspends Ml, and activates Mn and Mc. The next edge
takes Mn from state 4 to 5 while Mc follows the self-arc back to state 6; both machines have #2

as binding value. Since Mn is now in an accept state, x-scan writes h#2; baselabi into Mn's table;
note that the current value of l is written along with that of n since l is n's parent. From this
node, no (non-PCDATA) edges remain for exploration, so x-scan pops the stack and backs up the
state machines, resetting Mn to state 4 and Mc to state 6. The next edge is labeled location

which Mn can't traverse, so it deactivates, while x-scan advances Mc through state #3 and then
into accepting state #4. At this point x-scan writes h#4; baselabi into Mc's table. X-scan is now
able to output its �rst tuple of bindings: hl=baselab; n=#2; c=#4i.

X-scan keeps running Mc but no more cities are found, and so eventually it pops back up to
baselab. X-scan tries running Mc along the IDREF to smith1, but still no cities are found. So
x-scan deactivates Mn and Mc, and control returns to their parent Ml. X-scan pops up to node #1
and a similar process yields another binding tuple hl=lab2; n=#6; c=#7i once Ml �nds lab2. 2

Handling Forward References: On occasion x-scan will encounter an IDREF edge which points
\ahead" to a node which has not yet been parsed. This situation is easily detected since the ID

index records all element IDs, and the target will not be in the index.

If preserving document order is not important, then x-scan can proceed to process elements
out of order, but then the XML query processor will need to do some complex bookkeeping at
later stages in order to produce output whose structure (even beyond simply the order) properly

3The implementation stores pointers to XML nodes as the values in these tables; this allows x-scan to preserve

order in later stages. However, for expository simplicity in the example narrative below, we write as if the node IDs

were stored as the values.

8

#1

#2

#4
#3

a

a

a
 a

b

Figure 7: Graph representation for XML data fragment containing a cycle. The dashed edge
represents an IDREF.

corresponds to the input document. We explain the case of order preservation, which is conceptually
simpler and comes at little extra cost.

When x-scan hits a forward reference to an (unseen) element, it pauses all state machines and
adds an entry to the list of unresolved IDREF symbols, specifying the desired ID value and the
referrer's address. However, x-scan continues reading the XML source and building the structural
index. Once the target element is parsed, x-scan �lls its address into each referring IDREF in the
structural index, removes the entry from the list of unresolved IDREFs, and awakens the state
machines and proceeds. It is important to note that by continuing to build the structural index,
x-scan can process the parsed-but-not-yet-traversed portion of the data much more quickly.

3.4 Handling Cycles Safely

When the input XML document contains cycles, care must be used to ensure that x-scan returns
all possible binding tuples without getting trapped in an in�nite loop. Consider the XML data of
Figure 7, and suppose that the query involves the following path expression:

� Ex = root._*."b"."a"

In other words, the query is searching for paths of any length where the last two edges are b

followed by a. A quick inspection of Figure 7 shows that there is a match binding x to element
#2, but the only way to �nd this match means searching down through element #1 following a to
element #2 continuing on to 3, and following the IDREF back to elements #1 and #2 again. If x-scan
had refused to follow the cycle and visit these elements again, then it would have missed answers
to the query.

On the other hand, if x-scan follows cyclic paths with abandon, it could get trapped in an
in�nite loop. Consider the behavior of the following path expression on the same XML input:

� Ey = root._*."z"

Here, x-scan is directed to look for a path of any length, ending in the token z. Quick inspection
shows that there aren't any z's but we must ensure that x-scan doesn't run around the cycle
endlessly looking for one.

The solution is based on checking the stack associated with the state machine. The stack
contains pairs of the form (binding, state), describing which bindings have been associated with
states of the machine along the current path. When a machine enters a state, it checks to see
that this state has not been bound to the same binding along the current path. Since x-scan uses
deterministic �nite state machines, we know that returning to a previous state will not add any
new possible actions.

9

8

(a)

a
b
 9
 10
M
x
:
 11

(b)

z
 12
M
y
:

Figure 8: State machines for Kleene star queries on cyclic graphs.

WHERE <db>

<lab manager="smith1">

<name>$n</>

<_*><city>$c</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<center><name>$n</>

<location>$c</></>

</>

Figure 9: XML-QL query with a selection predicate. We only return bindings when there is a
manager reference with value smith1.

Consider how this solution handles the last two examples. The two path expressions yield the
state machines shown in Figure 8(a) and (b). When Mx �rst reaches element #1, it binds the node
to state 8. Next it follows the self-loop so state 8 binds to #2; again it follows the self-loop so state
8 binds to #3. But when it follows the b edge it traverses into state 9, so this does not count as
repetition because state 9 has never bound to element #1 before. Now when x-scan traverses the a
edge it binds state 10 to element #2 and again there is no repetition, so x-scan successfully leads
Mx to an accept.

Contrast this with x-scan's behavior on My. When x-scan �rst reaches element #1, it binds
the element to state 11. X-scan follows My's self loop as it traverses to #2, which forms the new
binding for state 11. Next state 11 gets bound to element #3. Then, as x-scan follows the IDREF

back to #1, it attempts to bind My's state 11 to #1 once again, and the duplication check rejects
the binding; instead, x-scan forces My to backtrack.

We note that this simple duplication check suÆces even for more complex path expressions
involving multiple, dependent machines. All that is required is for each machine to refuse to bind
any state to a particular node more than once along a path.

3.5 Performance Enhancements

The x-scan implementation includes several optimizations that improve performance: selection
push-down, and incremental duplicate elimination.

3.5.1 Selection Push-Down

X-scan can perform a fairly substantial amount of work in evaluating path expressions, so, wherever
possible, it is important to prevent the operator from spending time evaluating paths that are not
useful in the query's output. We thus allow the query optimizer to push selection operators down
into the x-scan operation.

10

Suppose, for instance, that the query of Figure 3 is modi�ed slightly, as in Figure 9. Note the
presence of the constraint that the lab must have a manager attribute (in this case, an IDREF,
although we are treating it as an attribute rather than a reference edge) with value smith1. For
this query, the query plan generator must create an additional temporary variable temp1 and a
regular path expression:

� Etemp1 = El.@"manager"

where the @ pre�x indicates that manager is an attribute rather than an element. The query plan
generator also adds a selection predicate Etemp1 = "smith1".

During x-scan's evaluation of the graph in Figure 1, it will initially bind the baselab node to
l, activating the machines for n, c, and temp1. X-scan evaluates all node attribute edges before
subelement edges, so the ID and manager attributes will be tested against the state machines. In
this case, the manager attribute exists and indeed has value smith1, so x-scan will continue down
this portion of the document and bind values for n and c.

For the second lab, however, things are slightly di�erent. The lab2 node has only an ID

attribute; as x-scan iterates through all attributes of lab2, it �nds no manager attribute to follow
for temp1. The temp1 path expression cannot be satis�ed, so x-scan can \short-circuit" on this
subgraph, discarding the value for l and ignoring its children.

Note that a pushed-down selection operator on a subelement (rather than an attribute) might
not always allow x-scan's state machine evaluation to short-circuit. The reason is simple: x-scan
evaluates each subelement successively in document order, and it will not be able to determine
whether a particular subelement does or does not exist until it has processed all subelements.

3.5.2 Incremental Duplicate Elimination

When the XML data graph contains IDREFs, x-scan may visit an element multiple times through
di�erent paths. An unfortunate result of this is that it might generate duplicate binding tuples,
which does not follow XML-QL's semantics. To see how duplicate bindings can occur, consider x-
scan's behavior on the paper's �rst sample XML data (Figure 2) with the following path expressions:

� Ez = root._*.("lab" | "source")

� En = Ez."name"

� Ec = Ez."city"

Since Ez will �nd multiple paths to the element lab2, x-scan will produce the following binding
tuple twice: hz=lab2; n=#6; c=#7i.

There are two methods of solving this particular problem, and one must be selected by the
query optimizer based on cost or other heuristics. The �rst method is obvious (but often highly
e�ective): post-process the output tuples, removing duplicates. This can be done with either a
sorting or hashing scheme. This approach does not typically require that we keep an entire history
of tuples, as we might with a relational table, because the tuples are produced with a grouping
based on the hierarchy of the regular expressions. In particular, the above query will produce
all of the tuples for a given z value before producing the tuples for successive values of z, so the
post-processing stage can
ush its history on each new value of z.

There are cases where doing duplicate removal within x-scan is bene�cial. If a particular
path expression binds to a particular node multiple times, and it has expensive dependent path

11

expressions (e.g. path expressions with Kleene-star components), we might want to avoid generating
duplicates. In order to do this without requiring large in-memory histories, x-scan annotates the
structural index to track when a node was last visited. For each variable for which x-scan is to
perform duplicate elimination, it reserves space in the structural index for a timestamp; it also
gives every state machine an internal \clock."

Each time x-scan binds a variable to a node, it annotates that node's index entry with the
variable's clock time. It then advances the clocks of any dependent variables by one tick. Variables
can only bind to nodes with timestamps older than their internal clocks. The result is that for each
binding of a \parent" variable, we will only see at most one binding per dependent variable to a
given node. This mirrors XML-QL semantics, which allow multiple variables to bind to the same
node, but do not allow duplicate tuples to be produced.

3.6 Handling Large XML Documents

In processing a large XML data stream, main memory may not be large enough to handle all of the
index structures; this section explains how the x-scan implementation supports larger-than-memory
execution.

The approach to handling very large XML documents is to allow paging of the XML source
document and of the structural index. Index entries include a �eld referencing their corresponding
elements in the source document, and a series of subelement and IDREF edge \links" to other entries
within the index itself. With both of these structures, a conventional bu�er manager using LRU
or some similar policy is suÆcient.

There are three auxiliary data structures that are perhaps most naturally kept in memory,
namely the ID lookup index, the list of unresolved IDREF targets, and the state machine stack. The
ID lookup index is undoubtedly most eÆcient as a hash table from IDs to addresses. However, if
this data structure runs out of memory, we may wish to switch to a paged data structure, either
a B+-tree or a multilevel hash table. The B+-tree has the property that it is sorted, but it is
unclear that this ordering will typically match the order of appearance of IDREFs; thus a paged
hash-based structure may be a good alternative. A similar approach can be taken with the list of
unresolved IDREF targets, although such an approach would be more costly since x-scan need to
consult this list whenever it �nds a new ID. Fortunately, this data structure is much less likely to
exceed memory, since items are removed as they are resolved.

The number of states in the state machine stack is bounded by the product of the number
of variables and the longest non-repeating path. This is a worst-case number in which all state
machines are simultaneously active and they all match the edges in our path; typically this is not
the case, and we do not need to store the state of an inactive machine. Even if this stack does get
very large, it can be very naturally paged to disk, as we can simply swap out the oldest entries to
make more room, and re-fetch them as entries get popped o�.

4 Experimental Results

Our X-scan implementation uses the IBM XML4C parser version 3.0.1 (based on the Apache
Xerces-C library) to parse XML documents. We use the SAX [SAX98] parser API, which provides
callbacks to our code as elements are read and allows us to evaluate streaming XML data without
�rst having to build an entire in-memory parse tree.

We have implemented x-scan within the Tukwila [IFF+99] data integration system, which we
are extending to support XML queries. Tukwila supports large data sources via paging, and

12

our implementation of x-scan leverages these capabilities to support larger-than-memory XML
documents and structural indices. In our current version, the number of elements with IDs is
constrained by an in-memory hash table; in the future, we plan to replace the hash table with a
B+-tree to fully support out-of-memory execution.

4.1 Comparison to Current Systems

To the best of our knowledge, x-scan is the �rst algorithm developed for computing regular path
expressions in a data integration context. As such, there is no \fair" system to compete against |
however, in order to get an idea for how it fares against previous work, we ran a series of exper-
iments against current XML repository systems. We examined the performance of x-scan, which
processes the data incrementally as it parses, versus a conventional store-then-query approach. This
experiment was performed with locally stored XML �les, and thus it does not show the additional
performance bene�ts of x-scan's ability to incrementally evaluate path expressions as data is slowly
streaming into the system; the other systems cannot begin producing results until the XML docu-
ment has been fully read from the network and then loaded into their proprietary storage formats.
On the other hand, x-scan is merely the �rst component of a query processing system that is under
construction, so its numbers do not include the (typically small, especially for the simple queries
we used) overhead required by the competing systems to parse and optimize input queries.

We compared the performance of x-scan, Stanford's Lore [GMW99] semi-structured/XML
database system, and a commercial OO-based XML repository, across a number of di�erent docu-
ment sizes and query complexities. Note that the capabilities of the three systems are somewhat
di�erent. The commercial XML repository is based on the XQL query language, which is tree-
structured in nature, and its capabilities for traversing IDREFs are not eÆcient. Lore supports a
graph structured data model with its Lorel query language; however, a Lorel query on an XML
document may result in non-XML-compliant output if the result is not strictly a tree. Lore supports
an indexing structure called a DataGuide [GW97] that can speed path expression evaluation, but
index creation failed on our data sets4, so we were unable to take advantage of this optimization.
Our current x-scan implementation does not support selection predicates, so all queries are simple
path expression evaluations over the entire data set.

All x-scan and commercial repository queries were performed on a single-processor 450MHz
Pentium II machine running Windows NT with 256MB of memory. The Lore queries were run on
a similarly con�gured 450MHz Pentium II running Linux, using Diet Lore 5.0. All queries were
run 7 times and their results were averaged.

We obtained a number of XML documents from the web, including religious texts, Shakespeare's
plays, the Mondial geographical encyclopedia, and database publication information from DBLP
concerning the VLDB conference. Most of these documents were strictly tree-structured, except
for Mondial (which has numerous references) and VLDB (which has references from papers to their
proceedings). Table 1 summarizes the queries and data sources used.

Figure 10 displays the results. The x-scan bars are separated into two components, lower portion
showing the overhead of the parser and the Tukwila XML document paging system, and the upper
showing the additional cost of evaluating the query path expressions using x-scan. In the �rst 5
data sets, which are all tree-structured, the overhead of parsing dominates the costs of performing
node bindings. For the graph-structured data sets, Mondial and VLDB, we see the x-scan costs
increase as the path expressions must now be evaluated repeatedly across referenced portions of
the graph.

4Note that the use of DataGuides is unlikely to speed up Lore's overall performance, as the savings in query

processing time would probably be negated by the index creation time.

13

Query Data size Description

Henry VI-q1 646 KB Shakespeare's Henry VI title, personae, speakers
Henry VI-q2 646 KB Shakespeare's Henry VI title, personae, lines
Quran 898 KB Sura titles, epigraphs, verses from Quran
NT 1023 KB Book and chapter titles from New Testament
Mormon 1510 KB Book of Mormon preface headings, J. Smith's signed witnesses
Mondial 1332 KB Mondial encyclopedia countries, cities, cities' ref'd loc. names
VLDB 1558 KB VLDB paper authors, titles, proceedings' ISBN numbers

Table 1: Queries and data sources used in the experiment comparing x-scan to Lore and a com-
mercial system (Figure 10). See the Appendix for the actual queries and regular path expressions.

vldb

0.00

10.00

mondial

0.00

10.00

mormon

0.00

10.00

nt

0.00

10.00

quran

0.00

10.00

Q2 - hen_vi

0.00

10.00

Q1 - hen_vi

0

5

10

E
xe

cu
tio

n
tim

e
(s

ec
)

Query

Failed

Query

Failed

51.6sec
 582sec

Query

Failed
 75.5sec
38.9sec

49.5sec
 559sec
 101sec

36.0sec

62.1sec

X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L

Figure 10: Comparison of query performance. For X-scan, (X) the light bar represents parsing and
storage overhead, and the dark bar is state machine and binding costs. For Commercial system
(C) and Lore (L), the light bar represents query costs, and upper bar is the cost of loading the
document into the repository.

For the existing systems, we di�erentiate the actual XML query cost from the cost of loading the
document into the repository. In a non-data integration context, the cost of a load can be amortized
across multiple queries, but in the data integration context this is not possible because we reread
data on every query. Both Lore and the commercial system gave very quick query responses to the
Mormon query, which only asked for a very small portion of the overall XML document; but their
load costs were higher than the execution times for x-scan. For the other queries in the �rst 5 data
sets, we �nd that Lore generally has signi�cantly better load times than the commercial system,
but the commercial system has faster query times, and performs better overall. Lore was unable
to complete either query on the Henry VI text within our time limit of 1000 sec.

The graph-structured Mondial data set was also a problem for Lore, which failed in querying
it. We attempted to simulate the traversal of IDREFs in this query with the commercial system
by using XQL's id lookup facilities, but performance su�ered greatly. For the VLDB data set, we
simpli�ed the query for Lore and the commercial product, simply asking for the value of the papers'
IDREFs, rather than looking up this value to get the ISBN (which we retrieved in the corresponding
x-scan query). Running times were still much higher than those for x-scan.

14

0

80

160

240

320

0
 40
 80
 120
 160
 200
 240

Number of Elements (in 1000s)

E
xe

cu
tio

n
tim

e
(s

ec
)

Parse Only

X-Scan

Figure 11: Scalability results for a query over an XML tree. X-scan has minimal overhead over the
parse, and grows only approximately 8% faster, even when the document exceeds memory.

We can conclude from this section that neither Lore nor the commercial system scale up well
to queries across multi-megabyte data �les, particularly �les that contain graph structure. X-scan
outperforms them in all cases, and also scales better (particularly for tree-structured documents).

4.2 Scalability

In order to better gauge the scalability of x-scan, we ran our system on a series of synthetic XML
data �les created by a random XML graph generator. The random graph generator starts with a
small XML tree-shaped \template" and begins replicating this to form an irregular XML tree; with
75% probability it adds this template as a subtree of the graph root, and with 25% probability it
picks a random node as a parent element. The result is an XML document consisting of subtrees
of varying depth, with a large number of children o� the root. Next, the graph generator begins
randomly adding a speci�ed number of IDREF edges between nodes to transform the tree into a
graph.

The �nal graph consists of a root node with a series of outer subelement edges emanating from
it. At the ends of these edges, there are nodes with some random number of child edges (both
subelement and IDREF), emanating. The child edges' destination nodes may source additional
child edges, and they may be the origin for sub edges that point to character data. Most of our
queries in this section will be \searching" for these sub edges' destination nodes.

Since it is possible for the random graph generator to produce graphs that are unusually favor-
able or unfavorable to the experiments, we average three di�erent runs across each of three di�erent
random graphs of the same generation parameters. (In practice, we found very little di�erence in
performance across the di�erent randomly generated graphs of the same speci�cations.)

4.2.1 Performance on trees

Since x-scan is applicable to both tree-structured and graph-structured data, we shall �rst examine
how it performs on documents without IDs and IDREFs. For reasons of consistency with later
experiments, we actually used the same graph-structured XML �les output by the random graph

15

0

20

40

60

80

100

120

140

0
 20000
 40000
 60000
 80000
 100000
 120000

Number of Elements

Q
ue

ry
 T

im
e

(s
ec

)

500 IDREFs

1000 IDREFs

3000 IDREFs

5000 IDREFs

10000 IDREFs

15000 IDREFs

20000 IDREFs

30000 IDREFs

(a) Time vs. total elements

0

20

40

60

80

100

120

140

0
 5000
 10000
 15000
 20000
 25000
 30000

Number of IDREFs

Q
ue

ry
 T

im
e

(s
ec

)

15K Elements

30K Elements

60K Elements

120K Elements

(b) Time vs. IDREF edges

Figure 12: Scalability results for query of Figure 11, but constructing graph index of document.

generator, but replaced their default DTD with one that de�nes all attributes to be character

data rather than IDs and IDREFs. We also directed x-scan to not generate a structural index of

each XML document's data graph, since such an index provides no bene�ts for tree-based regular

path expression evaluation5. In this experiment, x-scan simply uses the state machines to generate

bindings, which it returns as pipelined tuples; the structural index and the ID/reference resolution

components are disabled.

Our query was a simple path expression that returned all outer subelements as values for the

�rst variable, plus all nodes at distances 1 and 2 from those nodes in the second variable. The

graph in Figure 11 shows the results on the di�erent data sets. We can see that x-scan in this case

only adds a small amount of overhead versus simply parsing the data �le. In every experiment,

the x-scan overhead grows at a rate approximately 8% faster than the parser alone, and the actual

overhead remains minimal for even the largest of the data sets (which was approximately 14.6MB).

Note that for the 240,000-element query, the XML document exceeded x-scan's memory allocation,

and was paged to and from disk during operation.

4.2.2 Cost of graph indexing

Our next experiment was to take the same data set and query as in the previous section, but to

use the graph DTD. From this we can determine the impact of building the structural index and

of resolving references. Figure 12 (a) illustrates query performance vs. number of elements in the

document, and (b) shows performance vs. number of IDREF edges added.

As one would expect, the running times have moderately increased because of the index gener-

ation overhead. Additionally, the amount of time to process a query grows at a slightly superlinear

rate in the number of elements, as shown in part (a) of the Figure. (This was also true of both the

parser and of x-scan in the previous section, but the rate is slightly more pronounced here.) We

attribute this to the additional number of document and index page accesses required for perform-

ing \bookkeeping" and storage on increasingly larger XML documents. Even for a 7.5MB XML

document, however, our total execution time is approximately 2 minutes, and the operator actually

outputs pipelined tuples as it executes.

Part (b) of the Figure demonstrates that query execution time increases linearly with the number

5By comparing the result of this experiment with that of the next, we can calculate the cost of building this index.

16

0

20

40

60

80

100

120

140

160

0
 20000
 40000
 60000
 80000
 100000
 120000

Number of Elements

Q
ue

ry
 T

im
e

(s
ec

)

500 IDREFs

1000 IDREFs

3000 IDREFs

5000 IDREFs

10000 IDREFs

15000 IDREFs

20000 IDREFs

30000 IDREFs

(a) Time vs. total elements

0

20

40

60

80

100

120

140

160

0
 5000
 10000
 15000
 20000
 25000
 30000

Number of IDREFs

Q
ue

ry
 T

im
e

(s
ec

)

15K Elements

30K Elements

60K Elements

120K Elements

(b) Time vs. IDREF edges

Figure 13: Scalability results for graph-traversing query requesting outer nodes, their child nodes,

and all sub nodes within 1 or 2 edge traversals of the outer nodes.

of IDREF edges. This query does not traverse any IDREF edges, so all costs incurred are for indexing

the references.

4.2.3 Graph-traversing query

Since much of the complexity of the x-scan algorithm concerns eÆcient path expression matching

not just against trees, but against full graphs with IDREF edges, the next experiment tests the

e�ectiveness of our structural index when called to evaluate such reference edges.

The query we used in this experiment had three variables: the �rst bound to the outer nodes,

the second to child nodes of outer and to the child nodes' sub children, and the third variable

to sub nodes either one or two child edges away from the outer nodes. This query returns most

of the nodes within radius 2 of the outer nodes.

The results, shown in Figure 13, have nearly identical shapes to the subelement-only query

graphs from the previous section. Close examination reveals that the plots in Figure 13(a) run

parallel to those in Figure 12, with a slightly higher value at each point. This is small o�set is the

overhead in traversing the additional references and binding to an additional (third) variable. A

comparison of the growth respect to number of IDREFs, in part (b) of each �gure, shows that the

two queries behave similarly, but as the number of IDREFs increases, the graph-traversing query

begins to grow at a slightly faster rate. This is to be expected because the tree-only query did not

actually traverse IDREFs.

4.2.4 Kleene-star

Our �nal experiment measures the costs of evaluating a query that uses a Kleene-star operator

to return all sub nodes in the graph. We would expect that this query would be more subject to

variation on di�erent random graphs, as certain graphs may have \hub"-like nodes that have many

out-edges and multiple in-edges. For such nodes, the path expression evaluation algorithm will

re-evaluate the entire subgraph for each incoming edge. If several of these hub nodes are chained

together, the number of repeated traversals can grow exponentially. Moreover, a high ratio of IDREF

edges to elements in the graph greatly increases the likelihood of such chains appearing.

17

0

20

40

60

80

100

120

140

160

0
 20000
 40000
 60000
 80000
 100000
 120000

Number of Elements

Q
ue

ry
 T

im
e

(s
ec

)

500 IDREFs

1000 IDREFs

3000 IDREFs

5000 IDREFs

10000 IDREFs

15000 IDREFs

20000 IDREFs

(a) Time vs. total elements

0

20

40

60

80

100

120

140

160

180

200

0
 5000
 10000
 15000
 20000
 25000
 30000

Number of IDREFs

Q
ue

ry
 T

im
e

(s
ec

)

15K Elements

30K Elements

60K Elements

120K Elements

15K IDREFs did not complete

30K IDREFs did not complete

10K IDREFs did not complete

(b) Time vs. IDREF edges

Figure 14: Scalability results for Kleene-star query requesting all sub elements reachable from any

number of child edges.

The graphs in Figure 14 show x-scan performance. In part (a) we see a familiar pattern for

execution time versus number of elements, although the actual completion times are slightly longer.

Part (b) shows the more interesting results, comparing running times versus number of IDREFs

present in the document. The growth is now superlinear, generally increasing at successively faster

rates as we approach a point in which the number of IDREFs reaches 50% of the total number of

elements. (We note that at this value, an n-node graph actually has 3n=2� 1 edges, since all nodes

are subelements.) At the 50% point, the x-scan running times increase to some indeterminately

high value; in none of our experiments did such a query manage to complete within an hour.

We believe that XML data with such a high concentration of edges is unlikely to occur often in

practice. However, we believe we have a solution that will make processing of such data graphs more

tractable. In particular, the problem is that x-scan spends massive amounts of time duplicating

previous traversals to get binding values. For this case, we propose \memo-izing" the bindings

produced by following out-edges from a particular node, annotating the structural index with

pointers to such memo-ized values. Now if x-scan reaches a previously visited node and is in a

previously encountered state machine con�guration, we can simply read and return the memo-ized

results. We have a trade-o� in the extra disk accesses required to read and write memo-ized values,

but in highly-connected graphs, this will produce a net gain.

5 Related Work

As XML has emerged as a medium for representing data as well as documents, and as query

languages for XML have been proposed, a number of approaches have been proposed for evaluating

XML queries. Most of these involve mapping XML to an existing database model and utilizing

conventional query engine to do the core work. XML mapping strategies for relational [FK99,

SGT+99, DFS99], object-oriented [vZAW99, LAW98], and semi-structured [GMW99] databases

have all been implemented. The system's particular storage mapping may actually simplify certain

path expressions, e.g. if a set of path expressions includes multiple data items that are mapped to the

same tuple in a table. However, in the general case, indexing techniques such as join indices [Val87],

access support relations [KM90], DataGuides [GW97], and t-indices [MS99] must be used to speed

the processing of path expressions. These index structures describe the nodes reachable by certain

classes of path expressions. The t-index, and to some extent the DataGuide, are particularly

18

powerful structures that allow eÆcient computation of a wide range of regular path expression

types. However, the actual index generation tends to be fairly complex and time consuming:

DataGuides can be exponential in the size of the data and t-indices, while not exponential, are also

costly to generate, especially for more complex path expression types.

X-scan di�ers in three key ways from these techniques. First, x-scan's structural index es-

sentially converts the XML document into a semi-structured format that can be more eÆciently

traversed without parsing; but it preserves the ordering and locality of the XML document, rather

than splitting it into separate tables or objects that must later be re-combined.

Second, x-scan path expression evaluation is done through �nite state machines based on the

query. By contrast, semi-structured index techniques such as DataGuides and t-indices are essen-

tially �nite automata describing paths through the data, with each state pointing to the set of

nodes reachable through a particular path. The bene�ts of the t-index or DataGuide are that it

is a reusable structure, which can be leveraged across multiple queries with di�erent regular path

expressions. However, in a data integration context, we re-read data from the source, so reuse does

not occur | thus it is more appropriate to build a structure speci�c to the given query.

Finally, x-scan is a pipelining operator intended for streaming data, whereas other approaches

require a costly translation and indexing stage before the query can be executed. This pipelining

capability is key in an interactive ad-hoc query system, particularly if the data must be obtained

from a slow source [UFA98, IFF+99, AH00].

The x-scan pattern matching approach is similar to the concept behind the Knuth-Morris-Pratt

substring-matching algorithm, which creates a �nite state machine out of one string and matches it

against the other string. However, x-scan must be more sophisticated in order to handle matching

of tree-structured regular expression templates across graphs: (1) it supports both \forward" and

\reverse" traversals as we encounter open- and close-tags in XML, (2) it handles cycles in a way

that prevents in�nite loops, (3) it uses multiple dependent machines in conjunction, (4) it supports

arbitrary wildcards, disjunction, and Kleene-closure operations in paths, and (5) it has the ability

to avoid generating duplicate bindings for nodes reachable by several paths.

The basic goal of x-scan, of converting from semistructured data to tuples in pipelined fashion,

is very similar to the scan operator proposed by Cluet and Moerkotte in [CM97]. However, x-scan

di�ers in that it handles (cyclical) graphs as well as trees, it is for XML data rather than native

object or semistructured data, and it includes an algorithm and implementation.

6 Conclusions and Future Work

In this paper we have presented the x-scan algorithm, a new primitive for XML query processing,

that evaluates regular path expressions to produce bindings. X-scan is scalable to larger XML

documents than previous approaches and provides important advantages for data integration, with

the following contributions:

� X-scan is pipelined and produces bindings as data is being streamed into the system, rather

than requiring an initial stage to store and index the data.

� X-scan handles graph-structured data, including cyclical data, by resolving and traversing

IDREF edges, and it does this following document order and eliminating duplicate bindings.

� X-scan generates an index of the structure of the XML document, while preserving the original

XML structure.

19

� X-scan uses a set of dependent �nite state machines to eÆciently compute variable bindings

as edges are traversed. In contrast to semi-structured indexing techniques, x-scan constructs

�nite automata for the paths in the query, rather than for the paths in the data.

� X-scan is very eÆcient, typically imposing only an 8% overhead on top of the time required to

parse the XML document. X-scan scales to handle large XML sources and compares favorably

to Lore and a commerical XML repository, sometimes even when the cost of loading data

into those systems is ignored.

In the short term, we plan to add several re�nements to our x-scan implementation and inves-

tigate their e�ects. As was previously mentioned, we will be adding full support for out-of-memory

execution and for selection push-down, and we will also add the ability to memoize intermediate

results and avoid redundant computation in highly connected graphs. Additionally, the current al-

gorithm separates the parsing and state-machine traversal components into di�erent stages whose

execution must be interleaved. We envision the �nal implementation putting these stages in sepa-

rate threads, and to run both in parallel in a producer-consumer arrangement so x-scan can parse

and return results completely in parallel.

Additionally, we believe that the two key contributions of x-scan | state machine-based eval-

uation of regular path expressions and \on-the-
y" indexing of XML | are general techniques

that have application beyond our current domain of focus. For instance, XML-QL queries may be

composed over other XML-QL views (\functions"); this adds greater expressive power than a single

XML-QL query, and thus may require computation of intermediate view results that are fed into

the next query or view. As the input to the second query or view, we can use a variation of x-scan

that works on graph data rather than \pure" XML. The graph structure index may be useful in a

number of other operations. This output can be used as the input to a t-index generator, which

we believe will speed the creation of indexing structures for general path expressions on stored

XML data. The index may also be useful in constructing the results of an XML-QL query: the

semantics of XML-QL specify that if a node is copied from the input data graph to the output

graph, we must also copy all nodes that are transitively connected to this node | an XML-QL node

potentially represents an entire subgraph. The graph index allows us to quickly �nd the required

XML fragments and copy them over; we might even mark these in the index as having been copied.

Finally, we are also considering the use of the structural index to support eÆcient updates on XML

data.

Currently, x-scan represents a new operator which will be at the core of the new version of the

Tukwila data integration system [IFF+99]. However, this is just a �rst step. As we proceed, we

plan to investigate the potential uses described above | to develop a family of algorithms derived

from or assisted by x-scan.

References

[AH00] Ron Avnur and Joseph M. Hellerstein. Continuous query optimization. In Proc. of ACM SIGMOD

Conf. on Management of Data, Dallas, TX, 2000.

[CCD+98] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Paraboschi, and Letizia
Tanca. XML-GL: A graphical language for querying and reshaping XML documents. W3C Query
Language Workshop, http://www.w3.org/TandS/QL/QL98/pp/xml-gl.html, December 1998.

[CM97] Sophie Cluet and Guido Moerkotte. Query processing in the schemaless and semistructured
context. Unpublished manuscript, 1997.

20

[DFF+99] Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A query language
for XML. In Proceedings of the International Word Wide Web Conference, Toronto, CA, 1999.

[DFS99] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing semistructured data with STORED. In
SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data,

June 1-3, 1999, Philadephia, Pennsylvania, USA, pages 431{442, 1999.

[FK99] Daniela Florescu and Donald Kossman. A performance evaluation of alternative mapping schemes
for storing XML data in a relational database. Technical Report 3684, INRIA, March 1999.

[GMW99] Roy Goldman, Jason McHugh, and Jennifer Widom. From semistructured data to XML: Migrat-
ing the Lore data model and query language. In ACM SIGMOD Workshop on the Web (WebDB),

Philadelphia, PA, pages 25{30, 1999.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and optimization
in semistructured databases. In VLDB'97, Proceedings of 23rd International Conference on Very

Large Data Bases, August 25-29, 1997, Athens, Greece, pages 436{445, 1997.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc T. Friedman, Alon Y. Levy, and Daniel S. Weld. An
adaptive query execution system for data integration. In SIGMOD 1999, Proceedings ACM SIG-

MOD International Conference on Management of Data, June 1-3, 1999, Philadephia, Pennsyl-

vania, USA, pages 299{310, 1999.

[KM90] Alfons Kemper and Guido Moerkotte. Access support in object bases. In Proceedings of the

1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, May

23-25, 1990, pages 364{374, 1990.

[LAW98] Tirthankar Lahiri, Serge Abiteboul, and Jennifer Widom. Ozone: Integrating structured and
semistructured data. Technical report, Stanford University, October 1998.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In ICDT '99, 7th International

Conference, Jerusalem, Israel, January 10-12, 1999, pages 277{295, 1999.

[RLS98] Jonathan Robie, Joe Lapp, and David Schach. XML Query Language (XQL).
http://www.w3.org/TandS/QL/QL98/pp/xql.html, December 1998.

[SAX98] SAX 1.0: The simple API for XML. http://www.megginson.com/SAX/index.html, May 1998.

[SGT+99] Jayavel Shanmugasundaram, H. Gang, Kristin Tufte, Chun Zhang, David J. DeWitt, and Jef-
frey F. Naughton. Relational databases for querying XML documents: Limitations and oppor-
tunities. In VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases,

Edinburgh, Scotland, pages 302{304, 1999.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost based query scrambling for initial
delays. In Proc. of ACM SIGMOD Conf. on Management of Data, pages 130{141, Seattle, WA,
1998.

[Val87] Patrick Valduriez. Join indices. TODS, 12(2):218{246, 1987.

[vZAW99] Roelof van Zwol, Peter M.G. Apers, and Annita N. Wilschut. Modelling and querying semistruc-
tured data with MOA. In Proceedings of the Workshop on Semi-Structured Data and Non-

Standard Data Formats, Jerusalem, Israel, 1999.

[XML98] Extensible markup language (XML) 1.0. http://www.w3.org/TR/1998/REC-xml-19980210, 10
February 1998. World Wide Web Consortium (W3C) Recommendation.

Appendix: Queries Used in Experiments

The tables on the next page present the di�erent queries used in the experimental section of this paper.

21

Name System Query

Henry VI-q1 x-scan p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",
a = p."ACT", as = a."SCENE"."SPEECH"."SPEAKER"

commercial /play/title j /PLAY/PERSONAE/PERSONA j
/PLAY/ACT/SCENE/SPEECH/SPEAKER

Lore select t, p, s from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,
pl.ACT.SCENE.SPEECH.SPEAKER s

Henry VI-q2 x-scan p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",
a = p."ACT", l = a."SCENE"."SPEECH"."LINE"

commercial /play/title j /PLAY/PERSONAE/PERSONA j
/PLAY/ACT/SCENE/SPEECH/LINE

Lore select t, p, l from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,
pl.ACT.SCENE.SPEECH.LINE l

Quran x-scan r = root."tstmt"."suracoll", s = r."sura", e = s."epigraph",
t = s."bktlong", v = s."v"

commercial /tstmt/suracoll/sura/epigraph j /tstmt/suracoll/sura/bktlong j
/tstmt/suracoll/sura/v

Lore select e,t,v from
tstmt.suracoll r, r.sura s, s.epigraph e, s.bktlong t, s.v v

NT x-scan b = root.."tstmt"."bookcoll", bk = b."book", t = bk."bktlong",
c = bk."chapter"."title"

commercial /tstmt/bookcoll/book/bktlong j /tstmt/bookcoll/book/chapter/chtitle
Lore select t, c from tstmt.bookcoll.book b, b.bktlong t, b.chapter c

Mormon x-scan pref = root."tstmt"._, t = pref."ptitle", w = pref."witlist",
per = w."witness"

commercial /tstmt/*/ptitle j /tsmt/t/*/witlist j /tstmt/*/witlist/witness
Lore select t,w from tstmt.% pref, pref.ptitle t, pref.witlist.witness w

Mondial x-scan c = root."mondial"."country", n = c."name", cit = c."city", cn = cit."name",
at = cit."located"."ref"."name"

commercial /mondial/country/name j /mondial/country/city/name
j id(/mondial/country/city/located/@ref)/name

Lore select ctry, cit, loc from mondial.country co, co.name ctry, co.city ci, ci.name cit,
ci.located.ref.name loc

VLDB x-scan i = root."conf"."inproceedings", a = i."author", t = i."title",
p = i."crossref"."IDREF"."isbn"

commercial /conf/inproceedings/author j /conf/inproceedings/title j
/conf/inproceedings/crossref/@IDREF

Lore select a, t, r from conf.inproceedings i, i.author a, i.title t, i.crossref.IDREF r

Table 2: Queries used in the experiment comparing systems (Figure 10). X-scan uses a series of

path expressions, the commercial system uses XPath/XQL, and Lore uses Lorel.

Section Query

4.2.1 o = root."doc"."outer", s = o~("child"|"child"."sub")
4.2.2 o = root."doc"."outer", s = o~("child"|"child"."sub")
4.2.3 o = root."doc"."outer", s = o.("child"|"child"."sub"),

t = o.("child"."sub"|"child"."child"."sub")
4.2.4 o = root."doc"."outer", s = o."child"*."sub"

Table 3: Queries used in the scalability experiments. Note that the tilde (�) character is a path

segment separator much like the dot operator, but it speci�es that the next edge is can only be a

subelement (as opposed to an IDREF).

22

