XML Query Languages in Practice: An
Evaluation

Zachary G. Ives' and Ying Lu?

! University of Washington, Box 352350, Seattle WA 98195-2350, USA,
zives@cs.washington.edu
2 University of Wisconsin, 1210 W. Dayton St., Madison WI 53706, USA,

luy@cs.wisc.edu

Abstract. The popularity of XML as a data representation format has
led to significant interest in querying XML documents. Although a “uni-
versal” query language is still being designed, two language proposals,
XQL and XML-QL, are being implemented and applied. Experience with
these early implementations and applications has been instructive in de-
termining the requirements of an XML query language. In this paper, we
discuss issues in attempting to query XML, analyze the strengths and
weaknesses of current approaches, and propose a number of extensions.
We hope that this will be helpful both in forming the upcoming XML
Query language standard and in supplementing existing languages.

1 Introduction

With the advent of the Internet and World Wide Web as mediums for elec-
tronic commerce and information exchange, the eXtensible Markup Language,
XML, has emerged as a topic of great interest in the database community. XML
provides a universal format for essentially any type of data, and it is rapidly
being adopted as a replacement for proprietary formats in many applications.
Shortly after XML’s emergence, a number of researchers identified the need for
a query language over this data representation format. The result has been a
series of proposed languages, the most prominent of which are XML-QL [10]
and XQL [17]. In an effort to provide a standard, the World Wide Web Consor-
tium is developing a language called XML Query, for which they hope to have
a working draft sometime this year; it is expected to be primarily derived from
XML-QL and XQL.

Meanwhile, market demand for storing and querying XML has encouraged
companies to develop and market commercial query processors for XML today.
Object Design’s eXcelon XML repository [18] maps XML documents to objects
and supports queries over them based on the XQL language. Both Oracle and
IBM support XML export of query results from their relational database sys-
tems. In these products and projects, XML is generally treated as a protocol for
describing relational or object-based information — the focus is on encapsulating
traditional data in an XML container, rather than on the unique representational
aspects implicit in XML. By contrast, a number of research projects [16,2,12,
13] utilize XML as the basis for a data model, exploring the storage, integration,
and processing of tree- and graph-structured XML data. A third perspective is
that of users attempting to exploit XML in custom application domains, to ob-
tain functionality not provided by more traditional database systems. One such

<db> <country>USA</country>
<lab ID="baselab" manager="smithl"> </location>

<name>Seattle Bio Lab</name> </lab>
<location> <paper ID="Smith991231"
<city>Seattle</city> source="baselab">
<country>USA</country> <title>Automatic Record...</title>
</location> <biologist>smithl</biologist>
</lab> </paper>
<lab ID="lab2"> <biologist ID="smithl">
<name>Philadelphia Lab</name> <lastname>Smith</lastname>
<location> </biologist>
<city>Philadelphia</city> </db>

Fig. 1. Sample XML document representing biology labs and publications

project is the Cell Systems Initiative [8], an effort to define an ontology and
experiment capture system for cellular research. Data in this application is too
complex in structure to be effectively stored in a relational system, and requires
a semi-structured data model and query language, such as those for XML.

Each of these domains has different needs for querying XML from a data
management perspective. One sees XML as a standard exchange protocol; an-
other uses XML as an intrinsic data model; the final applies XML to real-world
application domains that would otherwise be unmanageable. In this paper, we
discuss the strengths and weaknesses of the query languages applied to these
domains, and we propose a number of improvements. Our goal is to present
not simply a survey of language features, but an evaluation of how useful these
languages are for data management. We do not attempt to address information-
retrieval-style queries, which have been the focus of work such as [11]. We hope
that our analysis will be useful in defining the standard XML Query language
and for extending existing languages in the interim.

The structure of this paper is as follows. We begin in Section 2 with the basics
of XML and how it is modeled, then continue in Section 3 with an overview of
XML query languages (focusing on XQL and XML-QL). Section 4 describes
issues in querying XML trees and graphs. In Section 5, we examine how input
data is restructured into an output document. Section 6 discusses the application
of XML models and query languages to the Cell Systems Initiative domain, and
what difficulties this presents. In Section 7, we discuss related work and conclude
with some recommendations.

2 XML Data

An XML document consists of pairs of matching open- and close-tags (elements),
each of which may enclose additional elements or data values (in the form of
“character data” strings). Every document must be contained within a single
set of enclosing tags, known as the root element. Additionally, an element tag
may include single-valued attributes further describing the element. XML doc-
uments may include embedded references to other XML documents in the form
of XPointers [9]. See Figure 1 for the sample XML document upon which we
shall frequently base our examples throughout this paper (note that it has no
XPointers).

ID="baselab"
manager="smith1"

ID="Smith991231"
source="baselab"

Giologist

|D="lab2" I ID="smith1"
Seattle Smith
Bio Lab
Philadelphia ~ USA Philadelphia USA

Fig. 2. XQL representation for Fig. 1. Edges indicate subelements.

An optional companion to the XML document, the Document Type Descrip-
tor or DTD, adds a “schema” to which an XML document must conform to be
considered valid. The DTD constrains the nesting of elements and assigns typing
information to attributes. Attributes of type ID are element identifiers; those of
type IDREF or IDREFS are references to other elements, by ID, within the XML
document. IDs are guaranteed to be unique within a document and IDREFs may
not dangle. For the example of Figure 1, we shall assume that an associated
DTD (not shown) defines the ID attribute of the various elements to be of type
ID, the manager attribute of the lab element to be an IDREF, and the paper
element’s source to also be a reference.

2.1 XML Data Models

One of the most important differences between XML query languages is in their
data models. We begin here with an overview of the approaches to modeling an
XML document.

Tree Models XQL [17] and XMAS [14] use the XML Document Object Model
(DOM [1]) tree as the basis of their data models (Figure 2). This parse tree
represents elements as nodes, contained subelements as edges to nodes, and all
attributes as fields accessible from their elements.

Graph Models Languages such as XML-QL [10], XML-GL [5], and Lorel [12]
treat the XML input document as a graph (Figure 3), where both subelements
and IDREFs are mapped to edges. Each element is represented as an edge (labeled
with the element name) directed to a node (given the element’s ID if one exists,
otherwise a unique identifier). IDREF edges are labeled with the IDREF name,
directed to the referenced element node. In order to allow for intermixing of
string data and nested elements within each element, XML-QL creates a PCDATA
edge to each string. Conventional attributes (not shown in the example) are
fields accessible from their element nodes.

The use of IDREFs as graph edges allows for modeling of any arbitrary struc-
tured or semi-structured data. However, current graph data models do not fully
specify ordering within the data graph; to clarify order mappings, we propose
the following correspondence. Given an XML data graph, we can take all IDREF
edges and replace them with identically-named attributes, whose values are the
IDs of the destination nodes; this will result in a tree equivalent to the DOM
tree. A left-to-right depth-first traversal will generate the equivalent XML docu-
ment. In this mapping, attributes and IDREF edges are ordered before subelement
edges.

biologist

manager /T TNT — >
name
lastname
location — @
4’ source

X biologist

clty country name location 7
Ol GiD smin

Seattle H ‘v ‘v C't)' o v

BioLlab goqiie Phila... Auto... smithl

USA Lab
Phlladelphla USA

Fig. 3. XML-QL graph for Fig. 1. Dashed edges are IDREFs; dotted edges are PCDATA.

2.2 Traversing the Document

The key to querying an XML document lies in selecting the desired data from
the input. Most XML query languages use regular path expressions, describing
paths to be taken from the document “root node” to the data values. A regular
path expression enumerates a sequence of node or edge labels to be followed;
since XML may have recursively nested elements or irregular structure, it may
include regular-expression operators such as the wildcard, the Kleene-star (for
repetition), and choice (for alternate sub-paths).

For a tree-structured query language, there is one unique path from the root
to a given node. If the data model is graph-structured, however, there may be
multiple paths to a given node; here, language semantics generally specify that
a path expression will only return each node once.

Even under the graph-structured data model, there are cases where we would
like to traverse only subelements in the document, or to query IDREFs as at-
tributes instead of edges. XML-QL does not differentiate between these different
edge types; the Lorel [12] query language supports this by allowing the user to
switch between a graph-structured and a tree-structured mode. We believe that
Lorel’s modes can be too coarse-grained — the query author may want to main-
tain the input graph structure, but simply traverse subelements along certain
portions of the path. We suggest extending path expressions so they can restrict
the type of a given traversal edge to be an IDREF or a subelement.

3 Query Language Basics

A number of query languages have characteristics of note. XMAS [14], the lan-
guage of the MIX mediator system, is essentially a simplification of XML-QL for
tree-structured data; its simplified model makes query processing and writing
less complex. Lorel, the language for the Lore semi-structured database sys-
tem, has been extended to support XML, and includes update as well as query
capabilities (though these are only supported in Lore’s original OEM model).
Finally, XML-GL [5] uses diagrams rather than commands to express queries.
While these languages have some novel features, we focus on XQL [17,19] and
XML-QL [10], the languages that are being implemented for real applications
and the greatest influences on the W3C query language specification.

3.1 XQL

XQL is the “parent” of the W3C XPath [6] document navigation standard and
the basis of the XSLT [20] transformation standard. However, XQL was recently
extended with features not found in its “child”; we shall focus on XQL rather
than XPath in this paper. XQL queries are very simple: they extract nodes and
subtrees from a single input document and return these in a new XML document.

The XQL tree data model is closely matched to the XML physical format,
as described in Section 2.1. Queries return elements and their children in the
same order as they appear in the input document. This model makes XQL well
suited to finding and returning XML document fragments; yet the data model
is considerably less flexible and expressive than a graph model.

An XQL query is divided into a path expression and an optional filter expres-
sion. The path expression defines the nodes to be returned in the query result,
and the filter expression selects only nodes meeting specified criteria. A query
is of the form path [filter], where path is typically a series of element names
separated by the slash (/) character, and filter is a sequence of boolean condi-
tionals, e.g. tests for sub-path existence. A sub-path is a sequence of element
names, optionally followed by an attribute (indicated by a prepended @ sign).
XQL paths and sub-paths are expressed relative to a “current location” (default-
ing to the entire document for the outermost query). A leading slash restarts the
path at the document level; a star (*) is a wildcard representing any edge; two
consecutive slashes (//) specify any number of wildcard edge traversals. Once
a node has been selected by its path, it can be returned, or various methods
can be called on it. Note that an XQL path expression is not as powerful as
a full regular path expression, as it does not include true Kleene-star or choice
operators.

Example XQL queries over Figure 1 include:

— /db/lab[@manager="smith1"] returns only labs with manager attributes
containing the value “smith1” — namely the Seattle lab. Note that we return
the 1lab subelement and all of its children; the filter within the brackets does
not affect the query path.

— /db/lab { location/city | name } returns each lab element, with only
its city and name subelements within. The { } are “grouping” operators
and | forms a union of element results.

3.2 XML-QL

XML-QL was the first database-style language proposed for querying XML, and
has had perhaps the largest impact on the W3C’s vision of an “ideal” XML
query language. XML-QL uses the graph data model of Section 2.1, and is a full
graph-to-graph query and transformation language.

XML-QL uses a WHERE patternl IN sourcel, ... CONSTRUCT result syntax, in
which each pattern template is matched against an input XML data graph from
its corresponding source (a URI, view, or variable) and the result defines the
desired structure of the query output graph. XML-QL supports multi-document
queries and relational-like operations such as joins and grouping.

WHERE <db> CONSTRUCT <result><combo>

<lab><name>$1</></> <laboratory>$1</>
<biologist>$b</> <person>$b</>
</> IN "figl.xml" </></>

Fig. 4. Example XML-QL query for Figure 1

An XML-QL pattern is expressed as a set of nested tags with embedded
variable names (prefixed by leading dollar-signs) that specify bindings of graph
nodes to variables. An example XML-QL query appears in Figure 4. We abbre-
viate each close-tag with a </>. The WHERE template is a tree structure of
path expressions that get “matched” across the input graph. Each variable (I
and b above) is bound to the matching node at the end of the path. In this case,
we take a db edge from the document root. From here, we find a lab edge and
then a name edge to a node we assign to variable |. Now, from the same db edge
traversed earlier, we find a biologist edge to a node we shall call b. During
query execution, we apply the template and form every possible combination of
path expression matches. Each tuple of bindings to variables is evaluated much
like a tuple in a relational database.

The CONSTRUCT clause specifies a tree structure to add to the output graph.
Wherever an input variable appears in the CONSTRUCT clause, its associated node
is inserted into the output. We also “carry forward” all other nodes transitively
connected by edges radiating from the original node. In essence, an XML-QL
variable bound to an XML graph node represents the entire subgraph to which
the node transitively connects via “forward-pointing” edges.

4 Querying XML Data

In this section, we examine some of the important considerations in querying
XML documents.

4.1 SQL-like Features

With the simple language elements discussed previously, we can express search-
style queries that traverse an XML document and return portions. However, one
of the applications of XML is as a “container” for relational data. In this type
of application, the query language must support SQL-like relational operations.

Join XQL can join different path expressions within the same document. In order
to support join predicates, dollar-sign-prefixed correlation variables are associ-
ated with sub-paths. Figure 5(a) takes paper biologist subelements and saves
their values in the b variable; then finds db biologist elements with match-
ing IDs. The returned result is the paper elements with additional biologist
lastname subelements inserted within. Note that this is a left outer join, as
papers may appear with no biologists. XQL also supports a limited inner join
operation that returns the contents of one of the two join subtrees.

The XML-QL equivalent to Figure 5(a), in Figure 5(b), is slightly more pow-
erful, as it can combine the paper and author elements from different sources. If
the same variable occurs more than once within a query, it is constrained to have
the same value in both places (thus forming an equijoin); or we can add a test
such as $b1 < $b2 to the WHERE clause to establish a range constraint on the

WHERE <db><paper>
<biologist>$b</>
/db/paper [$b=biologist] { </> CONTENT_AS $p
* | /db/biologist [@ID=$b] </> IN "figl.xml",
/lastname <db><biologist ID=$b>
} <lastname>$n</></>
</> IN "figl.xml"
CONSTRUCT
<result><paper>$p<lastname>$n</>
</></>
(a) XQL (b) XML-QL
Fig. 5. Join query for data of Figure 1

variables’ values. The CONTENT_AS specifier in the query expresses a binding of a
variable to the contents (the node) of the previous element — in this case, it sets
p equal to the paper node. The constructed output consists of paper elements
with additional biologist lastname subelements, as in the XQL query, except
that we have performed an inner join. XML-QL also supports outer join queries,
but these are more complex to express and less commonly used.

Null values A problem can arise when mapping relational tables with null at-
tributes to XML. Typically, the subelements corresponding to null relational
attributes are simply omitted from the document. Neither XQL nor XML-QL
support queries with optional elements that are not required in matching a pat-
tern. If XML is to be effectively used to store relational data, it seems critical
that the query language have this capability.

Universal quantification and negation Two important capabilities for certain
classes of queries are universal quantification and negation. XQL includes all
and not keywords in the filter expression for this purpose; XML-QL is missing
these important features.

Aggregation Aggregate functions such as average and max are very commonly
used for summarization and other purposes in SQL. XQL supports a count func-
tion, but no other aggregation operations. The original XML-QL specification
describes a model for supporting aggregate functions, and this model has been
further developed (see Section 5.4).

4.2 References

When XML is used as a graph-structured data format, following references be-
comes vital. Both XQL and XML-QL include mechanisms for managing IDREFs.
XML-QL models both IDREF and IDREFS attributes as edges, so we can fol-
low references with path expressions. In the latest XQL proposals, a global
method, id, dereferences IDREF attributes by value. Unfortunately, XML IDREFS
attributes consist of a string values with multiple ID references separated by de-
limiter characters; XQL does not include a mechanism for separating these into
sub-components, and thus there is no way to de-reference an IDREFS attribute.

Neither XML language handles XPointers, but they can fairly easily be ex-
tended to do so. A proposed extension to XQL adds a ref global method that
returns the contents of an XPointer. In XML-QL, one can create a user-defined
“function” that does the equivalent, namely takes a URI or XPointer and returns
the corresponding XML graph.

WHERE <db>
<lab manager="smith1"></>

/db/lab[@manager="smith1"] CONTENT_AS $lab
-> smithlab </> IN "figl.xml"
CONSTRUCT
<result><smithlab>$lab</></>
(a) XQL (b) XML-QL

Fig. 6. Renaming an element
4.3 Querying Document Order

Both XQL and XML-QL allow queries to reference a subelement’s index, i.e. its
numeric ordering as a child of its parent element: we can specifically request the
i-th child of an element, or we can query a node for its index value. However,
XML-QL lacks the ability to query for the i-th element with label L (e.g. the
second <p> element), which we can do in XQL.

In Section 2.1, we proposed a mapping between an XML graph model and
document in which IDREFand IDREFS edges are ordered prior to sibling subele-
ments. Under this ordering, we can now extend XML-QL in a useful way for
graph data — to allow querying for the i-th out-edge with a particular name.
(Note that we do not propose an ordering between edges of different names, since
different IDREF attributes are unordered with respect to one another.)

5 Special Query Output Behavior

In the previous section, we analyzed the capabilities of the XML query languages
on input documents. Both languages support simple “copying” of input subtrees
to the output. In this section we discuss how portions of this output can be
modified, and also discuss how graph-structured XML can be created in XML-

QL.
5.1 Pruning XML output

An interesting aspect of nearly all XML query languages, including XQL and
XML-QL, is that they allow for the selection of a portion of the input document
(subtree or subgraph) via a path expression, but support no projection-like oper-
ations on it. An XQL path expression will return the matching subtree, however
deep it might be, as output. An XML-QL node variable, when it is used in the
CONSTRUCT clause, outputs the node plus the entire subgraph to which it is
connected. A missing capability would allow the query to restrict the portions
of the subtree or subgraph that get copied, i.e. prune the data.

5.2 Modifying elements

Often, queries need to rename the element labels from the original query. Exam-
ples of how to do this in XQL and XQL are in Figure 6, where we rename the
lab element to smithlab. In the XQL query, we use the -> renaming operator
to change the name of the outermost tag of the query result; in XML-QL, we
bind to the source element’s node content using the CONTENT_AS specifier, and
later “wrap” the node with a new enclosing tag.

WHERE <db> { WHERE <db>

<paper> <biologist ID=$b>
<biologist>$b</> <lastname>$1</>
</> CONTENT_AS $p </>
</> IN "figl.xml" </> IN "figl.xml"
CONSTRUCT CONSTRUCT <lastname>$1</>
<db> }
<paper>$p </>
</>

Fig. 7. Nesting in XML-QL

5.3 Nesting Subqueries

XML is fundamentally a tree-structured format, so one of the most common
operations is to take elements from one subquery and nest them under elements
from a different query (perhaps “matching” parent and child query results with a
join condition). Both XQL and XML-QL support this operation quite elegantly:
essentially, the subquery is embedded within the portion of the parent query that
constructs the result. The XQL query of Figure 5(a) outputs papers as parents
of a nested biologist subquery; its XML-QL equivalent appears in Figure 7.
For both languages, the entire subquery is executed and embedded for each set
of bindings in the outer query, producing a 1:n nesting relationship.

5.4 XML Graphs in XML-QL

XQL is a single-document, tree-oriented language, whereas XML-QL is multi-
document, and graph-oriented. The extra features of XML-QL provide consid-
erably more flexibility, but also add new concerns with respect to the output
XML representation. Note that several people have proposed extending XQL to
a graph model, so while this discussion is focused on XML-QL, it will also be
relevant to such extended versions of XQL.

Skolem functions A fundamental concept in XML-QL is that of node identity
in the output graph. If a query attempts to create an output node with the same
node ID more than once, i.e. for more than one tuple of variable bindings, each
iteration refers to the same node in the output graph — the output node will only
be created once. This enables a query to refer to and extend an existing node.
This is where the XML-QL Skolem function is useful. Each Skolem function
creates a perfect hash value for its arguments, and its values will not collide
with those of any other Skolem function.

Skolem functions are used to group elements based on data value and to cre-
ate multiple references to the same node. For instance, in the query of Figure 8,
we take any paper elements in Figure 1 and, using the Skolem function Sk1,
re-group them by biologist instead of by paper. For each new value of b, we
will output a biologist node and a nested paper node with a reference back to
its parent. Each time a duplicate b value is bound, we insert a new paper node
underneath the existing biologist node.

Skolem functions also form the basis of aggregation operations: functions
such as average or count can be applied across the sets of values that get

WHERE <db> CONSTRUCT

<paper ID=$i source=$s> <result>
<title>$t</> <biologist ID=Sk1($b)>
<biologist>$b</> <paper ID=$i source=$s
</> ref=Sk1($b)>$t</>
</> IN "labs.xml" </> </>

Fig. 8. Grouping with Skolem functions)

templateFor templateFor

DNA1 RNA5 »_Protein30 Sequencel?
describedBy
memberOf
memberOf dssc”bed
8y Sequence9l
memberOf

Fig. 9. Model of DNA-RNA-Protein interactions according to hypotheses

consolidated together by the Skolem function. Skolem functions can even perform
duplicate removal and force XML-QL to output graph-structured rather than
tree-structured data.

XML Graph Irregularities At times, graph-structured data may map into
irregular and “ugly” XML. For example, it is possible to use Skolem functions
to consolidate nodes such that they have multiple in-edges like the Hyp2 node
in Figure 9. The initial set of variable bindings will create the Hyp2 node as
an XML subelement under some parent element. For future bindings, however,
referencing parent nodes must connect to Hyp2 via IDREFs. Thus one of the
node’s “parents” will be a parent element, and all others will be referrers —
despite the fact that the source query did not distinguish between any of the
“parent” nodes.

Another XML mapping artifact arises because XML-QL outputs not only
the nodes bound to variables, but also all nodes that are transitively connected
to these. This feature is often convenient, but it has indeterminate output when
the referenced element has a parent not in the query output. In this case, the
most logical approach is to “fold” the referenced node under its first “parent”
as an XML subelement.

6 An Application of XML

The goal of the Cell Systems Initiative (CSI) project at the University of Wash-
ington is to provide an online, web-like knowledge base representing all aspects
of biological data — from experiments to hypotheses to publications. The CSI
knowledge base is a complex graph structure with edges, “conditional edges,”
and various types of nodes. An example graph appears in Figure 9. Note that
the templateFor and describedBy edges indicate relationships, but that these
relationships are conditional on the validity of the hypotheses, as expressed by
the member0f edges originating from these edges.

A graph like this can be represented relationally, or even in an XML tree
model, but querying it would be highly unintuitive and inefficient. We chose to
use the XML-QL graph model, after making one transformation: since XML does
not allow edges to originate from other edges, we must “split” each conditional

edge into a pair of edges with an intermediate node, providing a source for each
member0f edge.

Proposed queries for the CSI domain have demonstrated the need for a sev-
eral extensions to XML-QL. A significant problem occurs because of XML-QL’s
policy of “carrying over” all transitively connected nodes; this may result in
“extra” output. A pruning feature, as suggested in Section 5.1, would solve this
problem. Additionally, the CSI database is expected to consist of large numbers
of interlinked XML documents, each using XPointers to reference other portions
of the overall structure. XML-QL must be able to support XPointers to make
this work. Overall, however, preliminary designs and results suggest that, with
these extensions, XML-QL is are fairly well suited to this application.

7 Related Work and Conclusions

In this paper, we have described the two most widely accepted XML query lan-
guages, XQL and XML-QL, and examined how they can be applied to three dif-
ferent domains: relational queries, queries over arbitrary XML data, and graph-
structured scientific applications. While we believe this to be the first analysis of
XML query languages’ applicability, issues in designing an XML query language
have been frequently discussed in the literature. In particular, the W3C’s 1998
Query Language Workshop included numerous papers describing the the motiva-
tions and requirements for querying XML [4,7,15], as well as several important
language proposals [17,10,12, 5, 14]. The application of XML-QL to information
retrieval queries was discussed in [11].

Recently, Bonifati and Ceri presented a survey of five major XML query lan-
guages [3] that compared the features present in each. The goal of this paper
is more than to provide a feature comparison: we hope to promote a greater
understanding of XML query semantics, and to detail some of the problems
encountered in trying to apply these languages. While a query language con-
taining the “union” of the features present in XQL and XML-QL will go a large
way towards solving the needs of querying XML, we also propose a number of
extensions that we feel are necessary:

— An XML graph model with defined order between IDREFs and subelements
— Regular path expression extensions for subelement, IDREF, or arbitrary edges
— Support for “optional” path expression components and null values

— Support for following XPointers

— Pruning of query output

— Clearer semantics for copying subgraphs to query output

In general, XML-QL nearly meets our needs, and it could fairly naturally
be extended with the missing capabilities. In particular, if we add universal
quantification, negation, and the features listed above, it should be well-suited
for our domains of interest. XQL can also be further developed, but the required
extensions fit less cleanly into its single-document query model.

While some of these operations may increase the complexity of an XML query
processor, all should be possible using well-studied techniques. XML querying is
still a young field, but the database community’s experience in querying other
data models has given it a solid foundation.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors, G. Nicol,
J. Robie, R. Sutor, C. Wilson, and L. Wood. Document object model (DOM) level
1 specification. http://www.w3.org/TR/REC-DOM-Level-1, October 1998.

C. K. Baru, A. Gupta, B. Ludéscher, R. Marciano, Y. Papakonstantinou, P. Ve-
likhov, and V. Chu. XML-based information mediation with MIX. In SIGMOD
1999, Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-8, 1999, Philadephia, Pennsylvania, USA, pages 597-599, 1999.

A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. SIG-
MOD Record, 29(1):68-79, March 2000.

A. Bosworth, A. Levy, J. Widom, R. Goldman, J. McHugh, A. Layman,
A. Ardelwanu, and D. Schach. Position paper for the W3C query lan-
guage workshop, December 3, 1998. W3C Query Language Workshop,
http://www.w3.org/TandS/QL/QL98/pp, December 1998.

S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca.
XML-GL: A graphical language for querying and reshaping XML documents.
W3C Query Language Workshop, http://www.w3.org/TandS/QL/QL98/pp/xml-
gl.html, December 1998.

J. Clark and S. DeRose. @~ XML path language (XPath) recommendation.
http://www.w3.org/TR/1999/REC-xpath-19991116, November 1999.

P. Cotton and A. Malhotra. Candidate requirements for XML query. W3C Query
Language Workshop, http://www.w3.org/TandS/QL/QL98/pp, December 1998.
Cell Systems Initiative. http://cellworks.washington.edu, 2000.

S. DeRose, R. D. Jr., and E. Maler. XML pointer language (XPointer) working
draft. http://www.w3.org/TR/1999/WD-xptr-19991206, December 1999.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language
for XML. In Proceedings of the International Word Wide Web Conference, Toronto,
CA, 1999.

D. Florescu, D. Kossman, and I. Manolescu. Integrating keyword search into xml
query processing. In Proceedings of the 9th WWW Conference, Amsterdam, NL,
May 2000.

R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML:
Migrating the Lore data model and query language. In ACM SIGMOD Workshop
on the Web (WebDB), Philadelphia, PA, pages 25-30, 1999.

Z. G. Ives, A. Y. Levy, and D. S. Weld. Efficient evaluation of regular path ex-
pressions over streaming XML data. Submitted for publication, 2000.

B. Ludascher, Y. Papakonstantinou, and P. Velikhov. A brief introduction to
XMAS. http://www.db.ucsd.edu/Projects/MIX/docs/XMAS-intro.pdf, February
1999.

D. Maier. Database desiderata for an XML query language. W3C Query Language
Workshop, http://www.w3.org/TandS/QL/QL98/pp/maier.html, December 1998.
J. Naughton, D. DeWitt, D. Maier, J. Chen, L. Galanis, K. Tufte, J. Kang, Q. Luo,
N. Prakash, F. Tian, J. Shanmugasundaram, C. Zhang, R. Ramamurthy, B. Jack-
son, Y. Wang, A. Gupta, and R. Chen. The Niagara internet query system. Sub-
mitted for publication, 2000.

J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL).
http://www.w3.org/TandS/QL/QL98/pp/xql.html, September 1998.

eXcelon: The XML application development environment.
http://www.odi.com/excelon/main.htm.

XQL (XML Query Language). http://metalab.unc.edu/xql/xql-proposal.html,
August 1999.

XSL Transformations (XSLT), version 1.0. http://www.w3.org/TR/xslt, 13 Au-
gust 1999. W3C Working Draft.

