Building a Web-Based Federated Simulation System with Jini and XML

Xuegin Huang
John A. Miller

415 GSRC
Computer Science Department
University of Georgia
Athens, GA 30602-7404

Abstract

In a Web—Based federated simulation system, a group
of simulation models residing on different machines
attached to the Internet, called federates, collaborate
with each other to accomplish a common task of
simulating a complex real world system. To reduce the
cost of developing and maintaining simulation models
and facilitate the process of building complex
collaborative simulation systems, reuse of existing
simulation models and interoperability between
disparate simulation models are of paramount
importance. Moreover, to make such a system highly
extensible, the individual federates, which could reside
on the same host or physically distributed hosts, should
be able to freely join and leave a federation without full
knowledge of its peer federates. Simply put, an ideal
simulation system should allow for quick and cheap
assembly of a complex simulation out of independently
developed simulations and at the same time allow the
participating  simulations to have  maximum
independence. Fortunately, this is made possible by
some emerging technologies, notably Jini and the
eXtensible Markup Language (XML). In this paper, we
will introduce Jini and XML and present the design and
prototype implementation of a Web—based federated
simulation system using Jini and XML.

1. Introduction

Developing programs to simulate complex real world
systems is a challenging and expensive task. It is often
desirable to reuse independently constructed pieces of a
simulation and have them collaborate to solve a larger
and more sophisticated simulation problem. A major
effort to standardize the reuse and interoperability of
simulation systems is the High Level Architecture
(HLA), which was developed by the United States
Department of Defense (DoD), actively supported by
IEEE, and adopted by the NATO countries [Kuhl et al.,
1999]. HLA defines a software architecture for
composing simulation systems from components. The
components are called federates and the simulation
involving several federates is called a federation. The

federates interact with each other through a runtime
infrastructure (RTI), which offers services in six areas,
including  federation  management,  declaration
management,  object  management,  ownership
management, time management, and data distribution
management. HLA is an architecture, not an
implementation. An HLA system can be built using
CORBA or other distributed computing technologies.

An earlier effort to implement a subset of the HLA
services for the JSIM Simulation Environment ([Nair et
al. 1996] [Miller et al., 1997], [Miller et al. 1998],
[Seila et al., 1999], [Miller et al., 2000]; theses: [Nair,
1997], [Zhang, 1997], [Zhao, 1997], [Ge, 1998],
[Xiang, 1999], [Tao, 2000]) was accomplished by using
Enterprise JavaBeans (EJB) [Roth, 2000]. EJB is a
server-side component model for the Java platform,
which is designed to "enable enterprises to build
scalable, secure, multi—platform, business—critical
applications as reusable, server-side components"
[Roth, 2000]. EJB takes the Java paradigm of platform
independence a step further to independence from
various legacy infrastructures such as messaging
middleware, transaction support, naming & directory
services, object protocols and relational databases. In
addition, it delegates some difficult programming tasks,
such as distributed transaction, distributed object
invocation, security, load balancing, and connection
pooling, to EJB server and container providers, greatly
simplifying application development and making it an
ideal model for multi-tier thin—client/thick—services
business applications. It could also be very useful for
managing simulation data on the database side.
However, because it’s client—server orientation, EJB is
not a perfect solution to an HLA-style simulation
system [Miller et al., 2000].

In our search for an ideal technology to implement a
fully distributed and highly extensible Web-based
federated simulation system, we have found our answer
in two promising Web technologies, Jini and XML. Jini
is a universal network—computing model for the Java
platform, and XML is a universal format for data



exchange on the Web. We think Jini and XML nicely
complement each other. Together, they hold great
promise for future information systems, including
federated simulation.

We will first introduce Jini and XML in section 2 and
3. Then, we will give an overview of JSIM and present
the design and implementation of the current Java Bean
component—based JSIM in section 4. In section 5, we
will describe our vision of the future JSIM as a fully
distributed and highly extensible Web-based federated
simulation system enabled by Jini and XML. We will
draw some conclusions and point to some possible
future work in section 6.

2. Jini: A Universal Network Computing M odel

While EJB redefines the current model under which
server—-side enterprise business logic is developed and
deployed, Jini redefines the current model under which
a client discovers, manages and communicates with the
services it requires. The Jini vision is to turn the
network into the client’s computer by supplying the
client with a federation of remote "plug and play"
devices and services in a dynamic configuration (the
Jini Federation) that is personalized for each client
[Jini, 2000].

In architectural model, Jini supports peer—to—peer
communication with variable-size client and variable-
size services. On the other hand, EJB supports multi—
tier thin—client and thick services. According to Jm
Waldo, Sun’s chief Jini architect, the Jini architectureis
based on the idea of federation rather than centra
control [Venners, 1999]. To the client, the network is a
computer made up of a federation of devices and
services in the form of mobile objects or agents. In Bill
Joy’s words, the Java/Jini layer on which those mobile
objects and agents reside can be called the BIOS (basic
input/output system) of a network computer [Venners,
1999]. However, Jini is not intended to be anything like
a traditional operating system, which knows about
everything and controls everything. Instead, it is
intended to give an object-oriented interface to the
computer of the future.

A Jini system consists of the following parts [Jini
Architecture Specification, 2000]:

e A set of componentsthat provides an infrastructure
for federating servicesin a distributed system.

e A programming model that supports and
encourages the production of reliable distributed
services.

e Servicesthat can be made part of afederated Jini
system and that offer functionality to any other
member of the federation.

The goals of the Jini system include the following:

e Enable usersto share services and resources over a
network.

e Provide users easy access to resources anywhere on
the network while allowing the network location of
the user to change.

e Simplify the task of building, maintaining, and
altering a network of devices, software, and users.

A key concept in Jini is service. A Jini service is "an
entity that can be used by a person, a program, or
another service" [Jini Architecture Specification, 2000].
Under the notion of a service, Jini unifies everything
from the user of a system of Jini technology—enabled
services/devices to the software available on the
machines, and to the hardware components of the
machines themselves [Jini Core, 2000]. Jini systems
provide mechanisms for service construction, lookup,
communication, and use in a distributed system.
Services in a Jini system communicate with each other
by using a set of interfaces called a "service protocol”.
A lookup service maps interfaces indicating the
functionality provided by a service to sets of objects,
which implement the service. A lookup service may
include other lookup services or contain other forms of
lookup service. A pair of protocols called "discovery"
and "join" are used to add a service to alookup service.

Jini supports object/code mobility, security, lease-
based service access, and transactions. Jini code
mobility is accomplished by using Java Remote Method
Invocation (RMI) as the underlying protocol for
communication between the Jini services. RMI has
extended the traditional notion of remote method call
mechanism to allow both data and object to be moved
around a network. Security on accessing a service is
ensured through an access control list. A lease-based
service requires the service user and provider to
negotiate about the period of the lease and renew the
lease with the lookup service if/iwhen necessary.
Because of its distributed nature, Jini supports
transactions through the two—phase commit protocol as
supplied in the Jini Transaction Service interface.

Another nice feature of Jini is that it provides support
for distributed events, which is a natural extension to
the Java Bean paradigm of event-based
communication. Its purpose is to allow an object in one
Java virtual machine (JVM) to register interest in the
occurrence of some event occurring in an object in
some other VM to receive a notification when an event



of that kind occurs [Jini Core, 2000]. Due to the fact
that event delivery is inherently unreliable in a
distributed system, Jini

o allowsvarious degrees of assurance on delivery of
anotification,

e supports different policies of scheduling
notification, and

o explicitly allows the interposition of objects that
will collect, hold, filter, and forward notifications.

The participants in a distributed event include the
object that registers interest in an event, the object in
which an event occurs (event generator), and the
recipient of event notifications (remote event listener,
which could be the object that has registered interest in
the event or a third party). An object can register
interest in multiple events with the same event
generator or different events with different event
generators. An event generator can also allow multiple
objectsto register interest in each of its events.

When a state change occurs in the event generator, a
remote event object encapsulating the state change
information is created and passed along with the
notification to all registered remote event listeners. A
remote event contains information about the kind of
event that has occurred, a reference to the abject in
which the event occurred, a sequence number allowing
identification of the particular instance of the event, and
a handback object. The handback object is originally
supplied by the event registrant to associate arbitrary
information or actions with the notification. An event
listener distinguishes the events through the reference
to the event generator, the event identifier, and the
sequence number.

3. XML: A Universal Format for Data Exchange

Described as the "Second Coming of the Web", the
eXtensible Markup Language (XML) [W3C XML Site]
is an emerging and rapidly involving technology that is
shaping the second-generation Web, following the
revolution started by the combination of hypertext and
a global Internet [Bosak and Bray, 1999]. The most
exciting possibility opened up by XML is the semantic
Web envisioned by the creators of XML. Such a Web
will be powered by systems that talk to each other in
XML so that there will be no confusion about the
syntax of the data being exchanged. In addition, with
the help of XML-related standards, such as the XML
meta—data standard, Resource Description Framework
(RDF) [RDF], XML -enabled data can carry with itself
not only structural information but also semantic
information. This will greatly facilitate the automatic
processing of information. For example, XML will

allow agents roaming on the Web to pull data from the
Web by semantics. The agents can then automatically
extract the portion it has interest in, synthesize the
information with other information it has gathered,
possibly store the final results in a database, and/or
forward them to other agents. In a recent talk [Berners—
Lee, 2000] at the XML Open 2000, Tim Berners-Lee,
Director of the World Wide Web Consortium,
presented an architecture for building a trusted semantic
Web on top of ontology and XML technologies, such as
RDF, XML Schema [XML Schema], eXtensible
Stylesheet Language (XSL) [XSL], XML Linking
(XLL) [XLL], and XML Digita Signature [XML
Signature].

Although XML is created as a standard format for
exchange of structured data over the Web, it islikely to
play an increasingly important role in other types of
future information systems. Among its many merits, it
has huge potentia in opening up the possibility of
syntactic and semantic interoperability between
disparate systems. With regard to syntactic
interoperability, the structure and type information
about an XML document can be precisely captured in
an XML schema file, which can be passed along with
the XML document from one application to another
application. Since XML Schema is aso a standard,
there will no ambiguity or misunderstanding about the
syntax of the XML document. At the semantic level,
the XML RDF is expected to work closely with
ontology mapping to provide domain specific semantics
to an XML document.

In addition, as a self-descriptive, text-based, and
universal data format, XML is an excellent choice for
representing data, or even objects, that need to be
transported over the network between disparate
systems. In fact, a preliminary specification for XML
Messaging has been published as an IETF Internet Draft
to allow "reliable, resilient, secure, tamper resistant,
authenticated exchange of XML or other electronic
documents over insecure transport mechanisms'
[Cover, 2000]. An XML Protocol Working Group was
created by W3C in September 2000 to develop
"technologies which alow two or more peers to
communicate in a distributed environment, using XML
as its encapsulation language" [XML Protocol].
Currently under review are over 20 XML-based
protocols [ XML Protocol Comparisons].

Despite the many dreams, visions, and uses that XML
seems to promise, XML in itself is just a format for
encoding structured data. So how can programs access
and manipulate XML -encoded data in the first place?

Currently, there are several ways to access an XML
document. At the element level, two standard



application programming interfaces (APIs), namely, the
Simple APIsfor XML (SAX) and the Document Object
Model (DOM) APIs are most often used. SAX provides
an event—based programming model. A SAX parser
uses callbacks to report whatever it reads from an XML
document back to a program. Since it takes only one
scan for a SAX parser to process an XML document,
SAX parsers are very efficient and good for large XML
documents or stream-based XML documents.
However, because of its callback mechanism, a SAX
parser may not be flexible enough for those programs
that need to manipulate an XML document in
sophisticated ways. On the other hand, DOM provides a
tree-based programming model. A DOM parser |oads
an entire XML document into memory and then
converts it into a tree structure. The DOM APIs alow
programs to traverse and modify the XML tree. DOM
parsers are more flexible but less efficient than SAX
parsers,.

At the object level, some efforts are being made to
automatically convert DTD or XML schema into class
filesin an object-oriented programming language such
as Java or C++. The purpose is to allow programmatic
manipulation of XML documents at the object level
rather than at the element level. Work in this direction
includes but not limited to the Java XML Data Binding
project (Sun), Dynamic XML (Object Space), Quick
(JXML), and Castor (exolab.org).

For XML documents stored in databases, various tools,
utilities, and APIs, either supplied by some database
vendors or developed by third parties, are available
today. To standardize efficient searching, extracting,
and manipulation of XML documents, the W3C is
actively working on the XML Query Language that will
support declarative queries against a collection of XML
documents. Based on the XML data model, the W3C
XML Query Language is expected to incorporate
Xlinfoset and XPath, and support XML Schema and
XPointer.

The point is, XML is not just a nice data format, it is
designed and developed with interoperability and ease
of automatic processing of data in mind. Programs can
use standard mechanisms to discover the structure, data
type, or even semantics of XML -encoded data.

4. TheJSIM Simulation Environment

JSIM isasimulation environment implemented in Java.
The target users of JSIM are smulation analysts and
simulation model developers. Our goal is to provide
simulation analysts with an integrated environment in
which they can visually design and create simulation
models, customize smulation input at run time, execute
models locally or in collaboration with remote models,

and store and access simulation results. The system has
been carefully designed with maximum flexibility in
mind so that it can be easily extended to provide more
sophisticated functions without breaking its existing
functions and without modifying much code.

The current system consists of a foundation library, a
visual model designer, generated models, model
execution control agents, and a database agent. The
foundation library contains classes supporting the
execution of a smulation, including queuing,
simulation event scheduling, and some statistic analysis
classes. The model designer has automatic code
generation capability. It allows a user to design a
simulation model, enter input parameters for the model,
and then generate Java code or store the model in a
special format. Everything is done through pointing and
clicking on a GUI canvas or entering text in dialog
boxes.

The code generated for each model includes a Java
bean and a Java applet, both are ready to be compiled
and executed. The model applet can execute
independently in an applet environment. The model
bean can be loaded into a bean builder, dynamically
customized, and then wired with a model agent. A
model agent uses sophisticated statistical methods to
control the execution of the simulation and ensure the
integrity of smulation data. It aso handles
communication with the other agents on the behalf of
the model [Seila et a., 1999] to allow further
processing of the smulation data. A model bean can
also be dynamically connected with other model beans
to collaborate on more complex simulation tasks. In the
case of a model federation, a scenario control agent is
used to coordinate the execution of the overal
simulation. The input and output of each model can be
collected by the model agent and sent to the database
agent for persistence.

We store the simulation data for each execution of a
simulation as an object using Cloudscape, an embedded
object-relational database management system. Our
purpose is to allow for ease of use, easy maintenance,
and maximum flexibility. The database supports SQL
queries. The query results are returned as an XML
document, which will be displayed in an XML tree
viewer.

Figure 1 is a diagram of the current JSIM system
architecture. The design agent is not included here
because it is used separately and does not communicate
with other components.



Store

Query
Scenario Agent Results DB Agent
[
2 g
_
(=1
g
Model Agent Model Agent
F 3 [aw] F Y F 9 [aw] F Y
= =
= = o .| = =5 oo &
2|18 2|5|& 2|8 2|84
AEREIIE T
j La+] f= [2+]
2 2
h 4 T ¥ ¥ h 4 L1 b J

| Model Bean Inject Model Bean

Figure-1 JSIM Architecture

The beans communicate with each other through Java
Bean events. The objects passed along with the events
can be normal Java objects or Java objects serialized in
XML format. The choice can be made when the system
is started.

Currently, the scenario agent provides an interface for a
user to control both the execution of a simulation and
querying of the simulation results. In the future, we
plan to separate the execution and querying functions of
the system. The scenario agent will still be in charge of
the execution of the simulation. But its querying
capability will be separated. Instead, a higher level
agent, called the Query Driven Simulation Agent, will
be developed. The QDS agent will provide an
integrated user interface that will serve as a major entry
point to the simulation system.

The system is reasonably extensible, because we have
been trying very hard, throughout our design and
implementation, to generalize the common functions at
the top of the class hierarchies. Devel opers who wish to
extend our sysem only need to add minimum
customization code for their specific purposes.

5. Toward Web—-Based Feder ated Simulation

With Java Bean events, the beans can talk only within a
single WM. As we mentioned earlier, an effort was
made to extend JSIM in support of the distributed High
Level Architecture using Enterprise Java Beans, but the
client-server nature of EJB seems inadequate to
accomplish our goal of a fully distributed ssimulation
system. Hence, we are currently migrating toward Jini,
a technology designed to support federated systems on
the Internet.

Fortunately, migrating from Java Bean events to Jini
distributed events is not a very difficult task. But we
still have work to do to tap the full potentia of Jini. For
example, currently the beans have to be loaded into a
bean builder to be assembled into a simulation system.
Thiswill alow a single user to have total control of the
entire simulation execution. It may be desirable in some
situations, and will probably continue to be supported
in the future. However, this may not be possible in a
distributed environment, where no one has full
knowledge about available models and model agents,
let alone how to communicate and collaborate with
each other. There are other issues, such as unreliable



event delivery, security, and distributed transaction. All
these problems can be relatively easy to solve in a Jini
environment. Jini provides standard interfaces for its
components to discover and join a federation of
services, negotiate a communication protocol and a
lease with a remote object for service use, register
interest in the occurrence of an event in a remote
object, and receive notification that an event happened.
Jini has built-in support for default semantics of
security and distributed transaction. It also allows its
components to extend it to redefine the meaning of
security and distributed transactions.

So far, Jini seems to be a perfect architecture for
building a fully distributed federated simulation system.
But how much will the different simulation systems
actually understand each other? How meaningful will
be their communication? These questions remain
largely unanswered. Our vision is to use XML to
represent the data carried with the events. By doing so,
we open up the possibility that JSIM could talk with
other simulation systems using XML, and eventually
collaborate with them on some simulation tasks in the
future. By using XML, at least there will be no
confusion over the structure and data type of the
information being passed between the different systems.

To achieve semantic interoperability, there could be
two approaches. Firgt, the simulation community can
work out a common Document Type Definition (DTD)
[XML, 1998] that will define a class of XML
documents for the simulation domain. This requires a
DTD developer to work closely with ssmulation domain
experts to carefully define a set of semantic tags and the
structure of the simulation data. The resulting DTD
should be general-purpose enough to be able to
represent most smulation data. In addition, it has to be
reasonably simple to handle and relatively flexible to
allow future extension. It may seem unlikely to get an
entire domain to agree on a single DTD. But this
approach has already been adopted in some areas, such
as mathematics, chemistry, and biology. Some
examples of domain-specific XML-based languages
are MathML, Chemical Markup Language, BioML,
BSML (Bioinformatic Sequence Markup Language),
the Weather Observation Markup Format, AML
(Markup for Astronomy), and some graphics markup
languages [Laurent and Biggar, 1999]. Another new
development is, the XSL Transformation (XSLT)
[XSLT] makes it possible to convert an XML document
conforming to one DTD into another XML document
conforming to a different DTD. This could be useful
when a system has to use a DTD different from the
common DTD.

A second approach toward semantic interoperability
would be to combine the XML meta—data standard and

ontology mapping. This approach is still under active
research and development. The ontology mapping also
requires involvement of domain experts to define a set
of common vocabularies and their relationships in the
domain. Among some examples of XML meta—data
format, the XML Meta—-data Interchange (XMI) is an
OMG-endorsed object meta—data interchange format
for exchanging objects between modeling tools. The
Conceptual Knowledge Markup Language (CKML) and
its subset, Ontology Markup Language (OML), provide
tools for describing relationships. The Australia New
Zedland Land Information Meta—data (ANZMETA)
allows exchange of information describing land in
Australia. The Synchronized Multimedia Integration
Language (SMIL) is a W3C Recommendation
describing a vocabulary for the creation of multimedia
presentations [Laurent and Biggar, 1999].

Now, the big picture is clear. But what will our future
Jini—and-XML simulation system look like? Figure 2 is
what we have in mind.

In this figure, the scenario agent acts as a federation
coordinator and a global transaction manager. Models
can join the federation using the Jini discover and join
protocols. Non-JSIM models can also register with the
scenario agent and communicate with a peer federate to

E

- ‘ -
P @
. sanl % xml | Data Analysis
Design Agent QDS Agent - Acent
g xml xml
- xml
7 ! }
¥ xml ¥ )
Latabase Agent - Model Agent hxm Scenario Agent

A

xml

e

Model Agent H0|

urx

Model

Agent

¢

xml

Figure-2 ISIM Federated Stmulation with Jini and XML

collaborate on a common task. This is possible because



the messages carried with the remote events are in
XML format. As long as the participating federates
share a common set of vocabulary, they should be able
to understand each other reasonably well. After the
simulation is done, the scenario agent can use the two—
phase commit protocol to make sure that either the
input and output of all federates are stored into a
database or nothing is stored. A database agent can be
located through the Jini ook up service. There could be
multiple database agents residing on different
machines, or there could be one database agent that can
access one or multiple databases.

Sitting at the top isthe QDS Agent. We can think of it
as an agent who knows how to communicate with the
database agent, the model designer, and the scenario
agent to assist a casual user to get things done with
JSIM in an easy and orderly manner. A typical scenario
of using the QDS Agent goes like this. A user browses
the model repository and decides whether to query
existing models or design new models. If a query on
some combination of input and output of a model
execution is submitted and at least one match is found,
the QDS agent returns the query results. Otherwise, it
will check its model repository to see if the model
already exists. If the model exists, the QDS agent
launches the scenario agent, which will in turn
negotiate with the models, run the models, and have
them return a copy of the simulation input and output to
the QDS agent and send another copy to the database
agent to be stored. The QDS agent will then return the
query results to the user. In case the model is not found
in the model repository and the user indicates that
he/she isinterested in creating a new model, the design
agent will be launched. After the user finishes, the QDS
agent will compile the new model and then launch the
scenario agent to let it do its job. If the user wishes to
further analyze the query results, the QDS agent will
forward the results to a data analysis agent. The purpose
of having the QDS agent is to assist the user to make
the best use of the system and reduce unnecessary
manual interventions.

6. Conclusions and Future Work

Web-based federated simulation is a young discipline
and an area of active research [Miller et. a, 2001]. The
central issues in this area include reuse of existing
simulation models to quickly and cheaply develop more
complex smulation systems and the interoperability
between disparate smulation systems on the Internet to
allow collaboration among independently crafted
systems to solve complex simulation challenges. In this
paper, we have introduced Jini and XML as two key
technologies that will have significant impact on the
development of Web-Based federated simulation
systems. We have envisioned and sketched out an

initial design of afully distributed and highly extensible
Web-based federated simulation system. We have aso
presented the design and implementation of a
simulation system that is oriented toward our vision.

To get to the point of actually delivering a system aswe
have envisioned, work needs to be done in several
areas.

e Work out acommon DTD or a standard meta—data
interchange format for the smulation domain.

e Develop common interfaces for importing and
exporting simulation data.

e Fully implement and deploy the federated
simulation system in a distributed environment.

7. References

[Berners-Lee, 2000] Berners-Lee, T. XML and the
Weh. (September 6, 2000).
http://www.w3.0rg/2000/Talks/0906—
xmlweb-tbl/slidel-6.html

[Bosak and Bray, 1999] Bosak, J. and Bray T. XML
and the Second—Generation Web. (1999).

http://www.sciam.com/1999/0599issue/05
99bosak.html

[Cover, 2000] Cover, R. XML Messaging (IETF).
(July 2, 2000).

http://www.oasis—
open.org/cover/xmlMessagingIETF.html

[Ge, 1998] Ge, Y. (1998). Development of a Web—
Based Simulation Environment Using Java Bean.
Masters Thesis. The University of Georgia.

[Jini, 2000] Jini Connection & JavaSpaces
Technologies. (2000).

http://devel oper.java.sun.com/devel oper/technical Articl
esljini/

[Jini Architecture Specification, 2000] Jini Architecture
Specification. (2000).
http://www.sun.com/jini/specs/jinil 1.
pdf

[Jini Core, 2000] Jini Technology Core Platform
Specification. (2000).
http://www.sun.com/jini/specs/corel 1.
pdf

[Kleinman, 2000] Kleinman, R. Jini and Enterprise
JavaBeans Technologies. the Distributed Client Meets
the Distributed Service.
http://developer.java.sun.com/develope
r/technicalArticles/jini/espressoman/




[Kuhl et al., 1999] Kuhl, F. Wesatherly, R. Dahmann, J.
(1999) Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice
Hall PTR.

[Laurent and Biggar, 1999] Laurent, S. and Biggar, R.
(1999). Inside XML DTDs. McGraw-Hill.

[Miller et al., 1997] Miller, J. Nair, R. Zhang, Z. and
Zhao, H. (1997). JSIM: A Java—Based Simulation and
Animation Environment. Proceedings of the 30"
Annual Smulation Symposium. Atlanta, GA. pp. 31-42.

[Miller et a, 1998] Miller, J. Ge, Y. and Tao, J. (1998).
Component—-Based Simulation Environments: JSIM as
a Case Study Using Java Beans. Proceedings of the
1998 Winter Smulation Conference. Washington, DC,
pp. 373-38L.

[Miller et al., 2000] Miller, J. Seila, A.F. and Tao, J.
(2000). "Finding a Substrate for Federated Components
on the Web". Proceedings of the 2000 Winter
Smulation Conference (WSC’00), Orlando, Florida
(December 2000).

[Miller et a., 2001] Miller, J. Fishwick, P. Taylor, S.
Benjamin, P. and Szymanski, B. Research and
Commercial Opportunitiesin Web-Based Simulation.
Smulation Practice and Theory (SPT). Special Issue on
Web—-Based Simulation, Vol. (2001) pp. Elsevier
Science. (to appear)

[Nair et al., 1996] Nair, R. Miller, J. Zhang, Z. (1996).
A Java—Based Query Driven Simulation Environment.
Proceedings of the 1996 Winter Smulation Conference.
Coronado, California. pp. 786-793.

[Nair, 1997] Nair, R. (1997). JSIM: A Java—Based
Query Driven Simulation and Animation Environment.
Masters Thesis, The University of Georgia.

[RDF] http: //www.w3 .org/RDF

[Roth, 2000] Roth, B. (2000). An Introduction to
Enterprise Java Beans Technology.
http://developer.java.sun.com/develope
r/technicalArticles/Beans/IntroEJB/ind
ex.html

[Seilaet d., 1999] Seila, A.F. and Miller, JA. (1999).
Scenario Management in Web—Based Simulation.
Proceedings of the 1999 Winter Smulation Conference
(WSC’99). Phoenix, Arizona. (December 1999) pp.
1430-1437.

[Tao, 2000] Tao, J. (2000). HLA-Compliant
Distributed JSIM. Masters Thesis. The University of
Georgia.

[Venners, 1999] Venners, B. The Jini Vision. Java
World. (August 1999).

http://devel oper.java.sun.com/devel oper/technical Articl
egjini/JiniVision/jiniology.html

[W3C XML Site] http: //www.w3 .org/XML

[Xiang, 1999] Xiang, X. (1999). Use of Agentsto
Control the Execution of Simulation Components.
Masters Thesis. The University of Georgia.

[XLL] http://www.w3.org/XML/Linking

[XML, 1998] Extensible Markup Language (XML) 1.0.
(W3C Recommendation 10—-February—1998).
http://www.w3.0rg/TR/1998/REC-xml—
19980210

[XML Protocol] http: //www.w3.0rg/2000/xp

[XML Protocol Comparisons] XML Protocol

Comparisons. (2000).
http://www.w3.0rg/2000/03/29-XML—
protocol-matrix

[XML Schema]
http://www.w3.org/XML/Schema

[XML Signature]
http://www.w3.org/Signature

[XSL] http://www.w3.org/Style/XSL

[

XSLT] http://www.w3.org/TR/xslt

[Zhang, 1997] Zhang, Z. (1997). A Java—Based
Simulation and Animation Environment: JSIM’s
Foundation Library. Masters Thesis. The University of
Georgia.

[Zhao, 1997] Zhao, H. (1997). A Graphical Designer
for JSIM. Masters Thesis. The University of Georgia.



