
Object-Oriented Mediator Queries to XML Data

Hui Lin, Tore Risch, Timour Katchaounov
Hui.Lin, Tore.Risch, Timour.Katchaounov@dis.uu.se

Uppsala DataBase Laboratory, Uppsala University, Sweden

Abstract
The mediator/wrapper approach is used to integrate

data from different databases and other data sources by
introducing a middleware virtual database that provides
high level abstractions of the integrated data. A frame-
work is presented for querying XML data through such an
Object-Oriented (OO) mediator system using an OO
query language. The mediator architecture provides the
possibility to specify OO queries and views over combi-
nations of data from XML documents, relational data-
bases, and other data sources. In this way interoperability
of XML documents and other data sources is provided.
The mediator provides OO views of the XML data by
inferring the schema of imported XML data from the DTD
of the XML documents, if available, using a set of
translation rules. A strategy is used for minimizing the
number of types (classes) generated in order to simplify
the querying. If XML documents not having DTDs are
read, or if the DTD is incomplete, the system incremen-
tally infers the OO schema from the XML structure while
reading XML data. This requires that the mediator
database is capable of dynamically extending and modi-
fying the OO schema. The paper overviews the architec-
ture of the system and describes incremental rules for
translating XML documents to OO database structures.

1� Introduction

The capability of database storage and processing is
central in most information systems. Earlier, organiza-
tions used monolithic database management systems.
However, nowadays there are often many isolated data
repositories distributed over personal computers and
networks of computers. Those data repositories are often
heterogeneous because of the differences in the semantics
of data and DBMS differences such as different data
models and query languages. For those heterogeneous
databases, there emerge needs to incorporate and provide
the user with a unified information view.

The wrapper-mediator approach [18] has been pro-
posed to help to solve the data integration problem. In the
wrapper/mediator architecture, a mediator, which is an

intermediate virtual database, is established between the
data sources and the application using them. A wrapper is
an interface to a data source that translates data into a
common data model (CDM) used by the mediator. The
user accesses the data sources through one or several
mediator systems that present high-level abstractions
(views) of combinations of source data. The user does not
know where the data comes from but is able to retrieve
and update the data by using a common mediator query
language.

In this project, we investigate a method to combine and
query XML documents (files and data streams) from the
web through an object-oriented database mediator system.
We have implemented a system that translates XML data
to an OO common data model that can be queried using
an OO query language similar to the object extensions of
SQL-99. When available, the DTD meta-data descriptions
of the XML documents are used to infer the OO schema.
If there is no DTD specified the system will incrementally
infer the OO schema while reading the XML documents
using a set of translation rules. A straightforward transla-
tion, as is done in [3] for an extended OQL, will generate
many types (classes) and make the queries clumsy, with
many levels of function calls. The system therefore has a
strategy to translate XML elements to functions (attrib-
utes or methods) rather than types when possible. It may
then happen that the system first defines an element type
as a function and then later discovers that the function
must be migrated to a type to represent all uses of the
element. Therefore the schema is dynamically modified
during XML data reading when the object structure first
inferred may not be general enough to represent the XML
data read later. For this reason, incremental rules are
defined that modify the schema dynamically when read-
ing XML documents without DTDs, or when the DTD is
not completely describing the XML data.

The dynamic creation of the OO schema furthermore
has the effect of helping the user understand the database
by looking at a generated OO schema discovered by the
system.

The rest of this report is arranged as follows: Section 2
presents XML and the background to understand this
paper. Section 3 describes the architecture of our object-
oriented mediator system with regard to XML data
sources and relates it to similar approaches. Section 4

contains the translation rules used to parse XML docu-
ments. Section 5 concludes the work and discusses
possible future work.

2� Background

XML, Extensible Markup Language [5] was created as
a data exchange and representation standard. XML
provides ways to store complex data structures in a way
suitable for exchange over the Internet. An XML docu-
ment can be a file or a data stream containing nested
elements starting with a root element. It may have meta-
data descriptions through DTDs (Document Type Defini-
tions). These meta-data descriptions provide some struc-
ture and constraints on the XML documents using the
DTD. However XML documents may be described
without DTDs and DTDs may also leave parts of the data
unspecified; i.e. compared to the relational and OO data
models, the XML data model is semi-structured.

Compared to an OO data model the XML data model
does not have classes, methods, and inheritance; instead it
has element types and attributes [5] which are similar to
classes and attributes in OO data models. Thus XML does
not use a complete OO data model. In order to avoid
confusion in the discussion below we use the term ele-
ment tag (or just tag) to mean element type.

Example 1 shows a small DTD named person.dtd. In
this example, the DTD restricts the tag person to always
contain a sub-element tagged employee, and each element
tagged person always has the attribute id. We call an
!ELEMENT statement element definition. Elements
tagged employee always have two sub-elements tagged
family and given both of which have the system attribute
“#PCDATA”. “#PCDATA” indicates that the element
may have a text string as its value. The element defini-
tions specify containment relationships to sub-elements
along with constraints on the order and occurrences of
sub-elements. In the example the sub-element tagged
given always must follow family inside an element tagged
employee. The element tagged email can have any other
element as sub-element (indicated with ANY); we say that
the sub-elements of email are unspecified.

<!ELEMENT person (employee)>
<!ELEMENT employee (family, given)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>
<!ELEMENT email ANY>
<!ATTLIST person id ID #REQUIRED>

Example 1 The DTD person.dtd

<!DOCTYPE person SYSTEM "person.dtd">
<person id = “669”>
 <employee>

<family> Lin </family>

<given> Hui </given>
 </employee>
</person>

Example 2 An XML document

Example 2 is an XML document using the DTD per-
son.dtd. The element tagged person has an attribute id
whose value is “669” and a subelement tagged employee
that contains two subelements: the element tagged family
whose value is “Lin” and the element tagged given whose
value is “Hui” . Every XML document must have a root
element specified in the header; in this case it is the ele-
ment tagged person.

Several query languages have been proposed for XML
documents [15]. A graphical query language is introduced
in [2] where queries over XML documents are specified
graphically. A pattern-based query language is proposed
in [20] where regular path expressions are used to match
XML structure and data, and derive new XML data.

Lore [9] is a database management system for storing
and querying XML documents. Lore maps a XML docu-
ment into a semi-structured directed, labeled, and ordered
graph data model called OEM [14]. In [8][17] methods
are developed to store XML data in relational databases.

3� Object-oriented data mediation over XML
data sources

The purpose of our work is to transparently query
XML documents from an OO mediator. By wrapping an
XML data source the user does not need to know from
where the XML document originates and will be able to
combine many XML data sources and query them by
using an OO query language.

In our approach we create an OO schema by translat-
ing the DTD according to some translation rules. When
no DTD is present, or when the DTD is incomplete, the
OO schema is incrementally created while the XML
document is read. Thus a structured OO schema is incre-
mentally discovered from DTDs or from XML data. Such
a schema provides semantically enriched meta-data to
guide the user when querying the database. It also pro-
vides a basis for data indexing and efficient query proc-
essing [1].

The XML data is translated into objects when read into
the OO mediator database. In order to query such data
with an OO query language the following facilities are
needed:
• an OO storage manager to represent object OIDs;
• an OO query processing system;
• a convention for what constitutes an OO database

schema from a set of XML documents;
• a translation mechanism from XML data to objects in

the mediator.

We use an OO data model to which XML data is
translated similar to what is proposed for SGML in [3]. In
[12] a strategy is devised to generate a graph called the
Data Guide that summarizes containment relationships
among XML elements using the OEM graph data model.
In our case we generate the containment relationships as
both type (class) and function (attribute) definitions.
Unlike [3] we use a strategy to avoid creating types in
order to simplify the schema and subsequent querying.

In our system all XML documents having the same
DTD are regarded as one data source having an OO
schema inferred from the DTD. The schema of the me-
diator combines the imported schemas, and the mediator
database view covers the union of the accessed XML
documents. We do not require every XML document to
have a DTD as in [3] but incrementally generate and
modify the schema while reading XML documents when
no DTD is available or the DTD is incomplete. Our
system can thus handle XML documents with DTDs, with
incomplete DTDs, or without DTDs.

When DTDs are translated to OO schemas, some se-
mantic enrichment is made to infer types and attributes
from the DTDs in order to simplify the schema according
to the rules below. Whenever a new XML document
having a DTD is accessed from the mediator we check
what DTD it refers to, if any, and whether this DTD
previously has been translated to an OO schema in the
mediator. If the DTD is not translated beforehand the
mediator will read the DTD to infer types (classes) and
functions (attributes). XML documents having no DTD at
all are regarded as belonging to a special schema.

We have implemented our approach using the object-
oriented, lightweight, and extensible database mediator
system AMOS II [16]. It provides a main memory data
manager to store materialized XML data, and a query
processing engine. AMOS II has an object-oriented query
language, AMOSQL, similar to OSQL [7] and the OO
extensions of SQL-99.

In addition to basic OO data management facilities
AMOS II provides facilities for data integration by

combining data from distributed and heterogeneous data
sources using the mediator/wrapper approach. By utiliz-
ing data mediation facilities of AMOS II [6][10][11] we
can query combinations of XML data, relational databases
and other kinds of data sources, as illustrated in Figure 1.
It shows an example of distributed mediation with AMOS
II where three applications access data from four hetero-
geneous data sources through three distributed mediators.

The AMOS II data model contains three basic con-
structs: objects, types and functions. Objects are used to
model all entities in the database. Types (i.e. classes) are
used to describe the object structure and they are organ-
ized in an OO type hierarchy of subtypes and supertypes.
Functions are defined on types and are used to represent
properties of objects and relationships between objects.
Functions thus represent attributes and methods. The
AMOS II system is extensible through several interfaces
to its kernel – C, Java, and Lisp, respectively. In this
work, we utilize the Java interface to build an XML
wrapper for AMOS II. Our implementation materializes
read data in the AMOS II storage manager and we have
developed a translation mechanism from XML to the
AMOS II OO data model.

The translation mechanism includes:
• A strategy for generating schemas from DTDs when

available. The OO schema is derived from the DTD in
this case and it describes the contents of one or several
XML documents referencing the same DTD.

• A strategy for incrementally populating the database
using the generated OO schemas while reading XML
data. Thus OO database update statements are called
while XML data is read.

• Strategies for dynamically extending the schema when
reading XML data with no DTD or when the DTDs are
not fully describing all the data. In this case both
database update and schema modification statements
are dynamically called while XML data is read.
The AmosXML architecture in Figure 2 is based on

the existing system in a non-intrusive way, requiring no
modifications to AMOS II. It uses a Java interface to
interact with the kernel of the system and is implemented
as a set of foreign functions implemented in Java. Those
functions are called from AMOS II to load DTD schema
and XML data into the database. The read data can be
queried by the existing query capabilities of the AMOS II
system.

Figure 1� An example of distributed AMOS II Systems

XML
files

OODB ODBC

Wrapper

Mediator

Wrapper Wrapper

Mediator

Wrapper

 Application

Mediator

 Application

Step
files

In the AmosXML wrapper, IBM’s XML Parser for
Java [19] is used to parse XML documents into the
Document Object Model (DOM) data structure [4]. The
DOM is a platform and language neutral interface that
allows programs and scripts to dynamically access and
update the contents, structures and styles of documents.
The DOM provides a standard set of objects for repre-
senting HTML and XML documents, a standard model of
how these objects can be combined, and a standard
interface for accessing and manipulating them. It closely
resembles the structure of the documents it models. Using
DOM as input, the “DOM-AMOS II Back End” commu-
nicates with AMOS II to call AMOSQL statements
dynamically. The user finally submits AMOSQL queries
to the AMOS II server to access the XML data.

4� Translation rules

One challenging issue is to define a way to map the
data model of an XML document into the data model of
AMOS II. The DTDs produce schema information and
the XML documents themselves produce data but also
schema information when DTDs are omitted or incom-
plete. Therefore we design the schema definition rules to
be incremental; i.e. the schema is dynamically extended
while the XML data is read and may be modified to
satisfy new data constraints discovered during this.

There are two kinds of transformation rules:
• Rules applied on DTDs;
• Rules applied while reading XML data.

In the translation rules below we will show how differ-
ent kinds of DTD definitions and elements in XML
documents dynamically extend the schema and content of
the mediator database. We use the syntax of AMOSQL to
illustrate this.

4.1� DTD rules

The first rule creates a type (class) for an element defi-
nition:

Rule 1.� A new type is created for every element
definition declared in the DTD to have at least
one sub-element or attribute or where a
subelement is declared as “ANY” or
“EMPTY”.

For example, assume we have the following DTD
statement:

<!ELEMENT person (employee)>

Using the above rule, the following statement instructs
AMOS II to dynamically extend the schema with a new
type named person being a subtype of the system type
xml:

create type person under xml;

The AmosXML wrapper dynamically executes the
statement using the Java interfaces. Since the DTD
specifies that elements tagged person must always contain
one sub-element tagged employee, a new database type
named person is created. Objects of that type are created
when reading elements from the XML file, according to
the rules in the next subsection. The system type “xml” is
a supertype of all XML types. It has a function data to
store the values of elements when “#PCDATA” is speci-
fied.

Rule 2 creates a function, rather than a type, for each
leaf element defined in the DTD. By creating such prop-
erty functions the queries to the database become simpler
containing fewer levels of indirection, as shown below.

Rule 2.� If an element definition E does not have any
subelement definitions (i.e. is a leaf element),
then tag E is represented as a stored function
(i.e. attribute), also named E, on the type
(class) representing its parent element
definition F. The function represents the value
of an element as a string, i.e. its signature is
E(F)->charstring. This function is called a
property function.

Consider the following part of the DTD person.dtd
above:

<!ELEMENT employee (family, given)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>

After applying Rule 2 in our example, the following
AMOSQL statements dynamically defines two new
functions in the mediator:

create function family(employee) ->charstring as stored;
create function given(employee) ->charstring as stored;

Figure 2� AmosXML Wrapper

AMOSQL

Java Interfaces

AmosXML Wrapper

AMOS II kernel

Application

 DOM-AMOS II Back End

IBM XML Parser

 XML
 Files

The clause “as stored” specifies that the functions rep-
resent attributes (i.e. contain explicitly stored values).

In this case the element definitions family and given do
not contain any subelements, so two property functions
are created returning the type charstring, rather than two
new types. An example of a query to this database is:

select family(e) from employee e where given (e)= “Hui”;

If we would not have Rule 2, family and given would
have been represented as types (classes) with the values
of the elements stored in the function data. We would
then have the following schema created instead:

create type family under xml;
create type given under xml;

The above query would then have looked like this:

select data (f) from family f, given g, employee e
where data (given(e)) = “Hui”;

This is clearly a more complex and less natural query.
By representing leaf elements as functions most calls to
the data function are avoided and fewer types (classes)
are needed. With Rule 2 the data function needs only be
used for accessing elements having both subelements and
#PCDATA specified.

For elements definitions represented in the mediator as
types having subelements also represented as types, Rule
1 generates a new type. The following rule then generates
a containment function to represent the element-
subelement relationship between the new type and the
elements it contains:

Rule 3.� A containment function is generated for an
element definition represented in the mediator
as a type (class) F that has a subelement E
also represented as a type (class). It returns
the collection of subelement objects contained
in a given object. Its signature is E(F)->bag
of E.

For example, consider the following DTD:

<!ELEMENT person (employee)>
<!ELEMENT employee (family, given)>

It generates the following containment function defini-
tion:

create function employee(person) ->bag of employee
as stored;

The containment function employee(person)->bag of
employee returns a bag (set with duplicates) of employees
since the element definition employee has one or several
subelements.

Attribute definitions generate functions prefixed with
“attribute_” to distinguish them from property functions:

Rule 4.� An attribute function is created for each XML
attribute defined in a DTD (using ATTLIST) to
represent the attribute of each element.

For example,

<!ATTLIST person id ID #REQUIRED>

is translated into the following function definition:

create function attribute_ id(person) -> charstring
as stored;

A function attribute_id(person) represents values of
the attribute id for objects of type person.

4.2� XML data rules

The XML data rules dynamically add data to the me-
diator database while reading XML documents. They may
also modify the schema in case the DTD is incomplete or
omitted.

Rule 5 concerns creating objects for elements repre-
sented as types:

Rule 5.� When reading an element, a test is made to
check if its tag is previously represented as a
type. If so, a new object O of that type is
created. If the element has a value the data
function data(O) is set to the contents of the
element. If O is not the root element it is also
added to the containment function of its
parent element.

For example, if the tags person and employee are pre-
viously represented as types, the following XML docu-
ment

<!DOCTYPE person SYSTEM person.dtd>
<person>
 <employee>
 Lin
 </employee>
</person>

generates calls to the following AMOSQL statements:

create person instances :p;
create employee instances :e;
set data(:e) = “Lin”;
add employee (:p) = :e;

In this example, Rule 5 first generates a new object of
type person using the statement create. It has no value
and is the root element of the document. Then the same
rule creates an object of type employee and the data
function of the new object is set to the contents of the
element using the set statement. The new object is also
added to the extent of the parent’s containment function
employee(person)->bag of employees using the add
statement.

Rule 6 complements Rule 5 when the tag was previ-
ously represented as a property function rather than as a
type:

Rule 6.� If the tag of an element is previously
represented as a property function on its
parent (rather than as a type), it is added to
the extent of that property function.

For example, if the tag person is previously repre-
sented as a type, and tag email is not previously repre-
sented as a type, but as a property function
email(person)->charstring, the following XML document

<!DOCTYPE person SYSTEM “person.dtd”>
<person>
 <email>
 Hui.Lin@dis.uu.se
 </email>
</person>

generates calls to the following AMOSQL statements:

create person instances :p;
add employee(:p) = “Hui.Lin@dis.uu.se”;

In this example, Rule 5 generates a new object of type
person using the statement create. It has no value and is
the root element of the document. Then we populate the
containment function:

employee(person)->charstring.

The next rules apply when there is no DTD or when
the DTD is incomplete (“ANY” specified). In such cases
the schema is either extended or modified depending on
how the tag is represented so far.

The following definition is used below:

Definition: A sub-element E of F is an unspecified
subelement of F if either no DTD definition exists for E or
F is specified as “ANY” in the DTD.

Rule 7 dynamically creates a new containment func-
tion the first time a containment relationship is discovered
while reading an XML document:

Rule 7.� If 1) element tagged E is an unspecified
subelement of an element tagged F; 2) E is
represented as a type; 3) there is no previously
defined containment function E->F; then we
dynamically create a new containment
function E->F.

Assume now the following XML document without
DTD:

<person>
 <employee>
 <family> Lin </family>
 </employee>
</person>

In this case Rule 7 applies since
• employee is an unspecified subelement of person (it is

the first time that employee shows up) ,
• tag employee is represented as a type (Rule 1),
• there is not previous containment function

employee(person) -> bag of employee.
Following Rule 7, the following containment function

is dynamically generated when the XML document is
read:

create function employee(person) ->employee as stored;

The containment function is created in order to estab-
lish the discovered containment relationship between
types person and employee.

The next rule complements Rule 7 when E is not a
type:

Rule 8.� If 1) element tagged E is an unspecified
subelement of an element tagged F; 2) E is not
previously encountered; 3) the element tagged
E has no subelements; then we dynamically
create a property function E(F)->charstring.

Assume the following XML document not having any
DTD:

<person>
 <email> Hui.Lin@dis.uu.se </email>
</person>

In this case Rule 8 applies since the element email is
an unspecified subelement of the element person, tag
person is not previously defined as a type, and the ele-
ment has no subelement. The following function defini-
tion is dynamically created:

create function email (person) ->charstring as stored;

Notice that this rule will apply only once for each kind
of element.

Rule 9 dynamically converts a previously defined
property function to a type when the element is discov-
ered to have subelements:

Rule 9.� If 1) an element tagged E is an unspecified
subelement of an element tagged F; 2) E is
previously represented as a property function
E(F)->charstring; 3) the element tagged E
has its own subelements or attributes; then we
dynamically create a new type representing E
and a containment function with signature
E(F)->bag of E. The property function E(F)-
>charstring is converted into the containment
function and the containment function is
updated accordingly.

For example, assume the following XML document
without associated DTD:

<person>
 <name>Hui Lin </name>
</person>
<person>
 <name><family> Lin </family></name>
</person>

According to Rule 8, the following statements are gen-
erated when parsing the first element person:

create type person under xml;
create function name (person) -> charstring as stored;
create person instances :p;
set name (:p) = “Hui Lin”;

A new type is created when reading the first occur-
rence of element person since it contains subelement
name. Since element name has no subelement a property
function name(person)->charstring is created and popu-
lated.

However, when later reading the second occurrence of
element person, an element family is discovered as a
subelement of the element name. Thus the property
function name must be migrated to a type. According to
Rule 9, the following statements are generated:

create type name under xml;
create name instances :m;
set data(:m) = name(:p);
create function name (person) -> name as stored;
set name(:p) = :m;
create person instances :pn;
create name instances :n;
set name(:pn) = :n;

In this case, a new type is created for the element name
since it contains a subelement family. The property
function name(person)->charstring is converted into a
containment function name(person)->name, and popu-
lated with :m (from the old property function) and :n (the
new object).

Furthermore, we also need to generate a property func-
tion family(name)->charstring according to Rule 8, since
the element family has no subelement.

create function family(name)->charstring as stored;
set family(:n) = “Lin”;

Finally we need a special overriding rule to guarantee
that there will always be an object representing root
elements and elements having subelements or attributes:

Rule 10.� Tags of elements that are found to 1) be root
element; 2) or have sub-elements; 3) or have
attributes; are always represented as types.

For example, in the uncommon event that the root
element of an XML document does not have any subele-
ments it will be represented as an object. We will not
elaborate this case further here.

5� Conclusion and future work

We described the architecture of a wrapper called
AmosXML that allows parsing and querying XML
documents from an object-oriented mediator system.
Furthermore, incremental translation rules were described
that infer OO schema elements while reading DTD
definitions or XML documents. Some rules infer the OO
schema from the DTD, when available. For XML docu-
ments without DTDs, or when the DTD is incomplete,
other rules incrementally infer the OO schema from the
contents of the accessed XML documents. The discovery
of OO schema structures combined with other OO media-
tion facilities in AMOS II [6][10][11] allow the specifica-
tion OO queries and views over data from XML docu-
ments combined with data from other data sources. The
incremental nature of the translation rules allow them to
be applied in a streamed fashion, which is important for
large data files and when the network communication is
slow or bursty.

There are several possible directions for our future
work:
• The current rules do not infer any inheritance, but a

flat type hierarchy is generated. Rules should be added
to infer inheritance hierarchies, e.g. by using
behavioral definitions of types [13] where a type is
defined by its behavior (i.e. its attributes and methods).
In our case this means that a type T is defined as a
subtype of another type U if the set of functions on U
is a subset of the set of functions on T.

• Integrating XML data involves efficient processing of
queries over many relatively small XML data files
described by several layers of meta-data descriptions
and links. For example, there can be ‘master’ XML
documents having links to other XML documents and
DTDs. Therefore the query language needs to be able
to transparently express queries referencing both XML
data and the meta-data in the master documents. New
techniques are needed to be able to specify and
efficiently process queries over such multi-layered
meta-data.

• The conventional exhaustive cost-based query
processing techniques do not scale over large numbers
of distributed XML documents. New distributed
heuristic techniques need to be developed for this.

References

[1] K.Böhm, K.Aberer, M.T.Özsu, K.Gayer: Query
Optimization for Structured Documents Based on
Knowledge on the Document Type Definition, Proc. IEEE
ADL’98 Conf., Santa Barbara, CA, 1998.

[2] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi,
L. Tanca: XML-GL: A Graphical Language for Querying

and Reshaping XML Documents,
http://www.w3.org/TandS/QL/QL98/pp/xml-gl.html.

[3] V.Christophides, S.Abitteaboul, S.Cluet and M.Scholl:
From Structured Documents to Novel Query Facilities,
ACM SIGMOD Conf., Minneapolis, 1994.

[4] Document Object Model (DOM) Level 1 Specification,
Version 1.0, http://www.w3.org/TR/PR-DOM-Level-1.

[5] Extensible Markup Language (XML) 1.0,
http://www.w3.org/TR/1998/REC-xml-19980210.

[6] G. Fahl, T. Risch: Query Processing over Object Views of
Relational Data, VLDB Journal , Vol. 6 No. 4, November
1997, pp 261-281.

[7] D.Fishman, D.Beech, J.Annevelink, E.Chow, T.Connors,
J.Davis, W.Hasan, C.Hoch, W.Kent, S.Leichner,
P.Lyngbaek, B.Mahbod, M-A. Neimat, T.Risch, M-C Shan,
W.Wilkinson: Overview of the Iris DBMS, in W. Kim, F.
H. Lochovshy (eds.), Research Foundations in OO and
Semantic, Addison-Wesley, pp. 174-199, 1990.

[8] D.Florescu, D.Kossmann: A Performance Evaluation of
Alternative Mapping Schemes for Storing XML Data in a
Relational Database, INRIA Technical Report, INRIA, No.
3680, May, 1999.

[9] R.Goldman, J.McHugh, and J.Widom: From
Semisturctured Data to XML: Migrating the Lore Data
Model and Query Language, WebDB (Informal
Proceedings) 1999.

[10] V.Josifovski, T.Risch: Functional Query Optimization over
Object-Oriented Views for Data Integration, Intelligent
Information Systems (JIIS), Vol. 12, No. 2/3, Kluwer, 1999.

[11] V.Josifovski, T.Risch: Integrating Heterogeneous
Overlapping Databases through Object-Oriented
Transformations, 25th VLDB Conf., Edinburgh, Scotland,
Sept. 1999.

[12] S.Nestorov, J.Ullman, J.Wiener, S.Chawathe:
Representative Objects: Concise Representations of
Semistructured, Hierarchical Data, IEEE ICDE Conf.,
Birmingham, UK, April 1997.

[13] M.T.Özsu, R.Peters, D.Szafron, B.Irani, A.libka, A.Muñoz:
TIGUKAT: A Uniform Behavioral Objectbase
Management System, VLDB Journal, Vol. 4, No. 3, July
1995.

[14] Y.Papakonstantinou, H.Garcia-Molina, J.Widom: Object
Exchange Across Heterogeneous Information Sources,
IEEE ICDE Conf., Taipei, Taiwan, March 1995.

[15] QL'98 - Position Papers,
http://www.w3.org/TandS/QL/QL98/pp.html.

[16] T,Risch, V.Josifovski, T.Katchaounov: AMOS II Concepts,
http://www.dis.uu.se/~udbl/amos/doc/amos_concepts.html

[17] J.Shanmugasundaram, K.Tufte, G.He, C.Zhang, D.DeWitt,
J.Naughton: Relational Databases for Querying XML
Documents: Limitations and Opportunities, 25th VLDB
Conf., Edinburgh, Scotland, 1999.

[18] G.Wiederhold: Mediators in the Architecture of Future
Information Systems, IEEE Computer, Vol. 25, No. 3,
March 1992.

[19] XML Parser for Java,
http://www.alphaworks.ibm.com/formula/xml.

[20] XML-QL: A Query Language for XML,
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.

