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Abstract 
The Unified Modeling Language (UML) is more useful for 
object-oriented code design than conceptual information 
analysis. Its process-centric use-cases provide an 
inadequate basis for specifying class diagrams, and its 
graphical language is incomplete, inconsistent and 
unnecessarily complex. For example, multiplicity 
constraints on n-ary associations are problematic, the 
constraint primitives are weak and unorthogonal, and the 
graphical language impedes verbalization and multiple 
instantiation for model validation. This paper shows how 
to compensate for these defects by augmenting UML with 
concepts and techniques from the Object Role Modeling 
(ORM) approach. It exploits "data use cases" to seed the 
data model, using verbalization of facts and rules with 
positive and negative examples to facilitate validation of 
business rules, and compares rule visualizations in UML 
and ORM. Three possible approaches are suggested: use 
ORM for conceptual analysis then map to UML; 
supplement UML with population diagrams and user-
defined constraints; enhance the UML metamodel. 
 
 
1. Introduction 
 

The Unified Modeling Language (UML) was adopted 
in 1997 by the Object Management Group (OMG) as a 
language for object oriented (OO) analysis and design. 
This paper is concerned with UML version 1.3, the latest 
approved version at the time of writing. A minor revision 
(1.4) should be approved around December 2000, and a 
major revision (2.0) should be completed a few years 
later. Though not yet a standard, UML has been proposed 
for standardization by the International Standards 
Organization, with approval likely around 2001 [28]. 

The UML notation includes the following kinds of 
diagram for modeling different perspectives of an 
application: use case diagrams, class diagrams, object 
diagrams, statecharts, activity diagrams, sequence 
diagrams, collaboration diagrams, component diagrams 
and deployment diagrams. This paper focuses on 
conceptual data modeling, so considers only the static 
structure (class and object) diagrams. Class diagrams are 
used for the data model, and object diagrams for data 

populations. Although not yet widely used for designing 
database applications, UML class diagrams effectively 
provide an extended Entity-Relationship (ER) notation 
that can be annotated with database constructs (e.g. key 
declarations). Background on UML may be found in its 
specification [31], a simple introduction [13] or a detailed 
treatment [6, 32]. In-depth discussions of UML for 
database design may be found in [30] and (with a slightly 
different notation) [3]. 

UML has become popular for designing OO program 
code. It is well suited for this purpose, covering data, 
behavior, and OO-implementation details (e.g. attribute 
visibility and directional navigation across associations). 
However, UML is less suitable for developing and 
validating a conceptual data model with domain experts. 
Its use-cases are process-centric, and in practice the move 
from use cases to class diagrams is often little more than a 
black art. Moreover, the UML notation prevents many 
common business rules from being diagrammed.  

We believe these defects are best avoided by using 
fact-oriented modeling as a precursor to object-oriented 
modeling in UML. Object-Role Modeling (ORM) is the 
main exemplar of the fact-oriented approach, and is 
supported by CASE tools such as Microsoft Visio 
Enterprise [34]. For data modeling, ORM’s graphical 
notation is more expressive and orthogonal than UML’s, 
its models and queries are semantically stabler, and its 
design procedures fully exploit data examples using both 
verbalization and multiple instantiation to help capture 
and validate business rules with domain experts.  

This paper identifies several weaknesses in the UML 
graphical language and discusses how fact-orientation can 
augment the object-oriented approach of UML. It shows 
how verbalization of facts and rules, with positive and 
negative examples, facilitates validation of business rules, 
and compares rule visualizations in UML and ORM on 
the basis of specified modeling language criteria. The 
following three approaches are suggested as possible ways 
to exploit the benefits of fact-orientation: (1) use ORM for 
conceptual information analysis and map the ORM model 
to UML; (2) use UML in its current form, supplemented 
by informal population diagrams and user-defined 
constraints; (3) correct and extend the UML metamodel to 
better support business rules.  



The rest of this paper is structured as follows. Section 2 
provides a brief comparative overview of UML and ORM, 
based on linguistic design criteria. Section 3 discusses 
verbalization issues related to multiplicity constraints on 
binary associations. Section 4 illustrates how “data use 
cases” help guide the data modeling process as a joint 
activity between modeler and domain expert. It also 
exposes problems with UML multiplicity constraints on n-
ary associations, and highlights the need for a richer 
graphical constraint notation. Section 5 summarizes how 
the lessons learned from fact-orientation can be used to 
augment UML, identifies areas of future research, and 
lists references for further reading.  
 
2. ORM, UML and language criteria 

 
Object-Role Modeling is a conceptual modeling 

method that views the world as a set of objects (entities or 
values) that play roles (parts in relationships). For 
example, you are now playing the role of breathing (a 
unary relationship involving just you), and also the role of 
reading this paper (a binary relationship between you and 
this paper). An entity in ORM corresponds to a UML 
object, and a value to a UML data value. A role in ORM 
corresponds to an association-end in UML, except that 
ORM also allows unaries. The main structural difference 
between ORM and UML is that ORM excludes attributes 
as a base construct, treating them instead as a derived 
concept. For example, Person.birthdate is modeled in ORM 
as the fact type: Person was born on Date. Overviews of ORM 
may be found in [15, 16] and a detailed treatment in [14]. 
The ORM notation uses only a handful of symbols, 
readily mastered by UML modelers. Although various 
ORM-based proposals for process/behavioral modeling 
exist [e.g. 24], they are ignored here. 
 The ORM language was designed from the ground up 
to meet the following criteria: expressibility; clarity; 
learnability (hence orthogonality, parsimony and 
convenience); semantic stability (minimize the impact of 
change); semantic relevance (scope views to just the 
currently relevant task); validation mechanisms; 
abstraction mechanisms; and formal foundation. 
Background on these principles may be found in [1, 4, 25, 
26]. Practical trade-offs between design criteria can arise, 
e.g. expressibility-tractability [29] and parsimony-
convenience [18]. In this paper our focus is on validation 
mechanisms, expressibility and orthogonality. 

The most debatable feature of ORM is its avoidance of 
attributes in the base model. This omission was originally 
made to avoid fuzzy and unstable distinctions about 
whether a feature should be modeled as an attribute or 
association [12]. Although this advantage is enjoyed by 
some other semantic modeling approaches, such as OSM 
[10], a disadvantage is that attribute-free diagrams often 

take up more space. A detailed argument that this price is 
worth paying can be found in [19]. The main advantages 
are that all facts and rules can be easily verbalized as 
sentences, all data structures can be easily populated with 
multiple instances, the metamodel is simplified, and 
models and queries are stabler since they are immune to 
changes that reshape attributes as associations. Finally the 
compactness of attribute-based models can still be 
achieved by deriving them as views (this is automatable). 
 Table 1 summarizes the main correspondences between 
conceptual data constructs in ORM and UML. Some 
examples are given later, and complementary discussions 
can be found in the references [14, 18, 19, 20, 21]. An 
uncommented “—” indicates no predefined support for 
the corresponding concept, and “†” indicates incomplete 
support. Clearly, ORM’s built-in symbols provide greater 
expressibility for conceptual constraints on data.  
 

Table 1  Conceptual data constructs in ORM and UML 

ORM UML 
Data structures: 
  object type:  entity type;  
                       value type 
  —  { use association } 
  unary association 
  2+-ary association 
  objectified association 
  co-reference 
 

Predefined Constraints: 
  internal uniqueness 
  external uniqueness 
  simple mandatory role 
  disjunctive mandatory role 
  frequency: internal; external 
  value 
  subset and equality 
  exclusion 
  subtype link and definition 
  ring constraints 
  join constraints 
  object cardinality 

—{use unique and ring}† 
 

Textual constraints 

Data structures: 
  object class 
  data type 
  attribute 
  —  { use Boolean attribute } 
  2+-ary association 
  association class 
  qualified association † 
 

Predefined Constraints: 
  multiplicity of ..1 * 
  —  {use qualified assoc. } † 
  multiplicity of 1+.. † 
  — 
  multiplicity †; — 
  enumeration, and textual 
  subset † 
  xor † 
  subclass discriminator etc. † 
  — 
  — 
  class multiplicity 
  aggregation/composition 
 

Textual constraints 
 

Because of its orthogonality and avoidance of 
attributes, ORM achieves this greater expressibility 
without adding complexity. For example, ORM includes a 
disjunctive mandatory role (inclusive-or) constraint to 
constrain instances of an object type to play at least one of 
a set of roles (e.g. each Applicant must have a 
Qualification or a JobReference or both). ORM also 
includes an exclusion constraint that may apply between 
compatible role sequences (e.g. no Person who writes a 
Paper may referee that Paper). In ORM an exclusion 



constraint between single roles may be orthogonally 
combined with an inclusive-or constraint to form an 
exclusive-or constraint (e.g. no Person may get a BusPass 
and a ParkingPermit). In contrast, UML supports an 
exclusive-or constraint as a primitive, but no inclusive-or 
and no general exclusion constraint. 

Unlike UML, ORM allows constraints to be applied 
wherever they makes sense. For example, subset 
constraints may apply between compatible role sequences, 
not just associations (e.g. if a Person drives a Car then that 
Person has a DriverLicence). Ring constraints are logical 
constraints on ring associations (e.g. “no Person reports to 
himself/herself” is an irreflexive ring constraint). Join 
constraints apply to roles from connected predicates, e.g. 
each Employee who works in a Country also speaks a 
Language that is spoken in that Country).  

Although the additional constraints in ORM often 
arise in practice, UML models often omit them unless the 
modeler is very experienced. Both UML and ORM allow 
the user to add constraints and derivation rules in a textual 
language of their choice. UML suggests OCL (Object 
Constraint Language) [33] for this purpose, but does not 
mandate its use. ORM’s conceptual query language, 
ConQuer [4, 5, 21], provides a formal but higher level 
alternative to OCL. Although textual languages are 
needed for completeness, it is easier for a modeler to think 
of a rule if it is part of his/her graphical rule language. 
 
3. Binary associations 
 

Since the domain expert is the person who understands 
the universe of discourse (UoD) or application domain, it 
is critical to promote good communication between the 
modeler and the domain expert in the conceptual analysis 
phase. Subject matter experts are often not technically 
skilled in modeling notations, so any business rules should 
be verbalized in their natural language for model 
validation. This section discusses verbalization of binary 
associations and their associated multiplicity constraints. 
 Consider a UoD in which employees must occupy a 
room, possibly shared with another employee, and some 
rooms may be unoccupied. For a given state of the 
database, the population of a type is the set of instances of 
that type that are present in the database. For this UoD, 
each population of the occupancy association is a total 
function (mandatory n:1 relation) from the population of 
Employee to the population of Room. A significant 
sample population is included in the instance diagram at 
the top of Figure 1.  

Figure 1(a) depicts this binary association in UML. 
Classes are denoted by named rectangles, and binary 
associations by connecting lines. The association ends 
correspond to roles in ORM, and may be given a role 
name (e.g. “office”). The association itself may be given a 

name (e.g. “Occupies”) as well as a marker “�” to 
indicate the direction in which the association should be 
read. So long as an association name is supplied, the 
association can be verbalized as a sentence type (e.g. 
Employee occupies Room). 

The association roles (ends) may be adorned with 
multiplicity constraints that specify the possible 
multiplicities. For example, “1..*” means one or more (at 
least one ), “0..1” means zero or one (at most one), “1” 
abbreviates “1..1” (exactly one) and “*” abbreviates “0..*” 
(zero or more). Like ORM, UML allows multiplicities to 
include combinations of numbers and number ranges (e.g.  
“2, 4, 6, 10..20”), even if these would be rarely used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Mandatory n:1 association in (a) UML (b) 
DSB-ER (c) Barker-ER (d) ORM 

 
UML places each multiplicity constraint on the “far 

role”, in the direction in which the association is read. 
Hence the multiplicity constraint on the Room role may be 
verbalized thus: each Employee occupies exactly one Room. The 
“*” constraint on the Employee role may be verbalized: it 
is possible that more than one Employee occupies the same Room. 
The “*” (zero or more) is the default multiplicity for a 
role, and may be regarded as the absence of a constraint 
rather than a constraint. Hence we could omit its 
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verbalization, but it is normally safer to provide it to 
clarify its impact. 

These verbalizations, which we developed for use in 
ORM, rely on singular terms being used for class names 
(e.g. “Employee” not “Employees”) for natural phrasing. 
Words shown in bold type have formal meaning, allowing 
an ORM tool to automatically generate an ORM diagram 
from the textual formulation of the association and its 
constraints. Although UML does not have any formal 
verbalization, a request for proposal has been issued by 
the UML committee for a “Human Readable Textual 
Notation”, so something like this could eventually be 
added to UML. ORM’s verbalization patterns could 
provide a good basis for extending UML in this way. 

Figure 1(b) shows the same association in an ER 
notation recently proposed by Dey, Storey and Barron for 
work with binary and n-ary (n > 2) associations [9]. Let’s 
call this DSB-ER notation after its proponents. Here, 
entity types are depicted as named rectangles and binary 
relationships are depicted as named diamonds, as in 
Chen’s original ER [8]. The constraints are called 
participation constraints. The association and its 
constraints may be verbalized as before. As with some 
other versions of ER, this notation places the constraint on 
the “near role”, to indicate the minimum and maximum 
number of times each instance of the role player must 
participate in that role. Hence the “(1, 1)” and “(0,*)” on 
the left and right roles correspond to UML’s “1” and “*” 
placed on the right and left roles respectively (the 
opposite). 

Figure 1(c) shows the same example in the Barker-ER 
notation popularized by Richard Barker [1] and Oracle 
Corporation. Unlike UML and DSB-ER, but like ORM, 
the Barker notation supports forward and inverse 
readings of binary relationships. This is useful practice 
facilitates navigation in different directions around a 
schema, and often leads to improved verbalization of 
rules. Some UML users have added their own notations in 
this regard, such as appending reverse readings in 
parentheses to the association name [11]. However the 
UML specification has no formal support for this. We 
recommend that UML be extended by adding a slot in its 
metamodel to store reverse readings, and provide a 
standard syntax for their display.  

Unlike the two previous notations, Barker-ER uses 
separate notations for minimum and maximum 
cardinalities. Minimum cardinalities of 0 (optional) or at 
least 1 (mandatory) are specified as optional and 
mandatory roles. A role that is optional for its entity type 
is designated by a dashed line-half, and a role that is 
mandatory is depicted by a solid line-half: these are 
specified on the near role. A maximum cardinality of 1 is 
the default (no explicit mark), and a maximum cardinality 
of many is depicted as a crows-foot: these are shown on 
the far role as in UML.  

Barker [1] suggests a relationship naming scheme 
that, while awkward for verbalizing relationship types or 
instances, does allow a structured means of verbalizing the 
cardinality constraints. Let A R B denote an infix 
relationship R from entity type A to entity type B. Name R 
in such a way that each of the following four patterns 
results in an English sentence: each A (must | may) be R (one 
and only one B | one or more B-plural-form). Use “must” or 
“may” when the first role is mandatory or optional 
respectively. Use “one and only one” or “one or more” 
when the cardinality on the second role is one or many 
respectively. For example, the constraints in Figure 1(c) 
verbalize as: each Employee must be an occupier of one and only 
one Room; each Room may be occupied by one or more 
Employees. This verbalization convention is good for basic 
multiplicity constraints on infix binaries. However it is 
less general than ORM’s approach, which applies to 
instances as well as types, for predicates of any arity, with 
no need for pluralization.  
 Figure 1(d) shows the same association in ORM. Entity 
types are depicted as named, solid ellipses, and 
relationships as named sequences of one or more roles, 
with each role depicted as a box connected by a line to its 
object type. A relationship is called a fact type unless it is 
used simply to provide a primary reference scheme. For 
binary associations, forward and inverse readings may be 
provided, separated by a slash. As in UML, each role may 
also be named, although ORM tools typically store role 
names on property sheets rather than display them on the 
diagram. 
 A black dot “•” on a role connector indicates the role is 
mandatory (must be played by each instance in the 
population of the object type). By default, a role is 
optional (no black dot). ORM constraints were designed 
to facilitate validation using sample populations. An 
arrow-tipped bar over one or more roles is a uniqueness 
constraint declaring that each entry in the population of 
that role sequence is unique (occurs there exactly once). 
Any relationship may be populated with a table where 
each column corresponds to the role in that position. So 
the constraint over the left role of Figure 1(d) indicates 
that entries in the left column of Figure 1(e) must be 
unique, unlike the right column. If the association were 
instead many-to-many, the constraint would span both 
roles and only the entry-pairs making up the table rows 
must be unique.  

Of the four notations, only UML depicts a mandatory 
role by a minimum multiplicity > 0 on the far role. As 
we’ll see in the next section, this leads to problems for n-
ary associations. As it turns out, of all the notations 
discussed, only the ORM notation generalizes properly for 
n-ary associations. 
 
 



4. Data use cases and n-ary associations 
 

Use cases in UML illustrate ways in which the required 
information system may be used, so they are useful in 
requirements analysis. However because they focus on 
behavioral modeling, they can only go so far in helping 
the modeler arrive at a data model. They should be 
supplemented by examples of information that the system 
is expected to manage. In ORM these examples have 
traditionally been referred to as “information samples 
familiar to the domain expert”. By analogy with the UML 
term, we call them data use cases. They can be output 
reports or input screens, and since they exist at the 
external level they can present information in many 
different ways (e.g. tables, forms, graphs, diagrams).  

Whatever the appearance of a data use case, a subject 
matter expert should be able to verbalize its information in 
The modeler then transforms that informal verbalization 
into a formal yet natural verbalization that is clearly 
understood by the domain expert. These two 
verbalizations, one by the domain expert transformed into 
one by the modeler, comprise step 1 of ORM’s conceptual 
analysis procedure. Here we use verbalization of 
populations to arrive at the fact instances that are then 
abstracted to fact types. Constraints and derivation rules 
are meta-facts (facts about the object facts), which are 
then added and themselves validated by verbalization and 
population. This approach is very effective in practice, 
and we believe it is an ideal precursor to the specification 
of the data model in UML or any other language. 

Suppose that our system is required to output reports 
like that shown in Figure 2. We ask the domain expert to 
read off the information contained in the tables and then 
rephrase this in formal English. For example, the subject 
matter expert might read off the facts on the top row of the 
first table as follows: Archery is new (it’s the first year it’s 
been included in the rankings); the US ranks first in 
archery, and scored 10 points for that. As modelers, we 
note that Rank functionally determines Points in the 
population, so ask: Does the Rank (e.g. 1) determine the 
Score (e.g. 10)? The domain expert replies in the 
affirmative (if he/she gets this wrong, ORM’s arity-check 
can detect it later [14]).  

We now rephrase the information into elementary 
sentences: the Sport named ‘Archery’ is new; the Country 
coded ‘US’ has the Rank numbered 1 in the Sport named 
‘Archery’; the Rank numbered 1 earns the Score 10 
points. Similarly, the top row of the second table may be 
verbalized as: the Country coded ‘AD’ has the 
CountryName ‘Andorra’. If reference schemes are agreed 
to up front, these long-winded verbalizations can be 
abbreviated. Once the domain expert agrees with the 
verbalization, we proceed to abstract from the fact 
instances to the fact types. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2   Two sample output reports for a data use case 

 
We may now draw the conceptual schema and populate 

it with sample facts. For discussion purposes, we consider 
the ORM solution (Figure 3) before the UML solution. 
Simple reference schemes may be abbreviated in 
parenthesis (e.g. “Country(code)” abbreviates the injective 
association Country has Countrycode). Value types need no 
reference scheme, and appear as named, dashed ellipses 
(e.g. CountryName). Here we have one unary fact type, 
Sport is new, two binary associations Country has CountryName, 
Ranks earns Score, and one ternary association Country has 
Rank in Sport.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3   ORM schema for Figure 2, with sample data 
 

Sport Rank Country

Country
Code Name
AD Andorra
AE United Arab Emirates
... ...
ZW Zimbabwe

(a)

(b)

Points

Archery *      1      US   10
Baseball      1      US   10

     2      JP     5
Cricket      1     AU   10

     1     GB   10
...      ...       ...    ...

* new

Country
(code)

Country
Name

has /refers to

Rank
(nr)

Sport
(name)

US   1  Archery
US   1  Baseball
JP   2  Baseball
AU   1  Cricket
GB   1  Cricket

Archery

AD   Andorra
AE   United Arab Emirates
...    ...

is new

Score
(points)

1 10
2  5
3  3
...  ...

earns /is for
... has ... in ...



Unlike other approaches, ORM allows mixfix 
predicates, which are sentences with object holes (denoted 
by “…”) that may appear anywhere in the sentence. In this 
example, the ternary predicate is “… has … in …”. This 
allows verbalization of sentences of any arity in any 
natural language, along with their associated constraints 
and derivation rules. Other approaches use a simple name 
for the verb phrase or assume binary infix predicates, that 
support only SVO (Subject Verb Object) languages, not 
SOV languages (e.g. Japanese) or VSO languages (e.g. 
Tongan). In principle, mixfix predicates could be used in 
UML, by extending its metamodel with positional 
information to provide a role order for predicate readings.   

For each fact type in Figure 3, a sample fact table has 
been added to help validate the constraints. ORM schemas 
can be represented in diagrammatic or textual form, and 
tools such as Visio Enterprise can automatically transform 
between the two representations. Models are validated 
with domain experts in two ways: verbalization; and 
population. For example, the uniqueness constraints on 
the rank association in Figure 3 verbalize as: each Rank 
earns exactly one Score; each Score refers to at most one Rank. 
The 1:1 nature of this association is illustrated by the 
population, where each column is unique. A sample row 
for rank 3 has been added to illustrate the mandatory and 
optional nature of the roles played by Rank (a rank’s score 
must be recorded even if no country achieves this rank). 
 The uniqueness constraint on the first and last roles of 
the ternary has a positive verbalization of: each Country has 
at most one Rank in each Sport. This is illustrated by the 
population, where the Country-Sport value pairs are 
unique. To double check a constraint in ORM, a negative 
verbalization of the constraint may be given, as well as a 
counter-example to test whether the constraint may be 
violated. For example, the uniqueness constraint on the 
ternary may also be verbalized thus: it is impossible that the 
same Country has more than one Rank in the same Sport. Adding 
the counter-row (US, 2, Archery) to the sample population 
of the ternary gives the US two ranks in archery, and 
hence violates the uniqueness constraint. Concrete 
examples like this make it easier for domain experts to see 
whether the constraint being tested really is a rule.  

Because all fact types are elementary, and no attributes 
are used, populations never contain null values. Although 
closed or open world semantics may be chosen, the 
default semantics is closed world. For example Baseball 
appears in the population of Sport but does not play the 
role “is new”, so we know it is not new. This is less 
confusing to the domain expert than assigning False to a 
boolean attribute, as in UML For this reason, and to 
support natural verbalization, we suggest that UML be 
extended to allow unaries. A trivial change to the 
metamodel would allow this (change the multiplicity on 
Association-end from “2..*” to “1..*”). However, 

pragmatism may require an inelegant alternative that is 
easier for vendors to support.  

Unlike other approaches, ORM allows n readings for 
any n-ary predicate (n > 0), one starting at each role. This 
facilitates constraint declaration, and navigation through 
the information model from any starting position using 
natural sentences [4, 5]. In principle, the UML metamodel 
could be extended to support this. 

Figure 4 shows a UML schema for the same UoD. All 
the ORM binary fact types are modeled here as attributes. 
In the absence of a standard UML syntax for primary 
identification or uniqueness constraints on attributes, we 
use our own notations “{P}” and “{U1}” respectively. 
Such notations are needed if UML is to be used to 
completely model even simple database applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 UML schema for Figure 2 

The uniqueness constraint from the ORM ternary is 
modeled in UML using the 0..1 multiplicity constraint on 
the role played by Rank. The “*” multiplicities indicate 
the absence of any other uniqueness constraint. If an n-ary 
fact type is elementary, any internal uniqueness constraint 
must span either n-1 or n roles. The UML notation for 
multiplicity constraints can express these cases, but cannot 
express uniqueness or frequency constraints on fewer than 
n-1 roles. Hence unlike ORM it cannot be used to specify 
compound fact types that may be required for derivation 
or denormalization. The DSB-ER notation was developed 
to cater for cardinalities on n-aries, but is even worse than 
UML in this regard since it cannot express composite 
uniqueness and frequency constraints. The Barker-ER 
notation has the same problem if extended to n-aries. 

Note that the simple mandatory role constraint on 
Sport cannot be expressed by a multiplicity constraint in 
UML. It might be thought that this constraint can be 
expressed by changing the multiplicity on the Country role 
to 1..*. But this would mean that each Sport-Rank pair 
formed from the populations of Sport and Rank must be 
associated with at least one country. But this is not true, 
since the role played by Rank is optional. For example, 
the pairs Archery-2 and Archery-3 have no associated 
country in the sample population. As discussed later, any 

countryCode {P}
countryName {U1}

Country

rankNr {P}
score {U1}

Rank

sportName {P}
isNew: Boolean

Sport
* *

0..1

each Sport must play this role



attempt to redefine the semantics of multiplicity 
constraints in terms other than the populations of its object 
types leads to other problems. 

This exposes a fundamental problem with the 
scaleability of UML’s multiplicity notation. Although it 
caters adequately for binaries, it cannot express a simple 
mandatory constraint on at least 1 and at most n-2 roles 
within an n-ary association. If we are to use an n-ary in 
UML, the only thing we can do in such cases is to add a 
textual description of the constraint in a note, as in Figure 
4. This problem is a direct consequence of choosing to 
attach minimum multiplicity to a far role instead of the 
near role. The DSB-ER and ORM notations can express 
mandatory constraints on roles of n-aries, and the Barker-
ER notation could be extended to do so, since each 
attaches minimum multiplicity on the near role.  

Sometimes, we can overcome this problem with UML 
by binarizing the n-ary. For example, Figure 5 expresses 
the fact type Country is ranked in Sport as a binary association, 
that is objectified as the class Ranking. The mandatory 
role for Sport is now catered for by the 1..* constraint on 
the role for Country. However, this approach has 
problems. To begin with, it is often too unnatural. If the 
domain expert thinks in terms of a ternary, why force 
him/her to rethink the model in terms of binaries? More 
importantly, this solution does not always work in UML. 
For example, suppose we have the additional constraint 
that no ties are allowed for sport ranks. There is no 
symbol in UML to express this rule on the binarized 
solution (although it can be expressed on the ternary).  
 
 
 
 
 
 
 
 
 
 

Figure 5 Alternative UML schema for Figure 2 

 
The only way to express the no-ties rule with the 

binarized model would be to extend UML with the 
additional notion of an external multiplicity constraint that 
can span model elements from different associations.  
ORM already includes such a constraint. For example, 
Figure 6 shows the binarized solution in ORM with an 
external uniqueness constraint (circled “u”) to indicate 
that each Sport-Rank pair is associated with at most one 
Country in the overall association. ORM shows an 
objectified association by enclosing the association in an 
envelope. Although this works, it is more awkward to 
think about than the ternary solution for this case. 

 
 
 
 
 
 
 
 

Figure 6   A nested ORM model that forbids ties 

The next example illustrates the no-ties rule on the 
ternary, as well as another defect of multiplicities in UML. 
Consider the report shown in Table 2. In this UoD, no ties 
are allowed, and we are interested only in the first two 
ranks. Moreover, we may list a sport before any other 
details (e.g. ranking) are known for it. If a sport is ranked, 
we must know both its first and second place getters. 
 

Table 2    A data use case for a somewhat different UoD 

 
 
 
 
 
 
 
 
 
 
 
 

An ORM schema for this situation is shown in Figure 
7, together with a sample population for the ternary 
association and for the object type Sport. Here the “!” on 
Sport indicates it is an independent object type (instances 
of it can exist without playing any fact role). A meta-rule 
in ORM implies that any population object must play in 
some fact unless it is declared independent. There is no 
space here to extol the virtues of this rule, but its practical 
utility is such that we believe it should be added to UML. 

Notice the uniqueness constraint over the roles played 
by Rank and Sport in the ternary. This enforces the no-ties 
rule. In ORM the positive verbalization of this constraint 
is: given any Rank and Sport, at most one Country has that Rank in 
that Sport. This is supported by the sample population. The 
negative verbalization of the constraint is: it is impossible 
that more than one Country has the same Rank in the same Sport. 
The negative verbalization is especially useful in using 
counter-examples to check the constraint. For instance, if 
we gave both Australia and Great Britain the rank 1 in 
cricket (as in Figure 3), this would violate the constraint. 
Such concrete counter-examples make it easy for domain 
experts to validate doubtful constraints. 
 

countryCode {P}
countryName {U1}

Country

sportName {P}
isNew: Boolean

Sport
1..* *

1Ranking
rankNr {P}
score {U1}

Rank
0..*

Country
(code)

Sport
(name)

Rank
(nr)

is ranked in

"Ranking"

yields

u

Sport Rank Country Points

Aikido      ? ?       ?
Archery      1      US     10

     2      GB       5
Baseball      1      US     10

     2      JP       5
Basketball      ? ? ?
Cricket            1      AU     10

     2      GB 5
...     ... ...      ...



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 ORM schema for Table 2 with sample data 
 

The frequency constraint of 2 on the Sport role means 
any sport that plays that role does so exactly twice. In the 
context of the uniqueness constraints and the value 
constraint of {1..2} on Rank, this ensures that both ranks 
are recorded for any ranked sport. Again, the population 
clarifies the constraint. Notice that some sports (e.g. 
Aikido) have not yet been ranked. Figure 8 shows the 
UML solution. There is no way of specifying the 
frequency constraint via a multiplicity constraint, so it has 
been added informally in a note. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 UML schema for Table 2 
 

The two uniqueness constraints are expressed using 
0..1 multiplicity constraints. This is possible because 
uniqueness is a case of maximum multiplicity. The 
frequency constraint of 2 cannot be expressed on a ternary 
in UML because it involves a minimum occurrence 
frequency of 2. An occurrence frequency of n means: if an 
instance plays the role, it does so n times.  Given any n-
ary association, UML multiplicity constraints cannot 
express a minimum occurrence frequency above 1 for any 
role (or combination of fewer than n-1 roles). 

ORM allows mandatory and frequency constraints over 
a set of roles (possibly from different associations). 
Uniqueness constraints are just frequency constraints of 1 
with a special notation because of their importance and 
ubiquity. These constraints are orthogonal, and apply to 
associations of any arity. UML’s multiplicity constraints 
can express simple mandatory and frequency constraints 
for binary associations, but cannot express mandatory role 
constraints or minimum occurrence frequencies above 1 
for roles in n-ary associations. So UML’s multiplicity 
notation is far weaker than expected. 

In fact, the whole notion of a minimum multiplicity 
above 0 is problematic for n-aries in UML. The UML 1.3 
specification offers only the following description for the 
semantics of multiplicities in n-ary associations: “The 
multiplicity of a role represents the potential number of 
instance tuples in the association when the other n-1 
values are fixed” [31, p. 3-73]. Consider a ternary 
association R(A, B, C). Let pop(A), pop(B) and pop(C)be 
the populations of A, B and C (in the database, not 
necessarily just in R), and pop(rA), pop(rB) and pop(rC) 
be the populations of the roles in R. Let R have  
multiplicities *, *, 2..* on the roles of A, B, C respectively. 
What does the 2 mean? For consistency with the meaning 
of multiplicities for binary associations, we should define 
it thus: each pair (a, b), where a is in pop(A) and b is in 
pop(B), is associated in R with at least 2 instances from 
pop(C).  But such a constraint is in practice virtually 
useless, since it far too strong to apply except in 
pathological cases. To base the constraint on the types 
rather than populations would be even worse in this 
regard.  

What we really need is a way to define the constraint in 
terms of R’s population. For example, each pair (a, b) that 
occurs in the projection pop(R)[a, b] is associated in R 
with at least 2 instances from pop(C). This corresponds to 
an ORM minimum frequency constraint of 2 on (rA, rB). 
Although useful and desirable, this definition is 
inconsistent with the whole approach to multiplicity 
constraints in UML. For example, if accepted it would 
mean that minimum multiplicities of 0 could never occur. 

Internal frequency (and uniqueness) constraints in 
ORM can be efficiently implemented and validated 
because they apply just to the local population of their 
predicate. Mandatory constraints refer to the population of 
an object type, so are ontologically distinct as well as 
harder to enforce. Because of their global impact, 
mandatory constraints need to be considered more 
carefully. For such reasons, the separation of mandatory 
and frequency constraints is highly desirable.   

To address the problems with UML multiplicities on n-
aries, there are a number of possible solutions. Ideally, 
multiplicity constraints for associations should be replaced 
by ORM’s mandatory and frequency/uniqueness 
constraints, at least for n-ary associations. However this is 

Country
(code)

Rank
(nr)

Sport !
(name)

{1..2}

2

US   1  Archery
GB   2  Archery
US   1  Baseball
JP   2  Baseball
AU   1  Cricket
GB   2  Cricket

Aikido
Archery
Baseball
Basketball
Cricket
...

... has ... in ...

Score
(points)

1 10
2  5

Country
Name

has /refers to

countryCode {P}
countryName {U1}

Country

rankId: RankNr {P}
score {U1}

Rank

sportName {P}

Sport0..1 *

0..1

«enumeration»
     RankNr
1
2

each Sport that plays this role
does so twice



unlikely to ever happen, and would cause backward 
compatibility headaches. We could try adding extra 
constraints for mandatory and frequency for n-ary 
associations. This would achieve the required 
expressibility but would make UML even more 
unnecessarily complex than it is now (e.g. the concept of 
mandatory role would be dealt with by a multiplicity 
constraint on binaries but by a mandatory constraint on n-
aries). A third solution is to use ORM for the original 
analysis where the constraints can be easily declared and 
validated, then map the ORM model to UML where the 
constraints would appear in notes. Since the ORM 
notation is easily mastered, and requires no change to the 
UML notation, the third solution seems attractive, and 
could certainly be automated. 

As a final note on the no-ties example, we might try to 
overcome the problem of expressing the frequency 
constraint in UML by transforming the ternary into two 
binary associations: Country is first in Sport; Country is second in 
Sport, as shown in Figure 9. However apart from the fact 
that this transformation doesn’t scale (e.g. large numbers 
of ranks), there are now two constraints that get lost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 The exclusion and equality constraints in (a) 
are lost in the UML model (b) 

 
The ORM model in Figure 9(a) shows the missing 

constraints. The pair-exclusion constraint denoted by a 
circled “X” enforces the no-ties rule that no country can 
be ranked first and second in the same sport. The equality 
constraint shown as a dashed line with arrowheads 
indicates that if a sport has a winner it also has a runner-
up, and vice versa. Although these constraints can be 
added informally in notes to the UML diagram, it would 
be better to extend the UML metamodel to support them. 
Currently UML is very unorthogonal and restrictive with 
regard to constraints. It supports an exclusive-or (xor) 
constraint but no exclusive constraint and no inclusive-or 
constraint. Although UML’s xor constraint is described as 
applying between associations, it actually applies between 

roles. UML supports a subset constraint between full 
associations but not between parts of associations (e.g. 
roles). The UML specification also contains a number of 
inconsistencies in its handling of these constraints. For a 
formal discussion of such inconsistencies and a means of 
extending the UML metamodel to adequately capture such 
constraints, see [19, section 5]. 
 
5. Conclusion 
 

Fact-orientation, as exemplified by ORM, provides 
many advantages for conceptual data analysis, including 
expressibility, validation by verbalization and population 
at both fact and constraint levels, and semantic stability 
(e.g. avoiding changes caused by attributes evolving into 
associations). ORM also has a mature formal foundation 
that may be used to refine the semantics of UML. 

Object-orientation, as exemplified by UML, provides 
several advantages such as compactness, and the ability to 
drill down to detailed implementation levels for object-
oriented code. If UML is to be used for conceptual 
analysis of data, some ORM features can be adapted for 
use in UML either as heuristic procedures or as 
reasonably straightforward extensions to the UML 
metamodel and syntax. These include mixfix verbalizat-
ions of associations and constraints for associations, and 
exploitation of data use cases by populating associations 
with tables of sample data using role names for the 
column headers.  

However there are some fundamental aspects that need 
drastic surgery to the semantics and syntax of UML if it is 
ever to cater adequately for non-binary associations and 
some commonly encountered business rules. This paper 
revealed some serious problems with multiplicity 
constraints on n-ary associations, especially concerning 
non-zero minimum multiplicities. For example, they 
cannot be used in general to capture mandatory and 
minimum occurrence frequency constraints on even single 
roles within n-aries, much less role combinations. 
Moreover, UML’s treatment of set-comparison constraints 
is defective. Although it is possible to fix these problems 
by changing UML’s metamodel to be closer to ORM’s, 
such a drastic change to the metamodel may well be ruled 
out for pragmatic reasons (e.g. maintaining backward 
compatibility and getting the changes approved).  

In contrast to UML, ORM has only a small set of 
orthogonal concepts that are easily mastered. UML 
modelers willing to learn ORM can get the best of both 
approaches by using ORM as a front-end to their data 
analysis and then mapping the ORM models to UML, 
where the additional constraints can be captured in notes 
or textual constraints. Automatic transformation between 
ORM and UML is feasible, and is currently being 
researched.  

Country Sport

is ranked first in

is ranked second in

(a)

Country Sport

(b) is first in

is second in

0..1

0..1 *

*
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