
In workshop proceedings: UML: a critical evaluation and suggested future, HICCS-34 conference (Maui, January 2001), © 2000 IEEE.

Augmenting UML with Fact-orientation

Terry Halpin
Microsoft Corporation, USA

TerryHa@microsoft.com

Abstract
The Unified Modeling Language (UML) is more useful for
object-oriented code design than conceptual information
analysis. Its process-centric use-cases provide an
inadequate basis for specifying class diagrams, and its
graphical language is incomplete, inconsistent and
unnecessarily complex. For example, multiplicity
constraints on n-ary associations are problematic, the
constraint primitives are weak and unorthogonal, and the
graphical language impedes verbalization and multiple
instantiation for model validation. This paper shows how
to compensate for these defects by augmenting UML with
concepts and techniques from the Object Role Modeling
(ORM) approach. It exploits "data use cases" to seed the
data model, using verbalization of facts and rules with
positive and negative examples to facilitate validation of
business rules, and compares rule visualizations in UML
and ORM. Three possible approaches are suggested: use
ORM for conceptual analysis then map to UML;
supplement UML with population diagrams and user-
defined constraints; enhance the UML metamodel.

1. Introduction

The Unified Modeling Language (UML) was adopted
in 1997 by the Object Management Group (OMG) as a
language for object oriented (OO) analysis and design.
This paper is concerned with UML version 1.3, the latest
approved version at the time of writing. A minor revision
(1.4) should be approved around December 2000, and a
major revision (2.0) should be completed a few years
later. Though not yet a standard, UML has been proposed
for standardization by the International Standards
Organization, with approval likely around 2001 [28].

The UML notation includes the following kinds of
diagram for modeling different perspectives of an
application: use case diagrams, class diagrams, object
diagrams, statecharts, activity diagrams, sequence
diagrams, collaboration diagrams, component diagrams
and deployment diagrams. This paper focuses on
conceptual data modeling, so considers only the static
structure (class and object) diagrams. Class diagrams are
used for the data model, and object diagrams for data

populations. Although not yet widely used for designing
database applications, UML class diagrams effectively
provide an extended Entity-Relationship (ER) notation
that can be annotated with database constructs (e.g. key
declarations). Background on UML may be found in its
specification [31], a simple introduction [13] or a detailed
treatment [6, 32]. In-depth discussions of UML for
database design may be found in [30] and (with a slightly
different notation) [3].

UML has become popular for designing OO program
code. It is well suited for this purpose, covering data,
behavior, and OO-implementation details (e.g. attribute
visibility and directional navigation across associations).
However, UML is less suitable for developing and
validating a conceptual data model with domain experts.
Its use-cases are process-centric, and in practice the move
from use cases to class diagrams is often little more than a
black art. Moreover, the UML notation prevents many
common business rules from being diagrammed.

We believe these defects are best avoided by using
fact-oriented modeling as a precursor to object-oriented
modeling in UML. Object-Role Modeling (ORM) is the
main exemplar of the fact-oriented approach, and is
supported by CASE tools such as Microsoft Visio
Enterprise [34]. For data modeling, ORM’s graphical
notation is more expressive and orthogonal than UML’s,
its models and queries are semantically stabler, and its
design procedures fully exploit data examples using both
verbalization and multiple instantiation to help capture
and validate business rules with domain experts.

This paper identifies several weaknesses in the UML
graphical language and discusses how fact-orientation can
augment the object-oriented approach of UML. It shows
how verbalization of facts and rules, with positive and
negative examples, facilitates validation of business rules,
and compares rule visualizations in UML and ORM on
the basis of specified modeling language criteria. The
following three approaches are suggested as possible ways
to exploit the benefits of fact-orientation: (1) use ORM for
conceptual information analysis and map the ORM model
to UML; (2) use UML in its current form, supplemented
by informal population diagrams and user-defined
constraints; (3) correct and extend the UML metamodel to
better support business rules.

The rest of this paper is structured as follows. Section 2
provides a brief comparative overview of UML and ORM,
based on linguistic design criteria. Section 3 discusses
verbalization issues related to multiplicity constraints on
binary associations. Section 4 illustrates how “data use
cases” help guide the data modeling process as a joint
activity between modeler and domain expert. It also
exposes problems with UML multiplicity constraints on n-
ary associations, and highlights the need for a richer
graphical constraint notation. Section 5 summarizes how
the lessons learned from fact-orientation can be used to
augment UML, identifies areas of future research, and
lists references for further reading.

2. ORM, UML and language criteria

Object-Role Modeling is a conceptual modeling

method that views the world as a set of objects (entities or
values) that play roles (parts in relationships). For
example, you are now playing the role of breathing (a
unary relationship involving just you), and also the role of
reading this paper (a binary relationship between you and
this paper). An entity in ORM corresponds to a UML
object, and a value to a UML data value. A role in ORM
corresponds to an association-end in UML, except that
ORM also allows unaries. The main structural difference
between ORM and UML is that ORM excludes attributes
as a base construct, treating them instead as a derived
concept. For example, Person.birthdate is modeled in ORM
as the fact type: Person was born on Date. Overviews of ORM
may be found in [15, 16] and a detailed treatment in [14].
The ORM notation uses only a handful of symbols,
readily mastered by UML modelers. Although various
ORM-based proposals for process/behavioral modeling
exist [e.g. 24], they are ignored here.
 The ORM language was designed from the ground up
to meet the following criteria: expressibility; clarity;
learnability (hence orthogonality, parsimony and
convenience); semantic stability (minimize the impact of
change); semantic relevance (scope views to just the
currently relevant task); validation mechanisms;
abstraction mechanisms; and formal foundation.
Background on these principles may be found in [1, 4, 25,
26]. Practical trade-offs between design criteria can arise,
e.g. expressibility-tractability [29] and parsimony-
convenience [18]. In this paper our focus is on validation
mechanisms, expressibility and orthogonality.

The most debatable feature of ORM is its avoidance of
attributes in the base model. This omission was originally
made to avoid fuzzy and unstable distinctions about
whether a feature should be modeled as an attribute or
association [12]. Although this advantage is enjoyed by
some other semantic modeling approaches, such as OSM
[10], a disadvantage is that attribute-free diagrams often

take up more space. A detailed argument that this price is
worth paying can be found in [19]. The main advantages
are that all facts and rules can be easily verbalized as
sentences, all data structures can be easily populated with
multiple instances, the metamodel is simplified, and
models and queries are stabler since they are immune to
changes that reshape attributes as associations. Finally the
compactness of attribute-based models can still be
achieved by deriving them as views (this is automatable).
 Table 1 summarizes the main correspondences between
conceptual data constructs in ORM and UML. Some
examples are given later, and complementary discussions
can be found in the references [14, 18, 19, 20, 21]. An
uncommented “—” indicates no predefined support for
the corresponding concept, and “†” indicates incomplete
support. Clearly, ORM’s built-in symbols provide greater
expressibility for conceptual constraints on data.

Table 1 Conceptual data constructs in ORM and UML

ORM UML
Data structures:
 object type: entity type;
 value type
 — { use association }
 unary association
 2+-ary association
 objectified association
 co-reference

Predefined Constraints:
 internal uniqueness
 external uniqueness
 simple mandatory role
 disjunctive mandatory role
 frequency: internal; external
 value
 subset and equality
 exclusion
 subtype link and definition
 ring constraints
 join constraints
 object cardinality

—{use unique and ring}†

Textual constraints

Data structures:
 object class
 data type
 attribute
 — { use Boolean attribute }
 2+-ary association
 association class
 qualified association †

Predefined Constraints:
 multiplicity of ..1 *
 — {use qualified assoc. } †
 multiplicity of 1+.. †
 —
 multiplicity †; —
 enumeration, and textual
 subset †
 xor †
 subclass discriminator etc. †
 —
 —
 class multiplicity
 aggregation/composition

Textual constraints

Because of its orthogonality and avoidance of
attributes, ORM achieves this greater expressibility
without adding complexity. For example, ORM includes a
disjunctive mandatory role (inclusive-or) constraint to
constrain instances of an object type to play at least one of
a set of roles (e.g. each Applicant must have a
Qualification or a JobReference or both). ORM also
includes an exclusion constraint that may apply between
compatible role sequences (e.g. no Person who writes a
Paper may referee that Paper). In ORM an exclusion

constraint between single roles may be orthogonally
combined with an inclusive-or constraint to form an
exclusive-or constraint (e.g. no Person may get a BusPass
and a ParkingPermit). In contrast, UML supports an
exclusive-or constraint as a primitive, but no inclusive-or
and no general exclusion constraint.

Unlike UML, ORM allows constraints to be applied
wherever they makes sense. For example, subset
constraints may apply between compatible role sequences,
not just associations (e.g. if a Person drives a Car then that
Person has a DriverLicence). Ring constraints are logical
constraints on ring associations (e.g. “no Person reports to
himself/herself” is an irreflexive ring constraint). Join
constraints apply to roles from connected predicates, e.g.
each Employee who works in a Country also speaks a
Language that is spoken in that Country).

Although the additional constraints in ORM often
arise in practice, UML models often omit them unless the
modeler is very experienced. Both UML and ORM allow
the user to add constraints and derivation rules in a textual
language of their choice. UML suggests OCL (Object
Constraint Language) [33] for this purpose, but does not
mandate its use. ORM’s conceptual query language,
ConQuer [4, 5, 21], provides a formal but higher level
alternative to OCL. Although textual languages are
needed for completeness, it is easier for a modeler to think
of a rule if it is part of his/her graphical rule language.

3. Binary associations

Since the domain expert is the person who understands
the universe of discourse (UoD) or application domain, it
is critical to promote good communication between the
modeler and the domain expert in the conceptual analysis
phase. Subject matter experts are often not technically
skilled in modeling notations, so any business rules should
be verbalized in their natural language for model
validation. This section discusses verbalization of binary
associations and their associated multiplicity constraints.
 Consider a UoD in which employees must occupy a
room, possibly shared with another employee, and some
rooms may be unoccupied. For a given state of the
database, the population of a type is the set of instances of
that type that are present in the database. For this UoD,
each population of the occupancy association is a total
function (mandatory n:1 relation) from the population of
Employee to the population of Room. A significant
sample population is included in the instance diagram at
the top of Figure 1.

Figure 1(a) depicts this binary association in UML.
Classes are denoted by named rectangles, and binary
associations by connecting lines. The association ends
correspond to roles in ORM, and may be given a role
name (e.g. “office”). The association itself may be given a

name (e.g. “Occupies”) as well as a marker “�” to
indicate the direction in which the association should be
read. So long as an association name is supplied, the
association can be verbalized as a sentence type (e.g.
Employee occupies Room).

The association roles (ends) may be adorned with
multiplicity constraints that specify the possible
multiplicities. For example, “1..*” means one or more (at
least one), “0..1” means zero or one (at most one), “1”
abbreviates “1..1” (exactly one) and “*” abbreviates “0..*”
(zero or more). Like ORM, UML allows multiplicities to
include combinations of numbers and number ranges (e.g.
“2, 4, 6, 10..20”), even if these would be rarely used.

Figure 1 Mandatory n:1 association in (a) UML (b)
DSB-ER (c) Barker-ER (d) ORM

UML places each multiplicity constraint on the “far

role”, in the direction in which the association is read.
Hence the multiplicity constraint on the Room role may be
verbalized thus: each Employee occupies exactly one Room. The
“*” constraint on the Employee role may be verbalized: it
is possible that more than one Employee occupies the same Room.
The “*” (zero or more) is the default multiplicity for a
role, and may be regarded as the absence of a constraint
rather than a constraint. Hence we could omit its

EMPLOYEE ROOM
occupied by

Employee Room

occupies/ is occupied by

(c)

(d)

an occupier of

Occupies �(a) 1*Employee Room
office

Employee Roomoccupies
(1,1) (0,*)(b)

e1
e2
e3

r1
r2
r3

e1 r1
e2 r2
e3 r2

pop(Employee) pop(Room)

occupies

(e)

verbalization, but it is normally safer to provide it to
clarify its impact.

These verbalizations, which we developed for use in
ORM, rely on singular terms being used for class names
(e.g. “Employee” not “Employees”) for natural phrasing.
Words shown in bold type have formal meaning, allowing
an ORM tool to automatically generate an ORM diagram
from the textual formulation of the association and its
constraints. Although UML does not have any formal
verbalization, a request for proposal has been issued by
the UML committee for a “Human Readable Textual
Notation”, so something like this could eventually be
added to UML. ORM’s verbalization patterns could
provide a good basis for extending UML in this way.

Figure 1(b) shows the same association in an ER
notation recently proposed by Dey, Storey and Barron for
work with binary and n-ary (n > 2) associations [9]. Let’s
call this DSB-ER notation after its proponents. Here,
entity types are depicted as named rectangles and binary
relationships are depicted as named diamonds, as in
Chen’s original ER [8]. The constraints are called
participation constraints. The association and its
constraints may be verbalized as before. As with some
other versions of ER, this notation places the constraint on
the “near role”, to indicate the minimum and maximum
number of times each instance of the role player must
participate in that role. Hence the “(1, 1)” and “(0,*)” on
the left and right roles correspond to UML’s “1” and “*”
placed on the right and left roles respectively (the
opposite).

Figure 1(c) shows the same example in the Barker-ER
notation popularized by Richard Barker [1] and Oracle
Corporation. Unlike UML and DSB-ER, but like ORM,
the Barker notation supports forward and inverse
readings of binary relationships. This is useful practice
facilitates navigation in different directions around a
schema, and often leads to improved verbalization of
rules. Some UML users have added their own notations in
this regard, such as appending reverse readings in
parentheses to the association name [11]. However the
UML specification has no formal support for this. We
recommend that UML be extended by adding a slot in its
metamodel to store reverse readings, and provide a
standard syntax for their display.

Unlike the two previous notations, Barker-ER uses
separate notations for minimum and maximum
cardinalities. Minimum cardinalities of 0 (optional) or at
least 1 (mandatory) are specified as optional and
mandatory roles. A role that is optional for its entity type
is designated by a dashed line-half, and a role that is
mandatory is depicted by a solid line-half: these are
specified on the near role. A maximum cardinality of 1 is
the default (no explicit mark), and a maximum cardinality
of many is depicted as a crows-foot: these are shown on
the far role as in UML.

Barker [1] suggests a relationship naming scheme
that, while awkward for verbalizing relationship types or
instances, does allow a structured means of verbalizing the
cardinality constraints. Let A R B denote an infix
relationship R from entity type A to entity type B. Name R
in such a way that each of the following four patterns
results in an English sentence: each A (must | may) be R (one
and only one B | one or more B-plural-form). Use “must” or
“may” when the first role is mandatory or optional
respectively. Use “one and only one” or “one or more”
when the cardinality on the second role is one or many
respectively. For example, the constraints in Figure 1(c)
verbalize as: each Employee must be an occupier of one and only
one Room; each Room may be occupied by one or more
Employees. This verbalization convention is good for basic
multiplicity constraints on infix binaries. However it is
less general than ORM’s approach, which applies to
instances as well as types, for predicates of any arity, with
no need for pluralization.
 Figure 1(d) shows the same association in ORM. Entity
types are depicted as named, solid ellipses, and
relationships as named sequences of one or more roles,
with each role depicted as a box connected by a line to its
object type. A relationship is called a fact type unless it is
used simply to provide a primary reference scheme. For
binary associations, forward and inverse readings may be
provided, separated by a slash. As in UML, each role may
also be named, although ORM tools typically store role
names on property sheets rather than display them on the
diagram.
 A black dot “•” on a role connector indicates the role is
mandatory (must be played by each instance in the
population of the object type). By default, a role is
optional (no black dot). ORM constraints were designed
to facilitate validation using sample populations. An
arrow-tipped bar over one or more roles is a uniqueness
constraint declaring that each entry in the population of
that role sequence is unique (occurs there exactly once).
Any relationship may be populated with a table where
each column corresponds to the role in that position. So
the constraint over the left role of Figure 1(d) indicates
that entries in the left column of Figure 1(e) must be
unique, unlike the right column. If the association were
instead many-to-many, the constraint would span both
roles and only the entry-pairs making up the table rows
must be unique.

Of the four notations, only UML depicts a mandatory
role by a minimum multiplicity > 0 on the far role. As
we’ll see in the next section, this leads to problems for n-
ary associations. As it turns out, of all the notations
discussed, only the ORM notation generalizes properly for
n-ary associations.

4. Data use cases and n-ary associations

Use cases in UML illustrate ways in which the required
information system may be used, so they are useful in
requirements analysis. However because they focus on
behavioral modeling, they can only go so far in helping
the modeler arrive at a data model. They should be
supplemented by examples of information that the system
is expected to manage. In ORM these examples have
traditionally been referred to as “information samples
familiar to the domain expert”. By analogy with the UML
term, we call them data use cases. They can be output
reports or input screens, and since they exist at the
external level they can present information in many
different ways (e.g. tables, forms, graphs, diagrams).

Whatever the appearance of a data use case, a subject
matter expert should be able to verbalize its information in
The modeler then transforms that informal verbalization
into a formal yet natural verbalization that is clearly
understood by the domain expert. These two
verbalizations, one by the domain expert transformed into
one by the modeler, comprise step 1 of ORM’s conceptual
analysis procedure. Here we use verbalization of
populations to arrive at the fact instances that are then
abstracted to fact types. Constraints and derivation rules
are meta-facts (facts about the object facts), which are
then added and themselves validated by verbalization and
population. This approach is very effective in practice,
and we believe it is an ideal precursor to the specification
of the data model in UML or any other language.

Suppose that our system is required to output reports
like that shown in Figure 2. We ask the domain expert to
read off the information contained in the tables and then
rephrase this in formal English. For example, the subject
matter expert might read off the facts on the top row of the
first table as follows: Archery is new (it’s the first year it’s
been included in the rankings); the US ranks first in
archery, and scored 10 points for that. As modelers, we
note that Rank functionally determines Points in the
population, so ask: Does the Rank (e.g. 1) determine the
Score (e.g. 10)? The domain expert replies in the
affirmative (if he/she gets this wrong, ORM’s arity-check
can detect it later [14]).

We now rephrase the information into elementary
sentences: the Sport named ‘Archery’ is new; the Country
coded ‘US’ has the Rank numbered 1 in the Sport named
‘Archery’; the Rank numbered 1 earns the Score 10
points. Similarly, the top row of the second table may be
verbalized as: the Country coded ‘AD’ has the
CountryName ‘Andorra’. If reference schemes are agreed
to up front, these long-winded verbalizations can be
abbreviated. Once the domain expert agrees with the
verbalization, we proceed to abstract from the fact
instances to the fact types.

Figure 2 Two sample output reports for a data use case

We may now draw the conceptual schema and populate

it with sample facts. For discussion purposes, we consider
the ORM solution (Figure 3) before the UML solution.
Simple reference schemes may be abbreviated in
parenthesis (e.g. “Country(code)” abbreviates the injective
association Country has Countrycode). Value types need no
reference scheme, and appear as named, dashed ellipses
(e.g. CountryName). Here we have one unary fact type,
Sport is new, two binary associations Country has CountryName,
Ranks earns Score, and one ternary association Country has
Rank in Sport.

Figure 3 ORM schema for Figure 2, with sample data

Sport Rank Country

Country
Code Name
AD Andorra
AE United Arab Emirates
... ...
ZW Zimbabwe

(a)

(b)

Points

Archery * 1 US 10
Baseball 1 US 10

 2 JP 5
Cricket 1 AU 10

 1 GB 10
...

* new

Country
(code)

Country
Name

has /refers to

Rank
(nr)

Sport
(name)

US 1 Archery
US 1 Baseball
JP 2 Baseball
AU 1 Cricket
GB 1 Cricket

Archery

AD Andorra
AE United Arab Emirates
... ...

is new

Score
(points)

1 10
2 5
3 3
... ...

earns /is for
... has ... in ...

Unlike other approaches, ORM allows mixfix
predicates, which are sentences with object holes (denoted
by “…”) that may appear anywhere in the sentence. In this
example, the ternary predicate is “… has … in …”. This
allows verbalization of sentences of any arity in any
natural language, along with their associated constraints
and derivation rules. Other approaches use a simple name
for the verb phrase or assume binary infix predicates, that
support only SVO (Subject Verb Object) languages, not
SOV languages (e.g. Japanese) or VSO languages (e.g.
Tongan). In principle, mixfix predicates could be used in
UML, by extending its metamodel with positional
information to provide a role order for predicate readings.

For each fact type in Figure 3, a sample fact table has
been added to help validate the constraints. ORM schemas
can be represented in diagrammatic or textual form, and
tools such as Visio Enterprise can automatically transform
between the two representations. Models are validated
with domain experts in two ways: verbalization; and
population. For example, the uniqueness constraints on
the rank association in Figure 3 verbalize as: each Rank
earns exactly one Score; each Score refers to at most one Rank.
The 1:1 nature of this association is illustrated by the
population, where each column is unique. A sample row
for rank 3 has been added to illustrate the mandatory and
optional nature of the roles played by Rank (a rank’s score
must be recorded even if no country achieves this rank).
 The uniqueness constraint on the first and last roles of
the ternary has a positive verbalization of: each Country has
at most one Rank in each Sport. This is illustrated by the
population, where the Country-Sport value pairs are
unique. To double check a constraint in ORM, a negative
verbalization of the constraint may be given, as well as a
counter-example to test whether the constraint may be
violated. For example, the uniqueness constraint on the
ternary may also be verbalized thus: it is impossible that the
same Country has more than one Rank in the same Sport. Adding
the counter-row (US, 2, Archery) to the sample population
of the ternary gives the US two ranks in archery, and
hence violates the uniqueness constraint. Concrete
examples like this make it easier for domain experts to see
whether the constraint being tested really is a rule.

Because all fact types are elementary, and no attributes
are used, populations never contain null values. Although
closed or open world semantics may be chosen, the
default semantics is closed world. For example Baseball
appears in the population of Sport but does not play the
role “is new”, so we know it is not new. This is less
confusing to the domain expert than assigning False to a
boolean attribute, as in UML For this reason, and to
support natural verbalization, we suggest that UML be
extended to allow unaries. A trivial change to the
metamodel would allow this (change the multiplicity on
Association-end from “2..*” to “1..*”). However,

pragmatism may require an inelegant alternative that is
easier for vendors to support.

Unlike other approaches, ORM allows n readings for
any n-ary predicate (n > 0), one starting at each role. This
facilitates constraint declaration, and navigation through
the information model from any starting position using
natural sentences [4, 5]. In principle, the UML metamodel
could be extended to support this.

Figure 4 shows a UML schema for the same UoD. All
the ORM binary fact types are modeled here as attributes.
In the absence of a standard UML syntax for primary
identification or uniqueness constraints on attributes, we
use our own notations “{P}” and “{U1}” respectively.
Such notations are needed if UML is to be used to
completely model even simple database applications.

Figure 4 UML schema for Figure 2

The uniqueness constraint from the ORM ternary is
modeled in UML using the 0..1 multiplicity constraint on
the role played by Rank. The “*” multiplicities indicate
the absence of any other uniqueness constraint. If an n-ary
fact type is elementary, any internal uniqueness constraint
must span either n-1 or n roles. The UML notation for
multiplicity constraints can express these cases, but cannot
express uniqueness or frequency constraints on fewer than
n-1 roles. Hence unlike ORM it cannot be used to specify
compound fact types that may be required for derivation
or denormalization. The DSB-ER notation was developed
to cater for cardinalities on n-aries, but is even worse than
UML in this regard since it cannot express composite
uniqueness and frequency constraints. The Barker-ER
notation has the same problem if extended to n-aries.

Note that the simple mandatory role constraint on
Sport cannot be expressed by a multiplicity constraint in
UML. It might be thought that this constraint can be
expressed by changing the multiplicity on the Country role
to 1..*. But this would mean that each Sport-Rank pair
formed from the populations of Sport and Rank must be
associated with at least one country. But this is not true,
since the role played by Rank is optional. For example,
the pairs Archery-2 and Archery-3 have no associated
country in the sample population. As discussed later, any

countryCode {P}
countryName {U1}

Country

rankNr {P}
score {U1}

Rank

sportName {P}
isNew: Boolean

Sport
* *

0..1

each Sport must play this role

attempt to redefine the semantics of multiplicity
constraints in terms other than the populations of its object
types leads to other problems.

This exposes a fundamental problem with the
scaleability of UML’s multiplicity notation. Although it
caters adequately for binaries, it cannot express a simple
mandatory constraint on at least 1 and at most n-2 roles
within an n-ary association. If we are to use an n-ary in
UML, the only thing we can do in such cases is to add a
textual description of the constraint in a note, as in Figure
4. This problem is a direct consequence of choosing to
attach minimum multiplicity to a far role instead of the
near role. The DSB-ER and ORM notations can express
mandatory constraints on roles of n-aries, and the Barker-
ER notation could be extended to do so, since each
attaches minimum multiplicity on the near role.

Sometimes, we can overcome this problem with UML
by binarizing the n-ary. For example, Figure 5 expresses
the fact type Country is ranked in Sport as a binary association,
that is objectified as the class Ranking. The mandatory
role for Sport is now catered for by the 1..* constraint on
the role for Country. However, this approach has
problems. To begin with, it is often too unnatural. If the
domain expert thinks in terms of a ternary, why force
him/her to rethink the model in terms of binaries? More
importantly, this solution does not always work in UML.
For example, suppose we have the additional constraint
that no ties are allowed for sport ranks. There is no
symbol in UML to express this rule on the binarized
solution (although it can be expressed on the ternary).

Figure 5 Alternative UML schema for Figure 2

The only way to express the no-ties rule with the

binarized model would be to extend UML with the
additional notion of an external multiplicity constraint that
can span model elements from different associations.
ORM already includes such a constraint. For example,
Figure 6 shows the binarized solution in ORM with an
external uniqueness constraint (circled “u”) to indicate
that each Sport-Rank pair is associated with at most one
Country in the overall association. ORM shows an
objectified association by enclosing the association in an
envelope. Although this works, it is more awkward to
think about than the ternary solution for this case.

Figure 6 A nested ORM model that forbids ties

The next example illustrates the no-ties rule on the
ternary, as well as another defect of multiplicities in UML.
Consider the report shown in Table 2. In this UoD, no ties
are allowed, and we are interested only in the first two
ranks. Moreover, we may list a sport before any other
details (e.g. ranking) are known for it. If a sport is ranked,
we must know both its first and second place getters.

Table 2 A data use case for a somewhat different UoD

An ORM schema for this situation is shown in Figure
7, together with a sample population for the ternary
association and for the object type Sport. Here the “!” on
Sport indicates it is an independent object type (instances
of it can exist without playing any fact role). A meta-rule
in ORM implies that any population object must play in
some fact unless it is declared independent. There is no
space here to extol the virtues of this rule, but its practical
utility is such that we believe it should be added to UML.

Notice the uniqueness constraint over the roles played
by Rank and Sport in the ternary. This enforces the no-ties
rule. In ORM the positive verbalization of this constraint
is: given any Rank and Sport, at most one Country has that Rank in
that Sport. This is supported by the sample population. The
negative verbalization of the constraint is: it is impossible
that more than one Country has the same Rank in the same Sport.
The negative verbalization is especially useful in using
counter-examples to check the constraint. For instance, if
we gave both Australia and Great Britain the rank 1 in
cricket (as in Figure 3), this would violate the constraint.
Such concrete counter-examples make it easy for domain
experts to validate doubtful constraints.

countryCode {P}
countryName {U1}

Country

sportName {P}
isNew: Boolean

Sport
1..* *

1Ranking
rankNr {P}
score {U1}

Rank
0..*

Country
(code)

Sport
(name)

Rank
(nr)

is ranked in

"Ranking"

yields

u

Sport Rank Country Points

Aikido ? ? ?
Archery 1 US 10

 2 GB 5
Baseball 1 US 10

 2 JP 5
Basketball ? ? ?
Cricket 1 AU 10

 2 GB 5
...

Figure 7 ORM schema for Table 2 with sample data

The frequency constraint of 2 on the Sport role means
any sport that plays that role does so exactly twice. In the
context of the uniqueness constraints and the value
constraint of {1..2} on Rank, this ensures that both ranks
are recorded for any ranked sport. Again, the population
clarifies the constraint. Notice that some sports (e.g.
Aikido) have not yet been ranked. Figure 8 shows the
UML solution. There is no way of specifying the
frequency constraint via a multiplicity constraint, so it has
been added informally in a note.

Figure 8 UML schema for Table 2

The two uniqueness constraints are expressed using
0..1 multiplicity constraints. This is possible because
uniqueness is a case of maximum multiplicity. The
frequency constraint of 2 cannot be expressed on a ternary
in UML because it involves a minimum occurrence
frequency of 2. An occurrence frequency of n means: if an
instance plays the role, it does so n times. Given any n-
ary association, UML multiplicity constraints cannot
express a minimum occurrence frequency above 1 for any
role (or combination of fewer than n-1 roles).

ORM allows mandatory and frequency constraints over
a set of roles (possibly from different associations).
Uniqueness constraints are just frequency constraints of 1
with a special notation because of their importance and
ubiquity. These constraints are orthogonal, and apply to
associations of any arity. UML’s multiplicity constraints
can express simple mandatory and frequency constraints
for binary associations, but cannot express mandatory role
constraints or minimum occurrence frequencies above 1
for roles in n-ary associations. So UML’s multiplicity
notation is far weaker than expected.

In fact, the whole notion of a minimum multiplicity
above 0 is problematic for n-aries in UML. The UML 1.3
specification offers only the following description for the
semantics of multiplicities in n-ary associations: “The
multiplicity of a role represents the potential number of
instance tuples in the association when the other n-1
values are fixed” [31, p. 3-73]. Consider a ternary
association R(A, B, C). Let pop(A), pop(B) and pop(C)be
the populations of A, B and C (in the database, not
necessarily just in R), and pop(rA), pop(rB) and pop(rC)
be the populations of the roles in R. Let R have
multiplicities *, *, 2..* on the roles of A, B, C respectively.
What does the 2 mean? For consistency with the meaning
of multiplicities for binary associations, we should define
it thus: each pair (a, b), where a is in pop(A) and b is in
pop(B), is associated in R with at least 2 instances from
pop(C). But such a constraint is in practice virtually
useless, since it far too strong to apply except in
pathological cases. To base the constraint on the types
rather than populations would be even worse in this
regard.

What we really need is a way to define the constraint in
terms of R’s population. For example, each pair (a, b) that
occurs in the projection pop(R)[a, b] is associated in R
with at least 2 instances from pop(C). This corresponds to
an ORM minimum frequency constraint of 2 on (rA, rB).
Although useful and desirable, this definition is
inconsistent with the whole approach to multiplicity
constraints in UML. For example, if accepted it would
mean that minimum multiplicities of 0 could never occur.

Internal frequency (and uniqueness) constraints in
ORM can be efficiently implemented and validated
because they apply just to the local population of their
predicate. Mandatory constraints refer to the population of
an object type, so are ontologically distinct as well as
harder to enforce. Because of their global impact,
mandatory constraints need to be considered more
carefully. For such reasons, the separation of mandatory
and frequency constraints is highly desirable.

To address the problems with UML multiplicities on n-
aries, there are a number of possible solutions. Ideally,
multiplicity constraints for associations should be replaced
by ORM’s mandatory and frequency/uniqueness
constraints, at least for n-ary associations. However this is

Country
(code)

Rank
(nr)

Sport !
(name)

{1..2}

2

US 1 Archery
GB 2 Archery
US 1 Baseball
JP 2 Baseball
AU 1 Cricket
GB 2 Cricket

Aikido
Archery
Baseball
Basketball
Cricket
...

... has ... in ...

Score
(points)

1 10
2 5

Country
Name

has /refers to

countryCode {P}
countryName {U1}

Country

rankId: RankNr {P}
score {U1}

Rank

sportName {P}

Sport0..1 *

0..1

«enumeration»
 RankNr
1
2

each Sport that plays this role
does so twice

unlikely to ever happen, and would cause backward
compatibility headaches. We could try adding extra
constraints for mandatory and frequency for n-ary
associations. This would achieve the required
expressibility but would make UML even more
unnecessarily complex than it is now (e.g. the concept of
mandatory role would be dealt with by a multiplicity
constraint on binaries but by a mandatory constraint on n-
aries). A third solution is to use ORM for the original
analysis where the constraints can be easily declared and
validated, then map the ORM model to UML where the
constraints would appear in notes. Since the ORM
notation is easily mastered, and requires no change to the
UML notation, the third solution seems attractive, and
could certainly be automated.

As a final note on the no-ties example, we might try to
overcome the problem of expressing the frequency
constraint in UML by transforming the ternary into two
binary associations: Country is first in Sport; Country is second in
Sport, as shown in Figure 9. However apart from the fact
that this transformation doesn’t scale (e.g. large numbers
of ranks), there are now two constraints that get lost.

Figure 9 The exclusion and equality constraints in (a)
are lost in the UML model (b)

The ORM model in Figure 9(a) shows the missing

constraints. The pair-exclusion constraint denoted by a
circled “X” enforces the no-ties rule that no country can
be ranked first and second in the same sport. The equality
constraint shown as a dashed line with arrowheads
indicates that if a sport has a winner it also has a runner-
up, and vice versa. Although these constraints can be
added informally in notes to the UML diagram, it would
be better to extend the UML metamodel to support them.
Currently UML is very unorthogonal and restrictive with
regard to constraints. It supports an exclusive-or (xor)
constraint but no exclusive constraint and no inclusive-or
constraint. Although UML’s xor constraint is described as
applying between associations, it actually applies between

roles. UML supports a subset constraint between full
associations but not between parts of associations (e.g.
roles). The UML specification also contains a number of
inconsistencies in its handling of these constraints. For a
formal discussion of such inconsistencies and a means of
extending the UML metamodel to adequately capture such
constraints, see [19, section 5].

5. Conclusion

Fact-orientation, as exemplified by ORM, provides
many advantages for conceptual data analysis, including
expressibility, validation by verbalization and population
at both fact and constraint levels, and semantic stability
(e.g. avoiding changes caused by attributes evolving into
associations). ORM also has a mature formal foundation
that may be used to refine the semantics of UML.

Object-orientation, as exemplified by UML, provides
several advantages such as compactness, and the ability to
drill down to detailed implementation levels for object-
oriented code. If UML is to be used for conceptual
analysis of data, some ORM features can be adapted for
use in UML either as heuristic procedures or as
reasonably straightforward extensions to the UML
metamodel and syntax. These include mixfix verbalizat-
ions of associations and constraints for associations, and
exploitation of data use cases by populating associations
with tables of sample data using role names for the
column headers.

However there are some fundamental aspects that need
drastic surgery to the semantics and syntax of UML if it is
ever to cater adequately for non-binary associations and
some commonly encountered business rules. This paper
revealed some serious problems with multiplicity
constraints on n-ary associations, especially concerning
non-zero minimum multiplicities. For example, they
cannot be used in general to capture mandatory and
minimum occurrence frequency constraints on even single
roles within n-aries, much less role combinations.
Moreover, UML’s treatment of set-comparison constraints
is defective. Although it is possible to fix these problems
by changing UML’s metamodel to be closer to ORM’s,
such a drastic change to the metamodel may well be ruled
out for pragmatic reasons (e.g. maintaining backward
compatibility and getting the changes approved).

In contrast to UML, ORM has only a small set of
orthogonal concepts that are easily mastered. UML
modelers willing to learn ORM can get the best of both
approaches by using ORM as a front-end to their data
analysis and then mapping the ORM models to UML,
where the additional constraints can be captured in notes
or textual constraints. Automatic transformation between
ORM and UML is feasible, and is currently being
researched.

Country Sport

is ranked first in

is ranked second in

(a)

Country Sport

(b) is first in

is second in

0..1

0..1 *

*

References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables,

Addison-Wesley, Wokingham, England.
2. Bentley, J. 1988, ‘Little languages’, More Programming

Pearls, Addison-Wesley, Reading MA, USA.
3. Blaha, M. & Premerlani, W. 1998, Object-Oriented

Modeling and Design for Database Applications, Prentice
Hall, New Jersey.

4. Bloesch, A. & Halpin, T. 1996, ‘ConQuer: a conceptual
query language’, Proc. 15th International Conference on
Conceptual Modeling ER'96 (Cottbus, Germany), B.
Thalheim ed., Springer LNCS 1157 (Oct.) 121-133.

5. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using
ConQuer-II’, Proc. 16th Int. Conf. on Conceptual Modeling
ER'97 (Los Angeles), D. Embley, R. Goldstein eds, Springer
LNCS 1331 (Nov.) 113-126.

6. Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified
Modeling Language User Guide, Addison-Wesley, Reading
MA, USA.

7. Campbell, L., Halpin, T. & Proper, H. 1996, ‘Conceptual
schemas with abstractions: making flat conceptual schemas
more comprehensible’, Data & Knowledge Engineering, 20,
1, 39-85.

8. Chen, P.P. 1976, ‘The entity-relationship model—towards a
unified view of data’, ACM Transactions on Database
Systems, vol. 1, no. 1, pp. 9−36.

9. Dey, D., Storey, V.C. & Barron, T.M. 1999, ‘Improving
database design through the analysis of relationships’, ACM
Transactions on Database Systems, vol. 24, no. 4, pp. 453-
486.

10. Embley, D. 1998, Object Database Management, Addison-
Wesley.

11. Eriksson, H. & Penker, M. 2000, Business Modeling with
UML – Business Patterns at Work, John Wiley.

12. Falkenberg, E. 1976, ‘Concepts for modelling information’,
Modelling in Data Base Management Systems, G. Nijssen
ed., North-Holland, Amsterdam, pp. 95-109 (see esp. p. 104,
where “properties” means “attributes”).

13. Fowler, M. with Scott, K. 1997, UML Distilled, Addison-
Wesley.

14. Halpin, T. 1995, Conceptual Schema and Relational
Database Design, 2nd edn (revised 1999), WytLytPub,
Bellevue WA, USA.

15. Halpin, T. 1998, ‘Object Role Modeling (ORM/NIAM)’,
Handbook on Architectures of Information Systems, P.
Bernus, K. Mertins & G. Schmidt eds, Springer-Verlag,
Berlin, pp. 81-101.

16. Halpin, T. 1998, ‘Object Role Modeling: an overview’,
available online at http://www.orm.net/overview.html.

17. Halpin, T.A. 1998-9, ‘UML data models from an ORM
perspective: Parts 1-10’, Journal of Conceptual Modeling,
InConcept, Minneapolis USA, available online from
www.orm.net/uml_orm.html.

18. Halpin, T.A. 1999, ‘Data modeling in UML and ORM
revisited’, Proc. EMMSAD’99: 4th IFIP WG8.1 Int.
Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design, Heidelberg, Germany (June).

19. Halpin, T.A. 2000, ‘Integrating fact-oriented modeling with
object-oriented modeling’, Information Modeling in the New
Millenium, eds M. Rossi & K. Siau, Idea Group Publishing
Company, Hershey, USA.

20. Halpin, T.A. & Bloesch, A.C. 1998, ‘A comparison of UML
and ORM for data modeling’, Proc. EMMSAD’98: 3rd IFIP
WG8.1 Int. Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design, Pisa, Italy (June).

21. Halpin, T.A. & Bloesch, A.C. 1999, ‘Data modeling in UML
and ORM: a comparison’, Journal of Database
Management, vol. 10, no. 4, Idea group Publishing
Company, Hershey, USA, pp. 4-13.

22. Halpin, T. & Proper, H. 1995, ‘Subtyping and polymorphism
in object-role modelling’, Data & Knowledge Engineering
15, 3 (June), 251-281.

23. Halpin, T. & Proper, H. 1995, ‘Database schema
transformation and optimization’, OOER’95: Object-
Oriented and Entity-Relationship Modeling, Springer LNCS,
1021 (Dec.) 191-203.

24. ter Hofstede, A.1993, Information Modelling in Data
Intensive Domains, PhD thesis, University of Nijmegen.

25. ter Hofstede, A., Proper, H. & van der Weide, T. 1993,
‘Formal definition of a conceptual language for the
description and manipulation of information models’,
Information Systems 18, 7 (Oct.), 489-523.

26. ISO 1982, Concepts and Terminology for the Conceptual
Schema and the Information Base, J. van Griethuysen ed.,
ISO/TC97/SC5/WG3-N695 Report, ANSI, New York.

27. Jacobson, I., Booch, G. & Rumbaugh, J. 1999, The Unified
Software Development Process, Addison-Wesley, Reading
MA, USA.

28. Kobryn, C. 1999, ‘UML 2001: a standardization odyssey’,
Communications of the ACM, vol. 42, no. 10, pp. 29-37.

29. Levesque, H. 1984, ‘A fundamental trade-off in knowledge
representation and reasoning’, Proc. CSCSI-84, London,
Ontario, 141-52.

30. Muller, R.J. 1999, Database Design for Smarties, Morgan
Kaufmann, San Francisco, CA.

31. OMG UML Revision Task Force, OMG Unified Modeling
Language Specification, version 1.3, available online from
http://omg.org/uml/.

32. Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified
Modeling Language Reference Manual, Addison-Wesley,
Reading MA, USA.

33. Warmer, J. & Kleppe, A. 1999, The Object Constraint
Language: precise modeling with UML, Addison-Wesley,
Reading MA, USA.

34. www.microsoft.com (online details about Visio Enterprise).

