
July ���� � Third Workshop on Attribute Grammars and their Applications � WAGA����

Using Object�Oriented Attribute Grammars

as ODB System Generator

T� Hagiwara� � K� Gondow� � T� Imaizumi� � T� Katayama�

�� Dept� of Information Engineering� Niigata University�
���� Ikarashi ��nocho� Niigata 	�������� Japan

hagiwara�ie�niigata�u�ac�jp

�� Japan Advanced Institute of Science and Technology� Ishikawa� Japan
gondow�jaist�ac�jp

� Dept� of Information and Image Sciences� Chiba University� Chiba� Japan
imaizumi�tj�chiba�u�ac�jp

�� Japan Advanced Institute of Science and Technology� Ishikawa� Japan
katayama�jaist�ac�jp

Abstract

This paper presents MAGE� system� It implements a computational model OOAG �Object�
Oriented Attribute Grammars� and creates its attributed object trees in object�oriented database
�ODB� using persistent object allocation mechanism of object�oriented database management
systems �ODBMS�� The MAGE� is a programming support and execution environment for OOAG�
The focus of this paper is on an execution system� We indicate core techniques to implement
MAGE�� that is� how to execute speci�cations of OOAG and how to generate an ODB system�

We are planning to use MAGE� to design databases for storing data that have logical structures
such as program source �les� XML documents and so on� That is to say MAGE� is a tool for
generating ODB system�

�� Introduction

An object�oriented database management system �ODBMS� has many interesting features such a
persistent object allocation� seamless interface to object�oriented programming language and so on�
But it seems only few applications exist� We suppose this reason is because it is di�cult to use
ODBMS in full functional programming language interface such as C�� and JAVA� Designing an
object�oriented database �ODB� using the programming language interface of ODBMS includes a
complicated work similar to usual programming of data structures� This also makes it di�cult to
debug� because their data structures often have many pointer links�

Our idea is to make attributed trees of attribute grammars ��	 �AGs� persistent using an ODBMS�
In standard AGs model� operation for replacing or exchanging subtrees has done only by cut
pasting
subtrees from external environment� For example� the Synthesizer Generator ��	� that is structured
editor generator and has an incremental attribute evaluator� modi�es target subtree by editing text�
So in the case of using AGs in an database maintenance� it may be impractical to make attributed
trees persistent as it is� because there are hard problems to deal with updating objects �i�e� subtrees�
in the speci�cation�

In a computational model OOAG �
� �	 which is an extension of standard AGs� we can describe
dynamic tree operations by putting message passing rules between attributed tree nodes in the
speci�cation� We developed the MAGE� system as an implementation of OOAG� It has a speci�cation

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

language OSL��	� a code translator from OSL to C�� classes and some programming support
environment tools�

Basic functions of MAGE� are storing attributed trees in the database as persistent objects by
following mechanisms�

� Creating persistent object trees using ODBMS�

� Transferring the state of an object tree by message passing in OOAG model� �replacing subtrees�
evaluating temporary attributes� etc��

� Evaluating attributes incrementally if it is needed�

It will execute an incremental attribute evaluator and will restore the state of persistent object trees
consistently when subtree will be replaced by message passing� �Messages will be sent if the conditions
put in the speci�cation hold�� In this way� the MAGE� �i�e� OOAG� is special attribute grammars
system in the sense that are treated as data itself like higher order AGs�

Tools constructed with MAGE� can act as an ODB generator� MAGE� generates an ODB
generator from OSL speci�cations like AGs� It is useful for designing complex ODB like AGs are useful
for compiler construction� One of major application of MAGE� is a software repository development�
In such use� we describe relations between de�nitions and references of symbol names in program �les
in AGs for example� Parsed trees and attribute values are stored in the database persistently and can
be used in future accesses�

In this paper� we explain a computational model OOAG and its speci�cation language OSL in
section �� Section
 describes the MAGE� system including how to implement OOAG persistently�
Section � indicates an example of application of MAGE�� Section � evaluates MAGE� as an ODB
generator generator in comparison with conventional database developments� Section � and � are
conclusion and future works�

�� The OOAG and the OSL language

���� Features of OOAG

OOAG has been derived from attribute grammars� Declarative structures� separation of semantics
and syntax de�nition� and local description resulting in high readability and high maintainability� and
clear description due to functional computation of attributes are all desirable characteristics of AGs�
We summarize the OOAG features as a generator of database systems as follows�

� OOAG is based on attribute grammars�

� We can program how to manipulate software objects by message passing�

� We can describe data structure and manipulation method of software objects at the same place�

� We can generate software repository system automatically from formal repository speci�cation
written in OSL language� OSL language is explained in ����

���� The OSL language

An OOAG description is separated into two parts� one is static speci�cation and the other is dynamic
speci�cation� They are described in a speci�cation language OSL �Object Speci�cation Language��
We describe brie�y each part below� and then give the correspondence of OSL language constructs to
conventional attribute grammars constructs�

���

Using Object�Oriented Attribute Grammars as ODB System Generator

������ Static speci�cation

The static speci�cation describes static relation of the object that is described�

Class

A class declaration has following form�

class X� � R�X�� � � � � Xm� f� � �g

where X� is the object to be de�ned� and X�� � � � � Xm are its internal objects� R is a label for the rule
and is used as a constructor of the object being described� X� is referred to as LHS class� and R is
referred to as RHS class� f� � �g de�nes static semantic rules�

Static attributes

Declarations of static attributes are attached to Xi �� � i � n� in the class declaration� whose form is

Xi�i�� � � � � ipjs�� � � � � sq�

where i�� � � � � ip are static inherited attributes� and s�� � � � � sq are static synthesized attributes�

Whereas static inherited and synthesized attributes are associated with object Xi� static local
attributes are associated with classes� A declaration of static local attribute l has the form

local l

and is written with static semantic rules�

Static inherited attributes and static synthesized attributes are the external interfaces of an object�
Native attributes hold the object state� We also use the term native attributes for internal objects Xi�
because internal objects also hold the object state� Native attributes are similar to instance variables
in the object�oriented paradigm�

Static semantic rules

Static semantic rules de�ne the values of the static synthesized attributes of an object� the values
of static inherited attributes of the object�s internal objects and the values of static local attributes
associated with a class if necessary� The form of each static semantic rule is

a � f�a�� � � � � ar�

where a is an attribute to be de�ned by a�� � � � � ar� which are others� attributes in the description�
Finally� f is a function of a�� � � � � ar� In the sequel� a notation X�i represents an occurrence static
attribute i of an object X and a notation n represents a native attribute n or a static local attribute n�
Of course� the dependency graph of static attributes over any tree must be acyclic to be computable�
The static attributes can be bound with tree structures as their values� This increases the power of
OOAG compared to standard attribute grammar and is found very useful in database description�

������ Dynamic speci�cation

A set of dynamic speci�cations that describe message passing de�nes the dynamic behavior of objects�
The dynamic speci�cation consists of the following�

��

Hagiwara
 Gondow
 Imaizumi
 Katayama

Messages

A message passing description has the form like following�

in�� � � � � ins � out�� � � � � outt f� � �g �s� t � ��

where ini �� � i � s� is an input message and outi �� � j � t� is an output message� f� � �g is the
de�nition of dynamic semantic rules�

Dynamic attributes

Each message may have some dynamic attributes� All messages take the following form

Obj � mesg�name�i�� � � � � ipjs�� � � � � sq�

where Obj is an object� mesg�name is a message name� i�� � � � � ip are dynamic inherited attributes�
and s�� � � � � sq are dynamic synthesized attributes�

Dynamic semantic rules

Each dynamic semantic rule is of the form a � f�a�� � � � � ar�� which has the same form as that of the
static semantic rule� with the exception that values of native attributes can be de�ned and dynamic
attributes can appear in a�� � � � � ar� The form to de�ne values of native attributes is

�new a� � f�a�� � � � � ar�

where new is a reserved keyword� which distinguishes new next values of native attributes from old
ones� Values of native attributes are replaced by new values after evaluation of dynamic attributes is
completed� This form permits the tree to be expanded as a result of dynamic attribute computation�

Condition of message passing

A message passing description is a pair of input messages and output messages� Output messages will
be sent to target object in the following conditions�

� All input messages arrived at this object� moreover all values of output attributes of an output
message have been evaluated� or

� There is no input message�

However� a set of output messages may have a guard expression that decides condition of message
passing� Guard expression controls whether output messages will be sent� In other words� output
messages will not be sent in a case guard expression is false�

���� Evaluation Loop

Static speci�cations and dynamic speci�cations are evaluated by turns� because descriptions in
dynamic speci�cation may replace subtrees and it may cause inconsistency of static attributes value�
If static attribute value will be change� additional message passings may be arised� So computation
in OOAG loops until object tree becomes stable state� Figure � shows this image�

���

Using Object�Oriented Attribute Grammars as ODB System Generator

(1) static attribute evaluation (2) message passing

(3) dynamic attribute evaluation(4) replacing subtrees

message

Figure �� evaluation loop in OOAG

���� The correspondence of OSL components with standard AGs�

In this section� we consider the correspondence of OSL components to standard attribute grammars
and show that an OOAG is more suited for database systems than standard AGs�

The class de�nition of OOAG corresponds to a production rule of standard AGs� and static
speci�cations is equivalent to semantic rules of standard AGs� Table � shows the correspondence
of the terms used in OOAG static speci�cations and standard AGs�

in Standard AG in OOAG

Production instance � Object �NODE object�
Terminal symbol � Leaf Native attribute
Non�terminal symbol � LHS class name
Label of production rule � RHS class name

Table �� The correspondence of the term in the static speci�cations

Dynamic speci�cation is an extension from standard attribute grammars� This extension makes it
possible to change the structure of already built attributed tree and re�evaluate attribute values that
is essential in describing repository system� A message passing mechanism may be considered as a
function call on the structure of attributed trees�

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

Figure �� Screen snapshot of MAGE� system execution�

MAGE Server (for Inter-Tool communication)

OSL Class Browser

SY
ST

E
M

 B
ro

w
se

r
(f

or
 C

on
tr

ol
 s

ys
te

m
 e

nv
ir

on
m

en
t)

ODBMS

Constructed Tool

OSL Editor

OSL->C++ Translator

Object Browser
(for Inspecting an ODB contents)

database

Figure
� MAGE� System Architecture

���

Using Object�Oriented Attribute Grammars as ODB System Generator

�� Overview of MAGE�

���� MAGE� Environment

MAGE� code translator translates OSL speci�cations to a set of C�� classes� We can obtain an
execution system image by compiling them with OOAG attribute evaluator library and with ODBMS
library� The generated system creates object trees in an ODB� In other words� MAGE� is an ODB
generator construction tool�

To make object trees persistent� we have used an ODBMS� We are now using ObjectStore��� �	
whose virtual memory mapping architecture �VMMA� achieves the high performance by using
sophisticated memory mapping� caching� and clustering techniques to optimize data access� It does
not have bad in�uence on our implementation technique for e�cient execution of OOAG� for VMMA
can handle persistent data as fast as transient data� and migrating existing system with ObjectStore
is easy�

MAGE� system is an OSL speci�cation development environment which consists of some tools�
Figure � is a screen snapshot of MAGE� and �gure
 shows an architecture of MAGE� tools� Main
tools of MAGE� environment are as follows�

� Several browser tools for controlling and monitoring system states

� A syntax�directed editor for OSL and its graphical class browser

� Code translation system from OSL speci�cation to C�� classes

� An attribute evaluator library of the OOAG

� An object�oriented database management system �ObjectStore�

We mention the amount of MAGE� system code� MAGE� attribute evaluator library is about
����� lines C�� program� The result of translating short OSL descriptions for evaluator test are
table �� In this table� dig�ooag is a program of digit sequence representation and interpretation� and
�b�ooag is a program which compute Fibonacci number� OSL editor and translator is about ������
lines SSL program �SSL is the editor speci�cation language of the Synthesizer Generator�� Browsers
and tool communication library codes total ������ lines C program�

OSL spec� translated C�� code

dig�ooag � LHS� 	 RHS class

� line � �

 line

�b�ooag � LHS� � RHS class
�
 line � �

 line

Table �� translating result

���� Creating OSL speci�cations and Databases

Figure � shows how to use MAGE�� To construct an ODB system� we begin with describing database
structure and data management rules using OSL editor and OSL class browser in �gure
� This OSL
speci�cation is translated to C�� classes by OSL code translation system� and compiled with an
attribute evaluation library and an ODBMS library� A constructed tool needs an initial object tree
description� It will be passed in tool execution time by a tool user�

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

OSL
Specification

C++ class codes

ODBMS library

Initial Object Tree Desc.

Node class library
(attribute evaluator)

code
translator

compile
&

link
Execution
System Image}

DATABASE

input

Figure �� Creating OSL speci�cation and Databases

���� Design of Persistent Object Trees

Object trees in MAGE� must be created in a persistent storage� that is� in a database�

Our approach of object trees design are following rules�

� The relations between LHS and RHS classes is kept in the OSL class speci�cation�

� All tree node objects are instantiated from RHS classes translated from OSL speci�cations� We
call these tree node objects �Node objects��

� All translated classes inherit an abstract class Node� The class Node implement an attribute
evaluator and object tree maintenance routines�

� No global information should be used� All resources about an tree node are stored together
in the Node object� that is� in the Node class and RHS classes� LCDIA algorithm have been
introduced in �
	 for evaluating attribute values from only local informations�

� Object Allocation is done using STL container� STL is the ISO standard C�� library�

������ Translation Rules

We translate OSL speci�cations to C�� classes keeping its LHS�RHS class relations� Following codes
will be generated in each RHS class� however most of implementation codes stay in Node class� Node
class codes are pre�compiled as a system library�

� Local data structures an array of Attribute and their initialization code�

� Functions for attribute equations in semantic rules�

� Functions for message passing �passing condition and passing rules��

������ Allocating and Deallocating of Node objects

It is very important how to allocate objects in MAGE�� because we intend MAGE� to generate object�
oriented databases� Basically� we use only two classes to design attributed object trees� class Node and

���

Using Object�Oriented Attribute Grammars as ODB System Generator

class Attribute� Node object encapsulates all informations about an attributed tree node and Attribute

object encapsulates informations about an attribute instance� These two classes are closely related
with each other� A Node object has Attributes and an Attribute object may points Node object because
of its higher orderness� Figure � shows a relation of Node and Attribute object�

Because Node encapsulates all informations includes Attribute objects� all works about object
deleting complete only deallocating Node object� It will deallocate all related objects to the node
together�

class Node Class Node and its derived classes� that is� LHS and RHS classes have mainly following
information�

� Array of Attribute objects� Class Attribute has informations about attribute instances�

� A dependency graph of local attribute instances�

� Methods which implement an attribute evaluation algorithm�

� Fields about intermediate information of attribute evaluation�

The array size of Attribute objects depends on the OSL speci�cation� We dislike to this object size
dynamically changes� so we create derived classes from Node by OSL code translator� Node is just an
abstract class�

class Attribute Class Attribute has informations about attribute instances� only its actual attribute
value is stored in di�erent space� Attribute has its pointer value in value �eld�

Figure � shows important �elds of Attribute class� name is a name of this attribute� type is a type
information of this value� my�node is a pointer to an owner of this instance� There is explanation
about value� �eld in
�
�
�

class Attribute

�

string name�

ATTR�TYPE type�

Node� my�node�

BaseType� value�

Attribute� value��

int ��eval	�Node �	�

���

�

Figure �� class Attribute

������ Managing Local Attribute Graph

The current attribute evaluator can compute non�circular AGs� The LCDIA algorithm for OOAG
computation is published in �
	� It needs to construct some attribute dependency graphs dynamically
in execution time� We show here how to construct a dependency graph for Attribute objects actually
in the database�

Attribute informations of each tree nodes are held by a static array in the Node object� Figure
� shows this image� The dependency graph is constructed only by local informations in the Node

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

Node(RHS)

Attribute

real attribute value

to Child Nodes

local graph of attribute dependency

static array

Figure �� Relation between Node and Attribute object

object� that is� by index values of an array of Attribute object� So there are two Attribute objects that
represent the same attribute instance� one is in the parent Node object and the other is in its child
one�

When an object tree is constructed� it is needed to manage two Attribute objects in the parent and
child tree node represent the same attribute instance� We must maintain correspondence of these two
Attribute objects� Figure ���d� shows the correspondence of Attribute object between two nodes� For
this correspondence� the evaluator have to know an object�ID of referring child �or parent� and an
index value of Attribute array� However� the current implementation stores the corresponding Attribute

object�ID in the Attribute object �value� �eld in �gure ��� This value will be computed in grafting
of two nodes will be done�

������ Initializing Node Objects

Although initialization codes of Node object are generated by the OSL translator described in
�
���
we explain here about linking of Attribute objects between tree node described in
�
�
� because it is
slightly complicated�

The location of the corresponded Attribute object changes depending on which RHS object is
grafted in actual object tree� Therefore it is needed to correct the correspondence of Attribute object�
when Node object is connected by graft operation� To put it more concretely� although corresponded
Attribute object can be gotten by the form node�ptr��attr�i
 where node�ptr represents pointer
to Node object� a variable node�ptr and i will change which RHS object have been grafted in that
place�

We have to store corresponded i or object pointer itself in Attribute object� In the current
implementation� we store a computed value in the Attribute object in grafting of two objects� and
use its cached value in the referring time�

���

Using Object�Oriented Attribute Grammars as ODB System Generator

A

B C

A.inh

B.inh C.inhB.syn C.syn

A.syn

BB.inh B.syn

A.inh A.syn B.inh B.syn C.inh C.syn

0 1 2 3 4 5

0 1 2 3 4 5

B.inh B.syn

0 1

0 1

(c) local dependency graph representation
 in each Node object

(d) correspondence of Attribute object
 between object X and object Y

B.inh B.syn

B.inh B.syn

Object X

Object Y

class A(inh | syn) -> X [B(inh | syn), C(inh | syn)]
 { B.inh = A.inh; C.inh = B.syn; A.syn = C.syn; }

class B(inh | syn) -> Y []
 { B.syn = B.inh; }

X.attr[2] X.attr[3]

Y.attr[0] Y.attr[1]

(a) example of class structure rules in OSL spec.

(b) an instantiated object tree
 and their local attribute dependency

Figure �� Representation of Attribute Graph

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

���� Persistent Object Allocation in the Database

MAGE� allocates all objects �nally in the database� It uses the persistent object allocation mechanism
of ODBMS for this purpose�

Many ODBMSs have the C�� library interface and can allocate STL container classes also
persistently such vector� list and set persistently� �STL is an ISO C�� standard library�� So the
attribute evaluator is constructed using STL classes in MAGE� implementation�

When applying an attribute evaluator to persistent objects� we have to consider about execution
speed of it� ODBMSs that have a client caching architecture can access to objects in the database
as fast as in the heap memory� because they map the database in the memory� So the MAGE��s
attribute evaluator will work in reasonable speed� For example� ObjectStore��	 and Objectivity�DB��	
have client caching architecture�

We are now implementing persistent object trees using the ObjectStore� Although there are some
di�erence about a method for persistent allocation and use of an object�ID depending on ODBMSs�
we show a procedure in the case of the ObjectStore�

� Replace object allocation code to using persistent new of ODBMS�
For example� Node object allocation are written following in ObjectStore�

Node �node � new�db� os�ts�Node���get�		 Some�RHS�Node�Class�	�

where db is a database and os�ts is a type information�

� Replace default allocator of STL classes to persistent version of an ODBMS�s allocator class�
For example� set of Node� are often used in the attribute evaluator�

typedef set�Node�� nodep�set�

are changed like following�

typedef os�allocator�Node�� os�value�node�Node��� nodep�set�alloc�

typedef std��set�Node�� nodep�set�alloc� nodep�set�

���� Benchmark Result

In order to show that an object tree in the database is evaluated in reasonable speed� we have performed
an simple benchmark test� In this test� we use Fibonacci program that create many number of objects
dynamically �see appendix B�� In the i�th turn of OOAG evaluation loop� it creates �i�� objects in
the highest case and replaces leaf nodes to them� Finally� it stops evaluation after creating fib�n� leaf
objects�

We record the execution time of the non�database version and database version of evaluator from
fib�in � �� to ��� Table
 shows result of this test�

The di�erence of execution time between non�DB and DB version widen as the number of objects�
but it is proper result taking into consideration of character of the program � it creates and deletes
many objects frequently�

�� Application Example

We have started the MAGE� system development for generating a repository system for software
development environments��	� But it is useful for managing other structural data objects� For example�

���

Using Object�Oriented Attribute Grammars as ODB System Generator

n Execution time �s	
non�DB
version

DB
version

�created
DB size�

�� �� �� ���� KB�
�� �� �� ��
� KB�
��
� �� ������ KB�

These results have been get
under following environment�
Intel MMX Pentium ���MHz PC
��MB Memory
Windows ���� � ObjectStore PSE Pro

Table
� Execution time of Fibonacci program

XML documents are fully structured text data and favorably it has tree structures� However we
consider about constructing OSL class code repository here that we are developing�

Although we have constructed MAGE� translator by the Synthesizer Generator� we are now
constructing it by MAGE� itself� Furthermore we intend to construct an OSL speci�cation repository
from this translator code using MAGE��s ODB system generator features�

If we construct the translator by MAGE� as usual� it will create production trees in an ODB
as persistent data� Suppose output code of C�� classes is generated in synthesized attribute at
root node of production trees� C�� class code is always computed consistently correspond to the
production tree stored in the database� However� we need to construct the OSL syntax parser by
another tool separately and pass the production tree to the translator� because MAGE� does not have
parser generator functions�

In the OSL translator development� a production tree of OSL speci�cation �le contents may be
de�ned in a list of LHS class de�nitions� But it does not have special meaning to manage by ��le��
when creating OSL code repository� So it can be de�ned in separate trees for each LHS classes� This
makes it easy to manage OSL speci�cations in class units� This means we do not declare

class osl�spec �� OSL�Spec�lhs�class�decl�list��	

but

class lhs�root �� Lhs�Root�lhs�class�decl��	

Now� we must construct the OSL translation system interface in �main��� function� Although
��	 indicates advanced applications of OOAG to software development environment construction� we
construct OSL code repository as only simple application here� that is� we implement only following
functions� storing and retrieving of OSL code and retrieving corresponding C�� code� So we only
create dictionary from LHS name to root node of production tree� Such dictionary can be implemented
by basic function of ODBMS� Figure � shows our OSL translation system and code repository system�

�� Creating abstract syntax tree for OSL�

�� De�ning attribution rules for translating from OSL to C�� classes�

� Creating OSL parser� This parser generates OSL production trees in a text form�

�� Designing OOAG message interface for retrieving codes from database�

�� ODBMS interaction such database initialization� transaction� look up interface and so on�

��

Hagiwara
 Gondow
 Imaizumi
 Katayama

LHS name - Node*
Dictionary

OSL spec.

Parse Tree
in text form.

Parse

input

In the DATABASE
get_cpp_code(| string code)

message

C++ Class
code

LHS name - Text file
Dictionary

Dictionary Dictionary

C++
code

generated
spec. repository
system

production trees
of each LHS classes

Figure �� OSL Speci�cation Repository System

���

Using Object�Oriented Attribute Grammars as ODB System Generator

�� The comparison with conventional database development

In this section� we make a comparative study between the our way of developing databases and the
conventional way especially for software development environments�

���� Handling small grain software objects

In the tool development of conventional software development environments� each development tool
have di�erent representations of the objects and wrote them in individual �les� But these individual
object representations should be integrated into common representations in order to make it easier
to combine and reuse various tools� For example� if compiler and static program analyzer are highly
integrated where ASTs are used as common data representation� static program analyzers do not have
to parse the program again� and also reuse useful information like symbol tables�

In order to �nd smart common data representation� many studies have been done� software
databases or repositories to handle small grained objects with complicated types �e�g� PCTE OMS���	�
CDIF� etc���

PCTE OMS aims to share CASE objects by typing in the E�R model� and CDIF tries to provide
the uniform format to exchange objects between tools�

The Mj�lner���	� one of these studies� utilizes abstract syntax trees �ASTs� as the common
representation of the program information� It could construct software development environments
for manipulating programs� Our study belongs under this category�

For the sharing information� we must handle software objects in small grained� If we do not handle
small grained objects� we have to begin the work with breaking down large objects into convenient
small parts when we will construct some tool� This makes no sense in sharing objects between tools�

ASTs are a good choice of sharing objects for an environment to handle programs� as their parts
are small enough and highly abstracted�

Our plan is to widen a application area to not only handling programs but other software
development lifecycle such as design document handling� Key points are �representation method�
and �database construction method� of software objects� About a grammar based representation
method of software objects are discussed in ��	� So we discuss about the following in the rest of this
section�

����� Programming with the RDBMS

���
� Programming with the ODBMS

����� Special systems for software database development

���� Making the database with hierarchical classi�cation

In this section� we show why it is di�cult to manage software objects using traditional RDB� We also
show the solution in our approach�

RDB is not suitable for managing software objects� mainly because�

� The granurarity of software objects are widely diverse� so it is di�cult to model them by using
�xed�length record in RDB�

� The relatoins among software objects are also widely diverse� so it is di�cult to model them by
indexing in RDB�

In our methodology�

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

�� Various granurarity of software objects is modeled naturally by using CFG� since CFG gives an
uniform way to handle software objects with simple descriptions�

�� Various relations among software objects are encoded as attribute values�

For example� let us take the case of compiler construction using AGs� As a typical relation�
there is a relation between a declared variable and the use of the variable� called def�ref relation
here� We collect information about all de�ned variables in a synthesized attribute on the root as
a symbol table and distribute the symbol table through inherited attributes� This symbol table
makes it possible to detect inconsistent def�ref relation such as refered but not de�ned variable�
To summarize� semantic de�nition using attributes can provide smart ways to handle complex
relations among software objects�

���� Programming directly with the ODBMS

This section explains why ODBMS is not good enough for our purpose�

ODBMS is a good tool to program software databases� since ODBMS can describe any structured
database schema� and user�de�ned complex typed objects� Furthermore� in ODBMS� we can use
various convenient library functions for persistency� mutual exclusion� versioning and so on�

Then� what are we dissatis�ed with the programming in the ODBMS The answer is that ODBMS
requires too low level programming� This property is not acceptable� because what we want here is a
high�level description tool for software databases in order to make the best use of ASTs as common
data representation�

���� OOAG� Specialized System for Software Database Development

This section brie�y presents our idea using OOAG for software database development�

In the previous two sections� we pointed out the following two requirements for software database
construction tool�

� The tool should handle various granurarity and relations of software objects�

� The tool should have a high�level description language for them�

Moreover� we point out the third requirement�

� The tool should e�ciently manage stored object� especially derived� and small�grained objects�

For example� PCTE OMS does not satisfy the last requirement� E�cient algorithms to maintain
derived small�grained objects have been studied� e�g� ���� �
	�

OOAG aim a software database construction tool that satis�es the above all requirements� Basic
ideas and distinctive features of OOAG compared with conventional AGs are follows�

� OOAG can modify attributed tree dynamically in its computation mechanism� This ability
enable us to describe object management in software databases while preserving the advantages
of AGs�

� Parsing trees� derived values� and relations as attribute values are stored into database directly�
which implies that various tools can share and reuse not only parsing trees� but also attribute
values�

With the above properties� OOAG is useful in the following situations�

���

Using Object�Oriented Attribute Grammars as ODB System Generator

�� Constructing pattern matching tool based on syntactic structure�

For example� the tool searches all parts that match �if �hexpi � hexpi� then hexpi !else hexpi"��
and replace them by �if �hexpi �� hexpi��� It is easy to construct the tool because OOAG handle
ASTs as common data representation�

�� Sharing context�sensitive information between tools�

For example� symbol tables that are created by compiler can be shared and reused by other
tools� since the symbol tables exist in database and are accessible�

� Constructing tools incrementally�

The advantages inherited from AGs guarantee high readability and high maintainability of the
tools�

�� Conclusion

In this paper� we introduced the MAGE� system as an ODB generator construction tool� A constructed
tool by MAGE� system creates attributed object trees in an ODB persistently� Operations to
persistent object trees can be described in OSL speci�cations by the message passing mechanism
of OOAG model� Programmers who use MAGE� will only write interface codes between generated
tool�

Created ODBs will be maintained by the OOAG evaluator� This includes updating� adding or
deleting objects� They will be described in dynamic subtrees operation by message passing� If the
state of object trees in the database will be inconsistent� OOAG evaluation loop will keep them
consistent�

From above features of MAGE� system� we can develop easily complicated object�oriented database
systems which manage structured data e�ciently�

�� Future Works

From the viewpoint of an execution speed of attribute evaluation� it is better to implement more
e�cient evaluator such ordered AGs ���	 one� We plan to implement another evaluator using improved
ordered AGs class OAG� introduced in ���	�

Bibliography

��	 D�E� Knuth� Semantics of context�free languages� Mathematical Systems Theory� ��������#����
�����

��	 GrammaTech� Inc�� One Hopkins Place� Ithaca� NY ������ U�S�A� The Synthesizer Generator
Reference Manual� ��� edition� ���
�

�
	 Yoichi Shinoda and Takuya Katayama� Object Oriented Extension of Attribute Grammars
and Its Implementation Using Distributed Attribute Evaluation Algorithm� In Proceedings of
the International Workshop on Attribute Grammars and their Applications� Lecture Note in
Computer Science Vol� �
�� pages ���#���� Springer�Verlag� �����

��	 Yoichi Shinoda� On Application of Attribute Grammars to Software Development� PhD thesis�
Tokyo Institute of Technology�
 �����

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

��	 Yasuhiro Iida� OSL language speci�cation ver���� �in Japanese�� Technical Report ��TR������
Department of Computer Science� Tokyo Institute of Technology� June �����

��	 Object Design Inc� �� Burlington Mall Road Burlington� MA ����
������ ObjectStore User
Guide� Release
�� for UNIX Systems� ���
�

��	 Object Disign� Inc�� Burlington� MA ����
������ ObjectStore PSE�PSE Pro for C�� Tutorial
and API User Guide� September �����

��	 Objectivity� Inc� Objectivity�C��� June �����

��	 Katsuhiko Gondow� Takashi Imaizumi� Youichi Shinoda� and Takuya Katayama� Change
Management and Consistency Maintenance in Software Development Environments Using Object
Oriented Attribute Grammars� In Object Technologies for Advanced Software� pages ��#���
Springer�Verlag� ���
� LNCS ����

���	 Gerard Boudier� Ferdinando Gallo� R$gis Minot� and Ian Thomas� An Overview of PCTE
and PCTE�� In Peter Henderson� editor� Proceedings of the ACM SIGSOFT�SIGPLAN
Software Engineering Symposium on Practical Software Development Environments� pages ���#
���� November �����

���	 J� Lindskov Knudsen� M� L%fgren� O� Lehrmann Madsen� and B� Magnusson� OBJECT�
ORIENTED ENVIRONMENTS� THE MJ�LNER APPROACH� PRENTICE HALL� ���
�

���	 Scott E� Hudson and Roger King� CACTIS� A Database System for Specifying Functionally�
De�ned Data� In Proceedings International Workshop on Object�Oriented Database Systems�
�����

��
	 N� Kiesel� A� Sch&rr� and B� Westfechtel� GRAS� A Graph�Oriented Database System for
Engineering Applications� In Jarzabek Lee� Reid� editor� CASE �	

th Int� Conf� on Computer�
Aided Software Engineering� pages ���#���� IEEE Computer Society Press� ���
�

���	 Uwe Kastens� Ordered attribute grammars� Acta Informatica� �
�
�����#���� �����

���	 Shin Natori� Katsuhiko Gondow� Takashi Imaizumi� Takeshi Hagiwara� and Takuya Katayama�
On Eliminating Type
 Circularities of Ordered Attribute Grammars� In �nd Int� Workshop on
Attribute Grammars and their Applications �WAGA�		�� pages ��#���� INRIA rocquencourt�

�����

���

July ���� � Third Workshop on Attribute Grammars and their Applications � WAGA����

A� Example of OSL speci�cations

We show small example of OSL speci�cations �dig�ooag� below� Their speci�cations are for
representing and interpreting a digit sequence�

Suppose we pass following text as an initial object tree�

N��I��I��I��D���

� D���

� D���

The generated system creates object tree and waits for messages value or change� If message value is
received by an object N�� its output attribute value is evaluated according to its input attribute radix�
In this program� digit sequence will be interpreted by radix� for example if value����val	 will be
send to N�� val will be ���� and if value���val	 will be send� val will be �
� Message change�pos
will change speci�ed subtree to new�digit�

class N��� �� N��I�int scale���
� I	scale
 ��

N�value�int radix�int val�
� I�value�int radix�int val�
� I	radix
 N	radix� N	val
 I	val�

N�change�int change�pos� D new�digit��

� I�change�int change�pos� D new�digit��
� I	change�pos
 N	change�pos� I	new�digit
 N	new�digit�

class I�int scale��
�� I��I�int scale��� D�int scale���
� I��	scale
 I��	scale � �� D	scale
 I��	scale�

I���value�int radix�int val�

� I���value�int radix�int val�� D�value�int radix�int val�
� I��	radix
 I��	radix� D	radix
 I��	radix� I��	val
 I��	val � D	val�

I���change�int change�pos� D new�digit��
case�I��	change�pos

 I��	scale�

�
� �new D�
 I��	new�digit�

otherwise

� I���change�int change�pos� D new�digit��
� I��	change�pos
 I��	change�pos� I��	new�digit
 I��	new�digit�

�� I��D�int scale���
� D	scale
 I	scale�

I�value�int radix�int val�
� D�value�int radix�int val�
� D	radix
 I	radix� I	val
 D	val�

I�change�int change�pos� D new�digit��
case�I	change�pos

 I	scale�

�
� �new D�
 I	new�digit�

class D�int scale��
�� D��int digit�
�

D�value�int radix�int val�
�

� D	val
 digit � D	radix exp D	scale�

���

Hagiwara
 Gondow
 Imaizumi
 Katayama

B� Fibonacci program used in a benchmark

When we pass � Root�FibNull�

� as an initial object tree to this program� it grows replacing
FibNull�
 to FibOne�
 or FibPair�FibNull�
� FibNull�

 as its fib�in value�

class top��int out� �� Root�fib�int in�int out��

� fib�in 	
� top�out 	 fib�out� �

class fib�int in�int out�

�� FibNull��

� fib�out 	
� �

case�fib�in � ��

	�

� �new fib� 	 FibOne��� �

otherwise

	�

� �new fib� 	 FibPair�FibNull��� FibNull���� �

�� FibOne��

� fib�out 	 �� �

�� FibPair�fib�int in�int out�� fib�int in�int out��

� fib���out 	 fib���out � fib���out�

fib���in 	 fib���in � �� fib���in 	 fib���in � �� �

���

