
GUIDE business transaction markup version 0.13
 Page 1

GUIDE business transaction markup 1

Early Draft, Version 0.13, 12 September 2000 2

Open submission to ebXML and for use with ebXML. 3

 4

Abstract 5

GUIDE is a XML format for describing business information interchanges between a set 6
of endpoints exchanging transactions. GUIDE is a layered approach, so that each aspect 7
of the GUIDE syntax is expressed as a separate markup layer. Separation into layers is a 8
fundamental requirement in order to meet the ability to deploy the semantic web as 9
opposed to the content-based web of today. 10

The objective of GUIDE is to provide a simple open business interchange system for the 11
consistent exchange of transactions. Therefore a business when implementing a set of 12
business interchanges with a trading partner will seek to find or create the appropriate 13
guides with which to define the required business semantics of such interchanges 14
(semantic guides). 15

Layers provide a high degree of flexibility in how GUIDE can be approached and 16
utilized. Layers allow GUIDE to function as a repository classification system, a 17
transactional payload format, or as a harmonization bridge between simple XML V1.0 18
DTD syntax, more complex schema dialects and proprietary or specialized markup. 19
Layers also allow GUIDE to provide globally maintainable interchange mechanisms and 20
provide for impact management when adopting future XML syntax enhancements within 21
each layer. 22

The goal of providing simple business use scenarios then clearly defines the principles 23
and constraints for the GUIDE system itself. The semantic guide consists of three layers 24
(categories) of information: firstly a description of the structure and model of the physical 25
interchange markup along with the associated process actions and verbs; secondly the 26
datatyping and business context markup; and thirdly a top level classification mechanism 27
that allows for the grouping together of industry vertical sets of semantic guides to 28
facilitate location and re-use of particular business functional components. 29

The key to cost-effective business information interchanges is to provide a guaranteed 30
consistent behaviour between different computer systems in a loosely coupled distributed 31
network environment. To achieve this GUIDE purposefully limits and designs the 32
markup syntax to only a business functional subset that can be known to be consistently 33
programmed and implemented. 34

GUIDE business transaction markup version 0.13
 Page 2

Within these constraints GUIDE is extensible to allow description of both legacy and 35
future business record layouts and information structures. This allows GUIDE to provide 36
a natural migration path from existing business application systems to the future with 37
XML based ones in a simple and consistent way without requiring extensive software re-38
engineering. This approach also allows users themselves to select simple lightweight low 39
cost solutions, alongside more sophisticated and extended applications. This in turn 40
positions the GUIDE approach to gain broad adoption across the marketplace because 41
barriers to adoption will be minimized. 42

Status 43

This draft represents the blending of current practical work in a variety of areas with 44
XML, including the latest W3C Schema and Datatyping drafts, MSL typing markup, 45
SOAP based interchanges, ISO11179, tpaML and ebXML related work. It is not the 46
intention that GUIDE replace all these other initiatives, but rather that GUIDE provide a 47
consistent way to harmonize these more complex syntaxes into a format that ordinary 48
businesses can use reliably and consistently for basic day-to-day information 49
interchanges. This will also allow developers to create base implementations of XML 50
parsers and tools that are simply GUIDE compatible, that can later be extended to also 51
support more complex syntaxes as business needs dictate. This draft is published to the 52
ebXML and W3C for the purpose of creating a working document around which 53
continued work can proceed. It is anticipated that early implementations of GUIDE will 54
mature and improve with additional contributions and syntax enhancements and in no 55
way should this current draft be seen as a completed specification prior to final release 56
of a formal 1.0 version. 57

Contributors 58

Document Editor: TBD 59

Contributors: 60

David RR Webber. 61

62

GUIDE business transaction markup version 0.13
 Page 3

1. Table of Contents 62

 63
GUIDE business transaction markup 64

Early Draft, Version 0.13, 12 September 2000 65
Abstract 66
Status 67
Contributors 68
1. Table of Contents 69
2. Introduction 70

2.1 Design Goals 71
2.2 Examples of GUIDE layers 72
2.3 Qualifier Indicator Codes (QIC) system. 73
2.4 Classification Layer Example. 74
2.5 Relationship to the OASIS Registry system. 75

3. Relation to W3C XML V1.0 and W3C Schema 76
4. GUIDE layers 77

4.1 GUIDE classifications 78
4.2 GUIDE structures 79

4.2.1 Container Structure for GUIDE fragments 80
4.3 GUIDE elements 81
4.4 GUIDE linking 82
4.5 Type systems 83

5. GUIDE implementation 84
5.1 Transactions 85
5.2 Relationship of and use of Bizcodes 86
5.3 Operations and Verbs 87
5.4 GUIDE compliant parser implementation 88
5.5 GUIDE conformance testing 89
5.6 Reusable Bindings 90

6. Orchestration 91
7. Tutorial and Use Case 92
8. Addendum 93

 94

95

GUIDE business transaction markup version 0.13
 Page 4

2. Introduction 95

The objective of GUIDE is to provide a simple business interchange system for data that 96
is compatible with XML V1.0, the W3C schema, OASIS Registry and other related 97
schema work. The acronym GUIDE stands for: 98

Global Uniform Interoperable Data Exchange

The GUIDE approach at a glance consists of three layers that allow a simple and clear 99
view of the key aspects of information exchange. 100

The top level is the classifications. This mechanism allows you to group together industry 101
vertical sets of transactions so you can quickly and easily find the particular business 102
functional components that you require based on business use and context. 103

The core layer is then the Guide schema structures that carry the actual information 104
exchanges and define how you build physical transaction instances. 105

On the bottom layer are the Guide elements; the data dictionary that specify each piece of 106
information contained within the Guide structures. Figure 1 shows how the layers relate, 107
and how they relate to the mechanisms described by the ebXML architecture technical 108
specifications. 109

Figure 1. Guide Layers. 110

Element Reference Definitions

Structure Rules & Model

Process Classification

XML
GUIDE
transaction

ebXML transport

ebXML repository

ebXML core components
ebXML business process 111

GUIDE business transaction markup version 0.13
 Page 5

 112

2.1 Design Goals 113

The GUIDE principles require that the syntax must be: 114

1) Simple to understand, learn, read and use. 115

2) Provide a concise feature function set thereby ensuring consistent implementations, 116
interoperability, and low cost of adoption. Each feature must earn its place based on 117
widespread business need and applicability. 118

3) Separate the datatyping and definition layer from the physical modelling layer. This 119
ensures easy to build transaction structure syntax while providing maintainable 120
reusable business element definitions for horizontal and vertical industry dictionaries. 121

4) Support traditional EDI style hierarchical structured information formats and 122
exchanges with version control and interchange control. 123

5) Provide basic object oriented semantics for methods, classes, and simple inheritance to 124
allow business exchanges of industry wide process components. [Extended complex 125
features that require excessive levels of software complexity to engineer and lead to 126
uncertain deployment behaviours will be specifically excluded. Examples include 127
polymorphism, multiple inheritance, nested imports, pattern facets, and similar exotic 128
programming features and behaviours]. 129

6) Provide link to direct browser form rendering from GUIDE definitions to allow user 130
presentation with multilingual support. 131

7) Provide a simple metaphor to migrate and express COBOL copybooks, SQL table 132
definitions, CICS structures, program data structures, business data dictionaries and 133
similar information content quickly and easily into. 134

8) Be based on the W3C XML markup syntax, with minimal use of extended features, 135
and be consistent with and interoperable with the ebXML technical specifications. 136

9) Above all, provide both large industry partners and small businesses with mission 137
critical high volume, high performance, and open public standard based interchanges. 138
Coupled with the long term means to conduct and maintain cost effective electronic 139
information exchanges that can be simply deployed and exploited by as large a cross-140
section of the workforce as possible. 141

142

GUIDE business transaction markup version 0.13
 Page 6

2.2 Examples of GUIDE layers 142

The GUIDE layers are designed to separate each aspect of the markup, thereby making 143
each layer itself simple elegant and intuitive to learn. This approach also provides a 144
built-in reuse of commonly occurring definitions. Furthermore, within GUIDE syntax 145
extensive use is made of common default values so that the syntax is uncluttered and 146
particularly easy to create and manually interpret. In the past schema were expected to 147
have complex syntax set heavily dependent on explicit semantics to define all of the 148
aspects of structure, datatyping and semantics. The GUIDE approach also provides a 149
mechanism for use with XML V1.0 DTD syntax; see section D of the Addendum for 150
using this method. This provides a simple means to use GUIDE with current parser 151
based tools. 152

Example 1 GUIDE structure for a mailing address 153

This example illustrates a simple physical structure model with a repeated group of 154
information. Other more complex structures are shown as later examples. 155

<mailAddress 156
 xmlns:guide="http://www.ebXML.org/guides/address.xml"> 157
 <fullName>Joe H. Smith</fullName> 158
 <street>101 Main Street</street> 159
 <street>Apartment 20b</street> 160
 <city>Taggtown</city> 161
 <ZIP>10230-0001</ZIP> 162
 <state>AZ</state> 163
 <accountActive>YES</accountActive> 164
 </mailAddress> 165

The intent of the example here is to introduce GUIDE syntax in a familiar data construct. 166
The associated GUIDE element and GUIDE classification layers are then shown in 167
Example 2 and Example 3. The GUIDE structure that is referenced in Example 1 is 168
shown here. 169

 <?xml version="1.0" ?> 170
 <xmlGuide use="structure" name="mailingAddress" version="0.1" 171
 xmlns:qic="http://www.ebXML.org/guides/elements/postal.xml" 172
 xmlns:crm="http://www.crm.org/guides/elements/basics.xml"> 173
 <sequence> 174
 <element name="fullName" qic:base="personDetails" /> 175
 <element name="street" qic:base="postalStreet" 176
 OCCURS="+" LIMIT="5" /> 177
 <element name="city" qic:base="postalCity" qic:mask="UX19" /> 178
 <element name="ZIP" qic:base="usPostalCode" /> 179
 <element name="state" qic:base="usStateCode" /> 180
 <element name="accountActive" qic:base="crm:activeStatus" /> 181
 </sequence> 182
 </xmlGuide> 183

GUIDE business transaction markup version 0.13
 Page 7

There are several important business aspects being demonstrated here. The ‘qic:base’ 184
definitions are using Qualifying Indicator Codes (see Example 2 below) to provide the 185
link between the structural layer and the element layer. This approach provides an 186
abstract linkage between a physical element and the actual definition. This is a familiar 187
technique from EDI where industry standard code and element definitions provide 188
commonality across widely differing local usage terminology. An extended discussion of 189
the qic:base mechanism and syntax is provided in section 2.3 with further examples. 190
There are three modes that qic:base references can be used in to establish the linkage 191
between the structural layer and the element layer definitions, simple, annotated and 192
local. Examples of using simple and annotated modes are shown in example 1. The 193
default namespace qic points to the location of the qic:base references, and an inline 194
reference to a namespace can override this for local definitions, as with the crm: 195
namespace use. (W3C note: simple mode can provide a harmonization with the MSL typing markup 196
proposal and other proposals such as RELAX.) 197

Next, the example shows the use of structural modelling syntax. Exception based 198
markup is a key design aspect of GUIDE. Only necessary markup is required, and 199
common default behaviours are used to remove unnecessary verbose markup. Following 200
this approach all element definitions are assumed to denote a unit item, unless compound 201
or repeat indication markup is used to denote otherwise. In this respect the OCCURS / 202
LIMIT construct is shown as the preferred occurrence indicator mechanism as it provides 203
more concise readable syntax. The OCCURS and LIMIT attributes are both optional and 204
therefore when used provide an immediate business rule indicator that an interchange is 205
constrained in some important way for a business partner. This significantly improves 206
readability and the ability to use software agent technology to scan structures for possible 207
process clashes. 208

To further enhance future interoperability the OCCURS attribute only allows the loop 209
constructs ‘*’ and ‘+’ that are of course equivalent to ‘do while’ and ‘do until’ with no 210
explicit constraint other than ‘end of data’. The OCCURS may not use any explicit 211
value (the equivalent of a FOR loop), that functionality is reserved to the LIMIT attribute, 212
and thus the use of a value that leads to potential business information processing 213
structure clashes can be immediately detected. (Note: The OCCURS may also have a value of 214
‘optional’ for compatibility with the DTD ‘?’ syntax usage). 215

The element type references in a GUIDE structure have three mechanisms as detailed in 216
section 2.3 below. The two referential mechanisms are illustrated in Example 1 above. 217
Referring to Example 1, first simple mode is illustrated by the definition of all the 218
elements. Then annotated mode is illustrated by the definition of city that references the 219
that qic:base postalCity, but then provides an annotation using a mask1 by locally 220
overriding the format to a twenty character alphanumeric string, the first character of 221
which will always be returned capitalized (\UX19). Notice there are two aspects to this; 222
an annotation is merely designed to allow locally annotated variations to the qic:base 223
definitions, however where the business use or sense is different, then a new item 224
qic:base should be created and cross-referenced to the parent (see ISO11179 data 225
element registry specifications for full descriptions and use of these mechanisms). 226

GUIDE business transaction markup version 0.13
 Page 8

Note 1: Please refer to the appendix section in this document on mask definitions for the full mask syntax 227
use. As a brief note here the control characters used are ‘#’ = numeric digit, ‘X’ = alphanumeric, ‘U’ = 228
uppercase alphanumeric, and the number suffix is the repeat count (element field length). 229

W3C compatibility note: GUIDE prefers mask definitions to the more functionally complex W3C pattern 230
facets. There are several business reasons for this. Firstly, mask definitions map more cleanly from legacy 231
application language record structures that already use masks and masks are intuitive to read and learn; 232
secondly masks provide sufficient expression for most all business application needs; and thirdly pattern 233
facets add significantly to the complexity of the parser implementation. Thus adoption of masks obeys the 234
design criteria for GUIDE more closely than pattern facets. 235

The adoption of mask over pattern facet demonstrates another capability of the GUIDE syntax, the ability 236
to provide a simple human intuitive construct that can be mapped into a machine cryptic format for 237
backend or cross-schema dialect compatibility (see appendix for examples of GUIDE masks and the 238
equivalent using W3C cryptic pattern facets). A further example is that mask definitions can be mapped to 239
POSIX and similar mask definitions as required. 240

241

GUIDE business transaction markup version 0.13
 Page 9

 241

2.3 Qualifier Indicator Codes (QIC) system. 242

The QIC system allows use of three modes of reference indicator within the XML syntax. 243
Each mode is now examined in turn, and its usage. The QIC reference itself is designed 244
for use with an XML parser using the namespace and IDREF mechanisms to resolve 245
external references to extended XML definitions of elements within a GUIDE structure 246
definition. Using this approach allows a GUIDE compliant parser to retrieve only those 247
QIC references that are explicitly needed by the application software interfacing with the 248
XML parser, and further to cache such references to reduce network traffic during 249
extended GUIDE based business interchanges. For more details on parser behaviour see 250
the sections 4.4 and 5.4 on linking and behaviour and optional use of XPath optimization. 251

The QIC system uses two related references, the qic reference, and the qic:base 252
reference. The optional qic:base reference is provided for compatibility with schema 253
based datatyping systems where the named reference is a base typing from within a 254
schema layer that is pointed to by the datatypes namespace within the GUIDE element 255
layer (see example 2). The figure 2 shows how these reference modes relate and can be 256
used together or separately to define the business elements needed. 257

Figure 2. GUIDE QIC reference modes 258

simple reference mode

local reference mode

qic Element References
GUIDE - Structure layer

direct mask definitions

qic valueqic:base
schema
datatype

simple
element

complex
object

simple
elements

qicoptional
cross-ref's

"DD/MM/YYYY"

"(###)-###-####'
"$#7.2Z0P*"optional

annotation

ty
p

in
g

 &
ta

g
lib

s
/

ad
ju

n
ct

s

XML markup details

GUIDE - Element Layer

bizcode
bizcode
bizcode

business
properties

 259

GUIDE business transaction markup version 0.13
 Page 10

The qic reference mode uses the ‘?value’ pair to provide an XML IDREF lookup to the 260
content referred to by the default element namespace for the structure (additional 261
namespaces may be declared and then the reference indicator uses the form ‘?ns:value’ to 262
qualify the reference explicitly). It should be noted that the qic reference system is 263
analogous to the concept of a Global Unique ID (GUID) system. However, qic assumes 264
uniqueness only within context of the given registry, and therefore does not require a 265
global registration service. This refinement is compatible with the barcodes model 266
already used for product registration, where barcodes can be locally unique or globally 267
unique (registered). 268

When either a qic or a qic:base reference indicator has a optional mask attribute, this 269
provides an alternate picture mask. This can be used to override the length and format 270
definition from the element reference layer, as this is the most common change required 271
when using standard data dictionaries and therefore provides a quick and intuitive 272
override mechanism. 273

With the qic=”” reference, when the type definition is not preceded with a ‘?’ reference 274
indicator this is then the local reference mode use and therefore it is an in-line character 275
mask definition. 276

Local mode is designed to be used for explicit local internal interchange usage only, or to 277
provide a rapid means for migrating legacy data structures. All other uses should prefer 278
the reference simple or annotated indicator mode. 279

Example 2 now follows on to demonstrate each of these modes and the extended 280
capabilities that the layer approach brings to GUIDE by showing the element definition 281
structure itself. 282

 283

Example 2 GUIDE elements for a mailing address 284

This example shows the definition of GUIDE elements that are referenced in the 285
Example 1 structure. The type reference indicators in example 1 and the default element 286
namespace are used to reference the GUIDE element layer. The element layer reference 287
can be an extended ebXML repository query reference (see ebXML repository technical 288
specifications), or it maybe a default GUIDE reference using a simple XML IDREF 289
lookup to retrieve the basic datatyping information from the element reference layer. 290

As can be seen from the sparse syntax required in Example 1 above this brings 291
performance, readability and interoperability advantages. The GUIDE element layer is 292
extensible without effecting already deployed GUIDE structures that reference it. Also 293
considerable syntax overhead is saved from the GUIDE structure model itself. Each 294
layer can focus on providing the explicit functionality required by that layer. 295

GUIDE business transaction markup version 0.13
 Page 11

Additionally the element reference layer is designed to support an extensible list of 296
information reference types, some examples have been included: XForm, SQL, EDI 297
(igML) and MSL (schema). 298

The default retrieval will be ebXML repository base element definitions (example items 299
have been used here to illustrate the concepts since the ebXML technical specifications are still a work in 300
progress). 301

<?xml version="1.0" ?> 302
<!-- 303
* GUIDE element for use with namespace and IDREF * 304
* reference system. * 305
* * 306
* Version 0.11 August, 2000 * 307
* * 308
* Guide Extensions (taglib): * 309
* XForm * 310
* SQL * 311
* EDI * 312
* MSL * 313
 --> 314
<xmlGuide use="element" name="xmlg:mailingAddress" version="0.1" 315
 xmlns:datatypes="http://www.ebXML.org/guides/datatypes.xml" 316
 xmlns:qic="http://www.ebXML.org/guides/bizcodes.xml"> 317
 <definitions> 318
 <bizcode qic="ADR01001" qic:base="personDetails" bizname=" fullName"> 319
 <guide> 320
 <status date="21/02/2000">candidate</status> 321
 <maxlength>30</maxlength> 322
 <minlength>1</minlength> 323
 <datatype>string</datatype> 324
 <mask>X30</mask> 325
 <values default=""> 326
 <value /> <!-- allowed values can go here when applicable --> 327
 </values> 328
 <localdescription xml:lang="EN" xml:space="preserve">The full name of a 329
 person as a single unformatted human readable string. 330
 </localdescription> 331
 <fulldescription xml:lang="EN" mimetype="HTML" > 332
 http://www.address.org/desc/ADR01001.htm</fulldescription> 333
 <labels> 334
 <label xml:lang="EN">Full Name</label> 335
 <label xml:lang="GR">Groß nam</label> 336
 <label xml:lang="FR">Nom complet</label> 337
 <label xml:lang="IT">Nome completo</label> 338
 <label xml:lang="ES">Nombre completo</label> 339
 </labels> 340
 <seeAlso> 341
 <similar>ADR04402</similar> 342
 <equivalent>X1205730</equivalent> 343
 <equivalent>HL706641</equivalent> 344

GUIDE business transaction markup version 0.13
 Page 12

 <related>ADR04403</related> 345
 </seeAlso> 346
 <dependencies> 347
 <dependent type="required">ADR01002</dependent> 348
 <dependent type="required">ADR01003</dependent> 349
 <dependent type="required">ADR01004</dependent> 350
 <dependent type="required">ADR01005</dependent> 351
 <dependent type="optional">ADR01006</dependent> 352
 </dependencies> 353
 <attributes> 354
 <attribute name="xml:lang" qic:base="xml_lang_code" type="optional" /> 355
 <attribute name="customerID" qic="ADR02105" type="optional" /> 356
 </attributes> 357
 </guide> 358
 <extensions> 359
 <extension type="ADR01001:XForm"> 360
 <item type="formcontrol">textfield</item> 361
 </extension> 362
 <extension type="ADR01001:SQL"> 363
 <item type="datatype">varchar</item> 364
 <item type="length">30</item> 365
 </extension> 366
 <extension type="ADR01001:igML"> <!-- This provides EDI mapping --> 367
 <item type="Format">EDI X12</item> 368
 <item type="Message">142</item> 369
 <item type="SegmentRef">N1</item> 370
 <item type="DictSegment">N1</item> 371
 <item type="DictDataElement">98</item> 372
 </extension> 373
 <extension type="ADR01001:MSL" 374
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 375
 <xsd:complexType name="fullName"> 376
 <xsd:element name="title" base="xsd:string" /> 377
 <xsd:element name="firstName" base="xsd:string" /> 378
 <xsd:element name="middleInitials" base="xsd:string" /> 379
 <xsd:element name="familyName" base="xsd:string" /> 380
 <xsd:attribute name="letters" base="xsd:NMTOKEN" use="fixed"value=","/> 381
 </xsd:complexType> 382
 </extension> 383
 </extensions> 384
 </bizcode> 385
 386
 <bizcode qic="ADR01002" qic:base="addrLine" bizname="ADDR:street"> 387
 <guide /> <!-- details go here --> 388
 </bizcode> 389
 <bizcode qic="ADR01003" qic:base="cityName" bizname="ADDR:city"> 390
 <guide /> <!-- details go here --> 391
 </bizcode> 392
 </definitions> 393
 </xmlGuide> 394

GUIDE business transaction markup version 0.13
 Page 13

The GUIDE element layer is designed to separate the datatyping and business formatting 395
and semantic rule information from the GUIDE structure layer. The key to this 396
mechanism is the use of qic references and the associated Bizcode business properties as 397
illustrated above. A full discussion of the Bizcode concept is provided in the linking 398
section below, and much background material is also available from 399
http://www.bizcodes.org. (Bizcodes provide a simple referential system for information elements, in 400
the same way as barcodes provide such a system for product items. Management and control of Bizcodes 401
themselves is a separate topic and not covered in this GUIDE reference document. An ebXML 402
implementer’s reference will include information related to this once formal specifications are available). 403

The use of an IDREF compatible structure means that parsers can select just the 404
particular piece of content definitions that they require. Also the use of local caching 405
techniques removes the need to repeatedly access the same information via the network. 406
Such performance behaviours are discussed in the section on GUIDE parser compliance. 407

We next discuss the GUIDE classification layer. The classification layer serves a 408
different role to the previous two layers. It is concerned with the interoperability and 409
understanding of the raw information content. As such it overlaps on the ebXML core 410
component, business process and UML/XMI views of the information exchange. It is 411
more focused on providing the human process view, but is equally applicable to future 412
use by agent and object based machine-to-machine interchanges. 413

Compatibility note: by inference the GUIDE element definitions will also include ISO11179 element 414
representations since ebXML is incorporating support for ISO11179, and ISO11179 provides the means to 415
express legacy EDI codes and elements. Also GUIDE mask definitions support the ISO11179 format label 416
constructs that are conceptually identical but just differ in physical semantics). 417

Interoperability note: It should also be noted that the physical control owner of the information in the 418
GUIDE element layer definitions is the owner of the URI at which those definitions reside. Of course such 419
an owner may deploy an ISO11179 or ebXML compliant repository internally to further manage ownership 420
and version control of the information presented through the GUIDE element definitions. 421

Compatibility note: the current EDI system is not compatible with the igML.org definitions. This is being 422
actively worked on and a new revision with full igML XML syntax compatibility will be made available. 423

424

GUIDE business transaction markup version 0.13
 Page 14

 424

2.4 Classification Layer Example. 425

Example 3 GUIDE classification for a mailing address 426

This example shows the definition of GUIDE classification definitions that describe and 427
control the information within the GUIDE layers. Also the classification layer is 428
actually separate from the previous layers since it references the structure definitions and 429
the element definitions, but of course these themselves may be referenced from many 430
classification structures as required. 431

<?xml version="1.0" ?> 432
 <xmlGuide use="classification" name="mailingAddress" version="0.1" 433
 xmlns:guide="http://www.ebXML.org/guides/address.xml"> 434
 <classification> 435
 <description>Provides valid address format for use in mailing via regular mail. 436
 </description> 437
 <domain list="ebxml" value="eb1015" >Transport</domain> 438
 <owner 439
 list="ebxml" value="eb0134">USPS – United States Postal Service</owner> 440
 <process>Shipping</process> 441
 <intent>Define a valid mailing address format</intent> 442
 <context>Delivery</context> 443
 <usage type="Fragment"/> 444
 <level type="Leaf"/> 445
 <title>Mailing address</title> 446
 <action/> 447
 <next/> 448
 <previous/> 449
 <fail/> 450
 <method/> 451
 <UMLmodel/> 452
 </classification> 453
</xmlGuide> 454

This section of the GUIDE layer approach provides the most interesting potential. 455
However, further definition of the exact business role here is required before continued 456
work can be developed. Some items have already been noted in previous sections. A list 457
is presented here as a start point for continued development (see section 3.0 for 458
description of each semantic item). Once the business requirements are refined then the 459
syntax here can be extended to support those. 460
 461

462

GUIDE business transaction markup version 0.13
 Page 15

Business functional requirements: 462

1) Support for process related information showing relationships between GUIDE 463
structures and physical business processes and other GUIDE structures. 464

2) Business object level representations of GUIDE structure groups. 465
3) Support for process modelling technologies such as UML. 466
4) Ability to define domains to classify GUIDE structures and element definitions by 467

industry and process. 468
5) Support ebXML core component and business process technical specifications. 469

It is anticipated that this section will develop of the next few weeks. Particularly 470
concerning the linkage of this classification system to support ebXML business process 471
and core component contextual syntax, and also possibly UDDI as well. Some early 472
prototyping has been done in this area and more is required to explicitly determine exact 473
XML structures to provide the business functionality required. 474

 475

2.5 Relationship to the OASIS Registry system. 476

The GUIDE layers provide a natural overlay onto the classification system required by an 477
OASIS compatible Registry system. To implement GUIDE within an OASIS registry 478
requires that the GUIDE classification details be predefined within the OASIS registry as 479
a set of defaults. Similarly an ebXML compatible registry change or query request can 480
then be mapped into an OASIS equivalent based on OASIS classification and interface 481
structures using the GUIDE approach as the harmonization bridge. Further work is 482
underway to similarly provide a bridge to an ISO11179 compatible repository at the level 483
of the element definition layer. 484

The following figure illustrates the OASIS classification model. By inspecting the 485
GUIDE classification and element layers one can see that each facet of the OASIS model 486
is provided for in GUIDE content. Thus OASIS has the formal specifications of registry 487
content and GUIDE conforms to that information model. The difference is that the 488
OASIS design is a generalized information model, while GUIDE is designed for business 489
transactional information use such as ebXML provides. 490

It should be noted that additionally GUIDE has the ISO11179 owner and version context. 491
Also GUIDE has extensions and transformation support that OASIS registry does not 492
provide. By way of reference the current ebXML TPA work is also another classification 493
system. The TPA system tracks both people and organizations and this can be associated 494
by owner-reference to a GUIDE classification. 495

496

GUIDE business transaction markup version 0.13
 Page 16

Figure 3. OASIS Registry Information Model 496

Registry Item

Association

Classification
- Name
- Level
- Value

Alternate Name (s)
- Role
- Name

Oasis Specialization
(4 models)

Oasis Action
- Uses
- Supercedes
- Replaces
- Contains
- Rollup

Related Data
- Name
- URL
- Role

Alternate Description

Contributor

 497

For more extended information on the OASIS registry specifications please see 498
http://www.xml.org and associated content. 499

 500

3. Relation to W3C XML V1.0 and W3C 501

Schema 502

Generally speaking GUIDE describes behaviour as much as possible using simple XML 503
V1.0 syntax, with use only of a limited subset of W3C schema and related XML 504
Namespace, XLink and other work. GUIDE therefore strives to use a basic XML parser 505
implementation to provide the required business functional behaviours. As such GUIDE 506
may clarify or provided additional detail on specific parser behaviours. GUIDE is 507
further designed to allow standards organizations to create definitive conformance test 508
sets by providing a concise and business functional feature set. 509

510

GUIDE business transaction markup version 0.13
 Page 17

 510

4. GUIDE layers 511

GUIDE defines a layered approach for the information represented in a conforming 512
semantic guide. Each of the three layers is now discussed starting from the top-most 513
layer and working downward to the bottom. 514

4.1 GUIDE classifications 515

The classification layer is designed to provide a consistent re-use layer for the GUIDE 516
information layers that it references. It is designed to also be the first point of contact to 517
a GUIDE compatible interface for use by a human operator to determine the GUIDE 518
interchanges that match their business use requirements. The GUIDE classification layer 519
is also intended to provide management and control features to enable software agents to 520
also access this information layer to manage business processes. 521

GUIDE classification semantics: 522

<description> - human readable text that documents the purpose of the 523
transaction. 524

<domain> - business domain or industry that is the primary relation. 525
<owner> - business organization responsible for management of this 526

transaction. 527
<process> - business functional process associated with the transaction. 528
<context> - physical action being facilitated by the transaction. 529
<usage> - the two values allowed here are Fragment or Standalone; a 530

fragment is intended to be included into other standalone 531
transactions. 532

<title> -Descriptive human readable short title for the transaction. 533
<action> -The action is either response, continue, or inform depending 534

whether the transaction requires a response (two-way), is part 535
of a workflow (continue), or inform (single-use). 536

<next> - Another GUIDE transaction that directly relates to this one 537
(response or continue actions). 538

<previous> - Another GUIDE transaction that directly precedes this once 539
(response or continue actions). 540

<fail> - Should an error condition be detected in the current 541
transaction, then this will indicate the transaction to be use to 542
indicate the transaction failed. Any action will not then occur. 543

<method> - An associated method for this transaction. 544
<UMLmodel> - Container for an XMI based UML model describing this GUIDE 545

classification item. 546
547

GUIDE business transaction markup version 0.13
 Page 18

 547

4.2 GUIDE structures 548

The GUIDE structure definitions model the actual information interchange structure 549
required. Therefore they may function as a schema to define the physical XML 550
transaction instances. They are designed to be simple to create with a minimum of 551
automated editing tools being required, and to be human readable and concise. The 552
GUIDE structure syntax contains only such semantics as necessary to define the physical 553
interchange structure. All extended datatyping information is instead carried within the 554
GUIDE element layer. Reference between the two layers is provided by domain neutral 555
‘Bizcode’ references, in the same way that business products use barcodes for a domain 556
neutral definition system. A full discussion of GUIDE structure syntax is provided in the 557
next section under linking including the keyword dictionary and the various supported 558
information structures that can be modelled. The GUIDE structure syntax extends basic 559
XML V1.0 hierarchical modelling syntax to include method constructs with objects and 560
classes. Some examples are provided of these approaches. 561
 562
GUIDE structure semantics 563
 564
<xmlGuide use="structure" name="mailingAddress" version="0.1" 565
 xmlns:element="http://www.ebXML.org/guides/elements/postal.xml"> 566
 567
The GUIDE prolog attribute use="structure" identifies the particular layer, 568
the name="" is a naming label that reflects the root element name within the 569
XML transaction instance, the version="0.1" provides a versioning 570
mechanism to allow selection of a particular version of a transaction. 571
 572
<sequence> - Indicates the start of a compound sequence dependent 573
structure component. 574
<element name="fullName" qic:base="personDetails" /> 575
 576
The GUIDE element syntax defines an individual XML tag item, followed by a 577
qic:base="" or qic="" definition of the associated element layer definition or 578
mask datatyping. When the qic:base/qic definitions are both omitted then 579
the element syntax defines a container item for further compound sequence 580
structure. Can have an optional OCCURS attribute and LIMIT attribute 581
where applicable. Such an item will then be followed by a further sequence 582
tag to aid readability. 583
 584
 <element name="street" qic:base="postalStreet" 585
 OCCURS="+" LIMIT="5" /> 586
 587
Note: OCCURS="" may have values of ‘*’, ‘+’, or ‘optional’; the LIMIT qualifier is 588
optional and is a single numeric value that denotes the upper bound occurrences. 589

590

GUIDE business transaction markup version 0.13
 Page 19

 590

4.2.1 Container Structure for GUIDE fragments 591

The GUIDE structure syntax allows the use of container structures with the use of the 592
includeXML tag. An example is provided here. 593

Example 4. Container structure with GUIDE fragments. 594

<?xml version="1.0" ?> 595
<xmlGuide use="structure" name="travelItinery" version="0.1" 596
 xmlns:element="http://www.ebXML.org/guides/elements/travel.xml"> 597
<!-- Declare the main structure of the transaction --> 598
 <sequence> 599
 <ELEMENT name="passenger"/> 600
 <ELEMENT name="itinerary"/> 601
 <ELEMENT name="car.rental" OCCURS="optional"/> 602
 <ELEMENT name="contact" OCCURS="optional"/> 603
 <!-- Local definitions of items to complete the whole transaction format --> 604
 <ELEMENT name="contact" qic="?TRV01203" /> 605
 <ELEMENT name="main" qic="?TRV00230" /> 606
 <ELEMENT name="fax" qic="?TRV00230" /> 607
 <ELEMENT name="mobile" qic="?TRV00230" /> 608
 </sequence> 609
<!-- Include in the GUIDE fragments, naming each root element to match the well-610
formed XML usage --> 611
 <includeXML root="passenger" source="People-GUIDE.xml" 612
 lookup="SYSTEM" mimetype="text/XML" version="000" /> 613
 <includeXML root="itinerary" source="Route-GUIDE.xml" 614
 lookup="SYSTEM" mimetype="text/XML" version="000" /> 615
 <includeXML root="rental" source="Auto-GUIDE.xml" 616
 lookup="SYSTEM" mimetype="text/XML" version="001" /> 617
</xmlGuide> 618

The use of includeXML is preferred to the various W3C Schema insert/include 619
mechanisms draft proposals as it is simple, concise and supports versioning implicitly. 620
The includeXML can of course be mapped to equivalent W3C mechanisms at a future 621
point internally or via W3C schema complex typing mechanisms. This further enhances 622
the value of includeXML as it can be used today, and maybe mapped to and used with 623
enhanced linking in the future. 624

Next the GUIDE structure provides a number of extended capabilities for handling 625
business process structure needs. 626

627

GUIDE business transaction markup version 0.13
 Page 20

 627

4.2.2 Extended GUIDE structure mechanisms 628

The basic structure definitions can be extended to provide the following structural 629
functionality: 630

1) Open elements (for use with multiple business partners requiring local definitions 631
that are known but unspecified). 632

 633
2) Unordered structures of elements where order is not significant. 634

 635
3) Associative datatyping based on data value context. 636

 637
4) Elements with elements (attributes). 638

These behaviours of GUIDE structures are now described separately with an example of 639
each use. The first example is the use of open elements. To achieve this the basic 640
container structure approach for inserting GUIDE fragments is used with a namespace 641
prefix on the particular open element definitions. Setting the namespace value then 642
controls the specific substitution reference that occurs. 643

Example 5. Open elements using namespace definition. 644

<?xml version="1.0" ?> 645
<xmlGuide use="structure" name="travelItinery" version="0.1" 646
 xmlns:element="http://www.ebXML.org/guides/elements/travel.xml" 647
 xmlns:open="http://www.ota.org/guides/route.xml"> 648
<!-- Declare the main structure of the transaction --> 649
 <sequence> 650
 <ELEMENT name="passenger"/> 651
 <ELEMENT name="itinerary"/> 652
 <ELEMENT name="car.rental" OCCURS="optional"/> 653
 <ELEMENT name="contact" OCCURS="optional"/> 654
 <!-- Local definitions of items to complete the whole transaction format --> 655
 <ELEMENT name="contact" qic="?TRV01203" /> 656
 <ELEMENT name="main" qic="?TRV00230" /> 657
 <ELEMENT name="fax" qic="?TRV00230" /> 658
 <ELEMENT name="mobile" qic="?TRV00230" /> 659
 </seqeunce> 660
<!-- Include in the GUIDE fragments, naming each root element to match the well-661
formed XML usage --> 662
 <includeXML root="passenger" source="People-GUIDE.xml" 663
 lookup="SYSTEM" mimetype="text/XML" version="000" /> 664
 <includeXML root="itinerary" source="open:Route-GUIDE.xml" 665
 lookup="SYSTEM" mimetype="text/XML" version="000" /> 666
 <includeXML root="rental" source="Auto-GUIDE.xml" 667
 lookup="SYSTEM" mimetype="text/XML" version="001" /> 668
</xmlGuide> 669

GUIDE business transaction markup version 0.13
 Page 21

 670

The <includeXML open:Route-GUIDE.xml reference is therefore dependent on the 671
namespace URL reference. The next example illustrates the use of an unordered list of 672
items; in unordered structures of elements where order is not significant. 673

To achieve this functionality the GUIDE structure uses a parameter on the sequence 674
construct, this then infers that all items within the sequence block are optional (the 675
default behaviour is items are required). Then items that are required must therefore be 676
explicitly marked as such using the OCCURS construct. 677

Example 6. Unordered list of items using the ‘sequence’ construct. 678

<?xml version="1.0" ?> 679
<xmlGuide use="structure" name="travelItinery" version="0.1" 680
 xmlns:element="http://www.ebXML.org/guides/elements/travel.xml" 681
 xmlns:open="http://www.ota.org/guides/route.xml"> 682
<!-- Declare the main structure of the transaction --> 683
 <sequence> 684
 <ELEMENT name="passenger"/> 685
 <ELEMENT name="itinerary"/> 686
 <ELEMENT name="car.rental"/> 687
 <ELEMENT name="contact"/> 688
 <!-- Local definitions of items to complete the whole transaction format --> 689
 <ELEMENT name="contact" qic="?TRV01203" /> 690
 <sequence order="any"> 691
 <ELEMENT name="main" qic="?TRV00230" OCCURS="+" LIMIT="1" /> 692
 <ELEMENT name="fax" qic="?TRV00230" /> 693
 <ELEMENT name="mobile" qic="?TRV00230" /> 694
 </sequence> 695
 </sequence> 696
</xmlGuide> 697

 698

The next example illustrates the use of associative typing support. 699
700

GUIDE business transaction markup version 0.13
 Page 22

This feature is designed to provide a context mechanism for data formatting directives. 700
An example would be the difference between local access telephone number formats, as 701
compared to an international telephone number format. The context is provided by an 702
associative element that provides the context. 703

Example 7a. Associative datatyping support and nested elements (attributes). 704

 705
<element name="telephone" qic:base="usDial | ukDial | otherDial" associate="dialformat" > 706
 <element name="dialformat" qic="TEL01001" /> 707
</element> 708
 709
<element name="usDial" qic:base="usTelephone" /> 710
<element name="ukDial" qic:base="ukTelephone" /> 711
<element name="otherDial" qic:base="genericTelephone" /> 712
 713
 714
Therefore by setting the value of the ‘dialformat’ nested element (aka attribute) of the 715
telephone element, the particular data format can be associated automatically. This 716
example also illustrates the use of nested elements (attributes) within a GUIDE structure. 717
 718
The example 7b shows the GUIDE element layer definition of the ‘dialformat’ 719
associative item. Within the XML document instance itself you would simply see the 720
<telephone> element and its associated dialformat nested element. So for a UK 721
telephone number the result would simply be : 722
 723

 724
 <telephone dialformat=‘UK’ >1823-452121</telephone> 725
 726

 727
within the XML document and the correct formatting is automatically associated. 728

729

GUIDE business transaction markup version 0.13
 Page 23

 729

 Example 7b. GUIDE element definition of the associative element. 730

<?xml version="1.0" ?> 731
<!-- 732
* GUIDE element for use with associative element * 733
* reference system. * 734
* * 735
* Version 0.1 July,2000 * 736
* Associative datatyping example * 737
* * 738
 --> 739
<xmlGuide use="element" name="xmlg:associatives" version="0.1" 740
xmlns:datatypes="http://www.ebXML.org/guides/associatives.xml" 741
xmlns:qic="http://www.ebXML.org/guides/bizcodes.xml"> 742
 <definitions> 743
 <bizcode qic="TEL01001" bizname="dialformat"> 744
 <guide> 745
 <status date="21/02/2000">candidate</status> 746
 <maxlength>5</maxlength><minlength>1</minlength> 747
 <datatype>string</datatype> 748
 <mask>X5</mask> 749
 <values default="US"> 750
 <value>US</value><value>UK</value><value>Other</value> 751
 </values> 752
 <localdescription xml:lang="EN" xml:space="preserve">This is a nested 753
element for use with associative telephone number formatting. 754
</localdescription> 755
 <fulldescription xml:lang="EN" mimetype="XML" > 756
http://www.telephone.org/samples/TEL01001.XML</fulldescription> 757
 <labels> 758
 <label xml:lang="EN">Telephone Country</label> 759
 </labels> 760
 <seeAlso/> 761
 <dependencies> 762
 <dependent type="required">TEL01002</dependent> 763
 <dependent type="required">TEL01003</dependent> 764
 <dependent type="required">TEL01004</dependent> 765
 </dependencies> 766
 </guide> 767
 <extensions> 768
 <extension type="TEL01001:XForm"> 769
 <item type="formcontrol">textfield</item> 770
 </extension> 771
 </extensions> 772
 </bizcode> 773
 </definitions> 774
</xmlGuide> 775
 776
This concludes the section on extended GUIDE structure mechanisms. 777

GUIDE business transaction markup version 0.13
 Page 24

4.3 GUIDE elements 778

The GUIDE element reference system is designed to support the traditional data 779
dictionary functionality and provide the basis to migrate existing EDI code and element 780
dictionaries to an XML syntax foundation. GUIDE elements are also designed to be the 781
foundation for information sharing across industry domains by standardizing sets of 782
definitions. 783

Also included in the element definitions are the dependencies and basic semantic checks 784
on the data content. These are designed to allow either a compliant parser, or an 785
associated business application to validate information content according to the 786
definitions. 787

The GUIDE element definitions are also designed to facilitate transformation of 788
information. This includes not only language representation changes, but also semantic 789
changes. The element definitions therefore contain multiple representations through the 790
use of the ‘extension’ concept, to extend the syntax supported. This mechanism is 791
extensible to include any formatting that can be modelled using XML syntax. Typical 792
examples include EDI, SQL, xhtml, XForm, and UML so that agent based technologies 793
can create representations of information in whatever formats are provided by the GUIDE 794
element definition extensions. 795

Datatyping is provided by a combination of primitive datatypes combined with the use of 796
innovative rich XML mask syntax. The objective is to provide a concise, intuitive and 797
human readable syntax for element definitions that can also be migrated to easily from 798
legacy less semantically rich mask formats such as COBOL, RPG, CICS and so forth. 799

The default datatyping system will also be compatible with the W3C datatyping system, 800
once this has been finalized as a recommendation, since each GUIDE primitive datatype 801
and mask can be resolved as a machine-readable cryptic datatype as proposed currently in 802
the W3C system. 803

The GUIDE element structure carries the essential information about an element, and so 804
is variant of the ISO11179 data element table. This is broadly similar to the ISO11179 805
definitions of elements, but differs in that the mechanisms and syntax are designed to 806
facilitate machine-to-machine XML interfacing rather than human data dictionary 807
management. All other functionality, such as ownership, versioning, and other ISO11179 808
functionality can be managed from using additional control structures that are beyond the 809
scope of GUIDE functionality. 810

GUIDE element semantics 811
 812
<xmlGuide use="element" name="mailingAddress" version="0.1" 813

xmlns:datatypes="http://www.ebXML.org/guides/datatypes.xml" 814
 815

GUIDE business transaction markup version 0.13
 Page 25

The GUIDE prolog attribute use="element" identifies the particular layer, the 816
name="" is a naming label that reflects the classification name associated 817
with the XML element definitions, the version="0.1" provides a versioning 818
mechanism to allow selection of a particular version of element definitions. 819
 820
<definitions> - Denotes start of definitions within the XML instance. 821
<bizcode ID="ADR01001" bizname="PERSON:fullName"> 822
 823
The Bizcode header provides an XML IDREF compliant token to perform 824

a physical link to retrieve the particular fragment of the XML 825
instance. Bizname provides a default tagname for this Bizcode 826
item. 827

 828
<guide> - The prolog to the GUIDE definitions themselves. 829
<maxlength> - Maximum permitted number of characters. 830
<minlength> - Minimum permitted number of characters. 831
<datatype> - valid GUIDE datatype value. 832
<mask> - valid mask definition for the datatype and format. 833
<values> - outer container for value set where applicable. 834
<value> - specific value 835
<Description xml:lang="EN" xml:space="preserve"> 836
 - Human readable description of the item. 837
<labels> - Used when rendering the item to a form or report. 838
<label xml:lang="EN"> - Specific label content for a particular language. 839
<seeAlso> - outer container for related items. 840
<similar> - item from another business domain that equates. 841
<equivalent> - item from business domain that is a substitute. 842
<related> - item that is only related to this item for searches. 843
<dependencies> - outer container for dependent items. 844
<dependent type="required">ADR01002</dependent> 845

- defines another Bizcode reference to an item that is 846
required or optional relative to this item within a 847
transaction. 848

<extensions> - outer container for extended definitions. 849
<extension type="ADR01001:XForm"> 850
 - defines the particular type of extension (syntax) 851

as an IDREF compliant link reference (allowing 852
direct retrieval of this as a fragment). Format is 853
the Bizcode:Type. 854

<item type="formcontrol">textfield</item> 855
 - individual items from within the extension 856

definition. Reflects the specific syntax of the extension 857
itself. There can be as many item details as required. 858

Next we need to understand how the three GUIDE layers interact with each other. 859

860

GUIDE business transaction markup version 0.13
 Page 26

 860

4.4 GUIDE linking 861

The linking mechanism used in GUIDE is based on namespaces. The reserved word 862
guide namespace declared in the root tag of the XML transaction instance establishes the 863
reference to the next GUIDE layer as needed. Therefore a XML transaction will use the 864
guide namespace to reference the GUIDE structure schema that defines the structural 865
rules, and the GUIDE structure will in turn use its own element namespace to locate the 866
default element definitions associated with the structure. The element definitions can 867
also optionally access the datatypes namespace to locate datatyping information. This 868
provides an extensible datatype model. 869

To provide the equivalent of fragments processing, a special include tag is provided. 870
However, fragments that are themselves included, may not have further include tags 871
within them, thus ensuring that only one level of nesting is provided. Furthermore, 872
permitting only the single guide namespace with a single control structure ensures that 873
the true structure of transactions is available and exposed. This contrasts with other early 874
schema implementations that used in-line namespace definitions to retrieve multiple 875
structure schemas, thus creating a system where the true transaction structure could not 876
be determined. GUIDE avoids this by only allowing the single guide namespace for 877
including the structure linkage. 878

This linkage mechanism is designed to be simple and business functional and to avoid 879
any complex constructs that make parser implementation and behaviour complex or 880
uncertain. This necessarily restricts the complex use of cascading links, and in 881
particularly linking can only be nested one layer deep, and all recursive references are 882
explicitly not provided. 883

For legacy compatibility GUIDE linking can also be achieved using http style 884
query/response requests when using DTD references as illustrated in the addendum. 885
These interchanges can be done using ebXML repository API conformant query/response 886
mechanisms once these technical specifications are available, or using W3C Protocol 887
(new working group) compliant mechanisms once those specifications are available. 888

889

GUIDE business transaction markup version 0.13
 Page 27

 889

4.5 Type systems 890

The GUIDE element definitions use basic business datatypes. All of these are supported 891
by the current W3C datatyping proposal, however the W3C has extended complex 892
behaviours in their datatyping that are not required for GUIDE business datatypes. The 893
table here shows the explicit GUIDE datatypes that are used in the GUIDE element layer 894
definition syntax and their equivalent W3C types. GUIDE typing is provided in a simple 895
syntax that is easier to use when combined with and associated XML mask. This syntax 896
can then be equated to W3C datatyping as required internally by parsing software. 897

GUIDE W3C

string string
numeric (includes integer and decimal) number
logical boolean
date datetime
time datetime
text string with space=`preserve`

Any item that does not have a datatype explicitly assigned is treated as a simple string by 898
default. See addendum section on masks for how default datatyping is also associated 899
with explicit mask definitions by default. 900

5. GUIDE implementation 901

The GUIDE system has been designed to allow the use of a basic XML parser compatible 902
to XML V1.0 with extensions for namespaces, and ability to recognize basic schema and 903
datatyping syntax extensions. Such extensions are designed to be a minimal subset of the 904
full W3C recommendations to minimize the implementation burden and ensure consistent 905
behaviour. This technique is familiar to implementers in the HTML environment where 906
extended features are avoided to ensure consistent behaviour across platforms and 907
product implementations. A specific set of functionality will be documented in the 908
appendix once the formal W3C specifications are available. Additionally it is envisioned 909
that GUIDE compatible methods implemented in Java and C++ will be available to 910
simply link into a Java or C++ parser implementation to provide a GUIDE compatible 911
parser by taking advantage of the open architecture that the W3C DOM (document object 912
model) specifications provide in a XML compliant parser implementation. 913

Furthermore a limited but powerful base functionality of the GUIDE system can be built 914
today using any DOM compliant XML parser implementation and a scripting language 915
with access to the DOM, such as JavaScript. Examples of this use can be found in the 916
tutorial sample forms, see section 7. 917

GUIDE business transaction markup version 0.13
 Page 28

5.1 Transactions 918

The GUIDE specifications are designed to provide the means for industries to develop 919
compatible business transactions. Transactions themselves can be structured to match 920
either a single business interaction, or a series of related interactions. The GUIDE 921
classification layer provides the means for industries to document and specify such sets 922
of related transactions and make them available in a consist format that can be reused. 923
Also GUIDE compatible parsers and business applications can then have available all the 924
needed business semantics to be able to process and control such transactions. 925

5.2 Relationship of and use of Bizcodes 926

The Qualified Indicator Code (QIC) is tied into the Bizcode mechanism that provides the 927
linkage between GUIDE structures and the associated element definitions and is designed 928
to be a neutral reference code. Use of neutral reference codes is already an established 929
practice within dictionaries of industry element definitions. Therefore many industries 930
already have codes that they can use as QIC references. 931

The preferred Bizcode QIC structure is a three-letter code, followed by a five-digit 932
number, where the three-letter code denotes the industry or group assigning the codes, 933
and the five-digit number is a sequentially assigned value. It is anticipated that as part of 934
the ebXML repository technical specifications there will also be guidelines established 935
for managing globally unique names under which Bizcode QIC references can be 936
classified. 937

Currently the barcodes used for product labelling are managed in a similar fashion by 938
having formally registered barcodes alongside locally defined barcodes. With Bizcode 939
QIC labels, since they are tightly coupled to a GUIDE structure and also stored within a 940
GUIDE element repository this already provides excellent separation to avoid conflicts 941
on QIC values assigned within an industry. Also, unlike barcodes where there are many 942
tens of millions already assigned, Bizcodes required a much more limited number since 943
they are reusable across many products. An example is the food industry where there are 944
over seven million barcodes in use, but less than ten thousand unique element definitions 945
(product attributes) are being used to describe all those products. 946

The current GUIDE element structure is designed to be compatible with ISO11179 based 947
reference registries. The role of ISO11179 registries is to harmonize information 948
classification within a corporation or large government agency for human analytical and 949
business system design purposes. The role of ebXML and GUIDE repositories extends 950
beyond that to include XML based machine-to-machine information interchanges that 951
reference XML repositories via an XML based API and interface specifications. 952

Therefore GUIDE can be used in tandem with ISO11179, where the ISO registry 953
manages the content that the GUIDE system exposes to ebXML aware systems. 954

955

GUIDE business transaction markup version 0.13
 Page 29

 955

5.3 Operations and Verbs 956

Within a transaction there may be an associated action, such as ‘confirm’, or ‘respond’ 957
that the trading partner requires. The ‘action’ tag has been provided with the 958
classification layer, along with next, previous and fail. These are designed to allow a 959
process to be defined and for software agents to then interact with these control structures 960
and the actual physical process itself. More work is needed in this area however to 961
provide a complete specification and the business functional needs that are required to be 962
met. 963

5.3.1 One-way operation 964

TBD. 965

5.3.2 Request-response operation 966

TBD. 967

968

GUIDE business transaction markup version 0.13
 Page 30

 968

5.4 GUIDE compliant parser implementation 969

A GUIDE compliant parser is essentially an XML V1.0 parser with some extensions to 970
support the limited schema syntax and IDREF links that GUIDE requires. Therefore a 971
GUIDE compliant parser is simpler to implement, while providing a full range of 972
business transaction interchange capabilities and support. 973

5.5 GUIDE conformance testing 974

The set of conformance suites will be available as an extension of the current NIST XML 975
conformance testing work. 976

5.6 Reusable Bindings 977

The GUIDE structure system provides support for reusable binding. These mechanisms 978
are supported by the GUIDE structure system. Elements may have a qic:base reference 979
instead of hard-coded typing definitions. This may also indicate that the item referenced 980
has a complex structure rather than a single element structure. 981

To maintain the separation construct of layers, the ability to redefine and re-use element 982
definitions must be controlled within the element layer, while structure redefinitions are 983
within the structure layer. Optionally classification entries should be created to manage 984
such extended use definitions to fully document the context and details of such 985
interchanges. 986

6. Orchestration 987

The earlier SOAP specification calls for a complete business orchestration language, that 988
is to be defined. GUIDE is well positioned to make this functionality available to ebXML 989
compliant interchanges. However this initial release is designed with a limited scope to 990
ensure that consistent interchanges can be engineered within a realistic timeframe. 991
Subsequent phases of development can extend the GUIDE classification layer to include 992
more business orchestration features. 993

 994
 995

996

GUIDE business transaction markup version 0.13
 Page 31

 996

7. Tutorial and Use Case 997

This section presents a short example by the way of an illustration of how to work with 998
and prepare a GUIDE transaction. The example uses the DTD syntax (see addendum 999
notes) and provides the source code so that you may test this right now with a working 1000
example. You will require Microsoft IE5.0 or later and an internet connection to test the 1001
live version. (status: work in progress, TBC). 1002

The tutorial provides a significant aspect of the GUIDE approach, namely making the 1003
whole process of defining an interchange intuitive and straightforward. The major steps 1004
in the tutorial are: 1005

1) Document the purpose of the GUIDE to be created, the owner, and how it relates 1006
to other GUIDE transactions and the overall business process and context. An 1007
HTML form allows user to quickly enter content and then generate a valid 1008
GUIDE XML classification instance. 1009

2) Create a well-formed XML document instance that represents a sample GUIDE 1010
transaction. An HTML form allows the user to quickly enter this and reviews and 1011
displays the element list as they are entering the content. Once complete, form 1012
generates a basic XML GUIDE structure schema and associated DTD that 1013
matches the well-formed document instance structure. 1014

3) Using the element list from step 2 create qic:base definitions for each of the 1015
elements. This may a locally defined qic:base set, or may involve referencing one 1016
or more XML repositories to map the element list to the industry standard 1017
qic:base definitions. 1018

4) Publish the completed GUIDE set of classification, structure and element layers 1019
as a working draft to an appropriate industry XML repository. 1020

1021

GUIDE business transaction markup version 0.13
 Page 32

 1021

8. Addendum 1022

A 1. References 1023

W3C Working Draft "XML Schema Part 1: Structures". This is work in progress. 1024

W3C Working Draft "XML Schema Part 2: Datatypes". This is work in progress. 1025

A 1.1 Notes on URI, XML namespaces & schema locations 1026

Namespace use to be defined with regard to the W3C namespace recommendation. 1027

A 1.2 Relative URIs 1028

Throughout this document you see fully qualified URIs used as references. The use of a 1029
fully qualified URI is simply to illustrate the referencing concepts. 1030

1031

GUIDE business transaction markup version 0.13
 Page 33

B 1. Notes on MASKS and patterns 1031

The text here provides a base specification of mask syntax for use with GUIDE elements 1032
and structures. It should be noted that this picture mask syntax is highly sophisticated 1033
and has been in common use for over ten years in business applications. As such this is a 1034
robust and proven method that has already transcended earlier crude and limited mask 1035
systems such as that found in COBOL. The text here provides the necessary 1036
behaviourable details for implementers to describe the exact usage. 1037

Each picture mask type has an associated implied primitive datatype associated with it: 1038
date has date type; time has time type; number has numeric type; logical has Boolean 1039
type; and all others a basic string type. 1040

B 1.1 Picture Masks 1041

These are categorized by the basic datatyping element that they can be used in 1042
combination with. Content that already conforms to the mask is not modified but simply 1043
placed in the DOM as is. Content that does not conform to the mask (such as text in a 1044
numeric field) results in ‘*’ characters being placed in the DOM to the full length of the 1045
mask, so ‘ABC’ in a field defined as #6.## would result in ‘*********’, and so on. 1046

B 1.2 String Type Pictures 1047

Examples of string type pictures 1048
 1049
XML Element
Contents

Picture Mask
(shorthand)

Full Expanded
Mask

Resulting DOM
Content

portability X6 XXXXXX portab
portability UX3 UXXX Port
portability XXXXing XXXXing porting
realtime XXXX-XXXX XXXX-XXXX real-time
BOLD! L5 LLLLL bold!
 1050
 1051

B 1.3 String Type Pictures 1052

 1053
The positional directives and mask characters as explained below. 1054
 1055
Directive Character Holds a Place for

X any character.
U a character to be converted to upper case.
L a character to be converted to lower case.
a digit (0-9) only.

GUIDE business transaction markup version 0.13
 Page 34

 1056

B 1.4 Numeric Pictures 1057

The following are examples of Numeric pictures. 1058
 1059
Data contents of XML element Picture Result

-1234.56 ######.## ^^1234.56
-1234.56 N######.## ^^-1234.56
-1234.56 N###,###.##C ^^-1,234.56
-1234.56 N######.##L -1234.56^^
-1234.56 N######.##P* -**1234.56
0 N######.##Z* *********
-13.5 N##.##-DB; DB13.50
45.3 N##.##+CR; CR45.30
-13.5 N##.##-(,); (13.50)
4055.3 $######.## $^^4055.30
 1060
(The ^ symbol represents one space character.) 1061
 1062

B 1.5 Positional directives for Numeric pictures 1063

 1064
Character Holds a place for

holds a place for a digit.

. indicates the location of the decimal point. For example, '####.###'
defines a numeric variable of four whole digits and three decimal
digits.

 1065
 1066

B 1.6 Date Pictures 1067

 1068
The typical date formats are MM/DD/YYYY, DD/MM/YYYY or YYYY/MM/DD 1069
(American, European, Scandinavian). 1070
 1071

B 1.7 Examples of Date Pictures 1072

 1073
The date used in the following examples is March 21, 1992. 1074
 1075
Picture Result and Notes

GUIDE business transaction markup version 0.13
 Page 35

MM/DD/YY 03/21/92
DD/MM/YY 21/03/92
YY/MM/DD 92/03/21
DD/MM/YY 21-03-92 when the Environment 'Date Separator'

parameter is set to '-'
DD-MM-YYYY 21-03-1992 where '-' is a mask character
YY.DDD 92.081
##/##/## 03/21/92, when XML parser default is set to American,

21/03/92, when XML parser is set to European.
MMMMMMMMMM^DDDD, ^YYYY March^^^^^^21st,^1992
MMMMMMMMMM^DDDD, ^YYYYT March^21st,^1992 with trimming directive
WWWWWWWWWW^-^W Saturday^^^-^7
WWWWWWWWWW^-^WT Saturday^-^7 with trimming directive
 1076
(The ^ symbol represents one space character.) 1077
 1078

Trim Text 1079

Invoked by adding the directive T to the variable picture. This directive instructs XML 1080
parser to remove any blanks created by the positional directives 'WWW...' (weekday 1081
name), 'MMM...' (month name), or 'DDDD' (ordinal day, e.g. 4th, 23rd). Since these 1082
positional directives must be specified in the picture string using the maximum length 1083
possible, unwanted blanks may be inadvertently created for names shorter than the 1084
specified length. The Trim Text directive will remove all such blanks. 1085

 1086

If a space is required nevertheless, it must be explicitly inserted in the picture string as a 1087
mask character, (the ^ symbol is used to indicate a blank character), e.g., 1088
'TWWWWWWWWW^DDDD MMMMMMMMM,^YYYY' 1089

 1090

Zero Fill 1091

 1092

Invoked by adding the functional directive Z to the variable picture. This directive 1093
instructs XML parser to fill the entire displayed variable, if its value is zero, with the 1094
"Character:" value. If you don't specify any character the variable is filled with blanks. 1095

1096

GUIDE business transaction markup version 0.13
 Page 36

Picture Mask Date 1096

 1097

When you define the attribute Date for a variable, you must also select the format for the 1098
date item (see below). You can change this default picture and place in it any positional 1099
directives and mask characters you need. 1100

 1101

B 1.8 Positional Directives for Date Pictures 1102

 1103
Picture Meaning

DD A place holder for the number of the day in a month
DDD The number of the day in a year
DDDD The relative day number in a month
MM A place holder for the number of the month in a year
MMM... Month displayed in full name form (up to 10 'M's in a sequence).

e.g. January, February. If the month name is shorter than the
number 'M's in the string, the rest of the 'M' positions are filled with
blanks.

 N/A
YY A place holder of the number of the year
YYYY A place holder for the number of the year, represented in full format

(e.g. 1993)
W Day number in a week
WWW... Name of day in a week. The string can be from 3 to 10 'W's. If the

name of the day is shorter than the number of 'W's in the string, the
rest is filled with blanks.

/ Date separator position.
- Date separator position (alternate).
MM/DD/YYYY Full American format date.
 1104
 1105

B 1.9 Time Picture Masks 1106

 1107
The XML parser defines the default picture mask HH/MM/SS for an element of datatype 1108
Time 1109
 1110
Examples of Time Pictures 1111
 1112
Picture Result Comments
HH:MM:SS 08:20:00 Time displayed on 24-hour

GUIDE business transaction markup version 0.13
 Page 37

clock.
HH:MM:SS 16:40:00 Time displayed on 24-hour

clock.
HH:MM PM 8:20 am Time displayed on 12-hour

clock.
HH:MM PM 4:40 pm Time displayed on 12-hour

clock.
HH-MM-SS 16-40-00 Using Time Separator of '-'
 1113
 1114

Time Masks 1115

 1116
Additional notes on positional directives for Time pictures 1117
 1118
Directive Character(s) Function Legal Range of Values

HH Place holder for the hour 00-99
MM Place holder for the minutes 00-59
SS Place holder for the seconds 00-59
PM Place holder for the AM/PM

attribute. PM restricts the
maximum value of the HH
directive to 12

AM or PM

 1119
 1120

1121

GUIDE business transaction markup version 0.13
 Page 38

C 1. Notational Conventions 1121

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 1122
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in 1123
this document are to be interpreted as described in RFC-2119 [2]. 1124

The namespace prefixes “xmlbc” and "xmlg" used in this document are associated with 1125
the GUIDE namespaces "http://xmlguide.org/bizcodes/", and 1126
"http://xmlguide.org/guide/". 1127

Throughout this document, the namespace prefix "xsi" is assumed to be associated with 1128
the URI "http://www.w3.org/1999/XMLSchema-instance" which is defined in the XML 1129
Schemas specification [11]. Similarly, the namespace prefix "xsd" is assumed to be 1130
associated with the URI "http://www.w3.org/1999/XMLSchema" which is defined in 1131
[10]. The namespace prefix "tns" is used to indicate whatever is the target namespace of 1132
the current document. All other namespace prefixes are samples only. In particular, URIs 1133
starting with “http://my.org” represent some application-dependent or context-dependent 1134
URI [4]. 1135

This specification uses an informal syntax to describe the XML grammar of a guide: 1136

• The syntax appears as an XML instance, but the values indicate the data types 1137
instead of values. 1138

• Characters are appended to elements and attributes as follows: “?” (0 or 1), “*” (0 1139
or more), “+” (1 or more). 1140

• Elements names ending in “…” (such as <element…/> or <element…>) indicate 1141
that elements/attributes irrelevant to the context are being omitted. 1142

• Grammar in bold has not been introduced earlier in the document, or is of 1143
particular interest in an example. 1144

• <-- extensibility element --> is a placeholder for elements from some “other” 1145
namespace (like ##other in XSD). 1146

• Examples starting with <?xml contain enough information to conform to this 1147
specification; others examples are fragments and require additional information to 1148
be specified in order to conform. 1149

1150

GUIDE business transaction markup version 0.13
 Page 39

D 1. Example of using GUIDE structure with DTD syntax. 1150

This same example as previously illustrated for a GUIDE simple physical structure model 1151
with a repeated group of information is now used to illustrate the use of GUIDE with a 1152
DTD approach where a GUIDE compliant parser is not available. Being able to use the 1153
GUIDE approach using a DTD and a scripting language such as JavaScript means not 1154
only backward compatibility with XML V1.0, but also that GUIDE interchanges can be 1155
constructed with today’s development tools and environments. 1156

Example 8. Using GUIDE with a DTD. 1157

<?xml version="1.0" ?> 1158
<!DOCTYPE mailAddress SYSTEM 1159
 "http://www.ebXML.org/guidesdtd/address.dtd" []> 1160
 <mailAddress> 1161
 <fullName>Joe H. Smith</fullName> 1162
 <street>101 Main Street</street> 1163
 <street>Apartment 20b</street> 1164
 <city>Taggtown</city> 1165
 <ZIP>10230-0001</ZIP> 1166
 <state>AZ</state> 1167
 <accountActive>YES</accountActive> 1168
 </mailAddress> 1169

The GUIDE structure DTD that is referenced above in Example 8 is shown here. 1170

<?xml version="1.0" encoding="UTF-8"?> 1171
<!ELEMENT mailAddress (fullName, street+, city, ZIP, state, accountActive)> 1172
<!-- establish link to qic reference location --> 1173
<!ATTLIST mailAddress 1174
 qicref CDATA #FIXED 'http://www.ebXML.org/qic/datatypes.xml'> 1175
<!ELEMENT ZIP (#PCDATA)> 1176
<!ATTLIST ZIP 1177
 qic CDATA #FIXED '#####-####'> 1178
<!ELEMENT accountActive (#PCDATA)> 1179
<!ATTLIST accountActive 1180
 qic CDATA #FIXED 'U3'> 1181
<!ELEMENT city (#PCDATA)> 1182
<!ATTLIST city 1183
 qic CDATA #FIXED '?ADR01003' qic_mask CDATA #FIXED 'UX19'> 1184
<!ELEMENT fullName (#PCDATA)> 1185
<!ATTLIST fullName 1186
 qic CDATA #FIXED '?ADR01004'> 1187
<!ELEMENT state (#PCDATA)> 1188
<!ATTLIST state 1189
 qic CDATA #FIXED '?ADR01005'> 1190
<!ELEMENT street (#PCDATA)> 1191
<!ATTLIST street 1192
 qic CDATA #FIXED '?ADR01002' LIMIT NMTOKEN #FIXED '5' > 1193

GUIDE business transaction markup version 0.13
 Page 40

 1194

The qic attributes provide the means for the JavaScript or similar language tool that can 1195
access the XML DOM of the parser to easily retrieve the information needed to provide 1196
the GUIDE compliant referencing mechanisms support. The example shown is 1197
supported by the Microsoft IE5.0 environment and can work in either local or remote 1198
accessing modes. See section 4.4 on GUIDE linking for more details. 1199

 1200

