UML for XML Schema Mapping
Specification

12/08/99

Grady Booch (Rational Software Corp.)
Magnus Christerson (Rational Software Corp.)
Matthew Fuchs (CommerceOne Inc.)

Jari Koistinen (CommerceOne Inc.)

R | oo (U Tt {0 o H TR PSRPP 1

1.1 XML Schema and UMLcoouiiiiiiiiiiieeee et 2.l

1.2 Design Center and FUNdameNntal ISSUESuuuuuuiiiiieeiiieiiiiiii et eeeeeeeaanees
2. MAPPING OVEIVIEW ...ttt e ettt et bbb e e e e e e e e e e e eeest bbb b s e e e e e e e s e - 2
3. Detailed Mapping and EXAMPIE.........uuuiiiiieiiiieeiee e e 3...

TS B [11 £ o [F ot o] o I PO P OO 3

1.4 DefiniNg @ AatAYPE .. .ccoiiiiiiiiiiiiie ettt e b s 3.

1.5 Defining an EIEMENTTYPE ...coiiiiiiiiiiiiiei e 4...

1.6 Library of Pre-defined element and datatypeooooiiiiiiiiiiiiiiiiii e 5

1.7 NaMESPACES, VEISIONS ELC. ..uuieiieiiiieiieiii e e et eee e e e e et e e e e e et s e e e eatt e e eeeaen e eeeeetnnseeeesmmmnnn | N
N = 10 =T g = 4] o) 6

IR B [1 £ o [F ot o] o I PSSP 6

1.9 The XML SCREMAuuiiiiiii ettt e e e e e e e eeeennnansd 6....

1.10 The Corresponding UML Schema Diagramuuuuuiiiiiiieeeiiiieiiiiiiiiie e 7
B REIBIENCES ... et e s 7
Abstract

This paper describes a graphical notation in UML for designing XML Schemas. UML (Unified

Modeling Language) is a standard object-oriented design language that has gained virtually global
acceptance among both tool vendors as well as software developers. UML has been standardized by the
Object Management Group (OMG). XML Schema is an emerging standard from W3C. XML Schema is
a language for defining the structure of XML document instances that belong to a specific document
type. XML Schema can be seen as replacing the XML DTD syntax. XML Schema provides strong data
typing, modularization and reuse mechanisms not available in XML DTDs. There is currently no W3C
recommendation for XML Schema, although several have been proposed and W3C is actively working
on producing a recommendation. This paper describes the relationship between UML and the SOX
schema used by CommerceOne. Our intention is, however, to adapt the mapping to the W3C
recommendation when that becomes available. W3C discussions up to this point indicate the notation
described here will be upward compatible with the eventual recommendation.

1. INTRODUCTION

XML is rapidly establishing itself as the metagrammar for interorganizational communication around
the Internet. It is becoming increasingly urgent that business analysts, systems analysts, and software
developers be able to:

e model the information to be represented in XML.

¢ describe the relationships between the XML and the systems to process it.

Having done so, they must also be able to rapidly generate the boilerplate code associated with
implementing these processes.

At present there is no tool or tool suite capable of doing this. One path to development is to exploit
existing tools using UML to facilitate this. The first step towards doing so is providing a semantically
rich mapping from XML into UML. The goal of this paper is to layout such a mapping through XML
Schema, a schema language for object-oriented XML. This paper itself does not provide all the
information for an end-to-end mapping from UML to XML Schema to programming language-specific
data structures, but but such a mapping can be built on the information presented here.

In the immediate, the mapping described in this document serves as a straw man for further discussion.
Although we refer to XML Schema in the paper, we are designing the mapping specifically to SOX
until a W3C XML Schema recommendation becomes available.

1.1 XML ScHEmMA AnND UML

In developing the mapping between XML Schema and UML we have used the UML extension
mechanisms (stereotypes and tagged values) to create new classes of UML objects to explicitly
represent XML artifacts. The alternative approach would have been to specify a general mapping from
UML classes to XML Schema. Such a mapping would have been applicable to a range of existing
UML models. We chose to extend UML for the following reasons:

1. The extension approach allows users to directly model XML Schema in UML in an unambiguous
way.

2. An explicit mapping makes it easier to write tools to handle only the XML content of a model and
to clearly differentiate XML components from other aspects of a model.

3. Given an existing UML model, there are several issues related to mapping it into XML, including
choosing which parts to map, and the existence of potentially several legitimate mappings. Having
a set of stereotypes specifically for XML Schema allows for a two-pass mapping, with the first pass
applying a straightforward mapping, and the second allowing for a user to edit the results.

1.2 DEsIGN CENTER AND FUNDAMENTAL ISSUES

The design center of the mapping should be to provide:
¢ A graphical way of describing all the important aspects of document type design.
¢ A set of concepts that are familiar and easy to use for an engineer knowledgeable in UML.

The first bullet includes XML Schema document type characteristics suetjuasedandimplied
attributes, etc. In addition we need to capture all intrinsic data types as well as provide a mechanism for
creating user-defined data types for elements and attributes.

There are a few fundamental issues in achieving these goals. The first issue is that in documents,
ordering is significant while for describing the structure of object types it is not. More specifically, a
document type may define the order in which data appear within instances of that type. For object types
on the other hand we only specify what data an object contains, but not how the data is physically laid
out.

2. MAPPING OVERVIEW

In summary, we map all element and data types in XML Schema to classes annotated with stereotypes.
The stereotypes reflect the semantics of the related XML Schema concept. Since ordering for document
types is significant for document instances, we need a way of indicating ordering in the UML
representation. We do this by including a sequence number for content model elements.

Furthermore, XML Schemas may contain anonymous groups. To represent anonymous groups in UML
we need to generate names for the classes that represents such as group in a UML diagram. We
introduce special stereotypes indicating that a class represents an anonymous grouping of elements.

The table below lays out the stereotypes being added to the UML to express XML Schema constructs.

Stereotype UML Construct SOX Meaning

<<SOX>> Package Indicates a full Schema

<<elementtype>> Class Element type definition

<<sequence>> Nested Class Sequence group from a content model

<<choice>> Nested Class Choice group from a content model

<<enumeration>> Class — may be nested Enumeration datatygen-be UML

enumeration

<<scalar>> Class — may be nested Scalar datatype

<<varchar>> Class — may be nested Varchar datatype

<<implied>> Attribute or Unidirectional Indicates an implied attribute
Assogation

<<required>> Attribute or Unidirectional Indicates a required attribute
Assogation

<<default>> Attribute or Unidirectional Indicates a default attribute
Assogation

<<fixed>> Attribute or Unidirectional Indicates a fixed attribute
Assogation

<<content>> Attribute or Aggregation Indicates an atom in a content model

3. DETAILED MAPPING AND EXAMPLE

1.3 INTRODUCTION

We will use a small example to explaining our XML Schema to UML mapping. The XML Schema for
this example is found in section 4, while the corresponding UML diagram is found in section 5. Our
immediate goal is to introduce the mapping for further discussion.

There are essentially four new types of class stereotype:

1. Elementtypes. This includes only theelementtype>> stereotype.

2. Model groups. These are thesequence>> and<<choice>> stereotypes.

3. Various datatype constructors corresponding to the datatype constructors found in XML
Schema. These are theenumeration>> |, <<scalar>> and <<varchar>> stereotypes.

4. Stereotypes associated with XML attributesiiplied>>, <<required>>,
<<default>>, <<fixed>>) and content models<kcontent>>).

5. A <<sox>> stereotype to declare a Package to be a XML SCHEMA schema.

Some of these also apply to associations:

e« The<<content>> stereotype applies to aggregation associations for parts of XML Schema
content models.

« The XML attribute stereotypes can apply to a unidirectional association to delineate XML
attributes.

1.4 DEFINING A DATATYPE

Our example contains two different varieties of data tyaedar andenumeration . Ascalar
always creates an intensive definition of a new number type, whdeuareration always provides
an extensive definition of a data type. The only other current data type construatciids . Each
of these constructor has a corresponding stereotygsealar>> , <<enumeration>> , and
<<varchar>>

When defining acalar orvarchar in XML Schema, there are several (XML) attributes which may
require values (includindigits , decimals , minvalue , andmaxvalue for scalar , maxlen for

varchar). Attributes such as these will appear in the UML compartment as a list of tagged values. An
example of this igrice in the diagram. They are represented as attributes.

An enumeration also requires a list of values (although that may be empty éhtlhmeeration is
extending anothemmumeration). In the diagram, these values appear as public attributes.
CountryCode andLangCode are examples of this. However, the values of an enumeration can be of
any kind of string, so these might be better represented as tagged values.

In the diagram, | show datatypes as extending other data types through a generalization association.
Since data types are generatigre specific than their parents (i.e., an enumeration allows less values
than the datatype it “extends”), this may not be the best association to use for this relationship. At the
type level, it could be seen as an instantiation relationshifpiiee, instantiatescalar , and

lineltem use<Price .

We assume the existing XML Schema datatypes (see [SOX2.0]) already exist and can be referenced.

1.5 DEFINING AN ELEMENT TYPE

Element types are defined with theelementtype>> stereotype. Each element type may additionally
have:

« UML associations to indicate generalization, XML attributes, and content model.

¢ Stereotyped attributes for XML attributes and content model constituents.

Element type super types are designated with a generalization relationship. In the diagram,
InternatAddress is a generalization @fddress .

XML attributes can be indicated as unidirectional associations from the element type to the datatype of
the attribute. The association may have a name, which will become the name of the attribute. If it does
not have a hame, then the name of the attribute will be the name of the datatype. It optionally has a
tagged value corresponding to thefault orfixed value of the attribute. It also optionally has a
stereotype of<required>> or<<fixed>> . If the<<required>> stereotype is present, then the

tagged value is ignored. If thegfixed>> stereotype is present, then the tagged value fixthie

value. Notahat<<implied>> and<<default>> are really only necessary if mixing XML attributes

with non-XML attributes in the same class.

Alternatively, XML attributes can be indicated in the attribute compartment like any other attribute, so
long as it has one of the four attribute stereotypes (whadoe is only present if the attribute has either
a default or fixed value):

1. <<stereotype>> attributeName:attributeType = value

The target datatype of an attribute may be nested if it is a datatype specified uniquely for that attribute.
If the target of an attribute is an element type, then thisliB3/@REF association (the XML
equivalent of a pointer). In that case, the source attribute is oftigE& and the target must have at

least one attribute of typB. (The value of an ID attribute must be a name unique to
the document. This uniquely identifies the element. The value of an IDREF
attribute must the value of an ID attribute somewhere in the document.)

In order to build an appropriate inheritance mechanism in an XML Schema, the basic content model of
an element type is always either a sequence or a reference to a single datatype. This becomes a semantic
constraint.

However, element types may refer to model groups. Model groups are indicated by classes with a
stereotype of either:

1. <<sequence>> indicating this will be a sequence.

2. <<choice>> indicating a choice group.

The elements of a content model or model group can be indicated in one of two ways:
1. aggregation associations.
2. attributes with a<content>> stereotype.

The information required to place each item in a content model is:

« Aname. As specified by XML Schema, this is required if the target of the association is a
datatype, but not if the target is an element type.

« An ordinal, displayed as a tagged value, for sequences (for choices, this ordinal would be O if
present)

e A cardinality to correspond to thecurs attribute in XML Schema. This can take on the obvious
values already in the UML.

If the content model is specified as attributes, then the following format is used:
<<content>> {ordinal} name:type [cardinality]

The name and colon are optional if type is not a datatype.

Because attributes in UML don’t nest, model groups need to be described as external types. These
consist of classes with stereotypesofequence>> or <<choice>> . These may have names, but (at
least for now) are considered nested within the referencing element type. In the diagram,
PurchaseOrder has an internal sequence narieglitem

1.6 NAMESPACES AND PACKAGES

The mechanism provided by XML Schema to group sets of definitions together is the schema itself.
The schema is named by a Universal Resource Indicator (URI), which is either a URL or a URN.
Whenever constructs in a given schema are referenced, they have a hame relative to this URI. The
exact mechanism for making such references in XML documents is described in [XMLNS], with
clarifications in FOX2.0].

The corresponding UML construct for grouping definitions isgédadkage . In the mapping this

becomes explicit; the XML Schema itself is mapped to a UML package. The name of the package is
the URI of the schema. The resulting package will also have the <<sox>> stereotype to indicate it is
based on an XML Schema.

As XML Schema has not defined any visibility constraints on definitions, all definitions in a Schema
are required to be public. This will change if visibility constraints are every provided by XML Schema.

XML Schema provides an import mechanism for a schema to refer to definitions in another schema. In
SOX this is done with theamespace element. These references will be represented in the UML with
associations using th&import>> stereotype.

4. AN EXAMPLE

1.7 INTRODUCTION

In this section we will describe a non-trivial example and how it is represented in XML Schema as well
as in UML. The example is a data model of a simplified purchase order document.

1.8 THE XML ScHEmMA

The XML Schema definition below describes the XML document types used to for XML purchase
order instances.

2. <schema uri = “urn:document:po.sox”>

3. <datatype name = “DocStates”>

4. <enumeration datatype = “NMTOKEN">
5. <option>Submit</option>

6. <option>Accept</option>

7 <option>Reject</option>

8 </enumeration>

9. </datatype>

11. <datatype name = “CountryCode">
12. <enumeration datatype = “NMTOKEN">

13. <option>USA</option>
14. <option>ENG</option>
15. <option>GER</option>
16.

17. </enumeration>
18. </datatype>

20. <datatype name = “Price”>
21. <scalar digits = “5” decimals = “4"/>
22. </datatype>

24. <elementtype name = “DocProcess”>
25. <model>

26. <string datatype = “DocStates”/>
27. </model>

28. </elementtype

30. <elementtype name = “Address”>
31. <model>

32. <sequence>

33. <element name = “name” type = “string"/>
34. <element name = “quantity” type = “int"/>
35. <element name = “cost” type = “Price"/>
36. </sequence>

37. </model>
38. <elementtype>

40. <elementtype name = “InternatAddress™>
41. <extends type = “address>

42. <append>

43. <element name = “country” type = “CountryCode"/>
44, </append>

45, <attrdef name = “language” type = “LanguageCode”>
46. <default>ENG</default>

47. </attrdef>

48. </extends>
49. </elementtype>

51. <elementtype name = “PurchaseOrder”>
52. <model>

53. <sequence>

54. <element name = “shipTo” type = “Address”/>
55. <element name = “billTo” type = “Address”/>
56. <sequence name = “lineltem” occurs = “+">
57. <element name = “name” type = “string”/>
58. <element name = “quantity” type = “int"/>
59. <element name = “cost” type = “Price"/>

60. </sequence>

61.

62. <element type = “DocProcess”/>
63. </sequence>
64. </model>

65. </elementtype>
66. </schema>

1.9 THE CoORRESPONDING UML ScHEmMA DIAGRAM

<<enumeration>>
CountryCode
<<elementtype>> country B =Eﬁé
IntematAddr ®——— MicER
R
language
{ENG} <<elementtype>>
<<enumeration>> DocProcess
LanguageCode
Mi=NG \ <<enumeration>>
== DocStates
iy 3 Mllsubmit
ccept
shipTo g0 Reject
/\\{ } Re;
<<elementtype>> billTo {'1}\,\
I
PurchaseOrder | g.1.x T |<<elementtype>>
I — cit,
\\ lineltem Address ‘f———ﬁ‘,,,,,,nni
— 1
* \
— street (& |
@ T <<sequence>> \\
anon0 \
1 \
- {1} \
— \
\ cost \\
quantity — <<datatype>>
{2 String
0 <<scalar>> (from Logical View)
Price
Bdigits = 5
<<datatype>> Bfdecimals = 4
int

5. REFERENCES

[UML] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling Language. Rational

(from Logical View)

Software Corporation. January 1997. Version 1.0.

[SOX1.1] Matthew Fuchs et. Al. Schema for Object-oriented XML. W3C, 1998, See
http://www.w3.0rg/Sumission/1998/15

[XDR] Charles Frankston and Henry S. Thompson ed. XML Data Reduced. See
http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm

[DOM] Document Object Model. See http://www.w3.org/.

[SAX] Simple API for XML. Seéhttp://www.megginson.com/SA3And
http://www,megginson.corAX/SAX2.

[SOX2.0] Andrew Davidson, Matthew Fuchs, Mette Hedin, Mudita Jain, Jari Koistinen, Chris Lloyd,
Murray Maloney, and Kelly Schwarzhof . Schema for Object-Oriented XML 2.0. July 1999. See
http://www.w3.0rg/ TR/INOTE-SOX

[DCD] Document Content Description for XML (DCD), Tim Bray et al. W3C, 10 August 1998. See
http://www.w3.0rg/TR/NOTE-dcd

[XMLD] XML-Data, Andrew Layman, et al. W3C, 05 January 1998. See
http://www.w3.0rg/TR/1998/NOTE-XML-data-0105

[XML] Extensible Markup Language (XML) 1.0, Tim Bray, et al. W3C, 10 February 1998. See
http://www.w3.0rg/TR/REC-xml

[XSDL] XML Schema Part 1: Structures, David Beech et al.Hiige//www.w3.org/TR/xmlschema-1/

[XMLNS] Namespaces in XML, Tim Bray, David Hollander, Andrew Layman. See
http://mww.w3.0rg/TR/REC-xml-names/

