The Computer Representation of Cuneiform:

Towards the Development of a Character Code

1. Traditional Approaches to the Study of Cuneiform

The information recorded in cuneiform documents can be studied either directly, through first
hand examination of originals, or indirectly, by means of second-hand representations. At the
present time, such representations follow one of two approaches: (1) pictorial, i.e. photographs
and hand copies, or (2) interpretative, i.e. transliterations (Ger. ‘Umschrift’) and transcriptions

(Ger. ‘zusammenhingende Umschrift’):

Pictorial Interpretive
T)*: T t\/}%{ 1. Il ma-na ku-babbar
&T A’k 2. kil nam-tab-ba-§¢&

?—

(g Wﬁ%‘ )J\ 3. ki “Samas 0 a-bu-wa-qar

«% 4 n. dyv l

: ip-qu— Sala

,,»——fizf:r P
5. u im—gur—dfamasv
YT
)‘—L g : ? 6. a-na Si-ib-qd-at-|ti]

‘Q\ 7. Su-ba-an-ti-me-es

J

Each of these approaches conveys one aspect of the information to the detriment of the other: the

Figure 1

first provides a relatively precise reflection of the form of an original while leaving the matter of
interpretation to the reader, whereas the second reports content, but implies form only to a

limited degree (and in the case of transcription not at all):

-1-



Accuracy in Form

<
. oS 'xOQ . 00
N\ " o &
\o Q R N Q
x%\‘& &0%?’ ,bpbo ‘59‘5\\ & (Speech)
S ST AN G

e o > <o ® ®
>

Accuracy in Content

Figure 2

As can be seen from Figure 2, there is presently no second-hand means of representation
in widespread use which addresses both form and content. However, the technology presently
exists to design and implement a representation of information which would bridge this gap,
specifying at once the essential form of cuneiform characters as they appear in a given document
(thus taking account of geographic, temporal, and genre considerations), and their identity as
elements of the writing system. Furthermore, by means of a suitable input mechanism, character
form and character identity could be recorded alongside character interpretation with little more
effort than is presently expended in typing traditional transliteration. These three aspects of

cuneiform information are illustrated for clarity in Figure 3:

1. One character (AN) in two forms: ﬂé (early) »—T— (late)

Two separate character identities i
sharing one form:

(PA) = (BANMIN)

One character and form with two { B 3 B
3 different interpretations: ‘ T (UD = /babbar/) < T (UD = /tam/)
Figure 3

Note that in general, the traditional system of transliteration is able to communicate the
information on line 3 of the figure; what is needed is a mechanism for communicating the

information on lines 1 and 2.



2. Character Code Basics

The key to the solution is the development of an internationally recognized character code for
cuneiform. Briefly, a character code is a standard which assigns to each core symbol of a given
writing system a unique identifier in a one-to-one relationship. In the context of computer
encoding, these identifiers are numbers, and characters are represented within computer systems
by these numbers (their so-called internal representation). With the help of some additional
information (style and so on), characters are converted for display on computer screens and hard
copy in the manner familiar to us, or in any other manner desired (so-called external
representation). The following figure illustrates this relationship by means of the ASCII code

which underlies much of modern computer science:

Some Western European Characters and Their ASCII Internal Equivalents

0 1 2 3 A B C D a b c d

48 49 50 51 65 66 67 68 97 98 99 100

Figure 4

3. Fundamental Issues in the Development of a Cuneiform Character Code

The first step in the development of a character code is to identify all the core symbols in the
system, that is, all its characters. On the assumption that the code should serve the needs of the
entire cuneiform community, irrespective of period and area of interest, the compilation of
characters must be done comprehensively and inclusively across time periods, geographic areas,
genres, and so on. This in itself is fairly straightforward: however, there are a number of non-
trivial issues which arise from such an approach which must be addressed. A few of these will
be discussed briefly further on by way of example.

Once all characters—to the extent they are known—have been identified, they can be

3-



assigned representative numbers as discussed above according to some agreed-upon scheme. In
character code development, this is generally done in such a fashion as to accommodate a notion
of ‘natural sort order’, concerning which more will be said below. For the moment, notice in
particular the relationship between the order of ASCII characters and the values assigned as their
internal representation as per Figure 4.

The second step, without which the character code would be of limited value, is the
encoding of essential form as an additional dimension to the system. For each character
identified and encoded in the first step, one must compile a register of the significant variants to
be recognized by the system, to each of which a secondary or variant code will be assigned,

again according to some practical overarching scheme. The results might in part look something

like this:

Character & Character Form General Comments

Variant Code Identified Identified
[121, 3] AN % Early ‘plenary’ form
[121, 4] AN >+ Later ‘standard’ form
[299, 1] 2 TT Common ‘standard’ form
[300, 1] A ” Common ‘standard’ form
[300, 2] A TT Cursive form of the previous

Figure 5§

Note that the first two items are recognized and encoded as identical characters (here assigned an
arbitrary internal representation of 121), but different significant variants; similarly for the last

two items (assigned an internal representation of 300). Secondly, note that the middle item (the

4-




character for ‘2”), even though it shares an identical external form with the last item (the cursive
variant of ‘A’), is encoded as an entirely separate character (with an internal representation of
299), because in terms of historical development, it is a separate character.

It is critical, at this juncture, to make one matter absolutely clear. To say that provision
will be made for encoding essential forms of characters is not at all the same as saying that it will
be possible to encode all possible occurring shapes of characters individually, for at least two
reasons: (1) computer codes are inherently finite, that is, they can accommodate only a finite
number of possibilities, and infinite variation in detail cannot be represented by finite means;

(2) it is the function of a character code to identify significant differences inherent in a script
(i.e. underlying forms), and not to describe accurately all specific instances of characters (i.e.
surface representations). Thus, the two forms of AN and the two forms of A in Figure 5 must be
treated and encoded as distinct, since they differ fundamentally on a structural level in terms of
wedge count and wedge arrangement. On the other hand, the specific angles at which the
diagonal wedges of an early AN are placed is irrelevant to the identification of the character or its
variant form. Similarly, the presence or absence of hash marks (gunii) is significant in

determining character identity, whereas the specific number of hash marks probably is not.

Surface Representation Underlying Form
(=Actual Uses) (= Essential Form)
* B o = *
Figure 6
4. Implementation Considerations

Thus far, this presentation has focussed upon describing the ideal design structure of a character



code as it emerges naturally from a comprehensive analysis of the cuneiform script over the
course of its lifespan. The obvious and hence best encoding—on the theoretical level, at
least—is to represent each significant variant of a given cuneiform character internally as a pair
of codes of the form [<character no.>, <variant no.>]. The next logical question is ‘How is this
theoretical structure best translated into practical reality?’

It is of course clear that a competent programming team can, given the time and
resources, design a system as complex and suited to the particular need as one may like. The
problem is that such time and resources probably do not exist, and even if they did, the result
would be a proprietary system with limited portability, if not in terms of computer architectures
and operating systems, then at least in terms of external applications able to process the encoded
text. In other words, this option should be considered as a last resort only.

A compromise option exists in the form of a standard one-dimensional character code
with variants identified by mark-up tags. This may work, so long as one appreciates that variants
cannot be neatly parcelled up according to external criteria such as time period, geography,
genre, or even scribal tradition, since multiple variants of characters are frequently employed
within a single text; the tagging mechanism must take this into account. However, this solution
is, from a systems design point of view, at best inelegant since it masks the inherent structure of
the data, which in turn would likely translate into an awkward system in practice. It is preferable
to restrict external tagging of any kind to purposes fundamentally external to the data, that is,
cosmetic concerns of a non-structural nature such as choice of hollow-head vs. full-head forms,
wedge styles, and so on.

Fortunately, a third option is on the horizon. Unicode, a recognized international body



whose goal is to encode all writing systems of the world, is presently considering the adoption of
a character and variant code system similar or identical to the one presented above, on the basis
of past experience with other character sets such as Han characters, which are used for writing
Chinese. A Unicode-compliant encoding would ensure across-the-board portability not only in
terms of computer architectures (Apple, IBM, and so on) and operating systems (Windows,
Mac, Linux), but also at the level of application programmes and the Internet, since many
application tools are already Unicode-compatible or are expected to be so in the near future.

The benefits of such wide portability are obvious: one would be able to encode, display,
and manipulate cuneiform data directly from one’s favourite word processor and transmit them
using standard protocols—without having to resort to graphics, which are space intensive— as
well as use all the tools already at our disposal for our own native tongues, such as searching and
replacing, spell-checking, sorting, dictionaries, and so on.

5. Sample Non-trivial Issues Arising from a Comprehensive Encoding

As alluded to earlier, the encoding into one system of a script with such a long and varied
development as cuneiform gives rise to certain non-trivial issues which must be addressed. A
few will be outlined here by way of example, though any discussion in detail must necessarily be
relegated to another time and place.

a. Mergers

Certain characters, originally distinct, merged over time (c¢f. BAR, BAN, and MAS, which all
eventually converged in the form of original MAS, and ceased to be regarded as independent
characters; see Figure 7). With respect to the encoding of texts written beyond the historical

merger point, there are two ways to proceed, each with advantages and consequent trade-offs.



(1) One may continue to encode separate characters but allow for sharing one external
shape through the variant mechanism. Under this scenario, comparisons of encoded text across
the merger point will successfully identify comparable usage (e.g. early BAR would match later
BAR, early BAN would match later BAN, and so on). On the other hand, these characters would
never match each other, not even beyond the merger point (e.g. searches for BAR would not find
BAN, and so on).

(2) One can disable the characters which no longer have an independent existence by
means of the input mechanism, and force merged characters to be encoded in the same way (e.g.
all three characters would share a MAS encoding). Under this scenario, the merged characters
would be identical in encoded text and hence match each other (e.g. searches for any of BAR,
BAN, or MAS would all yield the same results). However, when making comparisons with texts
whose composition precedes the merger point, merged characters would a// match the one
original character with which they were ultimately identified, regardless of usage (e.g. all later
characters would match early MAS, even though they might actually represent usages formerly
represented by BAR or BAN).

b. Splits

In some cases, characters whose variants were all originally used for the same purpose came over
time to be used for quite separate purposes. For example: in Neo-Assyrian Royal Inscriptions,
one version of the character TA was used for the syllable /ta/, whereas a surviving Middle
Assyrian variant of TA (usually transliterated as TA*) was used as a logogramme for /issu/ (see
Figure 7). The situation here is almost—though not quite—a reversal of the previous one, with

similar implications for encoding.



Mergers:

(BAR) F
(BAN)

= = ,_T_
(MAS) +
Splits:

- (TA)

2
——
— (TA*) gﬁ,ﬂ,

Note: with the exception of TA*, all characters are taken from Labat’s Manuel, 5" edition.

Figure 7

C. Sort Order

Default sort order in a computer system is defined in terms of the internal representations
assigned to characters, in that characters are sorted according to the numerical sequence so
defined (recall Figure 4). In the case of small character sets such as those used for Western
European languages, the sequence is assigned so as to reflect the essentially arbitrary
conventions already established historically, which are memorized by language speakers. In the
case of large character sets, such as Han/Chinese, it is preferable to establish sort order according
to some general organizing principle such as character shape in order that the memory not be

overburdened when it comes to looking up characters in lists and dictionaries; internal

9.



representations are then assigned accordingly.

The traditional practice with cuneiform has been to follow the second approach, and to
order signs according to wedge-count and wedge-arrangement. This has worked well so long as
one restricted one’s self to a single script tradition (e.g. Neo-Assyrian, Old Babylonian), though
it has made the compilation of common ground resources awkward.

There are at least two obvious difficulties with continuing this tradition, without at least a
few modifications:

. a sort order based upon such an organizing principle will differ depending upon the script
tradition followed, and only one default sort order can be defined; sort orders for all other
script traditions would have to be accommodated secondarily through look-up index
tables and the like;

. it is doubtful whether any script tradition exists in which al/ characters across the system
are attested at least once, meaning that some auxiliary sorting principle would have to be
defined to accommodate characters not attested within the chosen script tradition.

For this reason, the question of assigning a default order to cuneiform characters must be

considered carefully and objectively, in order to maximize the benefit to the field as a whole. It

may be of value to point out here that secondary look-up tables are already provided for within

Unicode, so that if the Unicode route is followed, it will be possible to establish special sort

orders by script tradition where desired, obviating the need to use the default order for this

purpose. This frees up the default order for any other useful purpose upon which the cuneiform
community can agree.

6. Linking the Character Code to Character Interpretation

It was suggested above that character identity and essential form could be recorded alongside

character interpretation with little more effort than presently required to type standard

transliteration. The procedure would be a simple one; the following is intended to serve as an

-10-



illustration of how this might be accomplished.

First of all, before entering text, certain control parameters could be set, according to
which expected variant frequency tables would be loaded and matched to certain standard keying
sequences, on a character by character basis within the context of a given script tradition. In
most cases, standard transliteration inherently specifies character identity, and in the case of
mergers and splits and so on, ambiguity would be resolved by the control parameters already
specified. Thus, entering a transliteration through a specially designed input mechanism could
easily provide both character identity and character interpretation.

A suitably located scroll window could display character variants in order of expected
frequency, with the highest frequency choice preselected, which would be the variant to be
encoded if no further action is taken. Continuing on with the next transliterated character would
cause the chosen character and variant combination to be encoded and registered in one file, and
the corresponding transliteration in another. In the event that a less frequent variant is required,
it would be a simple matter to use the arrow keys to scroll through the display window until the
appropriate variant is selected before proceeding.

The advantages of such a data entry system are quite clear. Among other things:

. text and transliteration editions can be produced quickly and efficiently;

. because the scroll window provides a visual equivalent of the transliteration, errors such
as the inadvertent specification of the wrong subscript index can be minimized;

. texts and transliterations are guaranteed to be in complete agreement with each other;

. the input mechanism can be designed to be heuristic, meaning that it could learn from
experience by counting variants and re-evaluate expected variant frequencies for a given
corpus. This means that accurate statistics concerning the corpus would always be
automatically available; also, upon conclusion of corpus entry, the accumulated data
could be used to generate automatic character lists and so on; and finally,

-11-



. given some reasonable preliminary work in setting up frequency tables for given corpora
or script traditions, it would be a simple matter to feed existing transliterations through a
translator to produce preliminary versions of texts in the new format. It would then only
be necessary to scan each text to verify that the appropriate variants have been encoded,
and to correct these where necessary.

7. Conclusion

The foregoing analysis and proposal is the result of several years’ consideration of the problem

of representing cuneiform text on modern computer systems. In its present form, the proposal is

a joint effort between myself, a former Analyst Programmer and currently a doctoral student in

Assyriology at the University of Toronto, and Lloyd Anderson of Ecological Linguistics, a

professional linguist specializing in character codes who is also a member of Unicode. Together,

we have launched the Computer Representation of Cuneiform Project, whose goal is to perfect

this proposal, and, with the support of our respective communities, make a substantial

contribution to its realization.

Rosemere, Québec

July 2000

-12-



We welcome the participation of scholars with an interest in the encoding of cuneiform.
Interested parties are invited to visit our website at

www.imprimus.ca/~jenniedavis/crc.htm

where additional technical details about the proposal are available as well as a comprehensive
description of the project and the project team. We can also be reached by email at

kfeuerherm@hotmail.com (Karljiirgen Feuerherm) and

ecoling@aol.com (Lloyd Anderson).

Unicode has also kindly made available to us a discussion group which can be subscribed
to by submitting a request to

cuneiform-request@unicode.org

Details are available at the Unicode homepage, www.unicode.com.




