
 Submission for WebDB 2000 1/6

Abstract.
The Extensible Markup Language is accepted as the emerging
standard for data interchance on the Web. XML allows
authors to create their own markup (e.g. <Student>), which
seems to carry some semantics. However, from a
computational perspective tags like <Student> carries as
much semantics as a tag like <H1>. A query answering facility
simply does not know, what an author is and how the concept
author is related to e.g. a concept person. We investigate
technologies to enrich query-answering with XML documents
using background knowledge about concept-structures.

1 Introduction
The Extensible Markup Language (XML, [Bray et al. 98]) is
accepted as the standard for data interchange on the Web.
XML allows authors to create structured documents using
their own markup (e.g. <Student>), which carries some
semantics. However, from a computational perspective tags
like <Student> carry as much semantics as tags like <H1> or
<XQ27>, i.e. XML is often overestimated concerning its
semantic capabilities. For example, an XML query asking for
all <Person>-elements does not return any <Student>
element, despite the fact, that every student semantically is
also a person. The semantics of XML tags is typically
encoded into the sending and receiving applications that
handle these documents. That means, information interchange
with XML needs specialized, case dependent applications,
which are costly to built and to maintain.
In this paper we introduce a declarative method for defining
the semantics of XML tags and thus, for supporting more cost
effective creation of XML applications. For the definition of
the semantics of XML tags we rely on ontologies that define
the terminology of a domain, provide a sound semantics, and
formalize relationships between the terms, i.e. provide rich
background knowledge. Two different components have to be
investigated:

1. an XML query engine, e.g. Lore [McHugh et al.99][Gold-
man et al. 99], XML-QL [Deutsch et al. 98][Florescu et al.
99], or XQL [Robie et al. 98][Robie 99]. This component
accesses the information stored in XML documents based
on query language expressions. The main purpose of an
XML query engine is to provide a convenient way for data
access for higher level applications.

2. an ontology inference engine, able to reason with the on-

tological background knowledge. The inference engine is
used to compute the relationships between the terms de-
fined in the ontology, and provides semantics about the
domain.

We investigate different possibilities for the combination of
an XML query engine and an ontology inference engine.
The rest of this paper is structured as follows: In section 2 we
survey the notion of ontologies. Then we investigate the
possibilities, that exist for coupling an XML query engine and
an inference engine and list necessary conditions that both
components must fulfill. We discuss an implementation of our
approach, using XQL and a Frame-Logic inference engine.
Finally we present our conclusions and describe future work.

2 Ontologies

2.1 Definition of Ontology
The notion of an ontology in computer science is based on
work from the field of knowledge acquisition and reasoning.
A common definition of this term stems from [Gruber 93]:
"An ontology is a specification of a conceptualization." This
definition stresses the importance of formality of the
conceptual model. Equally important for the notion of
ontology that we have is the agreement of a community of
users about the terms of the ontology and their meaning. Only
this agreement ensures knowledge sharing. An ontology
typically contains the following components: a vocabulary of
concepts or classes, often arranged in a taxonomic, tree-like
structure; relationships between concepts; attributes of
concepts; and a set of logical axioms that define the true
assumptions about the domain, e.g. business rules.
There exist several representation languages for ontologies.
Most of them are based on predicate logic, but differ
significantly in the set of modeling primitives they provide, in
expressiveness and computability. The view of ontologies in
this paper is influenced by our experience with Frame-Logic
[Kifer et al. 95], an object-oriented and logic-based language
(cf. section 4.2). To give an impression of Frame-Logic and
the expressiveness of ontologies in general we present an
example describing (parts of) the domain of a research
community in figure 1.
This ontology defines concepts like Person, with attributes
like name and is-a-relationships that are indicated by

Ontology-aware XML-Queries

Michael Erdmann1, Stefan Decker2

1University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany
erdmann@aifb.uni-karlsruhe.de

2Department of Computer Science, Stanford University, Stanford, CA 94305
stefan@db.stanford.edu

 Submission for WebDB 2000 2/6

indentation. The axioms that hold in this domain are presented
in pseudo-code for easy understanding.

2.2 Rational for Ontology supported XML
Querying
It must be clearly stated that XML is solely a representation
language to specify the structure of documents and thus their
syntactic dimension. The document structure can represent
some semantic properties but it is not clear how this can be
deployed outside of special purpose applications. To allow for
real semantic interpretation and querying of XML documents
XML must be complemented by a conceptual model that
adequately describes the semantics of XML tags. This role
cannot be filled by DTDs or XML-Schemas [Thompson et al.
99]. Although both represent a schematic view for XML
documents they only cope with the structure of documents
and do not define an actual model of a domain what would be
needed for the semantics of and relationships between terms.
Everything said for XML in general also holds, of course, for
XML query languages: True semantic queries are not possible
with such languages, due to the lack of a conceptual model.
Thus, XML query facilities must be complemented by such
models, too.

Although, existing query languages are powerful tools to
retrieve the contents of documents based on the document
structure, the data models of all these approaches (e.g. XML-
QL, Lore, XSL, and XQL) directly reflect the document
structure, i.e. its syntax. When applying a more abstract (i.e.
conceptual) approach we can abstract from this structure and
refer to the contents as concepts and relationships, instead,
and thus, answer queries on a more appropriate level. We
propose to provide the conceptual model based on an ontology
and respective means for inferencing. Since, conceptual terms
can be used to retrieve facts, the ontology is a kind of
mediator between an information seeker and the XML
documents. It unifies the different syntaxes/structures of these

Fig. 1 An example ontology

Person[name=>>STRING]
Academic[university=>>University,

publ=>Publication]
Professor[supervises=>>PhDStudent]
Researcher[field=>>ResearchTopic]

PhDStudent[supervisedBy=>>Professor]
NonAcademic

Secretary[worksFor=>Professor]
Publication[author=>>Academic, title=>STRING]

Book[isbn=>>NUMBER]
Journal[article=>>Article]
Article[journal=>>Journal, page=>>NUMBER]
Report[org=>>Organization, no=>>NUMBER]

Organization[name=>>STRING]
University
Enterprise

supervises inverse to supervisedBy
author inverse to publ
article inverse to journal

documents and can add background knowledge to the process
of answering a query.

To illustrate these statements, assume the ontology given in
figure 1 and the XML document containing information about
a research group:

As can be seen, the terms defined in the ontology appear as
element-types in the XML-document and thus a semantic
interpretation of these XML-tags in terms of the ontology can
be made, i.e. queries to this kind of documents can be
enhanced by adding the background knowledge encoded in
the ontology to the query answering process. For example: a
query for all publications with the names of all their authors is
quite cumbersome to formulate in traditional XML query
languages. If the query facility would interpret the terms
person, author and name semantically it would be possible to
simplify this query, and at the same time enhance the quality
of the answer.

3 Ontology-aware XML Queries

3.1 Combination Approaches
For realizing ontology-aware XML queries we identified
three possible approaches:

• [Welty, Ide 99] propose to transform an XML document
into the representation language of the ontology. Queries
on the XML document are written using the query lan-
guage of the ontology representation system. Using this
approach the highly optimized query-evaluation strategies
for XML-queries can not be used, since evaluation and
representation strategies for semistructured data are not
build into usual ontology representation languages. Fur-

Fig. 2 XML document of a research group

<?xml version="1.0"?>

<Container>
<Report OID="book1">

<title>Ontobroker</title>
<author OIDREF="dfe"/>
<author OIDREF="sde"/>
<author OIDREF="mer"/>
<author OIDREF="rst"/>

</Report>
<Article OID="pub2">

<title>On2broker</title>
<author OIDREF="dfe"/>
<author>

<PhDStudent>
<name>A. Witt</name>

</PhDStudent>
</author>
<author OIDREF="rst"/>
</Article>

<Professor OID="rst">
<name>R. Studer</name>

</Professor>

<Researcher OID="dfe">
<name>D. Fensel</name>

</Researcher>
</Container>

 Submission for WebDB 2000 3/6

thermore this approach enforces a particular conceptual
model for the XML document, which is not necessarily the
intended one.

• The second approach is the extension of existing XML
query answering systems with ontological query primi-
tives, that results in a close coupling between an XML
query engine and an ontology query system. The ontology
inference engine is directly involved in XML query
answering at runtime. This is a high effort task, since the
XML query engine and the ontology query engine have to
be tightly integrated. The integration leads to deep alter-
ations in both systems.

• A third possibility is the loosely coupled approach. Here,
besides an XML query engine and the ontology inference
engine a third component is required, that mediates
between the other two components. The task of the media-
tion component is to perform query rewriting of the XML
query based on the ontological information from the ontol-
ogy inference engine.

The advantages of the loosely coupled approach is that it is
possible to take standard "off-the-shelf" XML query engines
and ontology inference systems that are highly optimized.
Since they need not be modified, the implementation takes not
much effort. Depending on the specific task it is furthermore
possible to easily replace one component with another, e.g. an
XQL [Robie 99] component with an XML-QL [Florescu et al.
99] component, or a Horn Logic-based ontology inference
engine (eg. [Decker et al. 98]) with a Description Logic-based
one (eg. [Horrocks 1999]). Therefore we have choosen the
loosely coupled approach.
However, these components have to fulfill certain
requirements that are investigated in the next section.

3.2 Loosely Coupled Approach
The basic architecture necessary for a loose coupling between
the ontology inference engine and the XML query engine is
depicted in figure 3. The principle mediator algorithm
imposed by the architecture is as follows:

1. The mediator receives the XML query and parses it, look-
ing for ontology terms (concept names).

2. Then the XML query is rewritten in a semantics preserv-
ing way using information from the ontology inference en-
gine.

Fig. 3 Architecture of the loosely coupled approach

Ontology

Mediator and

XML-Query

Ontological Query

Rewritten

XML
Result

Inferred

Background
Knowledge

Inference
Engine

Information

Query Rewriting
Component

Query Engine

Document

Result

3. The rewritten XML query is passed to the XML query en-
gine, which passes back the query results to the mediator.

4. In a final (optional, depending on the application) step the
results are rewritten again using the terminology from the
original query and passed to the calling application.

What exactly "semantics preserving rewriting" means in this
context (step 2) will be clarified in section 4.3. The
architecture is generic in the sense, that several ontology
inference engines and XML query engines can be used.
However, they have to fulfill certain requirements concerning
expressivity. Using these requirements, it is possible to judge,
whether a certain ontology inference engine can be used or a
certain XML query mechanism is extensible.

1. The ontology inference engine must be able to answer que-
ries that ask for all subclasses of a given class (basically,
transitive closure of a binary relationship). The relationship
can be defined explicitly, via Rules (as in Frame-Logic [Ki-
fer et al. 95]) or implicitly (Description logics).

2. Further, the XML-query engine must fulfill one of the fol-
lowing requirements:

• It has either to implement the possibility to ask for the
set theoretic union of the results of separate subque-
ries. E.g. if Q is an XML query and Q(R/S) is the
query, where the tag-name R is replaced by the tag
name S, then the query language must be expressive
enough for the expression: Q(R/S1) union Q(R/S2)

• Or, the second possibility is the existence of a boolean
operator for the disjunction of boolean expressions,
e.g. for the use in filter expression for tag names. I.e. it
must be possible to filter results from an expression
based on a logical or, e.g. expr[bExpr1 or bExpr2].

Both possibilities enable semantics preserving query
rewriting. A semantics preserving query rewriting of a query
q is a query q’ that returns all answers using the subclass
semantics of the ontology inference component. Using the
first possibility of query rewriting, a query has to be rewritten
by generating all possible queries by replacing a tag-name by
all the subclasses and combining the queries together with the
union operator.
Using the second possibility, a given tag-name is replaced
with the disjunction of all subclass-expressions, including the
original tag.
Looking at existing XML-Query languages, eg. XQL [Robie
99] implements both possibilities, whereas XML-QL
[Florescu et al. 99] just implements the second one.

4 Implementation
In the following we present an example implementation of the
architecture defined in the last two sections. After assessing
the given requirements, XQL and the XQL engine from
GMD- IPSI1 for the XML query language component and our
own inference engine [Decker et al. 98] for F-Logic [Kifer et

1. The XQL-Engine was used by kind permission of GMD-IPSI,
Darmstadt, Germany.
http://www.xml.ipsi.darmstadt.gmd.de/xql

 Submission for WebDB 2000 4/6

al. 95] for the ontological inferencing were chosen. After
briefly presenting these existing components, the rewriting
component is illustrated in this section.

4.1 XQL
The main idea behind XQL (XML Query Language, [Robie et
al. 98], see [Robie 99] for an updated version) is the
formulation of path expressions that typically locate a set of
elements to be returned as the result of a query. The syntax of
XQL queries resembles the syntax of URLs and indeed is
intended to be usable as part of URLs (in a similar way as
XPath expressions [Clark, DeRose 99]). A simple XQL query
consists of a path expression, e.g.

/Book/author

An XQL query returns, if not otherwise specified, the
rightmost element in the path. The basic path syntax has been
extended to support a large number of operators to widen the
expressive power, e.g.

• access to attributes: /Book/@genre

• filter expressions that reduce the set of located elements:
/Book[@genre="scifi"]/author

• wildcard elements that match any element type or
attribute: /Book[@*]/*

• unrestricted nesting depths: //Person//lastName

• boolean operators and set operations:
/Book[@genre="scifi"] $union$
/Toy[@type="sci-fi" or @type="fantasy"]

The proposed ’98 version of XQL does not provide means for
transforming the structure of an input document nor the
definition of variables, which is a prerequisite for formulating
joins. These and other new features are considered in the ’99
version and are nearly completely implemented in the
available GMD-IPSI XQL engine. These features include:

• variables and joins: //Book[$x := isbn] {*, //cus-
tomer[.//isbn = $x]/name}

• return operators that add certain nodes to the set of
returned elements although they are not the rightmost in a
path: //Book?//author??//degree

There exist a number of implementations for XQL; among
others an implementation in PERL, and the GMD-IPSI XQL
engine, which has been chosen for the research presented in
this paper. We made this choice because the GMD-IPSI
engine is implemented in Java, collaborates with all XML
processors and is thus very portable. It enriches the XQL core
by a number of features such as access to multiple documents,
extensibility, regular expressions and the possibility to query
HTML documents. It also supports XML as a representation
format for the query results, which makes it a useful
component in processing chains.

4.2 F-Logic Inference Engine
Usually, ontologies are defined via concepts or classes, is-a
relationships, attributes, further relationships, and axioms.
Therefore an adequate language for defining the ontology has
to provide modeling primitives for these concepts. Frame-

Logic [Kifer et al. 95] provides such modeling primitives and
integrates them into a logical framework providing a Horn
logic subset. Furthermore, expressing the ontology in Frame-
Logic allows for queries, that directly use parts of the
ontology as first class citizens (which was the requirement an
ontology inference engine has to provide). That is, not only
instances and their values but also concept and attribute
names can be provided as answers via variable substitutions.
We use a slightly modified variant of Frame-Logic, which
suits our needs. Mainly the subclassing: C1 :: C2 mechanism,
meaning that class C1 is a subclass of C2 is used. Please note
that subclasses can also be result of a rule application, thus
also implicit defined subclasses are possible.

4.3 Rewriting XQL Queries
In order to improve the semantic adequacy of the results of
XQL queries, these queries are transformed with the help of
an ontology. This rewriting step must make certain
assumptions about the relationships between the terms
defined in the ontology and the structure of XML documents.
One way of defining these relationships has a prescribing
character that enforces a certain XML structure by deriving a
DTD from a given ontology (cf. [Erdmann, Studer 99]). When
rewriting XQL queries, the XML structure of the source
documents needs not necessarily be valid according to such a
derived DTD. The rewriting procedure is rather liberal, i.e. it
only transforms those parts of the query, that have
counterparts in the ontology. The XML/XQL particles and
their ontological counterparts are illustrated in the following
list (cf. figure 1 and figure 2 for ontology and XML data):

1. Element types in the XML source are mapped to ontologi-
cal concepts iff a concept exists with the same name as the
name of the XML tag.

2. Other element types are mapped to attributes of ontologi-
cal concepts iff such an attribute with the same name ex-
ists in the ontology.

3. The value of an ontological attribute is defined by the con-
tents of a corresponding XML element:

• as PCDATA for atomic values (i.e. strings, integer ...),

• as a subelement indicating the concept, the attribute
value is an instance of, or

• as the value of the OIDREF-attribute expressed in
XPath that points to an element representing the actual
value.

The rewriting mechanism in general performs two steps.
Firstly, it analyses the original XQL query. Then, it
inductively converts the query into a richer query that
embodies ontological background knowledge. As can be seen
in the above list, the most important mapping point between
ontology and XML structure (or rather XQL query) are
element names. Three major cases must be distinguished:

1. The element name in the query is equal to the name of a
concept of the ontology.
The subquery representing one element is substituted by a
union of elements. The set of elements consists of all sub-

 Submission for WebDB 2000 5/6

concepts of the concept used in the original query and is in-
ferred from the ontology by passing a
getAllSubClasses query to the ontology inference en-
gine.

//Publication/author/Academic
=>

//(Publication | Book | Article | Report)/
author/(Academic | Professor | Researcher |
PhDStudent)

The converted query returns all <Academic>, <Profes-
sor>, <Researcher> and <PhDStudent>-Elements that
are subelements of an <author>-tag inside one of the ele-
ments representing a kind of publication (i.e. <Publica-
tion>, <Book>, <Article>, or <Report>).

2. The element name is equal to the name of an attribute of
the ontology.

In this case the subquery is substituted by a more complex
expression that reflects the possibility to refer to other ele-
ments in the document in the OIDREF-attribute to denote
the destination of these links as attribute values.
//Publication/author

=>
//Publication/

(author[not @OIDREF] |
(author[$x := @OIDREF]

{//Academic[@OID = $x]}))

Here, the author-subquery is substituted by a disjunction
asking for all <author>-Elements with no OIDREF-
attribute or for all <Academic>-Elements2 that are con-
tained in the document and whose OID-Attribute matches
the value of OIDREF.

3. The element name neither matches a concept nor an at-
tribute name of the ontology.

The subquery is left unchanged, since this part of the
query cannot be enriched with background knowledge
from the ontology.

The presented query rewriting algorithm makes certain
assumption about the mapping from ontological terms to the
XML structure (i.e. correspondence of concept and attribute
names with tag-names). Other mappings are possible, e.g.
conforming to Open Catalog Protocol/Format (OCP/OCF,
[Martsoft 99]), where each category and product in the
catalog is marked with a <category> resp. <product>-tag
and is further specified by a name-attribute. Here, the value of
the name-attribute has to be mapped to the concept names of
the ontology. When converting a query to an OCF catalog, the
rewriting algorithm has to check whether the query contains
references to the name-attribute and translate them according
to the ontology, e.g.:

//category[@name="Publication"]//product
=>

//category[@name="Publication" |
@name="Book" | @name="Article" |

2. Actually, instead of Academic the union (Academic |
Professor | Researcher | PhDStudent) is in-
serted in the converted query.

@name="Report" | @name="Journal"]//
product

OCF-documents contain definitions of subcategory relations,
that can be seen as a kind of ontology. Rewriting queries to
these documents based on an ontology, allows different users
of the catalog to impose different category-hierarchies and
thus define different views on the information.
To adopt our approach in the OCP/OCF scenario, simply the
rewriting rules have to be changed; the principled architecture
stays the same.

5 Conclusion and Related Work
Several query-approaches for XML and XML-based
languages are reported in the literature. We have already
discussed XQL and XML-QL, and will now focus on other
approaches.
LORE (Lightweight Object Repository) [Goldman et al. 99] is
a DBMS designed specifically for querying data expressed in
OEM (Object Exchange Model) and XML. It does not support
ontology-aware queries, but is extensible using the sketched
framework in our paper.
RQL (RDF Query Language) (http://www.ics.forth.gr/proj/
isst/RDF/rdfquerying.pdf) does not support general XML, but
RDF. It does support retrieval based on the subclass structure,
but the subclass structure is given through an RDF schema,
which defines subclassOf facts between terms. Our approach
enables to use reasoning instead of a fix encoded subclass
structure.
[Bar-Yossef et al. 99] queries documents based on the
semantic tagging, but does not consider a specific ontology,
and especially not a subclass structure and does not support
XML.
Because the relationship between XML structure and
ontologies may be manifold, it is necessary to define several
rewriting algorithms, and thus extend the applicability of our
approach. As a next step in our work we plan to parameterize
the XML/ontology mapping in a way that the rewriting
algorithm can be easily adopted in different application
scenarios.

Acknowledgments: We are grateful to Ingo Macherius and
Peter Fankhauser from GMD-IPSI for fruitful discussions and
support.

6 References
[Abiteboul et al. 97] S. Abiteboul, D. Quass, J. McHugh, J.

Widom, and J. Wiener: The Lorel query language for
semi-structured data. in: Journal of Digital Libraries.
Volume 1, No. 1, 1997

[Bar-Yossef et al. 99] Z. Bar-Yossef, Y. Kanza, Y. Kogan,
W. Nutt, Y. Sagiv: Querying Semantically Tagged
Documents on the World-Wide Web. in: Proc. Fourth
Workshop on Next Generation Information
Technologies and Systems, NGITS'99, Zikhron-Yaakov
(Israel), July 1999.

[Bray et al. 98] T. Bray, J. Paoli, and C.M. Sperberg-
McQueen (eds.): Extensible Markup Language (XML)

 Submission for WebDB 2000 6/6

1.0. W3C Recommendation, February 10, 1998.
http://www.w3.org/TR/1998/REC-xml-
19980210

[Clark, DeRose 99] J. Clark, S. DeRose (eds.): XML Path
Language (XPath) 1.0. W3C Recommendation,
November 16, 1999.
http://www.w3.org/TR/xpath

[Decker et al. 98] S Decker, D. Brickley, J. Saarela, and J.
Angele: A Query and Inference Service for RDF. In:
Proceedings of the W3C Query Languages Workshop
(QL'98), http://www.w3.org/TandS/QL/QL98/pp.html,
1998

[Decker et al. 99] S. Decker, M. Erdmann, D. Fensel, and
R. Studer: Ontobroker: Ontology based Access to
Distributed and Semi-Structured Information. in: R.
Meersman et al. (eds.): Semantic Issues in Multimedia
Systems, Kluwer Academic Publisher, Boston 1999.

[Deutsch et al. 98] A. Deutsch, M. Fernandez, D. Florescu,
A. Levy, and D. Suciu: XML-QL: A Query Language
for XML. W3C Note, August 19, 1998.
http://www.w3.org/TR/NOTE-xml-ql/

[Erdmann, Studer 99] M. Erdmann and R. Studer:
Ontologies as Conceptual Models for XML Documents.
in: Proceedings of the 12th Workshop on Knowledge
Acquisition, Modelling and Management (KAW'99),
Banff, Canada, October 1999. 1999.

[Florescu et al. 99] D. Florescu, A. Deutsch, A. Levy, M.
Fernandez, D. Suciu: A Query Language for XML. in:
Proceedings of Eighth International World Wide Web
Conference (WWW’8), 1999.

[Goldman et al. 99] R. Goldman, J. McHugh, and J.
Widom: From Semistructured Data to XML: Migrating
the Lore Data Model and Query Language. in:
Proceedings of the 2nd International Workshop on the
Web and Databases (WebDB '99), Philadelphia,
Pennsylvania, June 1999.
ftp://db.stanford.edu/pub/papers/
xml.ps

[Gruber 93] T. R. Gruber: A Translation Approach to
Portable Ontology Specifications. in: Knowledge
Acquisition. vol. 6, no. 2, 1993. pp199-221

[Horrocks 1999] [I. Horrocks: FaCT and iFaCT. In P.
Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P.
Patel-Schneider, editors, Proceedings of the
International Workshop on Description Logics
(DL'99), pages 133-135, 1999.

[Ide et al. 97] N. Ide, T. McGraw, and C. Welty:
Representing TEI Documents in the CLASSIC
Knowledge Representation System. Proceedings of the
Tenth workshop of the Text-Encoding Initiative.
November, 1997.

[Kifer et al. 95] M. Kifer, G. Lausen, and J. Wu: Logical
Foundations of Object-Oriented and Frame-Based
Languages, Journal of the ACM, 42, 1995.

[Martsoft 99] Open Catalog Format. http://
www.martsoft.com/ocp

[McHugh et al.99]J. McHugh, S. Abiteboul, R. Goldman,

D. Quass, and J. Widom: Lore: A Database
Management System for Semistructured Data. SIGMOD
Record, 26(3):54-66, September 1997.

[Robie et al. 98] J. Robie, J. Lapp, and D. Schach: XML
Query Language (XQL). in: Proceedings of the W3C
Query Language Workshop (QL-98), Boston, MA,
December 3-4, 1998.
http://www.w3.org/TandS/QL/QL98/pp/
xql.html

[Robie 99] J. Robie (ed.): XQL (XML Query Language).
Working draft. August 1999.
http://metalab.unc.edu/xql/xql-
proposal.html

[Thompson et al. 99] H.S. Thompson, D. Beech, M.
Maloney, and N. Mendelsohn (eds.): XML Schema
Part 1: Structures. W3C Working Draft. December 17,
1999
http://www.w3.org/TR/1999/WD-
xmlschema-1-19991217

[Welty, Ide 99] C. Welty and N. Ide: Using the right tools:
enhancing retrieval from marked-up documents. in:
Journal Computers and the Humanities. 33(10):59-84.
April, 1999.

