
Copyright © ebXML 2000 & 2001. All Rights Reserved.

 1

ebXML Registry Services 2

ebXML Registry Project Team 3

Working Draft 1/20/2001 4

This version: Version 0.84 5

 6

1 Status of this Document 7

 8

This document specifies an ebXML DRAFT STANDARD for the eBusiness 9
community. 10

 11

Distribution of this document is unlimited. 12

 13

The document formatting is based on the Internet Society’s Standard RFC 14
format. 15

 16

This version: 17

 http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpecificationv0.84.pdf 18

 19

Latest version: 20

 http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpecificationv0.84.pdf 21

 22

Previous version: 23

 http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpecificationv0.83.pdf 24

 25

 26

ebXML Registry January 2001

ebXML Registry Services Specification Page 2 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

2 ebXML participants 27

The authors wish to acknowledge the support of the members of the Registry 28
Project Team who contributed ideas to this specification by the group’s 29
discussion e-mail list, on conference calls and during face-to-face meetings. 30

 31
Joseph Baran - Extol 32
Lisa Carnahan – NIST 33
Joe Dalman - Tie 34
Philippe DeSmedt - Viquity 35
Sally Fuger - AIAG 36
Steve Hanna - Sun Microsystems 37
Scott Hinkelman - IBM 38
Michael Kass, NIST 39
Jong.L Kim – Innodigital 40
Bob Miller - GXS 41
Kunio Mizoguchi - Electronic Commerce Promotion Council of Japan 42
Dale Moberg – Sterling Commerce 43
Ron Monzillo – Sun Microsystems 44
JP Morgenthal – XML Solutions 45
Joel Munter - Intel 46
Farrukh Najmi - Sun Microsystems 47
Scott Nieman - Norstan Consulting 48
Frank Olken – Lawrence Berkeley National Laboratory 49
Michael Park - eSum Technologies 50
Bruce Peat - eProcess Solutions 51
Mike Rowley – Excelon Corporation 52
Waqar Sadiq - Vitria 53
Krishna Sankar - CISCO 54
Kim Tae Soo - Government of Korea 55
Nikola Stojanovic - Columbine JDS Systems 56
David Webber - XML Global 57
Yutaka Yoshida - Sun Microsystems 58
Prasad Yendluri - webmethods 59
Peter Z. Zhoo - Knowledge For the new Millennium 60

61

ebXML Registry January 2001

ebXML Registry Services Specification Page 3 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Table of Contents 61

1 Status of this Document .. 1 62

2 ebXML participants ... 2 63

Table of Contents... 3 64

Table of Tables ... 6 65

3 Introduction... 7 66

3.1 Summary of Contents of Document ...7 67
3.2 General Conventions ..7 68
3.3 Audience...7 69
3.4 Related Documents ..7 70

4 Design Objectives.. 8 71

4.1 Goals ...8 72
4.2 Caveats and Assumptions ...8 73

5 System Overview ... 8 74

5.1 What The ebXML Registry Does ..8 75
5.2 How The ebXML Registry Works ...9 76
5.3 Schema Documents Are Submitted ...9 77
5.4 Business Process Documents Are Submitted..9 78
5.5 Seller’s Collaboration Protocol Profile Is Submitted9 79
5.6 Buyer Discovers The Seller ...9 80
5.7 CPA Is Established .. 10 81
5.8 Where the Registry Services May Be Implemented............................... 10 82

6 Registry Architecture..10 83
6.1 Implicit CPA Between Clients And Registry... 10 84
6.2 Client To Registry Communication Bootstrapping 11 85
6.3 Interfaces Exposed By The Registry... 12 86

6.3.1 Interface RegistryService.. 12 87
6.3.2 Interface ObjectManager .. 13 88
6.3.3 Interface ObjectQueryManager ... 13 89

6.4 Interfaces Exposed By Registry Clients .. 15 90
6.4.1 Interface RegistryClient... 15 91
6.4.2 Interface ObjectManagerClient.. 15 92
6.4.3 Interface ObjectQueryManagerClient... 16 93

7 Object Management Service ...17 94

7.1 Life Cycle of a Managed Object... 17 95
7.2 Object Attributes ... 18 96
7.3 The Submit Objects Protocol ... 19 97
7.4 The Approve Objects Request ... 19 98

ebXML Registry January 2001

ebXML Registry Services Specification Page 4 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.5 The Deprecate Objects Request ... 20 99
7.6 The Remove Objects Request ... 21 100

8 Object Query Management Service ..21 101
8.1 Browse and Drill Down Query Support ... 22 102

8.1.1 Get Root Classification Nodes Request....................................... 22 103
8.1.2 Get Classification Tree Request .. 23 104
8.1.3 Get Classified Objects Request ... 24 105

8.1.3.1 Get Classified Objects Request Example 24 106
8.2 Ad Hoc Query Support .. 25 107

8.2.1 Query Language Syntax... 25 108
8.2.2 Query Syntax Binding To [RIM] ... 25 109

8.2.2.1 Interface and Class Binding ... 25 110
8.2.2.2 Accessor Method To Attribute Binding 25 111
8.2.2.3 Primitive Attributes Binding ... 25 112
8.2.2.4 Reference Attribute Binding ... 26 113
8.2.2.5 Collection Attribute Binding .. 26 114
8.2.2.6 Semantic Constraints On Query Syntax......................... 26 115

8.2.3 Simple Metadata Based Queries... 26 116
8.2.4 Classification Queries.. 27 117

8.2.4.1 Identifying ClassificationNodes .. 27 118
8.2.4.2 Getting Root Classification Nodes................................... 27 119
8.2.4.3 Getting Children of Specified ClassificationNode 27 120
8.2.4.4 Getting Objects Classified By a ClassificationNode 27 121
8.2.4.5 Getting ClassificationNodes That Classify an Object... 28 122

8.2.5 Association Queries... 28 123
8.2.5.1 Getting All Association With Specified Object As Its 124
Source 28 125
8.2.5.2 Getting All Association With Specified Object As Its 126
Target 28 127
8.2.5.3 Getting Associated Objects Based On Association 128
Attributes ... 28 129
8.2.5.4 Complex Association Queries.. 29 130

8.2.6 Package Queries.. 29 131
8.2.6.1 Complex Package Queries... 29 132

8.2.7 ExternalLink Queries ... 29 133
8.2.7.1 Complex ExternalLink Queries .. 30 134

8.2.8 Audit Trail Queries ... 30 135
8.2.9 Content Based Ad Hoc Queries... 30 136

8.2.9.1 Automatic Classification of XML Content....................... 30 137
8.2.9.2 Index Definition... 31 138
8.2.9.3 Example Of Index Definition... 31 139
8.2.9.4 Example of Automatic Classification............................... 31 140

8.2.10 Ad Hoc Query Request/Response .. 32 141
8.3 Content Retrieval ... 33 142

ebXML Registry January 2001

ebXML Registry Services Specification Page 5 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.3.1 Identification Of Content Payloads .. 33 143
8.3.2 GetContentResponse Message Structure 33 144

8.4 Query And Retrieval: Typical Sequence .. 34 145

9 Registry Security ...35 146

9.1 Integrity of Registry Content ... 36 147
9.1.1 Message Payload Signature .. 36 148

9.2 Authentication ... 36 149
9.2.1 Message Header Signature.. 36 150

9.3 Confidentiality... 37 151
9.3.1 On-the-wire Message Confidentiality.. 37 152
9.3.2 Confidentiality of Registry Content .. 37 153

9.4 Authorization ... 37 154
9.4.1 Pre-defined Roles For Registry Users .. 37 155
9.4.2 Default Access Control Policies... 37 156

Appendix A Schemas and DTD Definitions ...38 157
A.1 ebXMLError Message DTD .. 38 158
A.2 ebXML Registry DTD... 39 159

Appendix B Interpretation of UML Diagrams...46 160
B.1 UML Class Diagram... 46 161
B.2 UML Sequence Diagram... 47 162

Appendix C BNF for Query Syntax Grammar ..47 163

Appendix D Security Implementation Guideline...49 164

D.1 Authentication ... 49 165
D.2 Authorization ... 50 166
D.3 Registry Bootstrap ... 50 167
D.4 Content Submission – Client Responsibility .. 50 168
D.5 Content Submission – Registry Responsibility.. 50 169
D.6 Content Delete/Deprecate – Client Responsibility.................................. 50 170
D.7 Content Delete/Deprecate – Registry Responsibility............................. 51 171

Appendix E Terminology Mapping...51 172

10 References...52 173

11 Disclaimer ..53 174

12 Contact Information ..54 175

Copyright Statement...55 176

 Table of Figures 177

Figure 1: ebXML Registry Interfaces ..12 178

Figure 2: Life Cycle of a Managed Object..18 179

ebXML Registry January 2001

ebXML Registry Services Specification Page 6 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Figure 3: Submit Objects Sequence Diagram...19 180

Figure 4: Approve Objects Sequence Diagram...20 181

Figure 5: Deprecate Objects Sequence Diagram...20 182

Figure 6: Remove Objects Sequence Diagram...21 183

Figure 7: Get Root Classification Nodes Sequence Diagram.................................22 184

Figure 8: Get Root Classification Nodes Asynchronous Sequence Diagram23 185

Figure 9: Get Classification Tree Sequence Diagram..23 186

Figure 10: Get Classification Tree Asynchronous Sequence Diagram.................23 187

Figure 11: A Sample Geography Classification ..24 188

Figure 12: Submit Ad Hoc Query Sequence Diagram ...32 189

Figure 13: Submit Ad Hoc Query Asynchronous Sequence Diagram...................32 190

Figure 14: Typical Query and Retrieval Sequence...35 191

Table of Tables 192

Table 1: Terminology Mapping Table ...51 193

 194

195

ebXML Registry January 2001

ebXML Registry Services Specification Page 7 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3 Introduction 195

3.1 Summary of Contents of Document 196

This document defines the interface to the ebXML Registry Services as well as 197
interaction protocols, message definitions and XML schema. 198

A separate document, ebXML Registry Information Model [RIM], provides 199
information on the types of metadata that is stored in the Registry as well as the 200
relationships among the various metadata classes. 201

3.2 General Conventions 202

o UML diagrams are used as a way to concisely describe concepts. They are 203
not intended to convey any specific implementation or methodology 204
requirements. 205

o The term “managed object content” is used to refer to actual Registry content 206
(e.g. a DTD, as opposed to metadata about the DTD). 207

o The term "ManagedObject" is used to refer to an object that provides 208
metadata about a content instance (managed object content). 209

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 210
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in 211
this document, are to be interpreted as described in RFC 2119 [Bra97]. 212

3.3 Audience 213

The target audience for this specification is the community of software 214
developers who are: 215

o Implementers of ebXML Registry Services 216

o Implementers of ebXML Registry Clients 217

3.4 Related Documents 218

The following specifications provide some background and related information to 219
the reader: 220

a) ebXML Registry Business Domain Model [BDM] - defines requirements 221
for ebXML Registry Services 222

b) ebXML Registry Information Model [RIM]- specifies the information model 223
for the ebXML Registry 224

c) ebXML Messaging Service Specification [MS] 225

d) ebXML Business Process Specification Schema [BPM] 226

ebXML Registry January 2001

ebXML Registry Services Specification Page 8 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

e) Collaboration Protocol Specification [CPA] (under development) - defines 227
how profiles can be defined for a party and how two parties’ profiles may 228
be used to define a party agreement 229

 230

4 Design Objectives 231

4.1 Goals 232

The goals of this version of the specification are to: 233

o Communicate functionality of Registry services to software developers 234

o Specify the interface for Registry clients and the Registry 235

o Provide a basis for future support of more complete ebXML Registry 236
requirements 237

o Be compatible with other ebXML specifications 238

4.2 Caveats and Assumptions 239

The Registry Services specification is first in a series of phased deliverables. 240
Later versions of the document will include additional functionality planned for 241
future development. 242

It is assumed that: 243

1. All interactions between the clients of the ebXML Registry and the ebXML 244
Registry will be conducted using ebXML Messaging Service. 245

2. All access to the Registry content is exposed via the interfaces defined for 246
the Registry Services. 247

3. The Registry makes use of a Repository for storing and retrieving 248
persistent information required by the Registry Services. This is an 249
implementation detail that will not be discussed further in this specification. 250

5 System Overview 251

5.1 What The ebXML Registry Does 252

The ebXML Registry provides a set of services that enable sharing of information 253
between interested parties for the purpose of enabling business process 254
integration between such parties based on the ebXML specifications. The shared 255
information is maintained as objects in a repository and managed by the ebXML 256
Registry Services defined in this document. 257

ebXML Registry January 2001

ebXML Registry Services Specification Page 9 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

5.2 How The ebXML Registry Works 258

This section describes at a high level some use cases illustrating how Registry 259
clients may make use of Registry Services to conduct B2B exchanges. It is 260
meant to be illustrative and not prescriptive. 261

The following scenario provides a high level textual example of those use cases 262
in terms of interaction between Registry clients and the Registry. It is not a 263
complete listing of the use cases envisioned in [BDM]. It assumes for purposes of 264
example, a buyer and a seller who wish to conduct B2B exchanges using the 265
RosettaNet PIP3A4 Purchase Order business protocol. It is assumed that both 266
buyer and seller use the same Registry service provided by a third party. Note 267
that the architecture supports other possibilities (e.g. each party uses their own 268
private Registry). 269

5.3 Schema Documents Are Submitted 270

A third party such as an industry consortium or standards group can submit the 271
necessary schema documents required by the RosettaNet PIP3A4 Purchase 272
Order business protocol with the Registry using the Object Manager service of 273
the Registry described in section 7.3. 274

5.4 Business Process Documents Are Submitted 275

A third party, such as an industry consortium or standards group, can submit the 276
necessary business process documents required by the RosettaNet PIP3A4 277
Purchase Order business protocol with the Registry using the Object Manager 278
service of the Registry described in section 7.3. 279

5.5 Seller’s Collaboration Protocol Profile Is Submitted 280

The seller publishes its Collaboration Protocol Profile or CPP as defined by 281
[CPA] to the Registry. The CPP describes the seller, the role it plays, the 282
services it offers and the technical details on how those services may be 283
accessed. The seller classifies their Collaboration Protocol Profile using the 284
Registry’s flexible classification capabilities. 285

5.6 Buyer Discovers The Seller 286

The buyer browses the Registry using classification schemes defined within the 287
Registry using a Registry Browser GUI tool to discover a suitable seller. For 288
example the buyer may look for all parties that are in the Automotive Industry, 289
play a seller role, support the RosettaNet PIP3A4 process and sell Car Stereos. 290

The buyer discovers the seller’s CPP and decides to engage in a partnership 291
with the seller. 292

ebXML Registry January 2001

ebXML Registry Services Specification Page 10 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

5.7 CPA Is Established 293

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as 294
defined by [CPA] with the seller using the seller’s CPP and their own CPP as 295
input. The buyer proposes a partnership to the seller using the unilateral CPA. 296
The seller accepts the proposed CPA and the partnership is established. 297

Once the seller accepts the CPA, the parties may begin to conduct B2B 298
transactions as defined by [MS]. 299

5.8 Where the Registry Services May Be Implemented 300

The Registry Services may be implemented in several ways including, as a 301
public web site, as a private web site, hosted by an ASP or hosted by a VPN 302
provider. 303

6 Registry Architecture 304

The ebXML Registry architecture consists of an ebXML Registry and ebXML 305
Registry clients. Clients communicate with the Registry using the ebXML 306
Messaging Service in the same manner as any two ebXML applications 307
communicating with each other. Future versions of this specification may extend 308
the Registry architecture to support distributed Registries. 309

This specification defines the interaction between a Registry client and the 310
Registry. Although these interaction protocols are specific to the Registry, they 311
are identical in nature to the interactions between two parties conducting B2B 312
message communication using the ebXML Messaging Service as defined by 313
[MS] and [CPA]. 314

As such, these Registry specific interaction protocols are a special case of 315
interactions between two parties using the ebXML Messaging Service. 316

6.1 Implicit CPA Between Clients And Registry 317

ebXML defines that a Collaboration Protocol Agreement [CPA] must exist 318
between two parties in order for them to engage in B2B interactions. 319

Similarly, this specification defines a CPA between a Registry client and the 320
Registry. Typical B2B interactions in ebXML require an explicit CPA to be 321
negotiated between parties. However, the CPA between clients and the Registry 322
is an implicit CPA that describes the interfaces that the Registry and the client 323
expose to each other for Registry specific interactions. These interfaces are 324
described in Figure 1 and subsequent sections. 325

ebXML Registry January 2001

ebXML Registry Services Specification Page 11 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6.2 Client To Registry Communication Bootstrapping 326

Because there is no previously established CPA between the Registry and the 327
RegistryClient, the client must know at least one Transport specific 328
communication address for the Registry. This communication address is typically 329
a URL to Registry, although it could be some other type of address such as email 330
address. 331

For example, if the communication used by the Registry is HTTP then the 332
communication address is a URL. In this example, the client uses the Registry’s 333
public URL to create an implicit CPA with the Registry. When the client sends a 334
request to the Registry, it provides a URL to itself. The Registry uses the client’s 335
URL to form its version of an implicit CPA with the client. At this point a session is 336
established within the Registry. 337

For the duration of the client’s session with the Registry, messages may be 338
exchanged bidirectionally as required by the interaction protocols defined in this 339
specification. 340

ebXML Registry January 2001

ebXML Registry Services Specification Page 12 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 341

Figure 1: ebXML Registry Interfaces 342

6.3 Interfaces Exposed By The Registry 343

The ebXML Registry is shown to implement the following interfaces as its 344
services (Registry Services). 345

6.3.1 Interface RegistryService 346

 347

This is the principal interface implemented by the Registry. It provides the 348
methods that are used by the client to discover service specific interfaces 349
implemented by the Registry. 350

 351

ebXML Registry January 2001

ebXML Registry Services Specification Page 13 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary

 ObjectManager getObjectManager()
Returns the ObjectManager interface implemented by the
Registry service.

 ObjectQueryManager getObjectQueryManager()
Returns the ObjectQueryManager interface implemented
by the Registry service.

 352

6.3.2 Interface ObjectManager 353

 354

This is the interface exposed by the Registry Service that implements the Object 355
life cycle management functionality of the Registry. Its methods are invoked by 356
the Registry Client. For example, the client may use this interface to submit 357
objects, classify and associate objects and to deprecate and remove objects. 358

 359

Method Summary

 Void approveObjects(ApproveObjectsRequest req)
Approves one or more previously submitted objects.

 Void deprecateObjects(DeprecateObjectsRequest req)
Deprecates one or more previously submitted objects.

 Void removeObjects(RemoveObjectsRequest req)
Removes one or more previously submitted objects from the Registry.

 void submitObjects(SubmitObjectsRequest req)
Submits one or more objects and possibly metadata related to object such
as Associations and Classifications.

6.3.3 Interface ObjectQueryManager 360

 361

This is the interface exposed by the Registry that implements the Object Query 362
management service of the Registry. Its methods are invoked by the Registry 363
Client. For example, the client may use this interface to perform browse and drill 364
down queries or ad hoc queries on Registry content and metadata. 365

 366

ebXML Registry January 2001

ebXML Registry Services Specification Page 14 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary

 GetClassificationTreeResponse getClassificationTree(
GetClassificationTreeRequest req)
Returns the ClassificationNode Tree under the
ClassificationNode specified in
GetClassificationTreeRequest.

 void getClassificationTreeAsync(
GetClassificationTreeRequest req)
Asynchronous version of getClassificationTree.

 GetClassifiedObjectsResponse getClassifiedObjects(
GetClassifiedObjectsRequest req)
Returns a collection of references to
ManagedObjects classified under specified
ClassificationItem.

 void getClassifiedObjectsAsync(
GetClassifiedObjectsRequest req)
Asynchronous version of getClassifiedObjects.

 GetContentResponse getContent()
Returns the specified content. The response
includes all the content specified in the request as
additional payloads within the response message.

 void getContentAsync()
Async version of getContent.

 GetRootClassificationNodesResponse getRootClassificationNodes(
GetRootClassificationNodesRequest req)
Returns all root ClassificationNodes that match
the namePattern attribute in
GetRootClassificationNodesRequest request.

 void getRootClassificationNodesAsync(
GetRootClassificationNodesRequest req)
Async version of getRootClassificationNodes.

 AdhocQueryResponse submitAdhocQuery(AdhocQueryRequest req)
Submit an ad hoc query request.

 void submitAdhocQueryAsync(AdhocQueryRequest req)
Async version of submitAdhocQuery.

ebXML Registry January 2001

ebXML Registry Services Specification Page 15 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6.4 Interfaces Exposed By Registry Clients 367

An ebXML Registry client is shown to implement the following interfaces. 368

6.4.1 Interface RegistryClient 369

 370

This is the principal interface implemented by a Registry client. The client 371
provides this interface when creating a connection to the Registry. It provides the 372
methods that are used by the Registry to discover service specific interfaces 373
implemented by the client. 374

 375

Method Summary

 ObjectManagerClient getObjectManagerClient()
Returns the ObjectManagerClient interface
implemented by the client.

 ObjectQueryManagerClient getObjectQueryManagerClient()
Returns the ObjectQueryManagerClient interface
implemented by the client.

 376

6.4.2 Interface ObjectManagerClient 377

 378

This is the client callback interface for the ObjectManager service of the Registry. 379
The ObjectManager invokes its methods to notify the client about the results of a 380
previously submitted request from the client to the ObjectManager service. 381

 382

Method Summary

 void approveObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted ApproveObjectsRequest was
accepted by the Registry.

 void approveObjectsError(ebXMLError error)
Notifies client that a previously submitted ApproveObjectsRequest was not
accepted by the Registry due to an error.

ebXML Registry January 2001

ebXML Registry Services Specification Page 16 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 void deprecateObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted DeprecateObjectsRequest was
accepted by the Registry.

 void deprecateObjectsError(ebXMLError error)
Notifies client that a previously submitted DeprecateObjectsRequest was
not accepted by the Registry due to an error.

 void removeObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted RemoveObjectsRequest was
accepted by the Registry.

 void removeObjectsError(ebXMLError error)
Notifies client that a previously submitted RemoveObjectsRequest was not
accepted by the Registry due to an error.

 void submitObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted SubmitObjectsRequest was
accepted by the Registry.

 void submitObjectsError(ebXMLError error)
Notifies client that a previously submitted SubmitObjectsRequest was not
accepted by the Registry due to an error.

 383

6.4.3 Interface ObjectQueryManagerClient 384

 385

This is the callback interface for the ObjectQueryManager service of the Registry. 386
The ObjectQueryManager invokes its methods to notify the client about the 387
results of a previously submitted query request from client to the 388
ObjectQueryManager service. 389

 390

Method Summary

 void getClassificationTreeAsyncResponse(
GetClassificationTreeResponse resp)
Async response for getClassificationTreeAsync request.

 void getClassifiedObjectsAsyncResponse(
GetClassifiedObjectsResponse resp)
Async response for getClassifiedObjectsAsync request.

ebXML Registry January 2001

ebXML Registry Services Specification Page 17 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 void getContentAsyncResponse(GetContentResponse resp)
Async response for getContent request.

 void getRootClassificationNodesAsyncResponse(
GetRootClassificationNodesResponse resp)
Async response for getRootClassificationNodesAsync request.

 void submitAdhocQueryAsyncResponse(AdhocQueryResponse resp)
Async response for submitAdhocQueryAsync request.

7 Object Management Service 391

This section defines the Object Management service of the Registry. The Object 392
Management Service is a sub-service of the Registry service. It provides the 393
functionality required by RegistryClients to manage the life cycle of managed 394
object contents (e.g. XML documents required for ebXML business processes). 395
The Object Management Service can be used with all types of managed object 396
contents as well as the metadata objects specified in [RIM] such as Classification 397
and Association. 398

In the current version of this specification, any client may submit content as long 399
as the content is digitally signed by an approved Certification Authority. 400
Submitting Organizations do not have to register prior to submitting content. 401

7.1 Life Cycle of a Managed Object 402

The main purpose of the Object Management service is to manage the life cycle 403
of managed object contents in the Registry. 404

Figure 2 shows the typical life cycle of a managed object content. Note that the 405
current version of this specification does not support Object versioning. Object 406
versioning will be added in a future version of this specification. 407

ebXML Registry January 2001

ebXML Registry Services Specification Page 18 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 408

Figure 2: Life Cycle of a Managed Object 409

7.2 Object Attributes 410

A managed object content is associated with a set of standard metadata defined 411
as attributes of the Object class and its sub-classes as described in [RIM]. These 412
attributes reside outside of the actual managed object content and catalog 413
descriptive information about the managed object content. XML DTD elements 414
called ExtrinsicObject and IntrinsicObject (See Appendix A.2 for details.) are 415
defined that encapsulates all object metadata attributes defined in [RIM] as 416
attributes of the DTD elements. 417

ebXML Registry January 2001

ebXML Registry Services Specification Page 19 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.3 The Submit Objects Protocol 418

This section describes the protocol of the Registry Service that allows a 419
RegistryClient to submit one or more managed object contents in the repository 420
using the ObjectManager on behalf of a Submitting Organization. It is expressed 421
in UML notation as described in Appendix B. 422

 423

Figure 3: Submit Objects Sequence Diagram 424

For details on the schema for the business documents shown in this process 425
refer to Appendix A.2. 426

The SubmitObjectRequest message includes 1 or more SubmittedObject 427
elements. 428

Each SubmittedObject element specifies an ExtrinsicObject along with any 429
Classifications, Associations, ExternalLinks, or Packages related to the object 430
being submitted. 431

An ExtrinsicObject element provides required metadata about the content being 432
submitted to the Registry as defined by [RIM]. Note that these standard 433
ExtrinsicObject attributes are separate from the managed object content itself, 434
thus allowing the ebXML Registry to catalog arbitrary objects. In addition each 435
SubmittedObject in the request may optionally specify any number of 436
Classifications, Associations and ExternalLinks for the SubmittedObject. 437

7.4 The Approve Objects Request 438

This section describes the protocol of the Registry Service that allows a client to 439
approve one or more previously submitted managed object contents using the 440
Object Manager. Once a managed object content is approved it will become 441
available for use by business parties (e.g. during the assembly of new CPAs and 442
Collaboration Protocol Profiles). 443

ebXML Registry January 2001

ebXML Registry Services Specification Page 20 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 444

Figure 4: Approve Objects Sequence Diagram 445

For details on the schema for the business documents shown in this process 446
refer to Appendix A.2. 447

7.5 The Deprecate Objects Request 448

This section describes the protocol of the Registry Service that allows a client to 449
deprecate one or more previously submitted managed object contents using the 450
Object Manager. Once an object is deprecated, no new references (e.g. new 451
Associations, Classifications and ExternalLinks) to that object can be submitted. 452
However, existing references to a deprecated object continue to function 453
normally. 454

 455

Figure 5: Deprecate Objects Sequence Diagram 456

ebXML Registry January 2001

ebXML Registry Services Specification Page 21 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

For details on the schema for the business documents shown in this process 457
refer to Appendix A.2. 458

7.6 The Remove Objects Request 459

This section describes the protocol of the Registry Service that allows a client to 460
remove one or more previously deprecated managed object contents using the 461
Object Manager. 462

Only if all references (e.g. Associations, Classifications, ExternalLinks) to an 463
object have been removed, can that object then be removed using a 464
RemoveObjectsRequest. Attempts to remove an object while it still has 465
references results in an InvalidRequestError that is returned within an 466
ebXMLError message sent to the ObjectManagerClient by the ObjectManager. 467

Once an object is removed it will be not be present at all in the Registry. The 468
remove object protocol is expressed in UML notation as described in Appendix B. 469

 470

Figure 6: Remove Objects Sequence Diagram 471

For details on the schema for the business documents shown in this process 472
refer to Appendix A.2. 473

8 Object Query Management Service 474

This section describes the capabilities of the Registry Service that allow a client 475
(ObjectQueryManagerClient) to search for or query ManagedObjects in the 476
ebXML Registry using the ObjectQueryManager interface of the Registry. 477

ebXML Registry January 2001

ebXML Registry Services Specification Page 22 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Any errors in the query request messages are indicated in the corresponding 478
query response message. Note that for each query request/response there is 479
both a synchronous and asynchronous version of the interaction. 480

8.1 Browse and Drill Down Query Support 481

The browse and drill drown query style is completely supported by a set of 482
interaction protocols between the ObjectQueryManagerClient and the 483
ObjectQueryManager as described next. 484

8.1.1 Get Root Classification Nodes Request 485

An ObjectQueryManagerClient sends this request to get a list of root 486
ClassificationNodes defined in the repository. Root classification nodes are 487
defined as nodes that have no parent. Note that it is possible to specify a 488
namePattern attribute that can filter on the name attribute of the root 489
ClassificationNodes using a wildcard pattern defined by SQL-92 LIKE clause as 490
defined by [SQL]. 491

 492

Figure 7: Get Root Classification Nodes Sequence Diagram 493

 494

ebXML Registry January 2001

ebXML Registry Services Specification Page 23 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Figure 8: Get Root Classification Nodes Asynchronous Sequence Diagram 495

For details on the schema for the business documents shown in this process 496
refer to Appendix A.2. 497

8.1.2 Get Classification Tree Request 498

An ObjectQueryManagerClient sends this request to get the ClassificationNode 499
sub-tree defined in the repository under the ClassificationNodes specified in the 500
request. Note that a GetClassificationTreeRequest can specify an integer 501
attribute called depth to get the sub-tree up to the specified depth. If depth is the 502
default value of 1, then only the immediate children of the specified 503
ClassificationNodeList are returned. If depth is 0 or a negative number then the 504
entire sub-tree is retrieved. 505

 506

Figure 9: Get Classification Tree Sequence Diagram 507

 508

Figure 10: Get Classification Tree Asynchronous Sequence Diagram 509

For details on the schema for the business documents shown in this process 510
refer to Appendix A.2. 511

ebXML Registry January 2001

ebXML Registry Services Specification Page 24 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.1.3 Get Classified Objects Request 512

An ObjectQueryManagerClient sends this request to get a list of 513
ManagedObjects that are classified by all of the specified ClassificationNodes (or 514
any of their descendants), as specified by the ObjectRefList in the request. 515

It is possible to get ManagedObjects based on matches with multiple 516
classifications. Note that specifying a ClassificationNode is implicitly specifying a 517
logical OR with all descendants of the specified ClassificationNode. 518

When a GetClassifiedObjectsRequest is sent to the ObjectQueryManager it 519
should return Objects that are: 520

1. Either directly classified by the specified ClassificationNode 521

2. Or are directly classified by a descendant of the specified 522
ClassificationNode 523

8.1.3.1 Get Classified Objects Request Example 524

 525

Figure 11: A Sample Geography Classification 526

Let us say a classification tree has the structure shown in Figure 11: 527

?? If the Geography node is specified in the GetClassifiedObjectsRequest then 528
the GetClassifiedObjectsResponse should include all ManagedObjects that 529
are directly classified by Geography or North America or US or Asia or Japan 530
or Korea or Europe or Germany. 531

?? If the Asia node is specified in the GetClassifiedObjectsRequest then the 532
GetClassifiedObjectsResponse should include all ManagedObjects that are 533
directly classified by Asia or Japan or Korea. 534

?? If the Japan and Korea nodes are specified in the 535
GetClassifiedObjectsRequest then the GetClassifiedObjectsResponse should 536
include all ManagedObjects that are directly classified by both Japan and 537
Korea. 538

?? If the North America and Asia node is specified in the 539
GetClassifiedObjectsRequest then the GetClassifiedObjectsResponse should 540
include all ManagedObjects that are directly classified by (North America or 541
US) and (Asia or Japan or Korea). 542

 543

ebXML Registry January 2001

ebXML Registry Services Specification Page 25 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2 Ad Hoc Query Support 544

The Registry supports an Ad hoc query capability that is designed for Registry 545
clients that demand more complex query capability. The ad hoc query interface 546
allows a client to submit complex queries using a declarative query language. 547

8.2.1 Query Language Syntax 548

[Note] The query syntax may evolve in a future version 549
of this document due to a lack of consensus 550
within the Registry team on the choice of query 551
syntax. 552

The ad hoc query language syntax of the Registry is defined by a stylized use of 553
a proper subset of the “SELECT” statement of SQL-92 query language as 554
defined by [SQL]. The exact syntax of the Registry query language is defined by 555
the BNF grammar in Appendix C. 556

Note that the use of a subset of SQL syntax for ad hoc queries does not imply a 557
requirement to use relational databases in a Registry implementation. Its purpose 558
is to provide a canonical syntax for declaratively defining a query on metadata in 559
the Registry, based on classes and attributes defined by [RIM]. 560

In a future version of this specification, the W3C XML Query Language may be 561
considered as an alternate query syntax when it reaches the recommendation 562
stage. 563

8.2.2 Query Syntax Binding To [RIM] 564

Registry queries are defined based upon the query syntax in in Appendix C and a 565
fixed logical schema defined by [RIM]. The following section define this binding. 566

8.2.2.1 Interface and Class Binding 567

Interface and class names in [RIM] map to table references in the query syntax. 568
Interface and class names may be used in the same way as table names in SQL. 569

8.2.2.2 Accessor Method To Attribute Binding 570

Most of the [RIM] interfaces methods are simple get methods that map directly to 571
attributes. For example the getName method on Object maps to a name attribute 572
of type String. 573

8.2.2.3 Primitive Attributes Binding 574

Attributes defined by [RIM] that are of primitive types (e.g. String) may be used in 575
the same way as column names in SQL. 576

ebXML Registry January 2001

ebXML Registry Services Specification Page 26 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.2.4 Reference Attribute Binding 577

A few of the [RIM] interface methods return references to instances of interfaces 578
or classes defined by [RIM]. For example, the getAccessControlPolicy method of 579
the Object class returns a reference to an instance of an AccessControlPolicy 580
object. 581

In such cases the reference maps to the ID attribute for the referenced object. 582
This is a special case of a primitive attribute mapping. 583

8.2.2.5 Collection Attribute Binding 584

A few of the [RIM] interface methods return Collections of references to instances 585
of interfaces or classes defined by [RIM]. For example, the getPackages method 586
of the ManagedObject class returns a Collection of references to instances of 587
Packages that the object is a member of. The use of Collection attributes are 588
restricted to be only within the IN clause of the query grammar. 589

The SQL IN clause may be used to test for membership of an object in such 590
collections of references. 591

8.2.2.6 Semantic Constraints On Query Syntax 592

This section defines simplifying constraints on the query syntax that cannot be 593
expressed in the BNF for the query syntax. These constraints must be applied in 594
the semantic analysis of the query. 595

1. Class names and attribute names must be processed in a case insensitive 596
manner. 597

2. Collection attributes must only be specified within an IN clause. 598

8.2.3 Simple Metadata Based Queries 599

The simplest form of an ad hoc query is based upon metadata attributes 600
specified for a single class within [RIM]. This section gives some examples of 601
simple metadata based queries. 602

For example, to get the collection of ExtrinsicObjects whose name contains the 603
word ‘Acme’ and that have a version greater than 1.3, the following query 604
predicates must be supported: 605

 606
SELECT DISTINCT obj FROM ExtrinsicObject WHERE 607
 obj.name LIKE ‘%Acme%’ AND 608
 obj.majorVersion >= 1 AND 609
 (obj.majorVersion >= 2 OR obj.minorVersion > 3); 610

Note that the query syntax allows for conjugation of simpler predicates into more 611
complex queries as shown in the simple example above. 612

ebXML Registry January 2001

ebXML Registry Services Specification Page 27 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.4 Classification Queries 613

This section describes the various classification related queries that must be 614
supported. 615

8.2.4.1 Identifying ClassificationNodes 616

Like all objects in [RIM], ClassificationNodes are identified by their ID. However, 617
they may also be identified as a path attribute that specifies an absolute path 618
from a root classification node to the specified classification node where each 619
path element is the name attribute of a ClassificationNode and is separated by ‘.’ 620
as a delimiter. 621

8.2.4.2 Getting Root Classification Nodes 622

To get the collection of root ClassificationNodes the following query predicate 623
must be supported: 624

SELECT FROM ClassificationNode WHERE parent IS NULL 625

The above query returns all ClassificationNodes that have their parent attribute 626
set to null. Note that the above query may also specify a predicate on the name if 627
a specific root ClassificationNode is desired. 628

8.2.4.3 Getting Children of Specified ClassificationNode 629

To get the children of a ClassificationNode given the ID of that node the following 630
style of query must be supported: 631

SELECT FROM ClassificationNode WHERE parent = <id> 632

The above query returns all ClassificationNodes that have the node specified by 633
ID as their parent attribute. 634

8.2.4.4 Getting Objects Classified By a ClassificationNode 635

To get the collection of ExtrinsicObjects classified by specified 636
ClassificationNodes the following style of query must be supported: 637

SELECT DISTINCT eo 638
FROM ExtrinsicObject eo, ClassificationNode auto, ClassificationNode geo 639
WHERE 640
 (geo IN (eo.classificationNodes) AND geo.path = ‘Geography.Asia.Japan’) 641
AND 642
 (auto IN (eo.classificationNodes) AND auto.path = ‘Industry.Automotive’) 643

The above query gets the collection of ExtrinsicObjects that are classified by the 644
Automotive Industry and the Japan Geography. Note that according to the 645
semantics defined for GetClassifiedObjectsRequest, the query will also contain 646
any objects that are classified by descendents of the specified 647
ClassificationNodes. 648

ebXML Registry January 2001

ebXML Registry Services Specification Page 28 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.4.5 Getting ClassificationNodes That Classify an Object 649

To get the collection of ClassificationNodes that classify a specified Object the 650
following style of query must be supported: 651

SELECT cn FROM ClassificationNode cn, ExtrinsicObject o WHERE 652
 o.ID = <id> AND 653
 cn IN (o.classificationNodes) 654

8.2.5 Association Queries 655

This section describes the various Association related queries that must be 656
supported. 657

8.2.5.1 Getting All Association With Specified Object As Its Source 658

To get the collection of Associations that have the specified Object as its source, 659
the following query must be supported: 660

SELECT assoc FROM Association WHERE assoc.sourceObject = <id> 661

8.2.5.2 Getting All Association With Specified Object As Its Target 662

To get the collection of Associations that have the specified Object as its target, 663
the following query must be supported: 664

SELECT assoc FROM Association WHERE assoc.targetObject = <id> 665

8.2.5.3 Getting Associated Objects Based On Association Attributes 666

To get the collection of Associations that have specified Association attributes, 667
the following queries must be supported: 668

Select Associations that have the specified name. 669

SELECT assoc FROM Association WHERE 670
 assoc.name = <name> 671

Select Associations that have the specified source role name. 672

SELECT assoc FROM Association WHERE 673
 assoc.sourceRole = <roleName> 674

Select Associations that have the specified target role name. 675

SELECT assoc FROM Association WHERE 676
 assoc.targetRole = <roleName> 677

Select Associations that have the specified association type, where association 678
type is a string containing the corresponding field name described in [RIM]. 679

SELECT DISTINCT assoc FROM Association WHERE 680
 assoc.associationType = <associationType> 681

ebXML Registry January 2001

ebXML Registry Services Specification Page 29 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.5.4 Complex Association Queries 682

The various forms of Association queries may be combined into complex 683
predicates. The following query selects Associations from an object with a 684
specified id, that have the sourceRole “buysFrom” and targetRole “sellsTo”: 685

SELECT DISTINCT assoc FROM Association WHERE 686
 Assoc.sourceObject = <id> AND 687
 assoc.sourceRole = ‘buysFrom’ AND 688
 assoc.sourceRole = ‘sellsTo’ 689

8.2.6 Package Queries 690

To find all Packages that a specified ExtrinsicObject belongs to, the following 691
query is specified: 692

SELECT p FROM Package p, ExtrinsicObject obj WHERE 693
 obj.ID = <id> AND p IN (obj.packages) 694

To find all Association objects in a specified package, the following query is 695
specified: 696

SELECT a FROM Association, Package p WHERE 697
 p.ID = <id> AND a IN (p.memberObjects) 698

8.2.6.1 Complex Package Queries 699

The following query gets all Packages that a specified object belongs to, that are 700
not deprecated and where name contains "RosettaNet." 701

SELECT p FROM Package p, ExtrinsicObject obj WHERE 702
 obj.ID = <id> AND p IN (obj.packages) AND 703
 p.name LIKE ‘%RosettaNet%’ AND 704
 p.status != ‘DEPRECATED’ 705

8.2.7 ExternalLink Queries 706

To find all ExternalLinks that a specified ExtrinsicObject is linked to, the following 707
query is specified: 708

SELECT l FROM ExternalLink, ExtrinsicObject obj WHERE 709
 obj.ID = <id> AND l IN (obj.externalLinks) 710

To find all ExtrinsicObjects that are linked by a specified ExternalLink, the 711
following query is specified: 712

SELECT obj FROM ExtrinsicObject, ExternalLink l WHERE 713
 l.ID = <id> AND obj IN (l.linkedObjects) 714

ebXML Registry January 2001

ebXML Registry Services Specification Page 30 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.7.1 Complex ExternalLink Queries 715

The following query gets all ExternalLinks that a specified ExtrinsicObject 716
belongs to, that contain the word ‘legal’ in their description and have a URL for 717
their externalURI. 718

SELECT l FROM ExternalLink, ExtrinsicObject obj WHERE 719
 obj.ID = <id> AND l IN (obj.externalLinks) AND 720
 l.description LIKE ‘%legal%’ AND 721
 l.externalURI LIKE ‘%http://%’ 722

8.2.8 Audit Trail Queries 723

To get the complete collection of AuditableEvent objects for a specified 724
ManagedObject, the following style query is specified: 725
SELECT ev FROM AuditableEvent, ExtrinsicObject obj WHERE 726
 obj.ID = <id> AND ev IN (obj.auditTrail) 727

8.2.9 Content Based Ad Hoc Queries 728

The ad hoc query interface of the Registry supports the ability to search for 729
content based not only on metadata that catalogs the content but also the data 730
contained within the content itself. For example it is possible for a client to submit 731
a query that searches for all Collaboration Party Profiles that define a role named 732
“seller” within a RoleName element in the CPP document itself. 733

Currently content-based query capability is restricted to XML content. 734

8.2.9.1 Automatic Classification of XML Content 735

Content-based queries are indirectly supported through the existing classification 736
mechanism supported by the Registry. 737

A submitting organization may define logical indexes on any XML schema or 738
DTD when it is submitted. An instance of such a logical index defines a link 739
between a specific attribute or element node in an XML document tree and a 740
ClassificationNode in a classification scheme within the registry. 741

The registry utilizes this index to automatically classify documents that are 742
instances of the schema at the time the document instance is submitted. Such 743
documents are classified according to the data contained within the document 744
itself. 745

Such automatically classified content may subsequently be discovered by clients 746
using the existing classification-based discovery mechanism of the Registry and 747
the query facilities of the ObjectQueryManager. 748

[Note] This approach is conceptually similar to the 749
way databases support indexed retrieval. DBAs 750

ebXML Registry January 2001

ebXML Registry Services Specification Page 31 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

define indexes on tables in the schema. When 751
data is added to the table, the data gets 752
automatically indexed. 753

8.2.9.2 Index Definition 754

This section describes how the logical indexes are defined in the 755
SubmittedObject element defined in the Registry DTD. The complete Registry 756
DTD is specified in Appendix A.2. 757

A SubmittedObject element for a schema or DTD may define a collection of 758
ClassificationIndexes in a ClassificationIndexList optional element. The 759
ClassificationIndexList is ignored if the content being submitted is not of the 760
SCHEMA objectType. 761

The ClassificationIndex element inherits the attributes of the base class Object in 762
[RIM]. It then defines specialized attributes as follows: 763

1. classificationNode: This attribute references a specific ClassificationNode 764
by its ID. 765

2. contentIdentifier: This attribute identifies a specific data element within the 766
document instances of the schema using an XPATH path expression as 767
defined by [XPT]. 768

8.2.9.3 Example Of Index Definition 769

To define an index that automatically classifies a CPP based upon the roles 770
defined within its RoleName elements, the following index must be defined on the 771
CPP schema or DTD: 772

<ClassificationIndex 773
 classificationNode=’id-for-role-classification-scheme’ 774
 contentIdentifier=’/Role//RoleName’ 775
/> 776

8.2.9.4 Example of Automatic Classification 777

Assume that a CPP is submitted that defines two roles as “seller” and “buyer." 778
When the CPP is submitted it will automatically be classified by two 779
ClassificationNodes named “buyer” and “seller” that are both children of the 780
ClassificationNode (e.g. a node named Role) specified in the classificationNode 781
attribute of the ClassificationIndex. Note that if either of the two 782
ClassificationNodes named “buyer” and “seller” did not previously exist, the 783
ObjectManager would automatically create these ClassificationNodes. 784

ebXML Registry January 2001

ebXML Registry Services Specification Page 32 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.10 Ad Hoc Query Request/Response 785

A client submits an ad hoc query to the ObjectQueryManager by sending an 786
AdhocQueryRequest. The AdhocQueryRequest contains the query string in the 787
queryString attribute. 788

The ObjectQueryManager sends an AdhocQueryResponse either synchronously 789
or asynchronously back to the client. The AdhocQueryResponse return a 790
collection of objects whose element type is in the set of element types 791
represented by the leaf nodes of the ManagedObject hierarchy in [RIM]. 792

 793

Figure 12: Submit Ad Hoc Query Sequence Diagram 794

 795

Figure 13: Submit Ad Hoc Query Asynchronous Sequence Diagram 796

For details on the schema for the business documents shown in this process 797
refer to Appendix A.2. 798

ebXML Registry January 2001

ebXML Registry Services Specification Page 33 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.3 Content Retrieval 799

A client retrieves content via the Registry by sending the GetContentRequest to 800
the ObjectQueryManager. The GetContentRequest specifies a list of Object 801
references for Objects that need to be retrieved. The ObjectQueryManager 802
returns the specified content by sending a GetContentResponse message to the 803
ObjectQueryManagerClient interface of the client. If there are no errors 804
encountered, the GetContentResponse message includes the specified content 805
as additional payloads within the message. In addition to the 806
GetContentResponse payload, there is one additional payload for each content 807
that was requested. If there are errors encountered, the GetContentResponse 808
payload includes an ebXMLError and there are no additional content specific 809
payloads. 810

8.3.1 Identification Of Content Payloads 811

Since the GetContentResponse message may include several managed object 812
contents as additional payloads, it is necessary to have a way to identify each 813
payload in the message. To facilitate this identification, the Registry must do the 814
following: 815

?? Use the ID for each ManagedObject instance that describes the managed 816
object content as the DocumentLabel element in the DocumentReference 817
for that object in the Manifest element of the ebXMLHeader. 818

8.3.2 GetContentResponse Message Structure 819

The following message fragment illustrates the structure of the 820
GetContentResponse Message that is returning a Collection of CPPs as a result 821
of a GetContentRequest that specified the IDs for the requested objects. Note 822
that the ID for each object retrieved in the message as additional payloads is 823
used as its DocumentLabel in the Manifest of the ebXMLHeader. 824

 825
… 826
--7250537.978150567601.JavaMail.najmi.irian 827
… 828
<ebXMLHeader MessageType="Normal" Version="1.0"> 829
 <Manifest> 830
 <DocumentReference> 831
 <DocumentLabel>GetContentsResponse</DocumentLabel> 832
 <DocumentId>6835fb:e3be512ac8:-8000</DocumentId> 833
 </DocumentReference> 834
 <DocumentReference> 835
 <DocumentLabel> ID for CPP content #1 </DocumentLabel> 836
 <DocumentId>....</DocumentId> 837

ebXML Registry January 2001

ebXML Registry Services Specification Page 34 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 </DocumentReference> 838
 <DocumentReference> 839
 <DocumentLabel> ID for CPP content #2 </DocumentLabel> 840
 <DocumentId>… </DocumentId> 841
 </DocumentReference> 842
 </Manifest> 843
 <Header> 844
 … 845
 </Header> 846
--7250537.978150567601.JavaMail.najmi.irian 847
Content-Type: application/xml 848
Content-Description: GetContentsResponse 849
Content-ID: 6835fb:e3be512ac8:-7ffc 850
Content-Length: 97 851
 852
<?xml version="1.0" encoding="UTF-8"?> 853
<GetContentsResponse /> 854
 855
--7250537.978150567601.JavaMail.najmi.irian 856
Content-Type: application/xml 857
Content-Description: ID for CPP content #1 858
Content-ID: …. 859
… 860
<CPP> 861
… 862
</CPP> 863
--7250537.978150567601.JavaMail.najmi.irian 864
Content-Type: application/xml 865
Content-Description: ID for CPP content #2 866
Content-ID: …. 867
… 868
<CPP> 869
… 870
</CPP> 871
--7250537.978150567601.JavaMail.najmi.irian-- 872
 873
 874

 875

8.4 Query And Retrieval: Typical Sequence 876

The following diagram illustrates the use of both browse/drilldown and ad hoc 877
queries followed by a retrieval of content that was selected by the queries. 878

ebXML Registry January 2001

ebXML Registry Services Specification Page 35 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 879

Figure 14: Typical Query and Retrieval Sequence 880

9 Registry Security 881

This chapter describes the security features of the ebXML Registry. It is assumed 882
that the reader is familiar with the security related classes in the Registry 883
information model as described in [RIM]. 884

In the current version of this specification, a minimalist approach has been 885
specified for Registry security. The philosophy is that “Any known entity can 886
publish content and anyone can view published content.” The Registry 887
information model has been designed to allow more sophisticated security 888
policies in future versions of this specification. 889

ebXML Registry January 2001

ebXML Registry Services Specification Page 36 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

9.1 Integrity of Registry Content 890

It is assumed that most business registries do not have the resources to validate 891
the veracity of the content submitted to them. The minimal integrity that the 892
Registry must provide is to ensure that content submitted by a Submitting 893
Organization (SO) is maintained in the Registry without any tampering either en-894
route or within the Registry. Furthermore, the Registry must make it possible to 895
identify the SO for any Registry content unambiguously. 896

9.1.1 Message Payload Signature 897

Integrity of Registry content requires that all submitted content must be signed by 898
the Registry client as defined by [SEC]. The signature on the submitted content 899
ensures that: 900

?? The content has not been tampered with en-route or within the Registry. 901

?? The content’s veracity can be ascertained by its association with a 902
specific submitting organization 903

9.2 Authentication 904

The Registry must be able to authenticate the identity of the Principal associated 905
with client requests. Authentication is required to identify the ownership of 906
content as well as to identify what “privileges” a Principal can be assigned with 907
respect to the specific objects in the Registry. 908

The Registry must perform Authentication on a per request basis. From a 909
security point of view, all messages are independent and there is no concept of a 910
session encompassing multiple messages or conversations. Session support 911
may be added as an optimization feature in future versions of this specification. 912

The Registry must implement a credential-based authentication mechanism 913
based on digital certificates and signatures. The Registry uses the certificate DN 914
from the signature to authenticate the user. 915

9.2.1 Message Header Signature 916

Message headers may be signed by the sending ebXML Messaging Service as 917
defined by [SEC]. Since this specification is not yet finalized, this version does 918
not require that the message header be signed. In the absence of a message 919
header signature, the payload signature is used to authenticate the identity of the 920
requesting client. 921

ebXML Registry January 2001

ebXML Registry Services Specification Page 37 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

9.3 Confidentiality 922

9.3.1 On-the-wire Message Confidentiality 923

It is suggested but not required that message payloads exchanged between 924
clients and the Registry be encrypted during transmission. Payload encryption 925
must abide by any restrictions set forth in [SEC]. 926

9.3.2 Confidentiality of Registry Content 927

In the current version of this specification, there are no provisions for 928
confidentiality of Registry content. All content submitted to the Registry may be 929
discovered and read by any client. The Registry must decrypt any submitted 930
content after it has been received and prior to storing it in its repository. 931

9.4 Authorization 932

The Registry must provide an authorization mechanism based on the information 933
model defined in [RIM]. In this version of the specification the authorization 934
mechanism is based on a default Access Control Policy defined for a pre-defined 935
set of roles for Registry users. Future versions of this specification will allow for 936
custom Access Control Policies to be defined by the Submitting Organization. 937

9.4.1 Pre-defined Roles For Registry Users 938

The following roles must be pre-defined in the Registry: 939

Role Description

ContentOwner The submitter or owner of a Registry content. Submitting
Organization (SO) in ISO 11179

RegistryAdministrator A “super” user that is an administrator of the Registry.
Registration Authority (RA) in ISO 11179

RegistryGuest Any unauthenticated user of the Registry. Clients that
browse the Registry do not need to be authenticated.

9.4.2 Default Access Control Policies 940

The Registry must create a default AccessControlPolicy object that grants the 941
default permissions to Registry users based upon their assigned role. 942

The following table defines the Permissions granted by the Registry to the 943
various pre-defined roles for Registry users based upon the default 944
AccessControlPolicy. 945

 946

ebXML Registry January 2001

ebXML Registry Services Specification Page 38 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Role Permissions

ContentOwner
Access to all methods on Registry Objects that are
owned by the ContentOwner.

RegistryAdministrator Access to all methods on all Registry Objects

RegistryGuest Access to all read-only (getXXX) methods on all Registry
Objects (read-only access to all content).

 947

The following list summarizes the default role-based AccessControlPolicy: 948

?? The Registry must implement the default AccessControlPolicy and 949
associate it with all Objects in the Registry 950

?? Anyone can publish content, but needs to be authenticated 951

?? Anyone can access the content without requiring authentication 952

?? The ContentOwner has access to all methods for Registry Objects owned 953
by them 954

?? The RegistryAdministrator has access to all methods on all Registry 955
Objects 956

?? Unauthenticated clients can access all read-only (getXXX) methods 957

?? At the time of content submission, the Registry must assign the default 958
ContentOwner role to the Submitting Organization (SO) as authenticated 959
by the credentials in the submission message. In the current version of 960
this specification, it will be the DN as identified by the certificate 961

?? Clients that browse the Registry need not use certificates. The Registry 962
must assign the default RegistryGuest role to such clients. 963

 964

Appendix A Schemas and DTD Definitions 965

The following are definitions for the various ebXML Message payloads described 966
in this document. 967

A.1 ebXMLError Message DTD 968

See [ERR] for ebXMLError Message DTD. 969

ebXML Registry January 2001

ebXML Registry Services Specification Page 39 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

A.2 ebXML Registry DTD 970

<?xml version='1.0' encoding='UTF-8' ?> 971
 972
<!--Generated by XML Authority--> 973
<!-- $Header: /jse/jaxr/schema/Registry.dtd,v 1.7 2001/01/10 17:56:28 najmi Exp 974
$ --> 975
<!ENTITY % errorSchema SYSTEM "ebXMLError.dtd"> 976
 977
%errorSchema; 978
 979
<!ENTITY % VersionAttribute " version CDATA #REQUIRED"> 980
 981
<!ENTITY % ObjectAttributes " description CDATA #IMPLIED 982
 ID CDATA #REQUIRED 983
 name CDATA #REQUIRED"> 984
 985
<!ENTITY % ManagedObjectAttributes " %ObjectAttributes; 986
 status (SUBMITTED | APPROVED | DEPRECATED) 987
'SUBMITTED' 988
 majorVersion CDATA '1' 989
 minorVersion CDATA '0'"> 990
 991
<!ELEMENT ManagedObject EMPTY> 992
<!ATTLIST ManagedObject %ManagedObjectAttributes; > 993
<!ELEMENT ExtrinsicObject EMPTY> 994
<!ATTLIST ExtrinsicObject %ManagedObjectAttributes; 995
 contentURN CDATA #IMPLIED 996
 mimeType CDATA #IMPLIED 997
 objectType (PARTY_AGREEMENT | 998
 PARTY_PROFILE | 999
 PROCESS | 1000
 ROLE | 1001
 SERVICE_INTERFACE | 1002
 SOFTWARE_COMPONENT | 1003
 TRANSPORT | 1004
 UML_MODEL | 1005
 UNKNOWN | 1006
 XML_SCHEMA) #REQUIRED 1007
 opaque CDATA 'false' 1008
 a-dtype NMTOKENS 'opaque boolean' > 1009
<!-- 1010
A ClassificationIndex is specified on SCHEMA ExtrinsicObjects to define 1011
an automatic Classification of instance objects of the schema using 1012
the specified classificationNode as parent and a ClassificationNode 1013

ebXML Registry January 2001

ebXML Registry Services Specification Page 40 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

created or selected by the object content as selected by the contentIdentifier 1014
--> 1015
<!ELEMENT ClassificationIndex EMPTY> 1016
<!ATTLIST ClassificationIndex %ObjectAttributes; 1017
 classificationNode CDATA #REQUIRED 1018
 contentIdentifier CDATA #REQUIRED > 1019
<!-- ClassificationIndexList contains new ClassificationIndexs --> 1020
<!ELEMENT ClassificationIndexList (ClassificationIndex)*> 1021
 1022
<!ENTITY % IntrinsicObjectAttributes " %ManagedObjectAttributes;"> 1023
 1024
<!ELEMENT IntrinsicObject EMPTY> 1025
<!ATTLIST IntrinsicObject %ManagedObjectAttributes; > 1026
<!-- Leaf classes that reflect the concrete classes in RIM --> 1027
<!ELEMENT ManagedObjectList (Association | Classification | 1028
ClassificationNode | ExternalLink | Organization | ExtrinsicObject)*> 1029
 1030
<!-- Reference to an Object via its URN specified by it ID attribute --> 1031
<!ELEMENT ObjectRef EMPTY> 1032
<!ATTLIST ObjectRef uuid CDATA #REQUIRED > 1033
<!ELEMENT ObjectRefList (ObjectRef)*> 1034
 1035
<!-- 1036
An ExternalLink specifies a link from a ManagedObject and an external URI 1037
 1038
The sourceObjectRef is ref to the ManagedObject 1039
 1040
The sourceObjectRef is optional when Association is defined as part of 1041
a SubmittedObject. 1042
--> 1043
<!ELEMENT ExternalLink EMPTY> 1044
<!ATTLIST ExternalLink %IntrinsicObjectAttributes; 1045
 sourceObjectRef CDATA #IMPLIED 1046
 uri CDATA #IMPLIED > 1047
<!-- ExternalLinkList contains new ExternalLinks or refs to pre-existing 1048
ExternalLinks --> 1049
<!ELEMENT ExternalLinkList (ExternalLink | ObjectRef)*> 1050
 1051
<!-- 1052
An Association specifies references to two previously submitted 1053
managed objects. 1054
 1055
The sourceObjectRef is ref to the sourceObject in association 1056
The targetObjectRef is ref to the targetObject in association 1057
 1058

ebXML Registry January 2001

ebXML Registry Services Specification Page 41 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The sourceObjectRef is optional when Association is defined part of 1059
a SubmittedObject. 1060
--> 1061
<!ELEMENT Association EMPTY> 1062
<!ATTLIST Association %IntrinsicObjectAttributes; 1063
 fromLabel CDATA #IMPLIED 1064
 toLabel CDATA #IMPLIED 1065
 associationType (CLASSIFIED_BY | 1066
 CONTAINED_BY | 1067
 CONTAINS | 1068
 EXTENDS | 1069
 IMPLEMENTS | 1070
 INSTANCE_OF | 1071
 RELATED_TO | 1072
 SUPERSEDED_BY | 1073
 SUPERSEDES | 1074
 USED_BY | 1075
 USES) #FIXED 'RELATED_TO' 1076
 bidirection CDATA 'false' 1077
 sourceObjectRef CDATA #REQUIRED 1078
 targetObjectRef CDATA #REQUIRED 1079
 a-dtype NMTOKENS 'bidirection boolean' > 1080
<!ELEMENT AssociationList (Association)*> 1081
 1082
<!-- 1083
A Classification specifies references to two previously submitted 1084
managed objects. 1085
 1086
The sourceObjectRef is ref to the sourceObject in Classification 1087
The targetObjectRef is ref to the targetObject in Classification 1088
 1089
The sourceObjectRef is optional when Classification is defined as part of 1090
a SubmittedObject. 1091
--> 1092
<!ELEMENT Classification EMPTY> 1093
<!ATTLIST Classification %IntrinsicObjectAttributes; 1094
 sourceObjectRef CDATA #REQUIRED 1095
 targetObjectRef CDATA #REQUIRED > 1096
<!ELEMENT ClassificationList (Classification)*> 1097
 1098
<!ELEMENT Package EMPTY> 1099
<!ATTLIST Package %IntrinsicObjectAttributes; > 1100
<!-- PackageList contains new Packages or refs to pre-existing Packages --> 1101
<!ELEMENT PackageList (Package | ObjectRef)*> 1102
 1103

ebXML Registry January 2001

ebXML Registry Services Specification Page 42 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ENTITY % TelephoneNumberAttributes " areaCode CDATA #REQUIRED 1104
 contryCode CDATA #REQUIRED 1105
 extension CDATA #IMPLIED 1106
 number CDATA #REQUIRED 1107
 url CDATA #IMPLIED"> 1108
 1109
<!ELEMENT TelephoneNumber EMPTY> 1110
<!ATTLIST TelephoneNumber %TelephoneNumberAttributes; > 1111
<!ELEMENT FaxNumber EMPTY> 1112
<!ATTLIST FaxNumber %TelephoneNumberAttributes; > 1113
<!ELEMENT MobileTelephoneNumber EMPTY> 1114
<!ATTLIST MobileTelephoneNumber %TelephoneNumberAttributes; > 1115
<!-- PostalAddress --> 1116
<!ELEMENT PostalAddress EMPTY> 1117
<!ATTLIST PostalAddress city CDATA #REQUIRED 1118
 country CDATA #REQUIRED 1119
 postalCode CDATA #REQUIRED 1120
 state CDATA #REQUIRED 1121
 street CDATA #REQUIRED > 1122
<!-- PersonName --> 1123
<!ELEMENT PersonName EMPTY> 1124
<!ATTLIST PersonName firstName CDATA #REQUIRED 1125
 middleName CDATA #REQUIRED 1126
 lastName CDATA #REQUIRED > 1127
<!-- Contact --> 1128
<!ELEMENT Contact (PostalAddress , PersonName , FaxNumber? , 1129
TelephoneNumber , MobileTelephoneNumber?)> 1130
<!ATTLIST Contact email CDATA #REQUIRED > 1131
<!-- Organization --> 1132
<!ELEMENT Organization (PostalAddress , Contact , FaxNumber? , 1133
TelephoneNumber)> 1134
<!ATTLIST Organization %IntrinsicObjectAttributes; 1135
 parent CDATA #IMPLIED > 1136
<!-- 1137
ClassificationNode is used to submit a Classification tree to the Registry. 1138
Note that this is a recursive schema definition. 1139
 1140
The parent attribute of a node in tree is implied by the enclosing 1141
ClassificationNode 1142
The children nodes of a node are implied by enclosing immediate child elements 1143
of type ClassificationNode. 1144
--> 1145
<!ELEMENT ClassificationNode EMPTY> 1146
<!ATTLIST ClassificationNode %IntrinsicObjectAttributes;> 1147
 1148

ebXML Registry January 2001

ebXML Registry Services Specification Page 43 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!-- 1149
parent is the URN to the parent node. parent is optional if ClassificationNode is 1150
enclosed 1151
in a parent ClassificationNode or if it is a root ClassificationNode 1152
--> 1153
<!ATTLIST ClassificationNode parent CDATA #IMPLIED> 1154
 1155
<!ELEMENT ClassificationNodeList (ClassificationNode)*> 1156
 1157
<!-- 1158
End information model mapping. 1159
 1160
Begin Registry Services Interface 1161
--> 1162
<!ELEMENT RequestAcceptedResponse EMPTY> 1163
<!ATTLIST RequestAcceptedResponse %VersionAttribute; 1164
 xml:lang NMTOKEN #REQUIRED 1165
 interfaceId CDATA #REQUIRED 1166
 requestMessage CDATA #REQUIRED 1167
 actionId CDATA #REQUIRED > 1168
<!-- 1169
The SubmittedObject provides meta data for submitted object 1170
Note object being submitted is in a separate document that is not 1171
in this DTD. 1172
--> 1173
<!ELEMENT SubmitObjectsRequest (SubmittedObject+)> 1174
<!ATTLIST SubmitObjectsRequest %VersionAttribute; > 1175
<!-- 1176
The ExtrinsicObject provides meta data about the object being submitted 1177
ClassificationList can be optionally specified to define Classifications 1178
for the SubmittedObject 1179
 1180
AssociationList can be optionally specified to define Associations 1181
for the SubmittedObject 1182
 1183
The ExternalLinkList provides zero or more external objects related to 1184
the object being submitted. 1185
--> 1186
<!ELEMENT SubmittedObject (ExtrinsicObject? , ClassificationIndexList? , 1187
ClassificationList? , AssociationList? , ExternalLinkList? , PackageList?)> 1188
 1189
<!-- 1190
The ObjectRefList is the list of 1191
refs to the managed objects being approved. 1192
--> 1193

ebXML Registry January 2001

ebXML Registry Services Specification Page 44 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ELEMENT ApproveObjectsRequest (ObjectRefList)> 1194
<!ATTLIST ApproveObjectsRequest %VersionAttribute; > 1195
<!-- 1196
The ObjectRefList is the list of 1197
refs to the managed objects being deprecated. 1198
--> 1199
<!ELEMENT DeprecateObjectsRequest (ObjectRefList)> 1200
<!ATTLIST DeprecateObjectsRequest %VersionAttribute; > 1201
<!-- 1202
The ObjectRefList is the list of 1203
refs to the managed objects being removed 1204
--> 1205
<!ELEMENT RemoveObjectsRequest (ObjectRefList)> 1206
<!ATTLIST RemoveObjectsRequest %VersionAttribute; > 1207
<!ELEMENT GetRootClassificationNodesRequest EMPTY> 1208
<!ATTLIST GetRootClassificationNodesRequest %VersionAttribute;> 1209
 1210
<!-- 1211
The namePattern follows SQL-92 syntax for the pattern specified in 1212
LIKE clause. It allows for selecting only those root nodes that match 1213
the namePattern. The default value of '*' matches all root nodes. 1214
--> 1215
<!ATTLIST GetRootClassificationNodesRequest namePattern CDATA "*"> 1216
 1217
<!-- 1218
The response includes a ClassificationNodeList which has zero or more 1219
ClassificationNodes 1220
--> 1221
<!ELEMENT GetRootClassificationNodesResponse (ClassificationNodeList | 1222
ebXMLError)> 1223
<!ATTLIST GetRootClassificationNodesResponse %VersionAttribute; > 1224
<!-- 1225
Get the classification tree under the ClassificationNode specified parentRef. 1226
 1227
If depth is 1 just fetch immediate child 1228
nodes, otherwise fetch the descendant tree upto the specified depth level. 1229
If depth is 0 that implies fetch entire sub-tree 1230
--> 1231
<!ELEMENT GetClassificationTreeRequest EMPTY> 1232
<!ATTLIST GetClassificationTreeRequest %VersionAttribute; 1233
 parent CDATA #REQUIRED 1234
 depth CDATA '1' > 1235
<!-- 1236
The response includes a ClassificationNodeList which includes only 1237
immediate ClassificationNode children nodes if depth attribute in 1238

ebXML Registry January 2001

ebXML Registry Services Specification Page 45 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

GetClassificationTreeRequest was 1, otherwise the decendent nodes 1239
upto specified depth level are returned. 1240
--> 1241
<!ELEMENT GetClassificationTreeResponse (ClassificationNodeList | 1242
ebXMLError)> 1243
<!ATTLIST GetClassificationTreeResponse %VersionAttribute; > 1244
<!-- 1245
Get refs to all managed objects that are classified by all the 1246
ClassificationNodes specified by ObjectRefList. 1247
Note this is an implicit logical AND operation 1248
--> 1249
<!ELEMENT GetClassifiedObjectsRequest (ObjectRefList)> 1250
 1251
<!-- 1252
objectType attribute can specify the type of objects that the registry 1253
client is interested in, that is classified by this ClassificationNode. 1254
It is a String that matches a choice in the type attribute of ExtrinsicObject. 1255
The default value of '*' implies that client is interested in all types 1256
of managed objects that are classified by the specified ClassificationNode. 1257
--> 1258
<!-- 1259
The response includes a ManagedObjectList which has zero or more 1260
ManagedObjects that are classified by the ClassificationNodes 1261
specified in the ObjectRefList in GetClassifiedObjectsRequest. 1262
--> 1263
<!ELEMENT GetClassifiedObjectsResponse (ManagedObjectList | ebXMLError 1264
)> 1265
<!ATTLIST GetClassifiedObjectsResponse %VersionAttribute; > 1266
<!-- 1267
An Ad hoc query request specifies a query string as defined by [RS] in the 1268
queryString attribute 1269
--> 1270
<!ELEMENT AdhocQueryRequest EMPTY> 1271
<!ATTLIST AdhocQueryRequest %VersionAttribute; 1272
 queryString CDATA #REQUIRED > 1273
<!-- 1274
The response includes a ManagedObjectList which has zero or more 1275
ManagedObjects that match the query specified in AdhocQueryRequest. 1276
--> 1277
<!ELEMENT AdhocQueryResponse (ManagedObjectList | ebXMLError)> 1278
<!ATTLIST AdhocQueryResponse %VersionAttribute; > 1279
<!-- 1280
Gets the actual content (not metadata) specified by the ObjectRefList 1281
--> 1282
<!ELEMENT GetContentRequest (ObjectRefList)> 1283

ebXML Registry January 2001

ebXML Registry Services Specification Page 46 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ATTLIST GetContentRequest %VersionAttribute; > 1284
<!-- 1285
The GetObjectsResponse will have no sub-elements if there were no errors. 1286
The actual contents will be in the other payloads of the message. 1287
If any errors were encountered the message will contain the ebXMLError and 1288
the content payloads will be empty. 1289
--> 1290
<!ELEMENT GetContentResponse (ebXMLError?)> 1291
<!ATTLIST GetContentResponse %VersionAttribute; > 1292
<!-- 1293
The contrived root node 1294
--> 1295
<!ELEMENT RootElement (RequestAcceptedResponse | ebXMLError | 1296
SubmitObjectsRequest | ApproveObjectsRequest | DeprecateObjectsRequest | 1297
RemoveObjectsRequest | GetRootClassificationNodesRequest | 1298
GetRootClassificationNodesResponse | GetClassificationTreeRequest | 1299
GetClassificationTreeResponse | GetClassifiedObjectsRequest | 1300
GetClassifiedObjectsResponse | AdhocQueryRequest | AdhocQueryResponse | 1301
GetContentRequest | GetContentResponse)> 1302

Appendix B Interpretation of UML Diagrams 1303

This section describes in abstract terms the conventions used to define ebXML 1304
business process description in UML. 1305

B.1 UML Class Diagram 1306

A UML class diagram is used to describe the Service Interfaces (as defined by 1307
[CPA]) required to implement an ebXML Registry Services and clients. See 1308
Figure 1 on page 12 for an example. The UML class diagram contains: 1309

 1310

1. A collection of UML interfaces where each interface represents a Service 1311
Interface for a Registry service. 1312

2. Tabular description of methods on each interface where each method 1313
represents an Action (as defined by [CPA]) within the Service Interface 1314
representing the UML interface. 1315

3. Each method within a UML interface specifies one or more parameters, 1316
where the type of each method argument represents the ebXML message 1317
type that is exchanged as part of the Action corresponding to the method. 1318
Multiple arguments imply multiple payload documents within the body of 1319
the corresponding ebXML message. 1320

ebXML Registry January 2001

ebXML Registry Services Specification Page 47 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

B.2 UML Sequence Diagram 1321

A UML sequence diagram is used to specify the business protocol representing 1322
the interactions between the UML interfaces for a Registry specific ebXML 1323
business process. A UML sequence diagram provides the necessary information 1324
to determine the sequencing of messages, request to response association as 1325
well as request to error response association as described by [CPA]. 1326

Each sequence diagram shows the sequence for a specific conversation protocol 1327
as method calls from the requestor to the responder. Method invocation may be 1328
synchronous or asynchronous based on the UML notation used on the arrow-1329
head for the link. A half arrow-head represents asynchronous communication. A 1330
full arrow-head represents synchronous communication. 1331

Each method invocation may be followed by a response method invocation from 1332
the responder to the requestor to indicate the ResponseName for the previous 1333
Request. Possible error response is indicated by a conditional response method 1334
invocation from the responder to the requestor. See Figure 3 on page 19 for an 1335
example. 1336

Appendix C BNF for Query Syntax Grammar 1337

The following BNF defines the grammar for the registry query syntax. This 1338
grammer is a proper sub-set of SQL-92 as defined by [SQL]. 1339
 1340
/*** 1341
 * The Registry Query (Subset of SQL-92) grammar starts here 1342
 ***/ 1343
 1344
RegistryQuery = SQLSelect [“;”] 1345
 1346
SQLSelect = "SELECT" SQLSelectCols "FROM" SQLTableList [SQLWhere] 1347
 1348
SQLSelectCols = ("ALL" | "DISTINCT")* [ID] 1349
 1350
SQLTableList = SQLTableRef ("," SQLTableRef)* 1351
 1352
SQLTableRef = ID [ID] 1353
 1354
SQLWhere = "WHERE" SQLOrExpr 1355
 1356
SQLOrExpr = SQLAndExpr ("OR" SQLAndExpr)* 1357
 1358
SQLAndExpr = SQLNotExpr ("AND" SQLNotExpr)* 1359
 1360

ebXML Registry January 2001

ebXML Registry Services Specification Page 48 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

SQLNotExpr = ["NOT"] SQLCompareExpr 1361
 1362
SQLCompareExpr = 1363
 (SQLColRef "IS") SQLIsClause 1364
 | SQLSumExpr [SQLCompareExprRight] 1365
 1366
 1367
SQLCompareExprRight = 1368
 SQLLikeClause 1369
 | SQLInClause 1370
 | SQLCompareOp SQLSumExpr 1371
 1372
SQLCompareOp = 1373
 "=" 1374
 | "!=" 1375
 | ">" 1376
 | ">=" 1377
 | "<" 1378
 | "<=" 1379
 1380
SQLInClause = ["NOT"] "IN" "(" SQLLValueList ")" 1381
 1382
SQLLValueList = SQLLValueElement ("," SQLLValueElement)* 1383
 1384
SQLLValueElement = "NULL" | SQLSumExpr 1385
 1386
SQLIsClause = SQLColRef "IS" ["NOT"] "NULL" 1387
 1388
SQLLikeClause = ["NOT"] "LIKE" SQLPattern 1389
 1390
SQLPattern = STRING_LITERAL 1391
 1392
SQLLiteral = 1393
 STRING_LITERAL 1394
 | INTEGER_LITERAL 1395
 | FLOATING_POINT_LITERAL 1396
 1397
SQLColRef = SQLLvalue 1398
 1399
SQLLvalue = SQLLvalueTerm 1400
 1401
SQLLvalueTerm = ID ("." ID)* 1402
 1403
SQLSumExpr = SQLProductExpr (("+" | "-") SQLProductExpr)* 1404
 1405

ebXML Registry January 2001

ebXML Registry Services Specification Page 49 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

SQLProductExpr = SQLUnaryExpr (("*" | "/") SQLUnaryExpr)* 1406
 1407
SQLUnaryExpr = [("+" | "-")] SQLTerm 1408
 1409
SQLTerm = "(" SQLOrExpr ")" 1410
 | SQLColRef 1411
 | SQLLiteral 1412
 1413
INTEGER_LITERAL = (["0"-"9"])+ 1414
 1415
FLOATING_POINT_LITERAL = 1416
 (["0"-"9"])+ "." (["0"-"9"])+ (EXPONENT)? 1417
 | "." (["0"-"9"])+ (EXPONENT)? 1418
 | (["0"-"9"])+ EXPONENT 1419
 | (["0"-"9"])+ (EXPONENT)? 1420
 1421
EXPONENT = ["e","E"] (["+","-"])? (["0"-"9"])+ 1422
 1423
STRING_LITERAL: "'" (~["'"])* ("''" (~["'"])*)* "'" 1424
 1425
ID = (<LETTER>)+ ("_" | "$" | "#" | <DIGIT> | <LETTER>)* 1426
LETTER = ["A"-"Z", "a"-"z"] 1427
DIGIT = ["0"-"9"] 1428

Appendix D Security Implementation Guideline 1429

This section provides a suggested blueprint for how security processing may be 1430
implemented in the Registry. It is meant to be illustrative not prescriptive. 1431
Registries may choose to have different implementations as long as they support 1432
the default security roles and authorization rules described in this document. 1433

D.1 Authentication 1434

1. As soon as a message is received, the first work is the authentication. A 1435
principal object is created. 1436

2. If the message is signed, it is verified (including the validity of the certificate) 1437
and the DN of the certificate becomes the identity of the principal. Then the 1438
Registry is searched for the principal and if found, the roles and groups are 1439
filled in. 1440

3. If the message is not signed, an empty principal is created with the role 1441
RegistryGuest. This step is for symmetry and to decouple the rest of the 1442
processing. 1443

ebXML Registry January 2001

ebXML Registry Services Specification Page 50 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

4. Then the message is processed for the command and the objects it will act on 1444

D.2 Authorization 1445

For every object, the access controller will iterate through all the 1446
AccessControlPolicy objects with the object and see if there is a chain through 1447
the permission objects to verify that the requested method is permitted for the 1448
Principal. If any of the permission objects which the object is associated with has 1449
a common role, or identity, or group with the principal, the action is permitted. 1450

D.3 Registry Bootstrap 1451

When a Registry is newly created, a default Principal object should be created 1452
with the identity of the Registry Admin’s certificate DN with a role RegistryAdmin. 1453
This way, any message signed by the Registry Admin will get all the privileges. 1454

When a Registry is newly created, a singleton instance of AccessControlPolicy is 1455
created as the default AccessControlPolicy. This includes the creation of the 1456
necessary Permission instances as well as the Privilges and Privilege attributes. 1457

D.4 Content Submission – Client Responsibility 1458

The Registry client has to sign the contents before submission – otherwise the 1459
content will be rejected. 1460

D.5 Content Submission – Registry Responsibility 1461

1. Like any other request, the client will be first authenticated. In this case, the 1462
Principal object will get the DN from the certificate. 1463

2. As per the request in the message, the ManagedObject will be created. 1464

3. The ManagedObject is assigned the singleton default AccessControlPolicy. 1465

4. If a principal with the identity of the SO is not available, an identity object with 1466
the SO’s DN is created 1467

5. A principal with this identity is created 1468

D.6 Content Delete/Deprecate – Client Responsibility 1469

The Registry client has to sign the payload (not entire message) before 1470
submission, for authentication purposes; otherwise, the request will be 1471
rejected 1472

ebXML Registry January 2001

ebXML Registry Services Specification Page 51 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

D.7 Content Delete/Deprecate – Registry Responsibility 1473

1. Like any other request, the client will be first authenticated. In this case, the 1474
Principal object will get the DN from the certificate. As there will be a principal 1475
with this identity in the Registry, the Principal object will get all the roles from 1476
that object 1477

2. As per the request in the message (delete or deprecate), the appropriate 1478
method in the Object will be accessed. 1479

3. The access controller performs the authorization by iterating through the 1480
Permission objects associated with this object via the singleton default 1481
AccessControlPolicy. 1482

4. If authorization succeeds then the action will be permitted. Otherwise an error 1483
response is sent back with a suitable AuthorizationException error message. 1484

Appendix E Terminology Mapping 1485

While every attempt has been made to use the same terminology used in other 1486
works there are some terminology differences. 1487

The following table shows the terminology mapping between this specification 1488
and that used in other specifications and working groups. 1489

This Document OASIS ISO 11179

“managed object content” Registered Object

ManagedObject Registry Item Administered
Component

ExternalObject Related Data N/A

Object.ID RaItemId

ExtrinsicObject.uri ObjectLocation

ExtrinsicObject.objectType DefnSource,
PrimaryClass, SubClass

ManagedObject.name CommonName

Object.description Description

ExtrinsicObject.mimeType MimeType

Versionable.majorVersion partially to Version

Versionable.minorVersion partially to Version

ManagedObject.status RegStatus
Table 1: Terminology Mapping Table 1490

ebXML Registry January 2001

ebXML Registry Services Specification Page 52 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

10 References 1491

[GLS] ebXML Glossary, http://www.ebxml.org/documents/199909/terms_of_reference.htm 1492

[TA] ebXML Technical Architecture 1493

 http://www.ebxml.org/specdrafts/ebXML_TA_v1.0.pdf 1494

[OAS] OASIS Information Model 1495

http://www.nist.gov/itl/div897/ctg/regrep/oasis-work.html 1496

[ISO] ISO 11179 Information Model 1497

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621001498
5419d7/b83fc7816a6064c68525690e0065f913?OpenDocument 1499

[BDM] Registry and Repository: Business Domain Model 1500

http://www.ebxml.org/specdrafts/RegRepv1-0.pdf 1501

[RIM] ebXML Registry Information Model 1502

 http://www.ebxml.org/project_teams/registry/private/registryInfoModelv0.54.pdf 1503

[BPM] ebXML Business Process Metamodel Specification Schema 1504

http://www.ebxml.org/specdrafts/Busv2-0.pdf 1505

[CPA] Trading-Partner Specification 1506

http://www.ebxml.org/project_teams/trade_partner/private/ 1507

[CTB] Context table informal document from Core Components 1508

[MS] ebXML Messaging Service Specification, Version 0.21 1509

http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf 1510

[ERR] ebXML TRP Error Handling Specification 1511

http://www.ebxml.org/project_teams/transport/ebXML_Message_Service_Specification_v-0.8_001110.pdf 1512

[SEC] ebXML Security Specification 1513

http://lists.ebxml.org/archives/ebxml-ta-security/200012/msg00072.html 1514

[XPT] XML Path Language (XPath) Version 1.0 1515

http://www.w3.org/TR/xpath 1516

[SQL] Structured Query Language (FIPS PUB 127-2) 1517

http://www.itl.nist.gov/fipspubs/fip127-2.htm 1518

ebXML Registry January 2001

ebXML Registry Services Specification Page 53 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

11 Disclaimer 1519

The views and specification expressed in this document are those of the authors 1520
and are not necessarily those of their employers. The authors and their 1521
employers specifically disclaim responsibility for any problems arising from 1522
correct or incorrect implementation or use of this design. 1523

1524

ebXML Registry January 2001

ebXML Registry Services Specification Page 54 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

12 Contact Information 1524

Team Leader 1525

 Name: Scott Nieman 1526

 Company: Norstan Consulting 1527

 Street: 5101 Shady Oak Road 1528

 City, State, Postal Code: Minnetonka, MN 55343 1529

 Country: USA 1530

 Phone: 952.352.5889 1531

 Email: Scott.Nieman@Norstan 1532

 1533

Vice Team Lead 1534

 Name: Yutaka Yoshida 1535

 Company: Sun Microsystems 1536

 Street: 901 San Antonio Road, MS UMPK17-102 1537

 City, State, Postal Code: Palo Alto, CA 94303 1538

 Country: USA 1539

 Phone: 650.786.5488 1540

 Email: Yutaka.Yoshida@eng.sun.com 1541

 1542

Editor 1543

 Name: Farrukh S. Najmi 1544

 Company: Sun Microsystems 1545

 Street: 1 Network Dr., MS BUR02-302 1546

 City, State, Postal Code: Burlington, MA, 01803-0902 1547

 Country: USA 1548

 Phone: 781.442.0703 1549

 Email: najmi@east.sun.com 1550

 1551

1552

ebXML Registry January 2001

ebXML Registry Services Specification Page 55 of 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Copyright Statement 1552

Copyright © ebXML 2000. All Rights Reserved. 1553

 1554

 This document and translations of it may be copied and furnished to others, and 1555
derivative works that comment on or otherwise explain it or assist in its 1556
implementation may be prepared, copied, published and distributed, in whole or 1557
in part, without restriction of any kind, provided that the above copyright notice 1558
and this paragraph are included on all such copies and derivative works. 1559
However, this document itself may not be modified in any way, such as by 1560
removing the copyright notice or references to the Internet Society or other 1561
Internet organizations, except as needed for the purpose of developing Internet 1562
standards in which case the procedures for copyrights defined in the Internet 1563
Standards process must be followed, or as required to translate it into languages 1564
other than English. 1565

 1566

 The limited permissions granted above are perpetual and will not be revoked by 1567
ebXML or its successors or assigns. 1568

 1569

 This document and the information contained herein is provided on an 1570

 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR 1571
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE 1572
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 1573
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 1574
PARTICULAR PURPOSE. 1575

