

The Electronic Book Exchange
System (EBX)
Version 0.8

The complete technical specifications for the Electronic Book Exchange (EBX)
system for interoperable applications and devices that use public-key
cryptography for copyright protection and distribution of electronic books.

The EBX system is being developed by the EBX Working Group, whose
members are Adobe Systems Incorporated, the American Library Association,
Audible, ContentGuard, DigitalOwl.com, Glassbook, GlobalMentor, Nokia,
RightsMarket.com, SoftLock.com, Thomson Consumer Electronics, Versaware,
and Yankee Rights Management.

July 2000 Draft

Copyright © 2000 Book Industry Study Group, Inc. All rights reserved.

Editorial contact: Glassbook, Inc., 1601 Trapelo Rd., Waltham, MA 02451
781-434-2000 ebx-editor@glassbook.com

2 EBX System Specification – Draft 0.8 09/06/00

1 AN OVERVIEW OF THE EBX SYSTEM.. 6
1.1 TERMS.. 6
1.2 ROLES .. 7
1.3 SYSTEM PRINCIPLES... 8

1.3.1 Consumer Needs.. 8
1.3.2 Bookseller and Distributor Needs ... 10
1.3.3 Publisher Needs... 10
1.3.4 Author Needs ... 11
1.3.5 Library Needs.. 11

1.4 ASSUMPTIONS .. 12
1.5 BASIC DESIGN .. 12
1.6 VOUCHERS ... 14
1.7 FUNCTIONAL MODEL ... 15

1.7.1 Publishing.. 15
1.7.2 Distribution to Online Booksellers and/or Distributors ... 16
1.7.3 Delivery to Consumers .. 17
1.7.4 Transfer Between Consumers – “Give/Lend” .. 18
1.7.5 Transfer Between Libraries and Consumers... 19

2 TRUST MODEL... 21
2.1 RELIANCE ON TRUST FOR NEGOTIATION OF DETAILS... 21
2.2 RESULTS AND EFFECTS OF THE TRUST MODEL .. 21
2.3 NEED FOR PRESCRIPTION ... 22
2.4 TRUST MODEL OVERVIEW ... 22

2.4.1 Behavior of Components in a Multivendor Environment.. 22
2.4.2 Future Versions ... 22
2.4.3 Evaluation and Rating of Products from Different Manufacturers 23
2.4.4 Trustedness and Trust Services ... 24
2.4.5 List of Trust Services ... 25
2.4.6 Factors Affecting the Value of Content ... 26

2.5 CHARACTERIZING TRUST LEVELS .. 28
2.5.1 Scope of Particular Failures ... 28
2.5.2 Skill, Tools and Expense Required to Cause Failures .. 29
2.5.3 Trust Levels and Certification... 30
2.5.4 Perspectives on the Six Levels of Trust ... 32
2.5.5 Definitions of Trust Levels .. 32

3 FOUNDATION TRUST SERVICES ... 38
3.1 PKI: FOUNDATION MECHANISM FOR AUTHENTICATION.. 38

3.1.1 Requirements... 38
3.1.2 Overall EBX Certificate Authority Architecture ... 39
3.1.3 Vendor Certificate Authorities .. 41

3.2 COMPONENT TRUST LEVEL CERTIFICATION... 43
3.2.1 Certification Criteria... 44
3.2.2 Certification Methods.. 45
3.2.3 Certification Entities ... 46

3 EBX System Specification – Draft 0.8 09/06/00

3.2.4 Reviews.. 46

4 TRANSFER PROTOCOL... 47
4.1 TRANSFER PROTOCOL AND TRANSPORT PROTOCOLS ... 48
4.2 DOMAINS OF TRUST ... 48
4.3 EXAMPLE OPERATION – E-BOOK PURCHASE.. 49
4.4 NOTATIONAL CONVENTIONS AND GENERIC GRAMMAR... 50
4.5 HTTP IMPLEMENTATION NOTE: EBX HTTP REQUEST .. 50
4.6 HTTP IMPLEMENTATION NOTE: EBX HTTP HEADER EXTENSIONS 51

4.6.1 EBX-Action Header... 51
4.6.2 EBX-Version Header... 51
4.6.3 EBX Challenge-Response Headers ... 52

4.7 RECEIVING FULFILLMENT INSTRUCTIONS (HANDOFF) .. 53
4.7.1 Handoff Request to Voucher Server .. 53
4.7.2 Voucher Server Processing of Handoff Request ... 53
4.7.3 Handoff Response from Voucher Server (XML fulfillment instructions) 54
4.7.4 Client Processing of Handoff Response from Voucher Server (XML fulfillment
instructions).. 56

4.8 GETTING VOUCHER(S) ... 56
4.8.1 Voucher Request to Voucher Server (purchase, borrow) ... 56
4.8.2 Voucher Server Processing of Voucher Request (purchase, borrow)....................... 58
4.8.3 Response from Voucher Server (purchase, borrow) ... 59
4.8.4 Client Processing of Response from Voucher Server for Voucher Request (purchase,
borrow) 60
4.8.5 Acknowledgment Request to Voucher Server (ACK) .. 61
4.8.6 Voucher Server Processing of Acknowledgment Request (ACK).............................. 62
4.8.7 Acknowledgment Response from Voucher Server (ACK) ... 62
4.8.8 Client Processing of Acknowledgment Response from Voucher Server (ACK)........ 63

4.9 GETTING ENCRYPTED E-BOOK(S)... 63
4.9.1 Content Request to Content Server (purchase, borrow) ... 63
4.9.2 Content Response from Content Server (purchase, borrow) 63

4.10 GIVING OR LENDING A BOOK (CONSUMER TO CONSUMER)... 64
4.10.1 Transfer Request from Owner to Receiver (give, lend)... 64
4.10.2 Transfer Response from Receiver to Owner (give, lend) 65
4.10.3 Owner Processing of Transfer Response from Receiver (give, lend) 67
4.10.4 Voucher Transmission Request from Owner to Receiver (give, lend) 68
4.10.5 Receiver Processing of Voucher Transmission Request (give, lend) 69
4.10.6 Voucher Transmission Response from Receiver to Owner (give, lend)................ 69
4.10.7 Owner Processing of Voucher Transmission Response from Receiver (give, lend)
 70
4.10.8 Content Transmission Request from Owner to Receiver (give, lend) 70
4.10.9 Content Transmission Response from Receiver to Owner (give, lend)................. 71

4.11 ELECTRONIC MAIL TRANSFER.. 71
4.12 EBX ERROR HANDLING AND FLOW... 71

4.12.1 HTTP Implementation Note .. 71
4.12.2 Successful Requests to Voucher Servers ... 71
4.12.3 Failed Requests to Voucher Servers.. 72

4 EBX System Specification – Draft 0.8 09/06/00

4.12.4 Discussion of Voucher Fulfillment and ACK.. 73

5 VOUCHER ENGINE MODEL... 75
5.1 VOUCHER ENGINE PROCESSING ... 75
5.2 VOUCHER ENGINE RULES .. 75
5.3 VOUCHER ENGINE INTERFACES.. 76

5.3.1 Create Voucher ... 76
5.3.2 Issue Voucher .. 77
5.3.3 Revoke Voucher... 77
5.3.4 Import Voucher ... 78
5.3.5 Delete Voucher.. 78
5.3.6 Issue Nonce ... 78
5.3.7 Issue Credentials ... 79
5.3.8 Encrypt Content... 79
5.3.9 Decrypt Content .. 79

5.4 VOUCHER ENGINE PROCESSING OF EBX RIGHTS... 80
5.4.1 Writing EBX Rights in a Voucher ... 80
5.4.2 Enforcing EBX Rights in a Voucher.. 81

6 METADATA FORMAT.. 82
6.1 METADATA ELEMENT .. 82

6.1.1 Identifier Element.. 82
6.1.2 Format Element... 83
6.1.3 Metadata Example... 83

7 VOUCHER FORMAT... 85
7.1 RIGHTS SPECIFICATION .. 85

7.1.1 Rights Overview .. 85
7.1.2 Licensee... 86
7.1.3 Transfer Rights.. 86
7.1.4 Usage Rights ... 87
7.1.5 Authorization context .. 87
7.1.6 Consideration.. 87
7.1.7 Portion... 88
7.1.8 Target .. 88
7.1.9 Scope ... 89
7.1.10 Consumer’s knowledge of rights ... 89

7.2 VOUCHER OBJECT.. 89
7.2.1 EBX-Voucher – Voucher start-tag .. 90
7.2.2 ID – ISBN, DOI, or URN element ... 90
7.2.3 ContentKey – Content decryption key element ... 91
7.2.4 CopyCount – Count of authorized copies element .. 91
7.2.5 Rights – Basic permissions element .. 92
7.2.6 Lending – Lending Timeout and Status Element... 92
7.2.7 PersonalUse – Personal use element .. 93
7.2.8 MAC – Message Authentication Code element .. 93

8 FORMAT OF OTHER OBJECTS ... 95

5 EBX System Specification – Draft 0.8 09/06/00

8.1 CREDENTIALS OBJECT FORMAT ... 95
8.1.1 Credentials – Credentials start-tag... 95
8.1.2 AuthenticationScheme ... 96
8.1.3 Nonce... 96
8.1.4 SignedData .. 97

9 APPENDIX A: CERTIFICATION POLICIES AND PROCEDURES 98

10 APPENDIX B: APPLICABLE LAWS.. 99
10.1 U.S. EXPORT LAWS.. 99
10.2 (U.S.) DIGITAL MILLENNIUM COPYRIGHT ACT ... 100

11 APPENDIX C - CONTENT FORMAT REQUIREMENTS..................................... 101

12 APPENDIX D - CONTENT FORMAT USAGE GUIDELINES 102
12.1 OPEN EBOOK FORMAT ... 102

12.1.1 Container File Format .. 102
12.1.2 Encryption ... 103
12.1.3 Metadata.. 103
12.1.4 Display Properties... 103
12.1.5 Font Embedding .. 103
12.1.6 Open eBook Book Design Guidelines ... 103

13 APPENDIX E - REFERENCES .. 105

14 APPENDIX F - EDIT HISTORY .. 107
14.1 VERSION 0.1... 107
14.2 VERSION 0.2... 107
14.3 VERSION 0.3... 107
14.4 VERSION 0.4... 107
14.5 VERSION 0.5... 108
14.6 VERSION 0.6... 108
14.7 VERSION 0.7... 108
14.8 VERSION 0.8... 108

6 EBX System Specification – Draft 0.8 09/06/00

1 An Overview of the EBX System
This document describes the Electronic Book Exchange (EBX) system. The EBX system
defines the way in which electronic books (e-books) are distributed from publishers to
booksellers and distributors, from booksellers to consumers, between consumers and between
consumers and libraries. It describes the basic requirements of electronic book reading devices
and the electronic books themselves.

It also describes how these “trusted” components interact to form a comprehensive copyright
protection system that both protects the intellectual property of authors and publishers as well as
describes the capabilities required by consumers. In addition, the model describes in general
how products and revenue for those products are generated and managed.

The EBX system does not define a specific “content” file format (e.g., PostScript, PDF, HTML,
XML). However, it does assume a minimum set of capabilities and features in the content and
these are described in an appendix to this document.

1.1 Terms
The following terms are part of the EBX system.

• = E-book – A digital object that is an electronic representation of a book. While an e-book
can consist of a single page, it is normally thought of as an electronic analog of a multi-
page hardcover or paperback book. An e-book is the so-called "content" in the EBX
model. An e-book may come in a variety of formats, including, but not limited to, PDF,
Open eBook Publication Structure 1.0, and various other textual and multimedia formats.

• = E-book Reading Device – Typically a hand-held electronic device that is capable of
displaying one or more e-books. Non-dedicated devices such as notebook and desktop
PCs and PDAs can also be used as e-book reading devices.

• = E-book Reading System – The combination of an e-book reading device with software
or hardware that enforces copyrights and permissions. The system contains a voucher
engine.

• = Voucher – A digital object that describes an e-book’s transfer and usage permissions and
copyrights. These are also called intellectual property rights. A voucher can be passed
from one entity in the system to another entity. For example, a publisher can use a
voucher to pass the permission to sell multiple copies of an e-book to a bookseller, or a
consumer can use a voucher to pass the permission to use a copy of an e-book for a
specified period of time (i.e., lend the e-book).

• = Voucher Engine – The software or hardware that creates, imports, modifies, and reads
vouchers. The voucher engine enforces copyrights and transfer and usage permissions.

• = Protocol Engine – The software or hardware that generates, transmits, and receives
network messages using the transfer protocol defined in this specification.

7 EBX System Specification – Draft 0.8 09/06/00

• = Voucher Server – The computer system that is responsible for delivery of vouchers from
one place to another. This system operates a voucher engine.

• = Content Server – The computer system that is responsible for delivery of e-book content
from one place to another.

• = Title – A copyrighted work prepared by a publisher.

• = Copy – An individual instance of a title, sold by a bookstore, lent by a library, etc.

1.2 Roles
The EBX system includes roles that interact with each other. A role is a function within the EBX
system, not an entity (an individual or organization). An entity can assume more than one role,
and a role can be distributed across more than one entity. An entity can also delegate a role to
another entity.

The EBX system includes the following roles:

• = Publisher – Creates e-books and their associated vouchers and sells them to booksellers
and libraries (either directly or through distributors).

The publisher is the root source for initial encryption of e-books and creation of the
associated vouchers for those books. The permissions for further modification, transfer,
or sale of the vouchers are specified in the initial vouchers.

The publisher operates a voucher server to create e-books and vouchers and to transfer
them to others.

• = Voucher Distributor – Obtains vouchers from publishers and distributes them to
booksellers, consumers, or libraries.

The voucher distributor operates a voucher server.

• = Content Distributor – Obtains e-books from publishers and distributes them to
booksellers, consumers, or libraries.

The content distributor operates a content server.

• = Bookseller – Sells e-books to consumers or libraries.

This role represents where value (if any) is exchanged to acquire e-books and the
vouchers for those e-books. The bookseller is the role that authorizes the consumer or
library to purchase an e-book.

• = Library – Purchases e-books from publishers, booksellers and distributors and lends
them to consumers.

This role is similar to bookseller, except that value is not typically exchanged, and the e-
books that the consumer obtains have vouchers that expire after a period of time (the loan
period).

8 EBX System Specification – Draft 0.8 09/06/00

• = Consumer – Purchases e-books from booksellers or borrows e-books from libraries.

The consumer’s e-book reading system is activated when the consumer completes a
purchase transaction with a bookseller or a loan transaction with a library. The e-book
reading system negotiates with the voucher server and/or content server specified by the
bookseller or library to transfer e-books and vouchers from the voucher and content
servers to the e-book reading system.

A consumer may also give or lend an e-book to another consumer. The two consumers’
e-book reading systems negotiate with each other to transfer e-books and vouchers from
one e-book reading system to the other.

Following are some examples of assumption and delegation of roles by entities:

• = A publisher can delegate its publisher role to a distributor.

• = A bookseller can delegate its bookseller role to a distributor.

• = A bookseller can assume the voucher distributor or content distributor role for the books
it sells.

• = A library can assume the voucher distributor or content distributor role for the books it
lends.

1.3 System Principles
[Editorial note. This section has not yet been edited for Version 0.8. It might more appropriately
appear in an introduction that is not part of the specification.]

The EBX system is designed around a number of basic principles that reflect the needs of the
people who will use it. These principles are specific to the copyright and distribution
requirements, not the content format.

1.3.1 Consumer Needs
These needs represent the requirements of the people who matter most in an electronic book
system: the people who actually read the books. The system must satisfy the consumer or else
there is no market at all for electronic books. The paper book has undergone centuries of
evolution, and consumers have grown accustomed to its current capabilities. A viable e-book
system must at least provide an equivalent to paper book capabilities, and in most cases it must
enhance those capabilities. To put it simply: to consumers, electronic books must be a clear
improvement over paper books.

• = Interoperability – Consumers need to be able to read any book, from any publisher on
any device. They do not want to be in a position where the reading device or software
that they own is incapable of reading a book that they desire.

• = Ease of Use – This is an obvious consumer requirement, but it bears repeating. If the
system is not extremely easy to use, consumers will simply continue to buy paper books.

9 EBX System Specification – Draft 0.8 09/06/00

Obtaining a book electronically must be easier than going to a bookstore to buy a paper
book, easier than going to a library to borrow a book, easier than packing a book in a box
to mail to a friend, easier than lugging a stack of books on a trip or to school and easier
than filling a home with bookcases to create a family library.

• = Transparent Performance – One of the compelling advantages of e-books is “instant
gratification.” In other words, when a consumer wants a book, he/she can get the book
immediately. Therefore, the system must perform its necessary tasks very quickly:
downloading, re-encrypting, transferring, displaying, etc. In fact, all of these operations
should be so quick that they become transparent.

• = Giving and Lending (First Sale) – Consumers know that once they buy a copy of a
paper book, within the limits of the rights of the copyright laws, the copy is their
possession, and they can dispose of the copy as they wish. They can give their copy of
the book to another consumer, they can lend their copy for a limited time to another
consumer, they can give the copy to a public library for lending to other consumers, and
the can sell a book to a used bookstore. A recent survey showed that about 60% of
consumers in the U.S. borrow books from their public libraries. Consumers also expect
that a copyright holder is paid for a book only the first time it is sold. In the U.S. this is
known as the “First Sale” clause of the Copyright Act.

• = Copyright Law Help (Fair Use or Personal Use) – Copyright laws are complicated and
seemingly ever changing. While most consumers are law-abiding, they get frustrated by
constantly being told what they can and cannot do with electronic media. The fine print
in so-called “shrink-wrap” software license agreements and “FBI Warnings” on
videotapes and disks can be difficult to understand and lessen the enjoyment of the
entertainment. Electronic books may be able to avoid the fine print and warnings by
making automatic what you can and cannot do with a copyrighted work.

• = Backup – Consumers have experience with the unreliable nature of computer storage
devices and will require a way to either make backup copies of their e-books or entrust a
third-party guardian service to keep backups of their e-books.

• = Backward Compatibility – Consumers want to buy e-books with the confidence that the
e-book titles they buy today will be readable on the devices of tomorrow.

• = Privacy – Consumers expect that their e-book purchases, borrowing, and subsequent
transfer records will remain private and not be made available to third-parties. Some
consumers even demand the ability to perform e-book transactions anonymously, as they
do with paper book purchases today (e.g., with e-cash).

• = Added Value – For consumers to make the leap to e-books, there has to be additional
value in e-books over and above paper books. For example, immediate delivery,
searching, categorizing, word lookup, and e-mail lending provide additional value to e-
books.

10 EBX System Specification – Draft 0.8 09/06/00

• = Authenticity of Content- Consumers need assurance that a particular copy of an e-book
is exactly as published by the publisher and has not been tampered with or modified.

• = Preview – Consumers would like to be able to preview e-books before they buy them.

• = Refund – Consumers need a way to get a refund if a particular e-book is not what they
wanted. The exact refund policy will be at the discretion of the bookseller.

1.3.2 Bookseller and Distributor Needs
These needs represent the requirements of booksellers and distributors, whether they are online
or brick-and-mortar stores.

• = Copyright Protection – Booksellers and distributors have a permission that will be
granted by publishers: to make copies of e-books for sale to consumers, other booksellers
and libraries. Booksellers and distributors require that the e-book system transparently
enforce the rights of the copyright owners.

• = Scalability – A large online bookseller may have a Web site that sells to millions of
customers. An online book distributor may have a site that distributes to thousands of
booksellers. On the other hand, a small bookshop on Main Street may have a kiosk that
sells to a hundred local consumers. The e-book system must be extremely scalable to
span these different needs.

• = Liability Security – Booksellers need the copyright protection system to protect e-book
titles on bookseller servers to limit their liability by ensuring e-book titles cannot be
stolen from their servers.

• = Publisher Distrust – Booksellers do not implicitly trust publishers and the system needs
to take that into consideration.

1.3.3 Publisher Needs
These needs represent the requirements of book publishers.

• = Copyright and Revenue Protection – The system must enforce the principle that there
exists exactly one usable copy of an e-book per purchase.

• = Ease of Production – Publishers must find it very easy to produce e-books from existing
paper book production systems. An ideal solution would be one that simply uses existing
production tools and pre-press files.

• = Elimination of Physical Manufacturing – Electronic books have the potential to reduce
the production costs of books and increase the profitability of publishing. However, if an
e-book system requires manufacturing of a physical object (e.g., CD-ROM, ROM card),
then it will be difficult to reduce costs. Basically, it just moves costs from paper to
plastic. Publishers would like option of eliminating physical manufacturing, but some
may find it desirable in some cases.

11 EBX System Specification – Draft 0.8 09/06/00

• = Scalability – A large publisher or imprint may publish hundreds of books each month. It
may distribute those books to hundreds of booksellers and distributors.

• = Accountability and Auditability – Booksellers and distributors provide to publishers an
accounting of the e-books that were sold. Publishers should also be able to audit
booksellers and distributors to ensure that the numbers are accurate.

• = Bookseller Distrust – Publishers do not implicitly trust booksellers and the system needs
to take that into consideration.

• = Marketing Data – Publishers would like to find out more about who buys their books.
This goal may conflict with the consumer’s privacy requirement, so they must be
balanced appropriately.

• = Versioning – Some books (e.g., computer books) are updated on a very regular basis and
publishers need a way to distinguish new versions of e-books and make them available to
consumers.

• = Super Distribution – To provide the widest distribution possible, some publishers would
like the capability for consumers to re-distribute e-books, but instead of the consumer
losing his/her copy, the new consumer would pay for an additional copy (without the
added step of manually going to a bookseller or back to the publisher).

• = Selling – Some publishers would like to be able to sell e-books directly to consumers,
without a distributor or bookseller. The system should therefore allow a publisher to also
be a bookseller.

1.3.4 Author Needs
These needs represent the requirements of book authors.

• = Copyright and Revenue Protection – Authors depend upon the copyright laws to ensure
that they are paid for each copy of their book that is sold. In fact, most authors that have
been asked for their opinions of electronic books have answered: “how do I get paid?”

• = Self Publishing – Some authors would like the ability to publish their own works, either
because they cannot find a publisher willing to publish their work, or because they think
they can do a better job, or because they would like to make more money per sale than
they get from a publisher.

• = Interactive Content – There are some sophisticated authors and their publishers (e.g.,
academic textbook, reference book authors) who would like to be able to add interactive
content like sound, animation, and video to their books.

1.3.5 Library Needs
These needs represent the requirements of public, academic and corporate libraries.

12 EBX System Specification – Draft 0.8 09/06/00

• = Lending and Borrowing – It is critical to their very existence that libraries have the
ability to buy electronic books and then lend them to their patrons.

• = Fair Use – It is an established legal doctrine that library patrons can excerpt information
from books for their own use. Libraries are rightly concerned that electronic copyright
protection systems, if poorly implemented, could eliminate fair use. Since fair use is not a
simple issue, no technical solution can completely handle it. However, libraries require
that e-book systems at least recognize fair use and provide some capability for it.

• = Archiving – Many libraries need to be able to provide an perpetual archive for their e-
books. Therefore, the e-book system must provide more than time-limited licenses.

• = Platform Independence – While most of the participants in the e-book system have the
need for the system to run any almost any hardware platform, the need is even more acute
for libraries. They cannot afford to maintain (forever) separate hardware reading devices
for e-books in their archives.

1.4 Assumptions
[Editorial note. This section has not yet been edited for Version 0.8.]

The EBX design makes the following assumptions:

• = Consumers will, for the most part, prefer to read books off-line. It is still expensive and
inconvenient to have a continuous wired or wireless connection to the Internet. The
system assumes that most of the time consumers will not be connected while they are
reading a book.

• = Books will nearly always be exchanged electronically over wired or wireless connections.
It seems a step backward to add a physical media-manufacturing step to an e-book
system.

• = The Internet and World Wide Web is the preferred infrastructure for publishers,
distributors, booksellers, libraries and consumers to exchange e-books. Most
organizations will want the e-book system to fit into their existing Web servers. Most
consumers will want to use their existing Internet Service Providers and e-mail tools.

The information to be protected is not secret. Books are public information. Although a
copyright system must be secure against property rights attack, it calls for very different
cryptographic techniques than are used to protect confidential information.

1.5 Basic Design
 [Editorial note. This section has not yet been edited for Version 0.8.]

The EBX system meets the requirements and assumptions listed above using the following time-
tested network and cryptographic technologies.

13 EBX System Specification – Draft 0.8 09/06/00

• = Internet Web Servers and Browsers (TCP/IP, SSL, HTTP).

• = Public key and symmetric key cryptography (RSA, RC4, DES, SHA, PKCS/X509).

The basic design for publishing and transferring e-books with EBX between components (e.g.,
publisher to distributor, distributor to bookseller, bookseller to consumer or library, consumer to
consumer or library) follows:

• = A publisher creates a single content container file (e.g., ZIP file) encapsulating the text and
graphics of an e-book.

• = The publisher also randomly generates a symmetric content-encryption key (e.g., DES) and
uses it to encrypt the text and graphics in the content file. Since a symmetric algorithm is
being used, the encryption key is also the decryption key.

• = Typically, a commercial organization like a publisher, distributor, bookseller or library puts
up a Web site to post the availability of e-books and initiate transfers between organizations.
Consumers typically transfer e-books among themselves either by e-mail or via infrared
“beaming.”

• = Each time an encrypted e-book file is transferred to a client from a server:

• = The client opens a TCP/IP port at the server via an SSL session. SSL is used to ensure
privacy during the transaction.

• = The server sends a very large, randomly generated number called a nonce to the client.

• = The client’s reading system encrypts the nonce with its private key. It also generates a
non-repeating serial number, which, along with a five minute timer for garbage collection
purposes, is saved in a record in the reading system’s voucher file. The reading system is
personalized at the factory with an EBX-certified public/private key pair. Among other
things, the certificate proves that the reading system adheres to the rules of this
specification.

• = The client reading system sends an object called credentials which contains its certified
public key, the encrypted nonce, and the serial number, to the server’s software. The
server’s software decrypts the challenge with the public key in the client’s certificate,
validates the certificate and, if valid, uses the client’s public key to encrypt the content-
decryption key and the serial number, creating a voucher.

• = The server then sends the encrypted content file and voucher to the client e-book reading
system. The reading system decrypts the voucher containing the content-decryption key
and serial number with its private key. Assuming the serial number’s record has not been
timed-out by the reading system, the reading system stores the voucher, including the
content-decryption key, in its voucher file.

• = When a commercial entity like a publisher, distributor or bookseller uses EBX to transfer
an e-book to another entity, its EBX software retains a copy of the voucher and

14 EBX System Specification – Draft 0.8 09/06/00

decrements the copy count in the voucher. Commercial EBX software must also create an
audit file, which is used for revenue accounting back to the previous commercial entity in
the chain, to account for the number of copies of each book that has been sold.

• = When a consumer gives an e-book to another consumer or to a library, the consumer’s e-
book reading system deletes the corresponding voucher from its voucher file. When a
consumer or library lends an e-book to another consumer or to another library, the
consumer’s reading system or library’s server puts a time limit on the new recipient’s
voucher and disables its own voucher for the same period of time.

• = When a consumer wishes to read an e-book, the e-book reading system uses the content-
decryption key in the corresponding voucher to decrypt each encrypted page, or in the
case of Open eBook, each chapter.

1.6 Vouchers
[Editorial note. This section has not yet been edited for Version 0.8. It may be redundant with
the voucher format description.]

EBX is primarily concerned with the creation and transfer of digital objects called vouchers. A
voucher is an electronic description of e-book permissions transferred from one book owner in
the network to another book owner. EBX vouchers are encoded in XML.

A book voucher contains the following information:

• = ID – ISBN or Digital Object Identifier (DOI) of the e-book content object.

• = ContentKey - Content-decryption key (e.g., 56-bit DES).

• = CopyCount - Number of copies of the content object the holder of the voucher is allowed to
view/lend/give/sell.

• = Permissions - Various permissions that the holder of the voucher has:

• = Lendable – Whether the holder can lend the voucher.

• = Givable – Whether the holder can give the voucher to another entity.

• = Sellable – Whether the holder can sell the voucher to another entity.

• = LendingTimeout – Amount of time the holder is allowed to borrow the voucher.

• = PersonalUseCopies – Maximum number of personal use copies per PersonalUseTime.

• = PersonalUseTime – Day, Week, Month, Year.

• = PersonalUseCopySize - Paragraph, page, chapter, whole.

15 EBX System Specification – Draft 0.8 09/06/00

The ContentKey in a voucher is encrypted using the public key of the owner of the voucher, and
can only be decrypted with the owner’s corresponding private key, which is not divulged, even
to its owner.

[This is a crucial difference between the use of cryptography in a rights protection system like
EBX and the use of cryptography in a typical secret information system like S/MIME e-mail. In
a rights system the private key is not made accessible or known to the person who is the owner
of the key. This may seem odd at first glance, but the whole point of an electronic rights system
is that the person is not trusted to perform only legal operations on the protected content.
Protecting the content from the person using the content enables the system to ensure that the
person uses the content in legal ways.]

1.7 Functional Model
[Editorial note. This section has not yet been edited for Version 0.8.]

1.7.1 Publishing
For a publisher to create an EBX formatted e-book, the following steps are performed.

• = The publisher licenses, from a certified EBX software vendor, an EBX Publisher
software utility and an EBX Server, which is typically a Web server add-in. Both
packages contain an EBX certified public/private key pair.

• = The publisher formats each e-book title into a content container file (e.g., ZIP file) using
standard software (e.g., Adobe PageMaker, Adobe FrameMaker, QuarkXPress, Microsoft
Word or Publisher, PKZIP, WinZIP).

• = The publisher uses the EBX Publisher utility to encrypt the content file. The EBX
Publisher uses a single randomly generated content-encryption key to encrypt the content
file for the specific title. The EBX Publisher then creates a Voucher template for the
content file by encrypting the content-encryption key with the publisher’s public key.

Unencrypted Content
File

Publisher Encrypted
Content File

EBX Publisher
PK Encrypted Voucher w/
Content-Decryption Key

Publisher’s
Public Key

• = The publisher maintains an Internet Web site for use by authorized booksellers and
distributors. The publisher installs the EBX Server add-in software to its Web server.
The publisher adds all the encrypted content files and the corresponding vouchers to its
Web server.

16 EBX System Specification – Draft 0.8 09/06/00

Publisher’s
Web Server

EBX Server

Encrypted
Content Files

Vouchers

Internet

Publisher
Priv. Key

1.7.2 Distribution to Online Booksellers and/or Distributors
To transfer a book from a publisher directly to a bookseller or from a publisher to a distributor
and then to a bookseller, the following steps are performed.

• = The bookseller licenses an EBX Server Web server add-in from a certified EBX
software vendor. An administrator at the bookseller also installs an EBX Server
Administrator Web browser add-in to his/her browser.

• = For each e-book that the distributor/bookseller wants to offer for sale on the
distributor/bookseller's Web site, the administrator uses an EBX Server Administrator-
equipped browser to download the appropriate EBX encrypted content file from the
publisher's Web site. The publisher's EBX Server performs the actual download.

The publisher’s EBX Server decrypts the desired voucher using the publisher's private
key, sets the bookseller’s permissions and copy count, and re-encrypts the voucher using
the bookseller's public key. The EBX Server looks-up the bookseller’s appropriate re-
distribution permissions and credit allowance in a database to set the copy count and
permissions in the new voucher. The encrypted voucher is transferred to the bookseller.
The distributor/bookseller then adds the encrypted content file to its own on-line Internet
bookstore Web site.

Publisher Encrypted
Content File

EBX Server
Bookseller PK Encrypted

Voucher

Publisher’s
Private Key

Publisher Encrypted
Content File

Publisher PK Encrypted
Voucher

Bookseller’s
Web
Browser

EBX
Admin-
istratorBookseller

Public Key

• = The distributor/bookseller installs the EBX Server to its on-line Internet Web server
bookstore.

17 EBX System Specification – Draft 0.8 09/06/00

Bookseller
Web Server

EBX Server
Encrypted
Content Files

Vouchers

Internet

Bookseller
Priv. Key

1.7.3 Delivery to Consumers
To deliver a book to a consumer from a bookseller the following steps are performed.

• = The consumer purchases, from a certified EBX e-book reading system vendor, an EBX
reading system. The EBX reading system is also installed as an add-in to the consumer’s
Web browser.

• = For each e-book that the consumer wants to purchase from the bookseller's Web site, the
consumer uses his/her EBX reading system to download the appropriate EBX encrypted
content file and voucher from the bookseller's Web site. The bookseller's EBX Server
performs the actual download. The bookseller’s EBX Server decrypts the file’s
corresponding voucher using the bookseller's private key. The EBX Server creates a new
voucher from the bookseller’s voucher combined with the applicable permissions for a
consumer (e.g., 1 copy, lending and giving allowed, printing not allowed). The EBX
Server then encrypts the new voucher with the consumer’s public key.

The consumer’s EBX reading system can then use its private key to decrypt the voucher.
The new voucher is stored in the consumer’s voucher file on the consumer’s reading
device.

Publisher Encrypted
Content File

EBX Server
Consumer PK Encrypted

Voucher

Bookseller’s
Private Key

Publisher Encrypted
Content File

Bookseller Encrypted
Voucher

Consumer’s
Web
Browser

EBX
Reader

Consumer
Public Key

• = Vouchers containing content-decryption keys are always stored encrypted using the EBX
reading system’s public key and are not otherwise revealed. Therefore, to decrypt the e-

18 EBX System Specification – Draft 0.8 09/06/00

book, the EBX reading system using the corresponding voucher explicitly decrypts each
encrypted page.

Consumer
Private Key

EBX Reader
Publisher Encrypted

Content File

Pages
for

Screen
Display

Consumer Public Key
Encrypted Voucher

1.7.4 Transfer Between Consumers – “Give/Lend”
Consumers can transfer books among themselves in two different ways. They can either “give”
a book to another consumer, in which case the giver is giving up all rights to the book forever.
Consumers can also “lend” a book to another consumer, in which case the lender is giving up all
rights to the book for a specified period of time (e.g., 2 weeks). At no time is it allowable for
two or more consumers to have the ability to decrypt the same copy of a book. To transfer a book
between two consumers in either case, the following steps are performed:

• = Both consumers purchase e-book reading systems from a certified EBX e-book reading
system vendor.

• = When a consumer wants to give or lend a book to another consumer, the
receiver/borrower’s EBX reading system generates a random serial number and sends it
with its certified public key to the giver/lender’s EBX reading system. If the certificate is
valid, then the giver/lender’s EBX reading system creates a new copy of the appropriate
voucher and encrypts it with the receiver/borrower’s public key. If the operation is a
“give” then the giver/lender’s EBX reading system deletes its own copy of the voucher.
If the operation is a “lend” then the giver/lender’s EBX reading system includes a timeout
value (e.g., 2 weeks) with the voucher and sets the “lent” state and the same timeout in
the voucher in its own EBX reading system.

19 EBX System Specification – Draft 0.8 09/06/00

Publisher Encrypted
Content File

EBX Reader1
Consumer2 PK Encrypted

Voucher

Consumer1
Private Key

Publisher Encrypted
Content File

Consumer1 Encrypted
Voucher

EBX Reader2

Consumer2
Public Key

• = The giver/lender’s EBX reading system software then sends the encrypted voucher, the
serial number and the encrypted content file to the receiver/borrower. The
receiver/borrower’s EBX reading system receives the encrypted voucher and the serial
number. The EBX reading system decrypts the voucher and stores it in its voucher file.
When the consumer wants to read the book, the EBX reading system uses the content-
decryption key in the voucher to decrypt the pages of the book.

1.7.5 Transfer Between Libraries and Consumers
Libraries can also lend books to consumers. Transferring a book between a library and a
consumer is very similar to give/lend between consumers and the following steps are performed:

• = The consumer purchases, from a certified EBX e-book reading system vendor, an e-book
reading system. The Library purchases an EBX Library Server Web server add-in for
their Web server.

• = The library purchases e-books in much the same way as consumers. Libraries may
typically purchase multiple copies of popular books (i.e, their vouchers contain
CopyCounts > 1).

• = When a consumer wants to borrow a book from a library, the borrower’s EBX reading
system generates a random serial number and sends it with its certified public key to the
library’s EBX Library Server. If the certificate is valid, then the Library Server decrypts
the appropriate book’s voucher using its own private key. The Library Server creates a
new voucher from the original voucher to include a timeout value (e.g., 2 weeks) in the
new voucher, sets the same timeout in its own corresponding voucher, and then encrypts
the new voucher with the borrower’s public key.

20 EBX System Specification – Draft 0.8 09/06/00

Publisher Encrypted
Content File

EBX Library
Server

Consumer PK Encrypted
Voucher

Library’s
Private Key

Publisher Encrypted
Content File

Library PK Encrypted
Voucher

Consumer’s
Web
Browser

EBX
Reader

Consumer
Public Key

• = The EBX Library Server then sends the encrypted voucher and the encrypted content file
to the receiver/borrower. The consumer’s EBX reading system receives the encrypted
voucher and stores it in its voucher file. When the consumer wants to read the book, the
EBX reading system decrypts the voucher and uses the content-decryption key in it to
decrypt the pages of the book.

21 EBX System Specification – Draft 0.8 09/06/00

2 Trust Model
The trust model in the EBX specification is concerned with computer security principles, with
the particular needs of copyright holders, and with “ratings” that define the level of security (and
thus the trustworthiness) of a particular vendor’s EBX-compliant product.

2.1 Reliance on Trust for Negotiation of Details
Eventually, EBX reading systems and servers will constitute an “EBX network” made up of
several manufacturers’ products. Where two components share all the other necessary attributes
(for instance, if both are based on PDF files or both are based on OEB files of some type), they
will actually exchange content. For instance, a single vendor’s server could serve e-books to
several vendors’ reading systems.

In order for two components, such as a reading system and a voucher server, to interoperate, they
must communicate with each other to find out what they have in common. They can ask each
other (or “negotiate”) such questions as what algorithm is used to encrypt the content file, what
key length is used, and the type of the content (Open eBook file, PDF file, etc.).

Such a negotiation is part of the standard EBX protocol, so an EBX-compliant server is required
to answer unsolicited queries of this kind from an EBX client. However, in order to ensure the
integrity of the overall network, that is, to avoid giving away this information to potentially
hostile clients, we need a means of establishing the server’s trust in the client.

This is analogous to a conversation between two people: If someone confronts you and insists
that you answer sensitive questions, it is not enough to know that you are in a “secure” room and
can’t be overheard or to be assured that your answers will be kept confidential. You also have to
trust the person asking you, either implicitly, because you know him personally, or else because
he has been positively identified to you in some way that conveys his authority to ask the
questions.

2.2 Results and Effects of the Trust Model
The trust model itself defines, in prose, the conceptual framework and assumptions associated
with protecting rights across the distributed system architecture. It explains the requirements for
and responsibilities of the various security mechanisms employed in the system architecture,
enabling distributed EBX-conformant components to enforce digital rights to a specified level of
assurance.

The related Foundation Trust Services specify the services that each component must perform
correctly to both manage the digital rights of protected content and preserve the integrity of the
system. The trust services are much more specific than the general trust model. The main
“deliverable” of the trust services is a system for the mutual authentication of clients and servers.
By virtue of this system, it makes sense to say that the server in the previous example must
answer all the questions about its implementation choices, because the questions are coming
from a trusted member of the EBX network.

22 EBX System Specification – Draft 0.8 09/06/00

2.3 Need for Prescription
The authentication system is one place in the EBX specification where it is necessary to
prescribe certain implementation properties. Once trust is established between two components,
many other details can be negotiated on the fly, and not all vendors need to use the same
technology. (An obvious example, at this time in history, is that e-book vendors use several
different file formats for content.) However, to establish trust in a rigorous manner requires that
the client and server authenticate each other and authenticate each other in specific, standard
ways, and therefore we require the use of certain technologies, if not for all time then at least for
particular generations of this specification.

2.4 Trust Model Overview
Publishers and other copyright holders want to know the level of protection provided to their
digital content when it is distributed electronically. Furthermore, recognizing that higher levels
of protection often come at the expense of other desirable properties, they want the ability to set
different levels of protection for different titles.

The technology provides some protections, but social processes including deterrence, detection,
and legal enforcement as well as insurance-based compensation for parties that fall victim to
cracks in the system are integral to the overall protection of digital rights. In balancing the
contributions achieved through these various approaches, EBX provides assurance to all
parties—publishers, authors, insurers and law enforcement—that adequate precautions have been
taken to protect the intellectual rights of authors and publishers.

2.4.1 Behavior of Components in a Multivendor Environment
In the open EBX architecture, a number of distributed components including servers and end-
user readers from multiple vendors cooperate to enforce digital rights. These components
provide persistent copyright protection via secure authentication, secure transfer and controlled
exposure of the vended content according to both the rules defined for the system as a whole and
the rights associated with each particular digital title. The fundamental rule enforced by every
component is to deny any right unless explicitly granted. Consequently, associated with each
digital content title is a set of permissions that grant particular rights under specified conditions.
Included in the specified rights are rules defining the assurances required before control over a
particular digital title can be transferred from one component to another.

2.4.2 Future Versions
Anticipating that the functional requirements placed on the trust foundation are likely to change
over time, the Trust Model mandates mechanisms in the EBX specified protocols to allow
forward and backward interoperability between different generations of the trust foundation
components. This enables enhancements in the trust foundation over time without requiring
updating or retiring of earlier-generation components.

23 EBX System Specification – Draft 0.8 09/06/00

2.4.3 Evaluation and Rating of Products from Different Manufacturers
In developing the trust model, we anticipate that some of these components will provide greater
protection for digital content than other components. As any system can at best be only as
effective in providing these protections as the weakest participating component in the system, the
Trust Model defines the concept of trust level associated with each component in the network of
participating content-protecting components.

A managed evaluation process certifies each component with respect to the level of protection it
provides to the digital titles it processes and its ability to identify itself securely, prove its
authorizations and validate the identify and authorizations of other components in the system
with which it cooperates. This enables the publisher (or copyright holder) to define a subset of
the full network of components that he or she trusts to provide the level of protection for each
digital title appropriate to its value and other characteristics, as shown in Figure 1.

Publishers can then make tradeoffs, title by title if they choose, between the level of protection
and other properties of components such as cost, the number of units in service or the
demographics of users of those units. At the same time, the trust model allows vendors to offer
products that provide different levels of protection and that can all participate and interoperate in
a single digital content protection and distribution system.

Virtual Network Defined by Minimum Trust Level Set by Publisher for this Title

4* 5*

3*

3*

2*

5*

4*

3*

4*

Book
Publishers

Digital
Publishers

Booksellers Readers

≥≥≥≥=4*

[*: Numerals indicate trust level.]

Rights

≥≥≥≥=4*

Figure 1: Subset of components that can handle a "trust level-4" eBook.

24 EBX System Specification – Draft 0.8 09/06/00

The role of “publisher” in this specification means the originator of the content in the EBX
network. Although the publisher may not own the copyright for the book, the publisher is acting
on behalf of the copyright holder and is responsible for the content’s safe handling. Once the
publisher has introduced the content into the EBX network, responsibility shifts to EBX. Each
component that processes a transaction involving the content must correctly enforce the rights
associated with that content for that transaction. Before a component passes control of the
content to another component it first must establish that the destination component is a proper
EBX-certified component authorized to receive and operate on the content consistently with the
rules and rights associated with the content, as shown in Figure 2.

V a l i d a t i o n s u c c e s s f u l ,
h e r e ’ s t h e t r i lo g y t o

r e a d a n d p r i n t

T r a n s f e r r i n g a T i t le f r o m C o m p o n e n t t o C o m p o n e n t

I ’m S t e v e ’ s
R e a d e r ,

P le a s e s e l l
m e t h a t c o o l
s p a c e t r i lo g y

T h i s t i t le n e e d s
le v e l - 3 t r u s t .
A r e y o u E B X -

c e r t i f i e d ?

Y e s in d e e d .
H e r e ’s m y

p r o o f .

t o S t e v e : y o u
c a n n o w r e a d o r
p r in t t h e t r i lo g y

G o t
b o o k s
h e r e !

Figure 2: An upstream component confirms authorization of a downstream component
before transferring control of a protected title.

2.4.4 Trustedness and Trust Services
The capability of the system to enforce the rights specified by a copyright holder for a protected
title depends on a basic foundation of trust associated with the system. In turn, trust in the system
depends upon trust in each participating component. We characterize trust features in a certified
component with respect to the ability of that component to perform a series of functions correctly
and resist efforts by an attacker to defeat the correct performance of those functions. Figure 3
below shows one possible architecture.

25 EBX System Specification – Draft 0.8 09/06/00

Foundation Trust Services:
identity; certifications; authorizations; tamper resistance;

trusted storage, execution, and time; audit support

Data Services

Rules Engine &
Rights Management

Communications &
Protocols

EBX Component Architecture
(Readers and Servers)

Viewer

Trusted Execution Environment

Figure 3: Possible Component Architecture

2.4.5 List of Trust Services
The following list identifies the key functions required to establish this foundation of trust. This
list also provides an important input to defining the criteria for certifying the trust level
associated with each component.

• = Authenticates Self – A component is able to communicate and prove its own identity to
other EBX components with which it communicates and exchanges EBX-protected
content and vouchers.

• = Proves Authorization – A component is able to communicate its capabilities and the
services that it is authorized to perform in the EBX system in a manner that can be
verified by communicating partner.

• = Protects Own Credentials – A component protects its own identity and authorization
parameters and associated credentials (e.g. name, ID, component type and cryptographic
keys used to prove its credentials to other components.)

• = Protects EBX Credentials – A component stores and protects the EBX system
credentials necessary to validate the assertions made to it by other components. (E.g.
initializes and securely stores and retrieves the public keys (or public key certificates) of
all necessary EBX Root Certifying Authorities.

• = Authenticates Other Components – A component determines and is able to validate the
identity of each other EBX component with which it communicates.

• = Validates Authorization and Trust – A component determines and is able to validate
the capabilities and authority of each other EBX component with which it communicates
and the trust level at which it is certified to perform those functions.

• = Enforces Rules – A component enforces the rules defined both by its own defined
functional specification in conformance with the EBX Standard and the particular

26 EBX System Specification – Draft 0.8 09/06/00

requirements defined for the particular EBX-protected content on which it is operating. A
component also secures the EBX content and associated encryption keys so that they
cannot be extracted and employed to pirate EBX-protected content.

• = Protects Execution – A component executes its logic and cryptographic algorithms in a
protected environment to ensure correct operations. This also applies to protecting the
logging and reporting functions.

• = Detects Invalid EBX Components and Vouchers – While properly a subset of the
functions listed above, an important capability of each EBX component is its ability to
identify invalid EBX vouchers and EBX components seeking service and to respond
appropriately. (E.g., refusing to deliver content or vouchers to components whose
credentials are invalid or have been revoked prevents bogus components from subverting
EBX distribution.)

• = Logging and Reporting – Each component maintains a correct and protected log of
transactions processed, exceptions experienced and other significant events. Logged
events are reported as defined by specified rules and support response to protection
failure incidents, audit, and system investigations.

2.4.6 Factors Affecting the Value of Content
Works are created, produced, sold and distributed for the value derived, including profit, prestige
and education, to name but a few motives. Works are ‘stolen’ by illegally copying and / or
fraudulently misrepresenting ownership or authorship for similar motives. The effect of time on
the value of different titles varies widely. Time must also be considered when we are protecting
works since the protection must persist into the future. Attack methods, tools and techniques are
expected to improve dramatically over time while little will change with a given security
implementation. For this reason, works that must be protected for the life of their copyright
present greater challenges than works that lose value after a few days of their publishing such as
yesterday’s weather forecast.

Figure 1 shows the relationship between time and value and suggests five example categories.
This matrix is shown for illustration. In the real world there is substantially more overlap among
these categories.

27 EBX System Specification – Draft 0.8 09/06/00

1. High value-
short life:
Real-time

financial data
(e.g. stock

quotes)

Increasing Lifetime

In
cr

ea
si

ng
 V

al
ue

2. High value-
medium life: Industry
Competition Reports

(e.g. Gartner or
Forrester reports)

3. Medium value-
long life: Reference
Texts, Plays, Fiction

4. Low value-short
life: Weather reports,

Horoscopes
5. Low value-long life:

Self-published
Speeches and View

Points

Figure 4 Time Value of Information – Example Categories
The sample categories include:

1. High value-short life: this includes stock quotes and other financial information that has
very high value but a lifetime of only a couple dozen of minutes. The analysis of this
information aggregated over time continues to hold value of course, but that is a function of
its presentation rather than the content and value life.

2. High value-medium life: examples include reports on highly dynamic, competitive
industries that are used for business intelligence and strategy.

3. Medium value-long life: some reference works and all fictional works will retain their value
for the lifetime of the copyright.

4. Low value-short life: some types of information are given away for next to nothing. They
also have a very short value life. Examples include weather reports and horoscopes that are
available for free and are only valuable for a few days.

5. Low Value-long life: this category of information covers authors that publish in order to
share their viewpoints. Copying and wide dissemination is encouraged as long as the content
is not changed and the author receives the appropriate credit for the work. Value of the works

28 EBX System Specification – Draft 0.8 09/06/00

extends to the lifetime of the copyright (see footnote #1). Examples include Amnesty
International reports and political position papers.

2.5 Characterizing Trust Levels
The ability of the system to preserve system integrity and protect content derives from the ability
of the participating components to provide the trust services identified above with a known level
of assurance. Because current technology cannot provide perfect security without incurring other
undesirable characteristics (e.g. high cost, difficulty of use, inflexibility, etc.) we approach this
problem by permitting components with different trust capabilities to interoperate, but enable the
copyright holder to specify a minimum trust assurance for the handling of a particular protected
title.

Four factors rank high in assessing and certifying the trust level provided by a component. First
is the scope of a particular failure. If a single feasible failure has more serious consequences in
one device than another, then the former ranks at a lower level of trust. Second is the skill level
required to defeat the protecting mechanisms. The higher the level of skill necessary to wage a
successful attack, the more trusted is a component. Third is the sophistication and availability of
the tools necessary to wage an attack. The more widely available or accessible are the tools
required to defeat a particular security mechanism, the lower the trust level of the component.
Fourth and probably most important, the overall level of resources, including manpower, time,
computer processing capacity, etc. factors into the trust level for a component. An encryption
algorithm that succumbs to a Pentium-day exhaustive key search attack offers a lower level of
trust to an algorithm that requires multiple Pentium-years to crack by key search.

2.5.1 Scope of Particular Failures
We consider attacks directed against the content itself as well as attacks aimed at compromising
a component in the EBX system, characterizing the resulting failure roughly in terms of the
number of protected titles potentially compromised by the successful attack.

29 EBX System Specification – Draft 0.8 09/06/00

Increasing cost to product vendors

 Attacks Waged at
Protected Content

Attacks Waged Against
a Single Component

Attacks Waged
Against the
Infrastructure
Integrity

Leak Enables a single
unlicensed copy of a
single title

Enables an unlicensed
copy of a single title on
one device

Failure of a single
component’s basic trust
capabilities

Spill Enables multiple
unlicensed copies of a
single title, or enables a
single device to view all
titles without licensing
them

Enables unlicensed copies
of a single title on
multiple devices, or
unlicensed access on a
single device to all titles

Trust foundation failure
in multiple components
in a single certified
release requiring
revocation of a family of
devices

Increasing cost to copyright holders

Flood Enables unlicensed
access to a title on
multiple devices or strips
a title of content
protection

Strips titles of content
protection or enables
unlicensed access to all
titles

Trust foundation failure
in set of components
requiring revocation of
more than one family of
devices

Figure 5: Scope of attacks waged against components.
Clearly, floods are to be avoided regardless of the locus of attack. For electronic books, as
usually defined (a digital issue of a well known novel or other book), the difference between a
leak and a spill may not be meaningful to a publisher: if a leak produces a high quality copy that
is stripped of its protection, that copy can now be distributed ubiquitously without having to
attack other reading systems.

2.5.2 Skill, Tools and Expense Required to Cause Failures
The following table characterizes in terms of three levels the skills, tools, and total effort
necessary to subvert a component’s integrity and its ability to protect content.

30 EBX System Specification – Draft 0.8 09/06/00

 Skills Necessary to Effect
Failures1

Tools Required to Effect
Failures

Total Resources to
Effect Failures

High Expert - Requires the dedicated
effort of a professional-caliber
cracker to attack the multiple
layers of tamper-resisting
technology, or medium skills to
attack the cryptography by brute
force.

• = Specialized –
Professional tools and
equipment such as in-
circuit emulators,
logic analyzers,
custom software
applications,
specialized decryption
engines, etc.

• = High – Factoring in
forecasted
improvements in
computing, the work
effort 10 years hence
to break the protective
mechanism will
require more than
$300,000 in (possibly
specialized)
equipment dedicated
to the attack for over 1
year.

Medium Developer - Requires an
intermediate skill set such as that
of an experienced software
developer familiar with the basic
technologies employed in the
component

Professional – Typical software
development tools including
debuggers, decompilers,
memory reading/writing tools,
etc.

• = Medium – Requires
$100,000 worth of
today’s equipment
operating one month
or more.

Low • = Novice - Requires a
beginner-intermediate
skills such as those of an
experienced user of
computer desktop
applications

Common – General purpose
tools used widely and available
at modest cost

• = Low – Current
standard desktop PC
processing for several
weeks or less.

Figure 6: Skill, Tools, and Expenses Associated with Subverting a Component.

2.5.3 Trust Levels and Certification
The EBX system will coexist with societal norms, which include legal recourse and insurance-
based compensation for parties that fall victim to cracks in the system. Therefore, EBX provides
trust levels that are necessary and sufficient to provide reasonable assurance to all parties—
publishers, authors, insurers and law enforcement—that adequate precautions have been taken to
protect the intellectual rights of authors and publishers.

1 It is important to keep in mind that someone with the skills shown may be able to create easy-
to-use attack tools that someone with lower skills may employ to wage the attack successfully. It
is also worth noting that, at least in the United States, Federal law makes it illegal to traffic in
such tools.

31 EBX System Specification – Draft 0.8 09/06/00

The trust rating requirements allow publishers to make a time value of information estimation of
their work and then set a corresponding trust requirement of the components allowed to access
their work. In this way high value, long life works may be protected by highly trusted systems
while lower-value, short life works need not be burdened by these requirements. The intention is
to provide flexibility in the system such that the needs of all parties will be met. In particular, it
allows the publisher to select the right level of protection to maximize the value of a title,
avoiding losing sales to excessive piracy at one extreme and losing sales to difficult protection
mechanisms or offensive enforcement at the other end of the spectrum.

Sweet Spot

The Market

Under protection
–Too many pirated copies
–Lost sales due to piracy
–Degraded value of goods

Over protection
–Too few legal copies
–Too expensive
–Too hard to use
–Offensive to users

Figure 7: Picking the right level of protection.

It is assumed, at a minimum, that all publishers, regardless of content they produce, will want to
ensure the data integrity and the authenticity of their authorship. Therefore, adequately long key
lengths shall always be used for the purposes of digitally signing their content.

EBX aims to provide sufficient technical protections against theft and uncontrolled replication of
protected content to satisfy the needs of the publishing and distribution business. Inherent to all
security systems is the property that they can be defeated by the application of enough resources.
Even at the highest level of trust, the EBX systems do not claim to provide security adequate for
content that must remain confidential for years into the future. Successful attacks on the EBX
protection mechanisms are expected and need to be anticipated in the larger operational
assumptions and plans.

32 EBX System Specification – Draft 0.8 09/06/00

The trust model initially defines six levels of trust, 0 (lowest) to 5 (highest) each progressively
more trusted than the next lower level and providing all of the features of the lower levels plus
the enhanced features introduced at its level. The potential for defining even higher levels is
anticipated so the scale is defined to be open ended.

2.5.4 Perspectives on the Six Levels of Trust
We expect this document to be read by people coming from diverse backgrounds including:
publishing, writing, legal, technology development, operations, certification, and security. In
what follows below, we provide descriptions of each trust level from different perspectives
ranging from the technical mechanisms likely to be employed to achieve the particular level of
protection to analogies to common processes familiar in the world of business such as insurance.
The goal is to make these security levels understandable to the cross section of people with
interest in protecting and distributing digital content. However, the association of these
assessments derived from different perspectives is inherently difficult and in some cases
unknown.

The following table characterizes the several perspectives from which to evaluate the assurance
afforded by a component at each level of trust in the hierarchy.

Attack Resources and Expenses: Describes the skill level, tools, and expenses necessary to wage a
successful attack against the system to produce a flood-type event or tool to defeat protections on multiple
titles.

Class of Titles Appropriately Protected: Proposes typical kinds of content that might be adequately
protected by this level of component.

Example Technical Defenses: Describes example technical mechanisms from today’s technology that
might be employed in an implementation to provide the kind of content protection and defenses appropriate
for this level.

2.5.5 Definitions of Trust Levels
The EBX system defines components operating at different levels of trust and provides a
mechanism for publishers to specify the minimum level trusted component that may operate on a
particular EBX-protected title. The components themselves are certified to perform their services
at these specified levels of trust. The rules defined by the EBX specification combined with the
authentication and authorization validation mechanisms ensure that a particular EBX-protected
title is distributed only through EBX system components that have been certified and are
validated at the minimum trust level associated with the content. However, the overall security
afforded by a system built from secure components is typically lower than the minimum security
of each of the participating components. This section aims to describe in lay terms reasonable
expectations for the performance of the system as a whole in protecting EBX content being
handled at each of the specified trust levels.

33 EBX System Specification – Draft 0.8 09/06/00

2.5.5.1 Level-0 – (lowest) No protection
This level serves those who desire to create content with desktop publishing tools and distribute
it for viewing on the same reader platforms used for protecting higher-value content.

• = No Protection for Titles

• = No Proof of Origin

• = No Assurance Regarding Integrity of Infrastructure

• = Copying allowed

• = Unregistered reader (lacks a unique ID)

Attack2 Resources and Expenses: $10 May be as small as none as components are not required to
provide any defenses.

Class of Titles Appropriately Protected: Titles of negligible monetary value

Example Technical Defenses: None. Components execute communication protocols, but make no
promise to enforce any rules or rights. Note that any title that does not have a verifiable origin and
verifiable encoding of rights, but is otherwise displayable, may be displayed. Whatever signal that is
employed at Level-1 and higher to indicate to the user that the origin and copyright have been validated
shall not be displayed for any Level-0 titles. Revocation of components is not supported.

2.5.5.2 Level-1 – Signed by Author/Publisher
• = Cryptographically signed by Author/Publisher binding in:

o Attributes, Rights, Integrity, Origin

• = Copying allowed (Works are sent in the clear)

• = Registering reader is optional (lacks a unique ID)

2 Successful attack means developing a tool that enables perpetrator to create an unprotected text
version of any title protected by EBX assuming the perpetrator purchases one copy of each title
to be pirated.

34 EBX System Specification – Draft 0.8 09/06/00

Attack Resources and Expenses: $10 Requirements to duplicate the title may be as small as none as
content is not encrypted and components are not required to provide any defenses. Stripping off the bound
in rights, copyright, etc. in its entirety and converting the title to Level-0 is relatively easy as is republishing
parts of or the entire title under some other registered identity’s authorship.

$300,000+ Altering or forging the copyright, authorship, rights, etc. while preserving the appearance of
being a validly produced title by the original publisher or any other registered publisher (not under control
of the pirate) requires Developer skills, Professional tools, and medium-to-high expenditure of resources.

Class of Titles Appropriately Protected: Low value-short life (Category 4)

Example Technical Defenses: Sound protection design, but crypto, credential storage, rules, and
authentication running in unprotected software. No encryption is provided for the title, but source signature
is properly validated and presented to the user. Revocation is not supported. The reader shall employ a
distinctive means of indicating to the user when a title’s origin and copyright have been validated.

2.5.5.3 Level-2 – Personalize book to purchaser – Honor system
• = Cryptographically signed by Author/Publisher binding in:

o Attributes, Rights, Integrity, Origin

• = Purchaser identity cryptographically bound to individual copies

o Note that this feature is not protected under the Digital Millennium Copyright
Act; that law specifically allows a user to circumvent or undo that part of a
copyright management system that contains “personally identifying information.”

• = Copying subject to rights, but not technically prevented

• = Registering reader is optional (lacks a unique ID)

35 EBX System Specification – Draft 0.8 09/06/00

Attack Resources and Expenses: $10 Requirements to duplicate the title may be as small as none
because the content is not encrypted and components are not required to provide any defenses. Stripping off
the bound in rights, copyright, etc. in its entirety and converting the title to Level-0 is relatively easy as is
republishing parts of or the entire title under some other registered identity’s authorship under one’s
control.

$300,000+ Altering or forging the copyright, authorship, rights, and identity of the purchaser of that
copy, etc. while preserving the appearance of being a validly produced title by the original publisher or any
other registered publisher (not under control of the pirate) requires Developer skills, Professional tools, and
medium-to-high expenditure of resources.

Class of Titles Appropriately Protected: Low Value-long life (Category 5)

Example Technical Defenses: Sound protection design, but crypto, credential storage, rules, and
authentication executing in software with limited anti-tamper mechanisms. No encryption is provided for
the title, but source signature and the identity of the purchaser of each copy is cryptographically bound into
the title. The reader shall employ a distinctive means of indicating to the user when a title’s origin and
copyright have been validated. Revocation is not supported.

2.5.5.4 Level-3 – Software DRM
• = Range of rights specified and enforced

• = Strong encryption protecting content

• = Implemented in unprotected software

• = Individually registered

• = Voucher servers individually revocable

36 EBX System Specification – Draft 0.8 09/06/00

Attack Resources and Expenses: $1,000-$10,000 Developers skills, professional tools, 1-30 days
to reveal the protected content.

$300,000+ Altering or forging the copyright, authorship, rights, and identity of the purchaser of that
copy, etc. while preserving the appearance of being a validly produced title by the original publisher or any
other registered publisher (not under control of the pirate) requires Developer skills, Professional tools, and
medium-to-high expenditure of resources.

Class of Titles Appropriately Protected: High value-short life (Category 1) & lower-value/shorter-life
categories 2 & 3

Example Technical Defenses: Business caliber cryptographic algorithms and key lengths, but crypto,
credential storage, rules, and authentication executing in software with limited anti-tamper mechanisms
such as those based on obscurity. The reader shall employ a distinctive means of indicating to the user
when a title’s origin and copyright have been validated. Each unit is initialized uniquely; and the
infrastructure supports revocation.

2.5.5.5 Level-4 – High Value
• = Resistant to the well equipped lone hacker

• = Component’s private key and other credentials contained in and obfuscated by special
software or hardware techniques that resist debugging/sniffing tools and defend against
virus and Trojan horse attacks;

• = Decryption of content occurs in a secure, trusted environment;

• = Revocation procedures in place for rogue devices and content servers.

37 EBX System Specification – Draft 0.8 09/06/00

Attack Resources and Expenses: $30,000-$100,000 Requires expert skills at reverse engineering
obfuscated or other tamper resistant technology and specialized and/or custom tools. 10-60 person-day
effort.

$300,000+ Altering or forging the copyright, authorship, rights, and identity of the purchaser of that
copy, etc. while preserving the appearance of being a validly produced title by the original publisher or any
other registered publisher (not under control of the pirate) requires Developer skills, Professional tools, and
medium-to-high expenditure of resources.

Class of Titles Appropriately Protected: Higher-value/longer lifespan categories 2 & 3

Example Technical Defenses: Business caliber cryptographic algorithms and key lengths bolstered by
credential storage, rules, and authentication executing in a tamper resistant engine achieved by techniques
such as cryptographically obfuscated software or tamper resistant hardware. The reader shall employ a
distinctive means of indicating to the user when a title’s origin and copyright have been validated. Each
unit is initialized uniquely; and the infrastructure supports revocation.

2.5.5.6 Level-5 (highest) – Industrial Level Hacking / Cryptanalysis Required
• = Coercion more serious threat (insider influence)

• = Hardware solutions

• = Hardware must have tamper detection and appropriate shutdown procedures;

• = Password guessing shall be detected and the component shall have appropriate
shutdown procedures;

• = Hardware must have provisions to protect secrets in all modes of operation (startup
and shutdown included);

• = Intended to protect all category 2, 3 and most of category 5 content from all but
intelligence agencies;

Attack Resources and Expenses: $300,000-1,000,000 To attack either the content protection or
signed metadata requires expert skills at reverse engineering obfuscated and tamper resistant technology
implemented in both hardware and software employing specialized techniques and significant quantities of
specialized tools or a brute force attack on the cryptography employing significant computing resources.
100+ person days effort. (Need also to consider elapsed time.)

Class of Titles Appropriately Protected: Highest-value/longer lifespan categories 2 & 3

Example Technical Defenses: State of the art crypto credential storage benefiting from both software and
hardware mechanisms, rules, strong authentication, authentication executing in highly tamper resistant
hardware, each unit is initialized uniquely; and the infrastructure supports revocation. The reader shall
employ a distinctive means of indicating to the user when a title’s origin and copyright have been validated.

38 EBX System Specification – Draft 0.8 09/06/00

3 Foundation Trust Services
This section describes technical approaches mandated for the Release 1.0 trust foundation
services. It also includes analysis of some of the choices made and discussion on topics related to
implementing the trust foundation for an EBX-certifiable component.

3.1 PKI: Foundation Mechanism for Authentication
PKI is employed by EBX to perform the identification, certification, and authorization functions
required by the trust model. PKI was selected in favor of other authentication alternatives
because in affords the following benefits in the EBX context.

• = PKI offers sufficient mechanisms to provide the identification, certification, and
authorization functions required by the trust model;

• = A simple hierarchy of CAs and RAs enables the distributed control and operations EBX
needs much more flexibly than central server-based solutions;

• = PKI readily enables revocation of EBX server components, that are relatively few in
number, as well as providing the mechanisms to support revocation of individual reading-
only systems, although the latter is optional under the EBX specification;

• = Multiple existing providers offer standard PKI products and services so that both EBX
and venders building EBX components have ample choices in how to realize the
necessary mechanisms.

3.1.1 Requirements
The requirements that must be satisfied by the EBX PKI are:

1. Issue unique identifiers for each instance of an EBX client and server.

2. Authenticate that a particular client instance is an instance of an approved EBX-compliant
implementation.

3. Allow interoperability among different EBX client and server implementations, so that a
server implemented by one vendor can authenticate a client implemented by a second vendor.

4. Identify the EBX component of a particular client or server instance.

5. Identify the role {Publisher | Distributor | Client} an EBX component is authorized to
perform.

6. Identify the maximum trust level for which an EBX component instance is approved.

7. Revoke certification of a client or server implementation.

8. Revoke certification of individual server instances.

39 EBX System Specification – Draft 0.8 09/06/00

9. Revoke certification of individual client instances (optional).

10. Check the revocation status of implementations or instances.

11. Allow for authentication of clients from other domains that already have an established PKI
(e.g., wireless phones.)

12. Allow for extensibility of the hierarchy of trust.

Each requirement is met by one or more components of the PKI, as explained in the following
section.

3.1.2 Overall EBX Certificate Authority Architecture
The public key infrastructure consists of several components: the EBX certification authority
(CA) and related software and systems, the organization(s) chosen to operate the EBX CA and
its related systems, vendor CAs and related systems, the organizations chosen to operate vendor
CAs and systems, and finally, certificate processing services implemented by vendors.

Vendor CA Vendor CA Vendor CA

EBX Root CA

EBX Vendor
CA

Server
Rel 1.x

 Client
Rel 2.x

 Client
Rel 1.x

EBX Vendor CA’s
and

CA Certificates
for Each EBX Certified

Vendor

EBX Client
Certificates
for each Unit

3.1.2.1 EBX Root Certificate Authority
The EBX CA consists of a Certification Authority, hosted by a CA Service Provider, a
Registration Authority (RA), hosted by the CA Service Provider, one or more Registration

40 EBX System Specification – Draft 0.8 09/06/00

Authority Operators (RAOs), and one or more Validation Authorities.

EBX Root CA

Registration
Authority

RAO: e.g.
BISG

RAO: e.g.
Deloitte
Touche

RAO: e.g.
Global
Integrity

Validation
Authority

RAO: e.g.
Price
Waterhouse
Coopers

Secure
Channel

 Secure

Channel

 Secure Channel

Secure
Channels

Certificate
issued and
manually
transported

Validation
Authority

The EBX Root CA issues X509 v3 certificates to vendor CAs, which in turn issue certificates to
client and server instances. The EBX Root CA only issues certificates when it receives a
certificate request from the Registration Authority. We expect the Registration Authority and the
EBX root CA would be hosted by a single service provider. However, the architecture allows
them to be hosted by two different service providers. Trust between the RA and the CA is
established manually by the service provider(s).

When the EBX Root CA issues a vendor CA certificate, it is delivered via email to the email
address provided by the vendor. It is then the vendor’s responsibility to install the certificate into
its own CA.

3.1.2.2 Registration Authority and Registration Authority Operators (RAOs)
The Registration Authority accepts certificate requests in PKCS#10 format from vendors either
via email or via an online protocol. It is the vendor’s responsibility to ensure that the certificate
request is in the correct format and contains all of the correct fields. The RA then waits for
authorizations from the RAOs. It then forwards the certificate requests to the EBX Root CA
after receiving authorization from one RAO in each category.

41 EBX System Specification – Draft 0.8 09/06/00

Each category of RAO handles a different aspect of the EBX implementation certification
process.

• = The BISG verifies that the vendor requesting a certificate is a member of the EBX
working group.

• = The auditor RAO verifies that the vendor is a legitimate business and is not out to steal
money from publishers, booksellers, or consumers.

• = The implementation RAO verifies conformance to the EBX spec and establishes the
maximum trust level for the implementation. Each RAO operates under guidelines set
out in the EBX Certification Policies and Procedures document.

Each RAO must submit its policies and procedures to the EBX Working Group, and its policies
and procedures must be approved before it can begin approving certificate requests. The EBX
Working Group will ask for reports, from time to time, which will be used to refine the policies
and procedures used by all RAOs of the same category. RAO reports should be detailed but will
not be confidential: The EBX Working Group will use findings from these reports to refine the
EBX specification and its associated public documents.

Once the RA receives authorizations from one RAO in each category, it forwards the certificate
request to the EBX Root CA. The RA sends additional information, such as the maximum trust
level, to the EBX Root CA, which then adds the appropriate extension fields to the certificate.
The communication mechanism for this additional information is not specified, as it depends on
the CA service provider. The CA service provider must ensure (to the satisfaction of the EBX
Working Group) that the integrity of the certificate request data and additional field data is not
compromised in transmission between the RA and the EBX Root CA.

3.1.2.3 Validation Authorities
The Validation Authority may be hosted by the same organization as the CA service provider, or
by a separate organization. The Validation Authority uses Online Certificate Status Protocol
(OCSP – RFC 2560) to provide timely information on the revocation status of certificates. The
EBX Root CA must issue a certificate to the Validation Authority with the extendedKeyUsage
field set to indicate that the Validation Authority is authorized to perform validation on
certificates issued by the EBX Root CA. Each vendor CA certificate issued by the EBX Root
CA must conform to the certificate content requirements in RFC2560, section 3.1, so that the
OCSP client (an EBX server or client) can determine where and how to check the revocation
status of the certificate.

3.1.3 Vendor Certificate Authorities
Each vendor CA issues X.509 v3 certificates to “end entities,” which are instances of an EBX
client or server implementation. A vendor may choose to set up its CA using any combination of
CA service providers, RAs or RAOs. It may choose to use manual or automated processes to
provide unique identification to each client and server instance. The vendor’s choice of policies
and procedures is examined as part of the EBX certification process. Guidelines for vendors in
creating their policies and procedures are included in the EBX Certification document.

42 EBX System Specification – Draft 0.8 09/06/00

The key requirements of the vendor CA are that it issue a unique certificate per client and server
instance (Requirement 1), and that the certificates conform to the format in the EBX
Specification, including all required fields and extensions (Requirement 3, Requirement 4).
Additionally, a vendor CA must only issue certificates indicating a trust level at or below the
maximum trust level approved for the client or server implementation (Requirement 6.)

A vendor CA may issue certificates that contain the OCSP extensions, so that EBX servers can
check the revocation status of individual client or server instances, and so that the vendor can
revoke certificates of individual users. In this case, the vendor must set up the appropriate
Validation Authority to perform the certificate validations. The Validation Authority associated
with the EBX Root CA only validates the revocation status of certificates issued directly by the
EBX Root CA.

On the other hand, a vendor may choose not to implement a Validation Authority, and so does
not need the OCSP extensions in its certificates. The result of this choice is that a revocation
causes an entire class of clients or servers to be revoked, and there is no revocation of individual
users’ certificates.

A vendor CA may issue certificates containing additional extensions, but none of the additional
extensions may be marked as critical.

3.1.3.1 Vendor Certificate Services
Each conforming implementation of an EBX client must:

• = Have a mechanism to install or associate a private key/certificate pair. The mechanism
may be part of the client implementation, or a separate procedure.

• = Be able to access its private key in order to decrypt content keys stored in vouchers.

• = Be able to build a PKCS#7 certificate chain from its end-entity certificate up to the EBX
Root CA.

• = Send the PKCS#7 certificate chain along with a signed nonce during the authentication
step of the EBX protocol (See section *** for the format.) This implies that the private
key corresponding to the end-entity certificate is available to the client software at the
time of the EBX transaction.

Each conforming implementation of an EBX server must:

• = Accept and decompose PKCS#7 certificate chains sent by EBX clients during the
authentication stop of the EBX protocol (See section *** for the format.)

• = Examine each certificate in the chain, and determine:

o Whether the certificate is a valid X.509 v3 certificate with all extensions required
by EBX.

43 EBX System Specification – Draft 0.8 09/06/00

o Whether the constraints imposed by EBX on each certificate type are met.

o Whether the usage constraints imposed by the certificate issuer of each certificate
are met.

o Whether the CA that issued the certificate has an associated Validation Authority.

• = For each certificate that does have an associated Validation Authority, contact the
Validation Authority using OCSP for a determination of the revocation status of the
certificate.

• = For each certificate that does not have an associated Validation Authority, determine
whether the EBX Root CA issued the certificate. If the EBX Root CA issued the
certificate, the server must return an error.

• = Ignore any non-critical extensions that it cannot handle.

• = Return an error if it encounters a critical extension that it cannot handle.

• = Extract the end-entity public key from the authenticated end-entity certificate, and
encrypt the content key in the voucher with the end-entity public key.

3.2 Component Trust Level Certification
Every software or hardware component of the EBX system that enforces digital rights in a
document, including encryption and decryption of the document, must be certified. These
components include voucher servers and e-book reading systems.

Components that merely store or transmit encrypted content do not have to be certified. For
instance, encrypted book files can be safely stored on and distributed from ordinary file servers,
because the necessary decryption keys can be obtained only from EBX voucher servers.

If you envision an “EBX network” made up of nodes that speak the EBX protocols and handle
vouchers, those are the components that are certified. A valid EBX certificate not only connotes
that the component is authentic and can participate in the EBX network but also conveys the
trust level of the component. The certificates of these components are checked automatically
(“validated”) by software at key points.

Certificates are granted by an impartial organization. An impartial process can also revoke
certificates. For example, an investigation might discover that a component (for example, a
particular model of reading system) is no longer performing at its designated trust level. In both
cases, “impartial” means that the technology vendors do not control the certifying or revoking
organization. EBX components authenticate one another by requesting and validating
certificates. At the higher trust levels, they also check certificates against a revocation list, to
ensure they have not been revoked.

44 EBX System Specification – Draft 0.8 09/06/00

3.2.1 Certification Criteria
A component's certification is valid for a specific trust level. Certification attests that the
component protects content according to the requirements of the specified trust level. In general,
a certified component meets all the following criteria:

• = It correctly interprets general rules of EBX for handling digital rights, which are
independent of trust level;

• = It implements all content protection mechanisms required by the definition of the specific
trust level;

• = It correctly interprets and responds to EBX communication protocol;

• = The bona fides of the manufacturer have been verified by the certifying organization.
These would include the manufacturer’s compliance with applicable laws, including U.S.
export laws.

• = The manufacturer’s policies and procedures in certain areas, such as certificate granting,
have been examined and found satisfactory.

Depending on the trust level, certification may take into account such factors as these:

• = Algorithms for such operations as encryption, hashing, and random number generation;

• = Length of encryption keys;

• = Security of persistent key storage;

• = Protection of keys in software, such as by obfuscation;

• = Protection of keys in hardware;

• = Use of software and hardware for authentication;

• = Enforcement of revocation of authorization.

Certification criteria must also take into account the environments in which components operate.
We assume that e-book reading systems, because they are mass-market products, live in a hostile
environment. That is, the most malicious attacker could have ready access to any e-book reading
system. In this case, trust rests entirely on the security of the hardware and software of the
reading system.

In contrast, voucher servers (excluding client-based voucher servers) usually live in a friendlier
environment. That is, malicious attackers are assumed to have limited access to servers. Trust
thus rests partly on the provision of a secure environment for a server. Certification for a server
can rest on the manufacturer’s support of and recommendation of:

• = Use of industry-standard procedures for protecting servers on the Internet;

45 EBX System Specification – Draft 0.8 09/06/00

• = Control of network access to the server within the organization;

• = Control of physical access to the server;

• = Implementation of tamper-resistant and/or secure storage for critical data.

Certification is valid for a specific version of the component. Significant revisions of the
hardware or software may require recertification. The manufacturer determines the need for
recertification. The manufacturer bears the costs of certification, as well as the costs of
revocations and recalls, so we feel the manufacturer has sufficient incentive to recertify when
appropriate.

3.2.2 Certification Methods
An entity that performs certification must use industry-standard methods of testing software and
hardware components to verify that a component meet requirements for certification. Specific
testing methods depend on the requirements of the trust level for which the component is being
certified.

Methods can include, among others:

• = Interviews with the vendor and inspection of design documentation;

o Manufacturers may require the certifier to sign nondisclosure agreements, to
protect trade secrets and other intellectual property.

o Refusal to provide design documentation or information even under nondisclosure
would be grounds for denial of a particular trust level or revocation of a
certificate.

• = Inspection of source code, logic diagrams, and other source material;

• = Functional and operational tests of the component;

• = Disassembly of hardware or software;

• = Logic analysis and other tests of hardware;

• = Attempted attacks on the component.

An entity certifying an e-book reading system must test a representative production sample of the
hardware or software. An entity certifying a voucher server may, depending on the requirements
of the trust level, test the documented installation recommendations and requirements of the
server in addition to its hardware or software. Methods for testing the environment can include,
among others:

• = Inspection of documentation for policy and personnel procedures;

46 EBX System Specification – Draft 0.8 09/06/00

• = Inspection of the server's hardware, software, and network configuration.

The certifier is required to write a report, without compromising any nondisclosure agreements,
that summarizes the findings and methods used in the process. This report will be available to
the EBX membership in order to guide future specification and certification efforts.

3.2.3 Certification Entities
The Executive Committee authorizes specific entities to certify EBX components. Certifying
entities in general must be competent to employ the certification methods discussed in this
section.

Certification costs will be the responsibility of product manufacturers. However, certification
organizations should be independent of these manufacturers and worthy of trust by copyright
holders. “Big 5” accounting/consulting firms are likely candidates. More specialized consulting
organizations such as SAIC (Global Integrity) would also be likely candidates.

3.2.4 Reviews
Manufacturers will be reviewed annually by the certifying organization, to provide feedback to
the EBX Working Group.

47 EBX System Specification – Draft 0.8 09/06/00

4 Transfer Protocol
It is critical that the distribution and transfer protocols and the format of Vouchers and
Credentials be standardized to ensure interoperability between publishers, distributors,
booksellers, libraries, and consumers.

Table 1 shows the possible transfer relationships between roles in the EBX system. The table
summarizes the status of transfer relationships, using the following notation:

• = In scope – The protocol for the transfer is within the scope of this version of this
specification.

• = Deferred – The protocol for the transfer may be within the scope of this specification,
but consideration of possible specification is deferred to a future version.

• = Out of scope – The protocol for the transfer is outside the scope of this specification.

All relationships are potentially bilateral. For example, a consumer can potentially both receive a
voucher from a voucher distributor and transfer a voucher to a voucher distributor. In this version
of the specification, only transfer relationships as shown in Table 1 have been considered. In
general, the following kinds of transfers are within the scope of this version:

• = Transfers of vouchers and e-book content from publishers to distributors to consumers.

• = Transfers of vouchers and e-book content from one consumer to another.

Table 1. Specification levels of e-book transfers between roles.

To -->

^^

Publisher Voucher
Distributor

Content
Distributor

Bookseller Library Consumer

Publisher In scope Out of
scope

Voucher
Distributor

 Deferred Deferred In scope

Content
Distributor

 Out of
scope

Deferred In scope

Bookseller Deferred Out of scope

Library Deferred

Consumer In scope

48 EBX System Specification – Draft 0.8 09/06/00

4.1 Transfer Protocol and Transport Protocols
EBX defines a protocol for transferring e-books from one entity to another. This transfer
protocol contains requirements for the sequencing and content of data transfer between entities.
It does not specify an underlying transport protocol, but instead demands that the transport
protocol reliably exchange data as required by the transfer protocol.

When used over the Internet, EBX is commonly implemented using an extended form of HTTP
1.1 / RFC2068 and RFC2069 [HTTP1.1]. HTTP is a good solution for transporting e-books
because:

• = It passes through network firewalls without trouble (a new protocol / port would probably
require firewall configuration changes everywhere).

• = There are many high-level APIs already available to program it.

• = It makes adding EBX service to an existing Web server easier (such as by using servlets
or Active Server Pages).

EBX over HTTP can also enable two consumers to give or lend e-books using a short-range
infrared (IR) link. In other words, one consumer can cordlessly beam an e-book from his/her
reading device to another consumer’s e-book reading device.

EBX/HTTP over an IR link can use an IrDA connection [IRDA95]. EBX/HTTP can be used
over an IR link between consumer e-book reading devices and e-book personal library servers
(e.g., home PCs). An IR link can also be used by in-store e-book kiosks to sell books to
consumers.

When used to transfer e-books to or from wireless devices, EBX can use the Wireless
Application Protocol (WAP).

The description of transactions in the transfer protocol below specifies the requirements for
sequencing and content of data transfer. Implementation notes describe requirements and
recommendations for using EBX over HTTP. In this context, client means the HTTP client, and
server means the HTTP server.

4.2 Domains of Trust
[Editorial note. This section has not yet been edited for Version 0.8. It may be obsolete.]

The transaction model in EBXTP involves two distinct domains of trust: protocol engine and
voucher engine. The protocol engine runs on the unprotected central processor of client and
server computers, sends and receives EBXTP commands, parses the commands, and performs
the commands. The voucher engine runs on a, possibly, physically protected processor of the
client and server computers, authenticates other voucher engines, sends and receives EBX
vouchers and credentials, stores vouchers in protected memory, and performs voucher and
content key operations.

49 EBX System Specification – Draft 0.8 09/06/00

In a consumer computer like an e-book reading device, the protocol engine runs on the main
processor and memory and the entire voucher engine runs on a smart card. In a commercial
computer like a publisher, bookseller or library Web server, the main processor and memory are
assumed to be physically protected from consumers and therefore, most of the voucher engine
runs on the main processor. Only the actual private key operations of the voucher engine in a
commercial server are performed by a smart card.

Protocol engines, while generally considered “trustworthy”, are not sufficiently trusted to handle
voucher operations. From the perspective of a voucher engine, protocol engines exist simply to
transfer vouchers between voucher engines. (Of course, from the perspective of the consumer,
protocol engines primarily exist to transfer e-book content and the voucher exchange is just some
copyright “stuff”.)

Protocol
Engine A

Voucher
Engine A

Protocol
Engine B

Voucher
Engine B

Secure
Channel

These separate domains of trust are important concepts when analyzing and implementing
EBX/HTTP. Put bluntly, since the protocol engine runs on an unprotected processor, it cannot
be trusted to do anything with encrypted vouchers except transfer them. The voucher engine
should always be coded to assume the protocol engine is vulnerable to malicious failures.

4.3 Example Operation – E-book Purchase
This section describes how a consumer experiences the purchase and download process
involving the Protocol Engine. The process description up to the point where the consumer’s e-
book reading system becomes involved is for illustration purposes only. Those parts of the
process are not explicitly specified herein and are beyond the scope of this specification.

Step 1: Consumer accesses Web site. A consumer accesses the publisher/bookseller Web site
via a browser. The consumer selects one or more e-books to purchase.

Step 2: Purchase info submitted. Regardless of the specific design of the site, at some point the
consumer will have accumulated one or more content identifiers for the e-books the consumer is
purchasing. The consumer must also (somewhere along the way) supply identifying information
(e.g., name) and payment information (e.g., credit card number), plus any additional market
research info the seller wants to collect. This information is transmitted to the Web server
(usually as an HTML form, but it could be done other ways too).

50 EBX System Specification – Draft 0.8 09/06/00

Step 3: Payment authorization. Before beginning the EBX download process, the bookseller
Web site server switches to an SSL session in order to validate the consumer's payment
information. Presumably the credit card information is submitted to an authorization facility over
the Internet, and an authorization code is returned.

Step 4: Create purchase record. At this point, the server enters a purchase order record in an
order database at the Voucher Distributor’s Web site. At a minimum the purchase order record
should include the following: unique order ID, list of e-book content identifiers, and a fulfillment
status. The initial value of the fulfillment status field is AUTHORIZED.

Step 5: Return fulfillment URL. After the purchase record has been created at the Voucher
Distributor, the Voucher Distributor server generates a URL that may be used to fulfill the
purchase record just created.

Step 6: Present fulfillment URL link in browser. The result page of the Submit operation
(Step 2) is for the bookseller Web site to present the “Order Confirmation” or “Thank You” page
to the consumer. Typically this page displays a message like "Purchase authorized", and it
presents the fulfillment URL as a link labeled "Download E-books".

Everything to this point is outside the scope of the Protocol Engine itself.

Step 7: User clicks fulfillment URL, fulfillment instructions are returned, vouchers are
downloaded, e-books are downloaded. This is the domain of the Protocol Engine, and is the
subject of the rest of this chapter.

4.4 Notational Conventions and Generic Grammar
All of the mechanisms specified in this document are described in both prose and an augmented
Backus-Naur Form (BNF) similar to that used by HTTP 1.1 / RFC2068 [HTTP1.1].
Implementers need to be familiar with RFC2068, RFC2069, and the notation in order to
understand this specification.

4.5 HTTP Implementation Note: EBX HTTP Request
[Editorial note. This section needs to specify query values for GET requests.]

In RFC2068, the generalized HTTP request syntax is defined as:

Request = Request-Line
* (General-Header
| Request-Header
| Entity-Header)
CRLF
[Entity-Body]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Method = “OPTIONS”

“GET”
“HEAD”
“POST”
“PUT”

51 EBX System Specification – Draft 0.8 09/06/00

“DELETE”
“TRACE”

Request-URI = “*” | absoluteURI | abs_path
(See RFC2068 for further syntax.)

The Request-URI in RFC2068 can include a rel_path which includes a query defined as follows:

rel_path = [path] [“;” params] [“?” query]
query = * (uchar | reserved)

In EBX, the query for GET HTTP requests is defined as follows:

query = “action=” get_action * (“&” query_param)
get_action = “purchase” | “borrow” | “handoff”
query_param = query_key “=” query_value
query_key = “orderid” | “ack” | “bookid”

In EBX, the query for POST HTTP requests is defined as follows:

query = “action=” post_action * (“&” *query_param)
post_action = “return” | “lend” | “give”

All requests must also contain the following HTTP header field:

Host – Required by HTTP 1.1.

4.6 HTTP Implementation Note: EBX HTTP Header Extensions
EBX uses several extensions to the HTTP headers for various requests and responses. These are
described below.

4.6.1 EBX-Action Header
TBS

4.6.2 EBX-Version Header
[Editorial note. This section has not yet been edited for Version 0.8. It may be obsolete.]

The EBX-Version header is provided so that clients and servers can identify the level to which
their implementation complies with this specification.

EBX-Version = “x-EBX-Version” “:” 1*DIGIT “.” 1*DIGIT

The actual header is as follows:

x-EBX-Version: 0.8

52 EBX System Specification – Draft 0.8 09/06/00

4.6.3 EBX Challenge-Response Headers
[Editorial note. This section has not yet been edited for Version 0.8. It may be obsolete.]

EBX uses an abbreviated implementation of Section 11, “Access Authentication”, from
RFC2068. This section in RFC 2068 describes a simple challenge-response authentication
mechanism that may be used between clients and servers. EBX uses this scheme to allow
voucher engines on each side of a transaction to authenticate themselves in order to move
vouchers from one voucher engine to another.

The generalized HTTP syntax from RFC 2068 Section 11 for “Access Authentication” used by
EBX is:

auth-scheme = token
auth-param = token "=" quoted-string
challenge = auth-scheme 1*SP auth-param
credentials = auth-scheme #auth-param

4.6.3.1 EBX-Authenticate Header
The response used by an origin server to challenge the authorization of a user agent includes an
Authenticate header field containing at least one challenge applicable to the requested resource.

These are the specific EBX settings to the generalized syntax:

auth-scheme = EBX
auth-param = nonce="base64_encoded_NONCE"
challenge = EBX nonce="base64_encoded_NONCE"

EBX HTTP Header (Authenticate header with challenge):

x-EBX-Authenticate: EBX nonce="base64_encoded_NONCE"

4.6.3.1.1 Implied EBX-Authenticate Header
In EBX purchase and borrow scenarios, the nonce is contained in the fulfillment instructions.
Therefore the EBX-Authenticate header is not transmitted to clients when receiving fulfillment
instructions.

4.6.3.2 EBX-Authorization Header
Continuing, using RFC 2068 Section 11 for reference, a user agent that wishes to authenticate
itself with a server includes an Authorization header field with the request. The Authorization
field value consists of credentials containing the authentication information of the user agent.

These are the specific EBX settings to the generalized syntax:

auth-scheme = EBX
auth-param = credentials="base64_encoded_credentials"
credentials = EBX credentials="base64_encoded_credentials"

EBX HTTP Header (Authorization header with credentials):

x-EBX-Authorization: EBX credentials="base64_encoded_credentials"

53 EBX System Specification – Draft 0.8 09/06/00

4.6.3.3 EBX-Authenticationinfo Header
In EBX, after credentials have been issued, vouchers are returned. The header defined for the
voucher is:

EBX HTTP Header (Authenticationinfo header with voucher):

x-EBX-Authenticationinfo: voucher="base64_encoded_voucher"

4.7 Receiving Fulfillment Instructions (handoff)
The process of transferring vouchers and e-books from a voucher distributor to an EBX e-book
reading system begins with the reading system’s receiving fulfillment instructions from the
voucher server that has been authorized to fulfill the order for the consumer. Typically, this is the
result of an HTTPS request from a browser against the fulfillment URL presented at the end of a
purchase transaction by the consumer with a bookseller’s Web site.

4.7.1 Handoff Request to Voucher Server
The handoff request is issued by a Web browser client to the voucher server and specifies the
order ID to be handed off from the voucher server to the EBX e-book reading system. The order
ID must reliably identify to the voucher server the e-books to be transferred but is otherwise
unspecified. The voucher server responds with the XML fulfillment instructions for the protocol
engine in an EBX reading system to use to obtain the vouchers for the order.

4.7.1.1 HTTP Implementation Note
The handoff request can use either a GET or a POST method. The request must supply the
action parameter, whose value is handoff, and the orderid parameter, whose value is a string.
For example:

GET /EBX?action=handoff&orderid=6789346 HTTP/1.1
Host: www.acme.com

4.7.2 Voucher Server Processing of Handoff Request
Handoff requests are typically executed from client Web browsers. In a successful response, the
Content-Type header is set to application/x-ebx to activate an EBX e-book reading system. In
an error response, the Content-Type header is set to text/html and the user typically sees the
error response in the browser window. The EBX e-book reading system is not activated on error
responses.

• = If the order is marked as ACKNOWLEDGED, return HTTP 410 (Gone, Order delivered
and ACKed)

• = If the order is marked as FULFILLED, return HTTP 410 (Gone, Order delivered)

54 EBX System Specification – Draft 0.8 09/06/00

• = If other errors occur while processing the request, return one of the other HTTP error
codes as specified earlier in this section.

• = If the order is marked as AUTHORIZED, proceed. The voucher server uses the voucher
engine to generate and record the NONCE for the response.

4.7.3 Handoff Response from Voucher Server (XML fulfillment instructions)
The voucher server responds to the handoff request by returning fulfillment instructions that the
protocol engine in the EBX reading system uses to obtain the vouchers and books for the order.
As a result of this response, the reading system must receive the fulfillment instructions.

Fulfillment instructions are in XML format as specified in the [TBS] section. Following is an
example:

<?xml version='1.0'?>
<ebx:transferData ebx:version=”0.8”>

<nonce>lbJkMjTeUz1OL9tXaYhNSnR42iIq</nonce>
<baseURL>http://localhost/fulfill/ebx</baseURL>
<availableAuthenticationSchemes>

<ebx:authenticationScheme
ebx:encryptionAlgorithmID=”tueh87yRHiuy975hfh4rd”
ebx:encryptionAlgorithmName=”RSA”
ebx:signatureAlgorithmID=”n457skYh29H8erg”
ebx:signatureAlgorithmName=”RSA-SHA1”>pki-rsa-sha1

</ebx:authenticationScheme>
<ebx:authenticationScheme>

ebx:encryptionAlgorithm=”tueh87yRHiuy975hfh4rd”
ebx:encryptionAlgorithmName=”RSA”
ebx:signatureAlgorithm=”n457skYh29H8erg”
ebx:signatureAlgorithmName=”RSA-MD5”>pki-rsa-md5

</ebx:authenticationScheme>
</availableAuthenticationSchemes>
<request>

<action>purchase</action>
<orderID>114816072033825</orderID>

</request>
<entry>

<bookID>ISBN:444444444</bookID>
<availableTypes>

<dc:format
dcq:scheme=”IMT”
ebx:encryptionMethod=”pdfcrypt”

ebx:encryptionAlgorithmID=”57YTH28vq7Uuedh3”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionKeyLength=”56”>
application/pdf

</dc:format>
<dc:format

dcq:scheme=”IMT”
ebx:encryptionMethod=”zipencode”

ebx:encryptionAlgorithmID=”57YTH28vq7Uuedh3”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionKeyLength=”56”>

55 EBX System Specification – Draft 0.8 09/06/00

text/x-oeb1-document
</dc:format>

</availableTypes>
</entry>

</ebx:transferData>

The baseURL element is the URL that the protocol engine uses to get the vouchers (and,
subsequently, e-books) for this order. The nonce element is given to the voucher engine in the
EBX reading system to create the credentials for the voucher request.

4.7.3.1 HTTP Implementation Note
The Content-Type header value in the HTTP response is set to application/x-ebx. The Content-
Disposition header is set to inline; filename="ebx.etd". This assures that the file is saved
according to the MIME registration settings for application/x-ebx.

An EBX reading system running on Microsoft Windows platforms should register itself as the
MIME handler for application/x-ebx so that it will be activated by the browser client on receipt
of this HTTP response.

In this scenario, the browser typically saves the data from the response (the XML fulfillment
instructions) in a temporary file on the hard disk. The application that is registered as the MIME
handler is then activated with the path to the file on the command line.

For example:

HTTP/1.1 200 OK
Content-Type: application/x-ebx
Content-Disposition: inline; filename="ebx.etd"
Content-Length: 789

[789 bytes of XML fulfillment instructions]

4.7.3.2 Windows Registration Implementation Note
These are the Windows Registry settings required to map a reading system to handle the content
type of application/x-ebx.

WINDOWS REGISTRY KEY
HKEY_CLASSES_ROOT\

Value Name Value Data

.etd (Default) EBXTransfer
 Content Type application/x-ebx
MIME\Database\Content Type\application/x-ebx (Default) (value not set)
 Extension .etd
EBXTransfer (Default) EBX Transfer Data File
 EditFlags 00 00 01 00
EBXTransfer\shell\open (Default) (value not set)

56 EBX System Specification – Draft 0.8 09/06/00

 EditFlags 01 00 00 00
EBXTransfer\shell\open\command (Default) "readerapp.exe" "%1"

4.7.4 Client Processing of Handoff Response from Voucher Server (XML fulfillment
instructions)

The EBX client, after receiving fulfillment instructions may use them to obtain vouchers and
content. The client should store the instructions in a safe place so that they may be replayed if
there are errors while obtaining vouchers. Once the fulfillment instructions have been
successfully executed, they can be discarded.

4.8 Getting Voucher(s)
Transfer of a book from the server to the client begins when the client sends the voucher server a
voucher request using the URL provided in the baseURL element of the fulfillment instructions.

The voucher server responds with the voucher(s) for the order requested. The client responds
with an “ACK” to the voucher server to signify that it has received the voucher(s), then it gets
the e-book(s) by examining the voucher(s) it receives.

4.8.1 Voucher Request to Voucher Server (purchase, borrow)
The Issue voucher request is typically used when an EBX e-book reading system wishes to
retrieve a book from a voucher server after acquiring the rights to a book from a bookseller or a
library. It is also used by a distributor, bookseller, or library to purchase one or more books from
a publisher, distributor, or bookseller. The action for the request is either “purchase” or
“borrow”.

The additional parameter “orderid” is the purchase order identifier to be used by the voucher
server (typically as a database key) to retrieve the vouchers for the order.

The reading system makes a request for vouchers to the voucher server identified by the
baseURL element in the fulfillment instructions. The request contains data in XML format
containing two objects: a Credentials object, issued by the reading system’s voucher engine, and
a Voucher Request object. Following is an example:

<?xml version='1.0'?>
<ebx:credentials ebx:version="0.8">

<ebx:authenticationScheme
ebx:encryptionAlgorithmID=”tueh87yRHiuy975hfh4rd”
ebx:encryptionAlgorithmName=”RSA”
ebx:signatureAlgorithmID=”n457skYh29H8erg”
ebx:signatureAlgorithmName=”RSA-SHA1”>pki-rsa-sha1

</ebx:authenticationScheme>
<nonce>lbJkMjTeUz1OL9tXaYhNSnR42iIq</nonce>
<signedData>MIIDwQYJKoZIhvcNAQcCoIIDsjCCA64CAQExCzAJBgUrDgMCGgUAM

AsGCSqGSIb3DQEHAaCCAnQwggJwMIIB2aADAgECAgEAMA0GCSqGSIb3DQEBBQUAMGoxaDAJ
BgNVBAYTAlVTMBQGA1UECBMNTWFzc2FjaHVzZXR0czAhBgNVBAsTGlRFU1QgQ0VSVElGSUN
BVEUgQVVUSE9SSVRZMCIGA1UEChMbR2xhc3Nib29rLCBJbmMuIC0gVEVTVCBPTkxZMB4XDT
AwMDcwOTIwMjYzOFoXDTEwMDcwODIwMjYzOFowajFoMAkGA1UEBhMCVVMwFAYDVQQIEw1NY

57 EBX System Specification – Draft 0.8 09/06/00

XNzYWNodXNldHRzMCEGA1UECxMaVEVTVCBDRVJUSUZJQ0FURSBBVVRIT1JJVFkwIgYDVQQK
ExtHbGFzc2Jvb2ssIEluYy4gLSBURVNUIE9OTFkwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIG
JAoGBANPWjIW6aw8yE9PwLD+IevFzQ4aONTzI8ptNUSlauKzNWhh8QlYXYp5eiSgQsS6yl9
zvXodl7tgQxw5Wc3uvRsjTlnU5LRqIAlj+6z3BHoVVbUoUX6QUoVWFfZz575XXHZ5c8DxeC
wVQJWNWSZ9qJA4HgW6BvNUczVC/aYQaS6mDAgMBAAGjJjAkMBIGA1UdEwEB/wQIMAYBAf8C
AQAwDgYDVR0iAQH/BAQwAjAAMA0GCSqGSIb3DQEBBQUAA4GBAHpAL2BuMHbPRgfSPg/SZDU
sN81qnxAZLtgzkd5hzYw68rCJfL8MZWGCBaTm7M60Cza95HYoeiFT68Sg85ZehcmBjNebZy
pt4tYCh5A4uqjOuUIBzXzZcbCA8vouCPkUPcTDljJ0hrJc/SZZUe5wkE2GWjn1t87PM0Z5J
bJzczQxMYIBFTCCARECAQEwbzBqMWgwCQYDVQQGEwJVUzAUBgNVBAgTDU1hc3NhY2h1c2V0
dHMwIQYDVQQLExpURVNUIENFUlRJRklDQVRFIEFVVEhPUklUWTAiBgNVBAoTG0dsYXNzYm9
vaywgSW5jLiAtIFRFU1QgT05MWQIBADAJBgUrDgMCGgUAMA0GCSqGSIb3DQEBAQUABIGAky
w6vEziW8aPiWJ/BPFCIAxRnFnYRy4xXYruM5myTgeygAff//CbaFN92pXOE/48Mf987PRbE
COvJxQ1kY2M6bHQq7r7CDEx8VmYEXjf6v6IlCaEmESmTyPzUwbKzhtuBM8VHg6xlRm/GgPc
dUDuAol0///lcujXJQ6+U/w/s9w=

</signedData>
</ebx:credentials>
<ebx:voucherRequest ebx:version=”0.8”>>

<action>purchase</action>
<orderID>114816072033825</orderID>
<preferredTypes>

<dc:format
dcq:scheme=”IMT”
ebx:encryptionMethod=”zipencode”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionKeyLength=”56”>
text/x-oeb1-document

</dc:format>
<dc:format

dcq:scheme=”IMT”
ebx:encryptionMethod=”pdfcrypt”
ebx:encryptionAlgorithmID=”57YTH28vq7Uuedh3”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionKeyLength=”56”>
application/pdf

</dc:format>
</preferredTypes>
<entry>

<bookID>ISBN:444444444</bookID>
<preferredTypes>

<dc:format
dcq:scheme=”IMT”
ebx:encryptionMethod=”zipencode”
ebx:encryptionAlgorithmID=”57YTH28vq7Uuedh3”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionKeyLength=”56”>
text/x-oeb1-document
</dc:format>

</preferredTypes>
</entry>

</ebx:voucherRequest>

The orderID in the voucherRequest is the order ID identified by the orderID element in the
fulfillment instructions. The high-level preferredTypes element is required and tells what
content types the reading system accepts, in order of preference. The entry elements of the
voucherRequest are optional. It is used when the reading system wishes to inform the voucher

58 EBX System Specification – Draft 0.8 09/06/00

server of the preferred content types for a specific work. If present, each entry in the
voucherRequest corresponds to an entry in the fulfillment instructions. The preferredTypes
element for each entry contains a list of content types that the reading system can accept for the
specific work, in order of preference.

4.8.1.1 HTTP Implementation Note
The x-EBX-Action header is used in the HTTP POST request.

Two examples, one with the x-EBX-Action header set empty, and one using the x-EBX-Action
header.

POST /EBX?action=purchase&orderid=114816072033825 HTTP/1.1
Host: www.acme.com
x-EBX-Action: “”
Content-Length: 789

[789 bytes of XML Request Object]

POST /EBX HTTP/1.1
Host: www.acme.com
x-EBX-Action: “purchase”

Content-Length: 789

[789 bytes of XML Request Object]

4.8.2 Voucher Server Processing of Voucher Request (purchase, borrow)
For purchase or borrow, the voucher server should perform these validations:

• = Verify that the EBX version supported by the client is supported by the server. If not, return
statusCode of 412 (Precondition Failed, Unsupported EBX Version).

• = Verify that the EBX authentication scheme supported by the client is supported by the server.
If not, return statusCode of 412 (Precondition Failed, Unsupported EBX authentication
scheme.)

• = Validate the purchase order number against its local database. If not valid, return statusCode
of 404 (Not found, Order number not found).

• = If the order is marked as ACKNOWLEDGED, return statusCode of 410 (Gone, Order
Delivered and Acknowledged)

• = If the order is marked as FULFILLED, mark this as possible abuse of the EBX protocol. This
could also be a subsequent request from a client if the initial response sent by the voucher
server never arrived at the client, or the client encountered errors saving the vouchers to
persistent storage. If the voucher server has rules in place to enforce a limit on the number of
times an order or voucher may be fulfilled before rejecting a request, and this request exceeds

59 EBX System Specification – Draft 0.8 09/06/00

the limit, then return statusCode of 403 (Forbidden, Multiple fulfillment count exceeded),
otherwise proceed.

• = If the order is marked as AUTHORIZED, proceed.

• = For each book in the order, perform the following operations:

The <preferredTypes> of the <voucherRequest> must be examined for each book in the
order. The correct <preferredTypes> is obtained from the <entry> element of the
voucherRequest, if it exists, or from the high-level default <preferredTypes> element. If
the voucher server cannot deliver any of the formats specified for the specific book in the
order, then statusCode 406 (Not Acceptable) is returned in the <entry> element in the
response. The voucher is not issued.

If other errors occur while processing the request, set statusCode in the <entry> element in
the response to an appropriate value. The voucher is not issued.

If the voucher is issued, the fulfillment status field in the database for the voucher is set to
FULFILLED.

• = If all of the vouchers are issued, the value in the statusCode of the response is set to 200
(OK). The entry tags are not required.

• = If none of the vouchers could be issued, return statusCode of 204 (No Content, No vouchers
could be issued). There should be an entry tag for every voucher that could not be issued
with the detailed statusCode for the failure.

• = If some, but not all of the vouchers could be issued, return statusCode of 206 (Partial
Content, Some vouchers could not be issued). There should be an entry tag for every
voucher that could not be issued with the detailed statusCode for the failure.

4.8.3 Response from Voucher Server (purchase, borrow)
The voucher server responds with an XML object containing the status of the operation and, if
successful, the voucher(s) for the particular order. The returned voucher(s) have the content-key
encrypted with the public key of the client, which was obtained from the credentials sent on the
request. Metadata for the particular books, including the URL for the encrypted content files, is
contained in the voucher(s) that are received.

The XML status object is specified in the [TBS] section.

The XML format of vouchers is specified in the Voucher Format section on page 85. Following
is an example:

<?xml version="1.0" encoding='UTF-8' ?>
<ebx:status ebx:version="0.8">

<statusCode>…</statusCode>
<statusMessage>…</statusMessage>
<statusMessage>…</statusMessage>
<entry>

<bookID>ISBN:4444444444</bookID>

60 EBX System Specification – Draft 0.8 09/06/00

<statusCode>…</statusCode>
<statusMessage>…</statusMessage>
<statusMessage>…</statusMessage>

</entry>
</ebx:status>
<ebx:vouchers ebx:version="0.8">

<ebx:voucher ebx:version="0.8">
Please see Voucher section for details

</ebx:voucher>
<ebx:voucher ebx:version="0.8">

Please see Voucher section for details
</ebx:voucher>

</ebx:vouchers>

4.8.3.1 HTTP Implementation Note
The body of the message is the XML object.

Example:

HTTP/1.1 200 OK
Content-Type: text/XML
Content-Length: 1234

[1234 bytes of XML voucher file]

4.8.4 Client Processing of Response from Voucher Server for Voucher Request
(purchase, borrow)

• = If the statusCode of the response is 200 (OK), the vouchers are extracted from the
response, and saved to persistent storage, then the client issues the ACK request.
Additionally, if the EBX e-book reading system should delete the fulfillment instructions
XML file if it had possession or ownership of the file.

• = If the statusCode of the response is 410 (Gone), then the voucher(s) for this order have
already been delivered and acknowledged. This is not a “hard failure”, and the EBX e-
book reading system should delete the fulfillment instructions XML file if it had
possession or ownership of the file. The fulfillment instructions file has already been
executed and acknowledged.

• = If the statusCode of the response is 206 (Partial Content), some, but not all the vouchers
were delivered. The delivered vouchers are extracted from the response, and saved to
persistent storage, then the client issues the ACK request, with the exact set of vouchers
that were obtained. The statusCode of the failed entries may be examined to present
feedback to the user.

• = If the statusCode of the response is 204 (No Content), none of the vouchers were
delivered. The statusCode of the failed entries may be examined to present feedback to
the user.

61 EBX System Specification – Draft 0.8 09/06/00

• = If the statusCode in the response is some error other than above, then none of the
vouchers are delivered, and the EBX e-book reading system should preserve the
fulfillment instructions XML file on disk so that it may be replayed at a future time.

• = If errors occur within the EBX e-book reading system while processing a response with
status code of 200 OK, and prior to saving the voucher(s) from the response in persistent
storage, the EBX e-book reading system should preserve the fulfillment instructions
XML file on disk so that it may be replayed at a future time. Additionally, the error
condition may be presented to the user and/or logged.

Detailed error messages may be obtained from the <statusMessage> </statusMessage> tags of
the response for presentation to the user or for logging.

Successfully received vouchers are passed along to the voucher engine. The voucher engine must
commit the voucher(s) to persistent storage at this point. The protocol engine and voucher engine
must be integrated in such a way that the protocol engine is able to obtain relevant metadata from
the vouchers for each voucher that is received. At a minimum, the protocol engine needs to be
able to obtain the URL for the encrypted content file from the voucher.

A client may replay a fulfillment request if it does not receive a successful statusCode in the
response or if it fails while committing the voucher(s) to persistent storage.

4.8.5 Acknowledgment Request to Voucher Server (ACK)
For fail-safe error recovery, the client must make a request to the voucher server to acknowledge
that it received the vouchers successfully and added them to persistent storage. The client must
make an acknowledgment request if it has successfully received and stored any vouchers. The
request contains data in XML format as specified in the [TBS] section. The XML data includes
the same action and orderID elements as the previous voucherRequest object that was sent to the
voucher server. The entry element for vouchers received is not required. If the entry element is
omitted, it is assumed that all vouchers from the previous request were received. If the client
wishes to add every voucher received in the entry tag, it may. However, if only some of the
vouchers could be stored, then in this case the successfully stored vouchers are passed as entry
elements. Following is an example:

<voucherAck ebx:version="0.8">
<action>purchase</action>
<orderID>114816072033825</orderID>
<entry>

<bookID>ISBN:4444444444</bookID>
</entry>

</voucherAck>

4.8.5.1 HTTP Implementation Note
The x-EBX-Action header is used in the HTTP POST request.

Two examples, one with the x-EBX-Action header set empty, and one using the x-EBX-Action
header. Note that to form the URI for the request with the empty x-EBX-Action header, the

62 EBX System Specification – Draft 0.8 09/06/00

client adds the query parameter “ack=true” to the original request that was issued to obtain the
voucher(s).

POST /EBX?action=purchase&orderid=114816072033825&ack=true HTTP/1.1
Host: www.acme.com
x-EBX-Action: “”
Content-Length: 789

[789 bytes of XML Request Object]

POST /EBX HTTP/1.1
Host: www.acme.com
x-EBX-Action: “purchase”

Content-Length: 789

[789 bytes of XML Request Object]

4.8.6 Voucher Server Processing of Acknowledgment Request (ACK)
When the voucher server receives the ACK request, it performs the following action:

• = If the request contains entries, each database entry corresponding to the entry in the
request is changed from FULFILLED to ACKNOWLEDGED.

• = If there is no entry in the request, all database entries corresponding to the order in the
request are changed from FULFILLED to ACKNOWLEDGED.

• = If any of the entries are already set to ACKNOWLEDGED in the database, no action is
needed.

• = If errors occur while processing the request, or if any of the entries are marked
AUTHORIZED, Set the statusCode element of the response to an appropriate value.

4.8.7 Acknowledgment Response from Voucher Server (ACK)
The voucher server returns a successful response after receiving an acknowledgment request.

<?xml version="1.0">
<ebx:status ebx:version="0.8">

<statusCode>200</statusCode>
</ebx:status>

4.8.7.1 HTTP Implementation Note
The voucher server returns success after receiving the ACK.

Example:

HTTP/1.1 200 OK
Content-Type: text/XML
Content-Length: 75

63 EBX System Specification – Draft 0.8 09/06/00

[75 bytes of XML data]

4.8.8 Client Processing of Acknowledgment Response from Voucher Server (ACK)
The successful GET response for ACK is the statusCode of 200 (OK) being returned by the
voucher server. Failed responses may be safely ignored by the EBX e-book reading system

• = If the statusCode in the response is 200 (OK), the voucher server has received and
processed the ACK request. The client does not need to take any further action.

• = If the statusCode in the response is some code other than 200 (OK), the voucher server
may not have received and processed the ACK request. The client does not need to take
any further action. It is not required to receive a successful response to the ACK request.
Clients must not take advantage of the fact that ACK was not delivered successfully, and
retransmit a request to fulfill the order that was not acknowledged.

4.9 Getting Encrypted E-book(s)
In order to obtain an encrypted e-book, a reading system must use its voucher engine to extract
the content location from the e-book’s voucher, and it must then get the e-book content from that
location.

E-books may have a variety of locations, including Web sites, CD-ROMs or DVD-ROMs, and
network file systems. How the reading system obtains e-book content is outside the scope of this
specification. This section describes a possible request and response for obtaining content using
HTTP.

Once it has obtained the e-book content, the reading system maintains a correspondence between
the voucher and the local copy of the e-book, if any. The mechanism of this correspondence is
outside the scope of this specification.

4.9.1 Content Request to Content Server (purchase, borrow)
After the ACK for voucher receipt has been completed, the client’s protocol engine uses the
content file URL from within each voucher that it obtained to get the encrypted content files.
Often, these are simple HTTP or FILE URLs. The encrypted content files typically reside on
high-bandwidth file servers on the Internet.

4.9.1.1 HTTP Implementation Note
Example:

GET www.bookserver.com/ebooks/enc_file.pdf HTTP/1.1
Host: www.acme.com

4.9.2 Content Response from Content Server (purchase, borrow)
The content server issues the file.

64 EBX System Specification – Draft 0.8 09/06/00

4.9.2.1 HTTP Implementation Note
Example:

HTTP/1.1 200 OK
Content-Type: application/pdf
Content-Length: 123456

[123456 bytes encrypted content file]

4.10 Giving or Lending a Book (consumer to consumer)
This section details the protocol for a peer-to-peer transfer of an e-book from one e-book reading
system to another. This protocol is used when one reading system gives or lends an e-book to
another reading system. It is approximately the mirror image of the protocol for purchasing an e-
book. In peer-to-peer transfer, the reading system that owns the e-book acts as the client and
initiates all requests. However, the data that the e-book owner transmits is similar to the data that
the server transmits for the purchase protocol. The receiver of the e-book acts as the server and
responds to requests. However, the data that the receiver transmits is similar to the data that the
client transmits for the purchase protocol. Furthermore, even though it acts as the client in
initiating requests, the owner of the e-book must authenticate the receiver.

4.10.1 Transfer Request from Owner to Receiver (give, lend)
The owner of the e-book initiates the transfer by issuing a request to the receiver. Before issuing
the request, the owner generates a nonce. The request contains XML data that is similar to
fulfillment instructions in the purchase protocol, with the following differences:

• = The baseURL in the transfer data object is absent.

• = The action in the request object is give or lend.

• = The orderID in the request object is absent.

Example:

<?xml version='1.0'?>
<ebx:transferData ebx:version=”0.8”>

<nonce>lbJkMjTeUz1OL9tXaYhNSnR42iIq</nonce>
<availableAuthenticationSchemes>

<ebx:authenticationScheme
ebx:encryptionAlgorithmID=”tueh87yRHiuy975hfh4rd”
ebx:encryptionAlgorithmName=”RSA”
ebx:signatureAlgorithmID=”n457skYh29H8erg”
ebx:signatureAlgorithmName=”RSA-SHA1”>pki-rsa-sha1

</ebx:authenticationScheme>
<ebx:authenticationScheme>

ebx:encryptionAlgorithm=”tueh87yRHiuy975hfh4rd”
ebx:encryptionAlgorithmName=”RSA”
ebx:signatureAlgorithm=”n457skYh29H8erg”
ebx:signatureAlgorithmName=”RSA-MD5”>pki-rsa-md5

</ebx:authenticationScheme>
</availableAuthenticationSchemes>
<request>

65 EBX System Specification – Draft 0.8 09/06/00

<action>give</action>
</request>
<entry>

<bookID>ISBN:444444444</bookID>
<availableTypes>

<dc:format
dcq:scheme=”IMT”
ebx:encryptionMethod=”pdfcrypt”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionAlgorithmExtra=”none”
ebx:encryptionKeyLength=”56”>
application/pdf

</dc:format>
</availableTypes>

</entry>
</ebx:transferData>

4.10.1.1 HTTP Implementation Note
The x-EBX-Action header is used in the HTTP POST request.

Two examples, one with the x-EBX-Action header set empty, and one using the x-EBX-Action
header.

POST /EBX?action=give HTTP/1.1
Host: www.acme.com
x-EBX-Action: “”
Content-Length: 789

[789 bytes of XML Request Object]

POST /EBX HTTP/1.1
Host: www.acme.com
x-EBX-Action: “give”

Content-Length: 789

[789 bytes of XML Transfer Data Object]

4.10.2 Transfer Response from Receiver to Owner (give, lend)
The response by the receiver to the transfer request contains data in XML format containing two
objects: a Credentials object, issued by the reading system’s voucher engine, and a Voucher
Request object. Following is an example:

<?xml version='1.0'?>
<ebx:credentials ebx:version="0.8">

<ebx:authenticationScheme
ebx:encryptionAlgorithmID=”tueh87yRHiuy975hfh4rd”
ebx:encryptionAlgorithmName=”RSA”

66 EBX System Specification – Draft 0.8 09/06/00

ebx:signatureAlgorithmID=”n457skYh29H8erg”
ebx:signatureAlgorithmName=”RSA-SHA1”>pki-rsa-sha1

</ebx:authenticationScheme>
<nonce>lbJkMjTeUz1OL9tXaYhNSnR42iIq</nonce>
<signedData>MIIDwQYJKoZIhvcNAQcCoIIDsjCCA64CAQExCzAJBgUrDgMCGgUAM

AsGCSqGSIb3DQEHAaCCAnQwggJwMIIB2aADAgECAgEAMA0GCSqGSIb3DQEBBQUAMGoxaDAJ
BgNVBAYTAlVTMBQGA1UECBMNTWFzc2FjaHVzZXR0czAhBgNVBAsTGlRFU1QgQ0VSVElGSUN
BVEUgQVVUSE9SSVRZMCIGA1UEChMbR2xhc3Nib29rLCBJbmMuIC0gVEVTVCBPTkxZMB4XDT
AwMDcwOTIwMjYzOFoXDTEwMDcwODIwMjYzOFowajFoMAkGA1UEBhMCVVMwFAYDVQQIEw1NY
XNzYWNodXNldHRzMCEGA1UECxMaVEVTVCBDRVJUSUZJQ0FURSBBVVRIT1JJVFkwIgYDVQQK
ExtHbGFzc2Jvb2ssIEluYy4gLSBURVNUIE9OTFkwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIG
JAoGBANPWjIW6aw8yE9PwLD+IevFzQ4aONTzI8ptNUSlauKzNWhh8QlYXYp5eiSgQsS6yl9
zvXodl7tgQxw5Wc3uvRsjTlnU5LRqIAlj+6z3BHoVVbUoUX6QUoVWFfZz575XXHZ5c8DxeC
wVQJWNWSZ9qJA4HgW6BvNUczVC/aYQaS6mDAgMBAAGjJjAkMBIGA1UdEwEB/wQIMAYBAf8C
AQAwDgYDVR0iAQH/BAQwAjAAMA0GCSqGSIb3DQEBBQUAA4GBAHpAL2BuMHbPRgfSPg/SZDU
sN81qnxAZLtgzkd5hzYw68rCJfL8MZWGCBaTm7M60Cza95HYoeiFT68Sg85ZehcmBjNebZy
pt4tYCh5A4uqjOuUIBzXzZcbCA8vouCPkUPcTDljJ0hrJc/SZZUe5wkE2GWjn1t87PM0Z5J
bJzczQxMYIBFTCCARECAQEwbzBqMWgwCQYDVQQGEwJVUzAUBgNVBAgTDU1hc3NhY2h1c2V0
dHMwIQYDVQQLExpURVNUIENFUlRJRklDQVRFIEFVVEhPUklUWTAiBgNVBAoTG0dsYXNzYm9
vaywgSW5jLiAtIFRFU1QgT05MWQIBADAJBgUrDgMCGgUAMA0GCSqGSIb3DQEBAQUABIGAky
w6vEziW8aPiWJ/BPFCIAxRnFnYRy4xXYruM5myTgeygAff//CbaFN92pXOE/48Mf987PRbE
COvJxQ1kY2M6bHQq7r7CDEx8VmYEXjf6v6IlCaEmESmTyPzUwbKzhtuBM8VHg6xlRm/GgPc
dUDuAol0///lcujXJQ6+U/w/s9w=

</signedData>
</ebx:credentials>
<ebx:voucherRequest ebx:version=”0.8”>>

<action>give</action>
<preferredTypes>

<dc:format
dcq:scheme=”IMT”
ebx:encryptionMethod=”zipencode”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionAlgorithmExtra=”none”
ebx:encryptionKeyLength=”56”>
text/x-oeb1-document

</dc:format>
<dc:format

dcq:scheme=”IMT”
ebx:encryptionMethod=”pdfcrypt”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionAlgorithmExtra=”none”
ebx:encryptionKeyLength=”56”>
application/pdf

</dc:format>
</preferredTypes>
<entry>

<bookID>ISBN:444444444</bookID>
<preferredTypes>

<dc:format
dcq:scheme=”IMT”
ebx:encryptionMethod=”zipencode”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionAlgorithmExtra=”none”
ebx:encryptionKeyLength=”56”>
text/x-oeb1-document
</dc:format>

</preferredTypes>

67 EBX System Specification – Draft 0.8 09/06/00

</entry>
</ebx:voucherRequest>

The voucherRequest does not contain an orderID element. The high-level preferredTypes
element is required and tells what content types the reading system accepts, in order of
preference. The entry elements of the voucherRequest are optional. It is used when the reading
system wishes to inform the voucher server of the preferred content types for a specific work. If
present, each entry in the voucherRequest corresponds to an entry in the fulfillment
instructions. The preferredTypes element for each entry contains a list of content types that the
reading system can accept for the specific work, in order of preference.

4.10.2.1 HTTP Implementation Note
The body of the message is the XML object.

Example:

HTTP/1.1 200 OK
Content-Type: text/XML
Content-Length: 1234

[1234 bytes of XML Credentials and Voucher Request]

4.10.3 Owner Processing of Transfer Response from Receiver (give, lend)
After receiving the transfer response, the owner’s voucher server should perform these
validations:

• = Verify that the EBX version supported by the receiver is supported by the owner. If not,
return statusCode of 412 (Precondition Failed, Unsupported EBX Version).

• = For each book in the order, perform the following operations:

The <preferredTypes> of the <voucherRequest> must be examined for each book in the
order. The correct <preferredTypes> is obtained from the <entry> element of the
voucherRequest, if it exists, or from the high-level default <preferredTypes> element. If
the owner cannot deliver any of the formats specified for the specific book in the voucher
request, then statusCode 406 (Not Acceptable) is returned in the <entry> element in the next
request. The voucher is not issued.

If other errors occur while processing the request, set statusCode in the <entry> element in
the response to an appropriate value. The voucher is not issued.

• = If all of the vouchers are issued, the value in the statusCode of the response is set to 200
(OK). The entry tags are not required.

• = If none of the vouchers could be issued, return statusCode of 204 (No Content, No vouchers
could be issued). There should be an entry tag for every voucher that could not be issued
with the detailed statusCode for the failure.

68 EBX System Specification – Draft 0.8 09/06/00

• = If some, but not all of the vouchers could be issued, return statusCode of 206 (Partial
Content, Some vouchers could not be issued). There should be an entry tag for every
voucher that could not be issued with the detailed statusCode for the failure.

4.10.4 Voucher Transmission Request from Owner to Receiver (give, lend)
The owner transmits a request to the receiver with an XML object containing the status of the
operation and, if successful, the voucher(s) for the operation. The returned voucher(s) have the
content-key encrypted with the public key of the receiver, which was obtained from the
credentials sent in the previous response. Metadata for the particular books, including the URL
for the encrypted content files, is contained in the voucher(s) that are received.

The XML status object is specified in the [TBS] section.

The XML format of vouchers is specified in the Voucher Format section on page 85. Following
is an example:

<?xml version="1.0" encoding='UTF-8' ?>
<ebx:status ebx:version="0.8">

<statusCode>…</statusCode>
<statusMessage>…</statusMessage>
<statusMessage>…</statusMessage>
<entry>

<bookID>ISBN:4444444444</bookID>
<statusCode>…</statusCode>
<statusMessage>…</statusMessage>
<statusMessage>…</statusMessage>

</entry>
</ebx:status>
<ebx:vouchers ebx:version="0.8">

<ebx:voucher ebx:version="0.8">
Please see Voucher section for details

</ebx:voucher>
<ebx:voucher ebx:version="0.8">

Please see Voucher section for details
</ebx:voucher>

</ebx:vouchers>

4.10.4.1 HTTP Implementation Note
The x-EBX-Action header is used in the HTTP POST request.

Two examples, one with the x-EBX-Action header set empty, and one using the x-EBX-Action
header.

POST /EBX?action=give HTTP/1.1
Host: www.acme.com
x-EBX-Action: “”
Content-Length: 789

[789 bytes of XML Status and Voucher Objects]

69 EBX System Specification – Draft 0.8 09/06/00

POST /EBX HTTP/1.1
Host: www.acme.com
x-EBX-Action: “give”

Content-Length: 789

[789 bytes of XML Status and Voucher Objects]

4.10.5 Receiver Processing of Voucher Transmission Request (give, lend)
• = If the statusCode of the response is 200 (OK), the vouchers are extracted from the

response, and saved to persistent storage, then the receiver issues the response.
Additionally, if the EBX e-book reading system should delete the transfer data XML file
if it had possession or ownership of the file.

• = If the statusCode of the response is 206 (Partial Content), some, but not all the vouchers
were delivered. The delivered vouchers are extracted from the response, and saved to
persistent storage, then the receiver issues the response, with the exact set of vouchers
that were obtained. The statusCode of the failed entries may be examined to present
feedback to the user.

• = If the statusCode of the response is 204 (No Content), none of the vouchers were
delivered. The statusCode of the failed entries may be examined to present feedback to
the user.

• = If the statusCode in the response is some error other than above, then none of the
vouchers are delivered.

• = If errors occur within the EBX e-book reading system while processing a response with
status code of 200 OK, and prior to saving the voucher(s) from the response in persistent
storage, the error condition may be presented to the user and/or logged.

Detailed error messages may be obtained from the <statusMessage> </statusMessage> tags of
the response for presentation to the user or for logging.

Successfully received vouchers are passed along to the voucher engine. The voucher engine must
commit the voucher(s) to persistent storage at this point. The protocol engine and voucher engine
must be integrated in such a way that the protocol engine is able to obtain relevant metadata from
the vouchers for each voucher that is received. At a minimum, the protocol engine needs to be
able to obtain the URL for the encrypted content file from the voucher.

4.10.6 Voucher Transmission Response from Receiver to Owner (give, lend)
The receiver’s response to the voucher transmission request contains data in XML format as
specified in the [TBS] section. The XML data includes the same action element as the previous
voucherRequest object. The entry element for vouchers received is not required. If the entry

70 EBX System Specification – Draft 0.8 09/06/00

element is omitted, it is assumed that all vouchers from the previous request were received. If
the receiver wishes to add every voucher received in the entry tag, it may. However, if only some
of the vouchers could be stored, then in this case the successfully stored vouchers are passed as
entry elements. Following is an example:

<voucherAck ebx:version="0.8">
<action>give</action>
<orderID>114816072033825</orderID>
<entry>

<bookID>ISBN:4444444444</bookID>
</entry>

</voucherAck>

4.10.6.1 HTTP Implementation Note
The body of the message is the XML object.

Example:

HTTP/1.1 200 OK
Content-Type: text/XML
Content-Length: 1234

[234 bytes of XML Voucher Ack Object]

4.10.7 Owner Processing of Voucher Transmission Response from Receiver (give, lend)
When the owner receives the voucher transmission response, it performs the following action:

• = If the request contains entries, the voucher corresponding to each entry is either deleted
(for “give”) or marked as “lent” for the appropriate loan period (for “lend”).

• = If there is no entry in the request, all vouchers corresponding to the request are either
deleted (for “give”) or marked as “lent” for the appropriate loan period (for “lend”).

4.10.8 Content Transmission Request from Owner to Receiver (give, lend)
For each voucher successfully transmitted to the receiver and committed to persistent storage, the
owner transmits the corresponding content in a request to the receiver.

4.10.8.1 HTTP Implementation Note
The x-EBX-Action header is used in the HTTP POST request.

Two examples, one with the x-EBX-Action header set empty, and one using the x-EBX-Action
header.

POST /EBX?action=give HTTP/1.1
Host: www.acme.com
x-EBX-Action: “”
Content-Length: 380123

71 EBX System Specification – Draft 0.8 09/06/00

[380123 bytes of the encrypted content file]

POST /EBX HTTP/1.1
Host: www.acme.com
x-EBX-Action: “give”

Content-Length: 380123

[380123 bytes of the encrypted content file]

4.10.9 Content Transmission Response from Receiver to Owner (give, lend)
The receiver responds to each e-book content request.

4.10.9.1 HTTP Implementation Note
Example:

HTTP/1.1 200 OK

4.11 Electronic Mail Transfer
It is not always feasible to transfer an electronic book using point-to-point protocols like TCP/IP
or IrDA. Sometimes, both parties involved in a transfer are not connected simultaneously or do
not publish their network addresses. An example of this situation, is when a consumer wishes to
give a book to another consumer as a gift. Electronic mail may therefore be useful as a store-and-
forward transport for electronic books.

The method by which EBX e-books are transferred via standard Internet e-mail protocols like
SMTP and MIME is (T.B.S.)

4.12 EBX Error Handling and Flow
The EBX transfer protocol defines a set of error mechanisms that must be adhered to in order to
specify a robust system. The error mechanism uses status codes embedded in the XML response
from voucher servers. The XML tags for status are <statusCode> and <statusMessage>.

4.12.1 HTTP Implementation Note
Voucher servers always return HTTP 200 (OK) to every request. The true status of the operation
is ALWAYS in the <statusCode> XML tag of the response.

4.12.2 Successful Requests to Voucher Servers
Voucher servers must set the <statusCode> XML tag to 200 when a successful response is
generated to a client request.

72 EBX System Specification – Draft 0.8 09/06/00

4.12.3 Failed Requests to Voucher Servers
The following table describes status codes used for error processing within the EBX system.
They are initially adopted from HTTP status codes. They are used in the <statusCode> XML
tag for EBX responses.

Voucher servers must set the <statusCode> XML tag to some code other than 200 when a
failure occurs while servicing a client request. Whenever any error response is generated,
voucher servers should generate human-readable text describing the error condition between the
<statusMessage>.</statusMessage>.tags of the XML response to the failed request. Each
<statusMessage>.</statusMessage>.element set represents a single line of diagnostic error text.

<statusCode> Meaning; Suggested Message
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Moved Temporarily
303 See Other
304 Not Modified
305 Use Proxy
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Time-out
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
500 Internal Server Error
501 Not Implemented
502 Bad Gateway

73 EBX System Specification – Draft 0.8 09/06/00

503 Service Unavailable
504 Gateway Time-out
505 HTTP Version not supported

4.12.3.1 General Errors – 400
Most errors encountered by voucher servers while processing a client request will use the status
code of 400 (Bad Request) in the response.

4.12.3.2 Server Errors – 500 or 503
When the voucher server itself has failures, either Status code of 500 (Internal Server Error), or
503 (Service Unavailable) should be used in the response.

4.12.3.3 No Acceptable Content – 406 (Not Acceptable)
If the request for vouchers (<voucherRequest>) is accompanied by <entry> tags with the
<preferredTypes> elements specified, and the voucher server cannot deliver any of the formats
specified in the request, then status code 406 (Not Acceptable) is returned with the response.

4.12.3.4 Order Delivered and ACKed – 410 (Gone)
If an order has already been delivered from the voucher server, and the client has returned with
the ACK request, and a subsequent request is made to the voucher server to either handoff the
order (action=handoff), or to execute the fulfillment instructions for the order (action=purchase
or action=borrow), the voucher server must return status code 410 (Gone) to indicate that this
order has already been fulfilled and acknowledged.

4.12.4 Discussion of Voucher Fulfillment and ACK
Using the ACK creates a simple, fault-tolerant mechanism for voucher servers to know that
clients have received the voucher(s) from a fulfillment request.

Under normal circumstances, the client gets the voucher(s) for an order, adds them to persistent
storage, makes the ACK request to the voucher server, and the order is marked
ACKNOWLEDGED by the voucher server. The voucher server responds with status code 200
when it receives the ACK from the client.

If the connection breaks during the response to the voucher request to the voucher server for
action=purchase or action=borrow, or if errors occur in the client that prevent persistent storage
of the voucher, then the client will not make the ACK request to the voucher server, the order
will not be marked ACKNOWLEDGED, and the voucher(s) for the order may be obtained by a
subsequent request to the voucher server.

If a request is made to a voucher server for an order that has already been acknowledged, then
the voucher server will respond to the request with status code 410 (Gone), to indicate that this
request was already fulfilled and acknowledged.

74 EBX System Specification – Draft 0.8 09/06/00

If the ACK request from the client to the voucher server fails to reach the server, or if the client
does not receive the status code 200 from the voucher server in response to the ACK, the client
has two choices: It can ignore the fact that the request was not acknowledged by the voucher
server, or it may re-transmit the ACK request.

Voucher servers must not require ACK from a client. Failure to receive ACK simply means that
the voucher server may still honor subsequent requests to fulfill an order.

It is the responsibility of the voucher server to perform proper accounting in the case that
vouchers are being fulfilled after the first fulfillment request has been honored, but before an
ACK has been received for the request.

If a voucher server detects multiple fulfillment requests for an order that has not been
acknowledged, the voucher server may flag this condition as possible abuse of the EBX protocol
by a "rogue client".

75 EBX System Specification – Draft 0.8 09/06/00

5 Voucher Engine Model

5.1 Voucher Engine Processing
[Editorial note. This section is incomplete in Version 0.8.]

A voucher engine is a processor that responds to requests from the protocol engine. The voucher
engine receives input, applies a set of rules, and may generate output, which is typically a new
voucher. The input to the voucher engine generally includes the following:

• = The request

• = Identification of the entity making the request

• = A statement of rights

The publisher creates the initial voucher, which contains the initial set of rights for a work.
Subsequent statements of rights are obtained from an existing voucher.

5.2 Voucher Engine Rules
[Editorial note. This section is incomplete in Version 0.8.]

The voucher engine’s processing is constrained by a set of rules, including these:

• = Rights are denied unless explicitly granted.

• = Expansion of rights is disallowed.

• = Narrowing of rights is allowed.

• = Processing requires valid:

• = Voucher signature

• = Requestor ID certificate

• = Requestor authorization certificate (which may be the same as the ID)

• = Requestor technology certificate

• = Output complies with:

• = Publisher-granted rights

• = Authorizations granted the recipient

• = Parse the latest general rights you can

76 EBX System Specification – Draft 0.8 09/06/00

• = If rights don’t parse:

• = If optional, ignore

• = If mandatory, abort the output

5.3 Voucher Engine Interfaces
[Editorial note. This section is incomplete in Version 0.8.]

The voucher engine performs a set of abstract operations described in this section.

5.3.1 Create Voucher
Input:

• = Rights set (contains work ID)

• = Content format (including encryption method, encryption algorithm, key length, etc.)

• = Private key (for use in signing voucher body)

• = (Optional) Public key (for encrypting content key).

• = Question: does this public key match the private key used to sign the voucher body,
or some other private key? I.e., are different certificates required for signing and for
encrypting the content key?

Processing:

• = Check the voucher engine’s own credentials – only a publisher can create vouchers. This
implies that we can identify the publisher role from a certificate.

• = (Optional) encrypt content and place encrypted content key in voucher.

• = Generate and sign the rights kernel.

• = Generate rights for the distributor role.

• = Note: these rights are the same as those in the rights kernel.

• = Sign voucher.

Output:

• = Voucher

• = Note: this voucher is an object that is created once per work and is stored persistently.

77 EBX System Specification – Draft 0.8 09/06/00

5.3.2 Issue Voucher
Input:

• = Existing voucher

• = Rights set (rights to remove or rights to select? Is this an implementation issue?)

• = Credentials of the requester and signed nonce (in a PKCS #7 signed data message)

Processing:

• = Check credentials

• = Validate all certificates in the chain.

• = Verify that the trust level of the requester is at least as high as the minimum trust
level in the voucher.

• = Verify the nonce

• = Validate the signature on the nonce.

• = Ensure that the nonce is the same one you issued to the requester.

• = (Optional) encrypt content. [Editorial note. The ability to encrypt content during the
Issue Voucher operation is intended to accommodate systems that encrypt content
differently for each user. The implications for the protocol and trust models has not yet
been investigated.]

• = Encrypt content key using the public key of the requester (if the encrypted key is not
obtained from Encrypt Content).

• = Compare the input rights set with the rights in the existing voucher to ensure that the new
rights do not expand existing rights.

• = Remove specified rights (if any)

• = Sign voucher

Output:

• = Voucher

5.3.3 Revoke Voucher
Input:

• = Existing voucher

78 EBX System Specification – Draft 0.8 09/06/00

Processing:

• = Invalidates voucher but does not delete it (could happen on server)

Output:

• = None

5.3.4 Import Voucher
Input:

• = Voucher

Processing:

• = Validate the voucher signature.

• = Validate the signature on the rights kernel.

• = Transfer voucher to repository

• = Maybe merge vouchers?

Output:

• = None (or handle to the stored voucher)

5.3.5 Delete Voucher
Input:

• = Voucher

Processing:

• = Remove voucher from repository

Output:

• = None

5.3.6 Issue Nonce
Input:

• = None

Processing:

79 EBX System Specification – Draft 0.8 09/06/00

• = Generate a nonce

• = Record the nonce (i.e., record that this nonce is one you issued).

Output:

• = Nonce

5.3.7 Issue Credentials
Input:

• = Nonce

Processing:

• = Generate a PKCS #7 signed data message, using the nonce as data.

Output:

• = Credentials (the PKCS #7 signed data message)

5.3.8 Encrypt Content
Input:

• = Cleartext content

• = Content format, including encryption method, encryption algorithm, key length, etc.

• = Public key (for encrypting content key)

Processing:

• = Generate content key.

• = Encrypt content with the content key.

• = Encrypt content key with the public key passed in.

Output:

• = Encrypted content.

• = Encrypted content key.

5.3.9 Decrypt Content
Input:

80 EBX System Specification – Draft 0.8 09/06/00

• = Encrypted content.

• = Voucher.

Processing:

• = Retrieve the private key.

• = Decrypt the content key in the voucher, using the private key.

• = Decrypt the content, using the content key and information about the content format,
encryption algorithm, method, key length, etc., from the voucher.

Output:

• = (Some amount of) cleartext content, depending on trust level. (Keeping all rendering of
cleartext content within the voucher engine is potentially more secure than passing any
cleartext content outside the voucher engine.)

5.4 Voucher Engine Processing of EBX Rights
[Editorial note. This section is incomplete in Version 0.8.]

As the EBX specification evolves, voucher engines compliant with different versions of the EBX
specification need to coexist with vouchers compliant with different versions of the EBX
specification. When a voucher engine processes a voucher, two kinds of version mismatch are
possible:

• = The voucher engine complies with a later version of the specification than the voucher.

• = The voucher engine complies with an earlier version of the specification than the voucher.

This section describes the mechanism by which voucher engines write and read EBX rights.

5.4.1 Writing EBX Rights in a Voucher
A voucher can contain multiple rights descriptions. Among these are rights specified by EBX
and possibly rights specified by other descriptions.

A voucher contains at least two EBX rights sections, each of which is identified with an EBX
version number:

• = A full-function section that evolves relatively freely with each EBX version.

• = A basic section that evolves in very limited ways. In particular, elements of basic
rights can be changed only in nonrestrictive ways; any restrictive change requires a
new element.

81 EBX System Specification – Draft 0.8 09/06/00

When a voucher engine writes a voucher, it must put two EBX rights sections into the voucher:

• = The current version of the full-function EBX rights section.

• = The current version of the basic EBX rights section.

A voucher engine may (but is not required to) also write earlier versions of the full-function
section.

For any possible permission (such as permission to read or print), the basic rights section must
not grant that permission if the permission is either restricted or is not granted in the full-function
rights section. In writing the basic EBX rights section, a voucher engine must grant a permission
only if that permission is granted and is not restricted in the full-function EBX rights section.

For example, suppose that the full-function EBX rights section allows reading of the content at
any time before an expiration date specified in the full-function section. The expiration date thus
restricts the read permission. Basic EBX rights have no mechanism for restricting a permission
by an expiration date. The basic section must therefore grant no read permission in this case.

5.4.2 Enforcing EBX Rights in a Voucher
In reading and enforcing EBX rights in a voucher, a voucher engine must follow these rules:

• = A voucher engine must not use a full-function EBX rights section in the voucher if the
full-function rights section has an EBX version that is later than the voucher engine’s
EBX version. In the usual case, the voucher engine uses the latest-versioned EBX full-
function rights set in the voucher that is less than or equal to the voucher engine’s EBX
version.

• = If no full-function EBX rights section in the voucher has an EBX version that is less than
or equal to the voucher engine’s EBX version, the voucher engine must use the basic
EBX rights set in the voucher, regardless of the EBX version of the basic rights set. If the
basic rights set has an EBX version that is later than the voucher engine’s EBX version,
the voucher engine ignores any elements of the basic rights set that do not exist in the
voucher engine’s EBX version.

82 EBX System Specification – Draft 0.8 09/06/00

6 Metadata Format
Information that identifies or describes an e-book is metadata. EBX distinguishes between two
forms of metadata:

• = Extended metadata, used for such purposes as describing an e-book on a bookseller’s Web
site and cataloging an e-book in a library.

• = Concise metadata, used for such purposes as identifying available and preferred content
formats, logging a transaction, identifying an e-book in an error message, and displaying the
progress of downloading an e-book.

The format and transfer protocol for extended metadata are outside the scope of the EBX
specification. A widely accepted standard format for communicating e-book product information
among publishers, distributors, and booksellers is ONIX International [ONIX101]. A widely
accepted standard format for communicating bibliographic information for libraries is the
MARC 21 Format for Bibliographic Data [MARC21].

EBX specifies the representation of concise metadata for use in such objects as vouchers and
fulfillment instructions. Concise metadata is defined by the metadata XML element.

6.1 Metadata Element
The ebx:metadata element can contain any of the Dublin Core [DC11] metadata elements,
version 1.1 or higher, and any of the Dublin Core metadata qualifiers [DCQ10], version 1.0 or
higher. All Dublin Core metadata elements are repeatable within the ebx:metadata element. The
ebx:metadata element, or an element that contains the ebx:metadata element, must declare the
dc namespace (containing Dublin Core metadata elements) and the dcq namespace (containing
Dublin Core metadata qualifiers), as in the following example:

<ebx:metadata
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:dcq=”http://purl.org/dc/qualifiers/1.0/”>

Each ebx:metadata element must contain at least the following Dublin Core metadata elements
for the work it describes: dc:identifier, dc:creator, and dc:title.

6.1.1 Identifier Element
The dc:identifier element should include the dcq:scheme attribute, which names the encoding
scheme of the identifier. EBX specifies two values for dcq:scheme that are extensions of the
Dublin Core metadata qualifiers specification: “ISBN” [ISBN] and “DOI” [DOI].

83 EBX System Specification – Draft 0.8 09/06/00

6.1.2 Format Element
The dc:format element should include the dcq:scheme attribute, which names the encoding
scheme of the format of the e-book. The value of the dcq:scheme attribute should be “IMT”
[IMT].

EBX specifies the following required attributes for dc:format that are extensions of the Dublin
Core metadata qualifiers specification:

ebx:encryptionMethod

Encryption method for the e-book content. Valid values include but are not restricted to the
following:

“none”

“pdfcrypt”

“pdffilter”

“zipencode”

ebx:encryptionAlgorithmName

Algorithm for encrypting the e-book content. Valid values include but are not restricted to
the following:

“none”

“RC4”

“DES”

“3DES”

ebx:encryptionAlgorithmExtra

Parameter or qualifier for the algorithm for encrypting the e-book content. Valid values
include but are not restricted to the following:

“none”

ebx:encryptionKeyLength

An integer representing the length in bits of the key used to encrypt the e-book content.
Example values:

“40”

“64”

“128”

6.1.3 Metadata Example
Following is an example ebx:metadata element:

<ebx:metadata ebx:version=”0.8”

84 EBX System Specification – Draft 0.8 09/06/00

xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:dcq=”http://purl.org/dc/qualifiers/1.0/”>
<dc:identifier dcq:scheme=”ISBN”>9876543210</dc:identifier>
<dc:creator>Jane Smith</dc:creator>
<dc:creator>John Doe</dc:creator>
<dc:title>The Joy of E-Books</dc:title>
<dc:date dcq:scheme=”W3CDTF”>

<dcq:issued>2000</dcq:issued>
</dc:date>
<dc:description>

<dcq:abstract>Describes the process of creating e-
books.</dcq:abstract>

</dc:description>
<dc:format

dcq:scheme=”IMT”
ebx:encryptionMethod=”pdfcrypt”
ebx:encryptionAlgorithmName=”DES”
ebx:encryptionAlgorithmExtra=”none”
ebx:encryptionKeyLength=”56”>
application/pdf

</dc:format>
</ebx:metadata>

85 EBX System Specification – Draft 0.8 09/06/00

7 Voucher Format
It is important that the format of Vouchers and Credentials be standardized to ensure
interoperability between publishers, booksellers, libraries, and consumers. To allow vouchers
and credentials to be readily used by many components, the object format for these objects is
XML [XML98]. Since metadata is not stored in vouchers or credentials, the use of XML in
EBX is limited to the UTF-8 encoding.

7.1 Rights Specification
All rights are assigned at the initial creation of an encrypted e-book and its associated voucher
(the “master voucher”) during the publication process in a voucher server by the EBX role of
Publisher.

The publisher section of the voucher (rights kernel) contains this initial rights description, and is
signed so that at any point in the downstream life cycle of the voucher in the value chain, the
rights granted to the current licensee can be compared to the rights set forth at the time the initial
master voucher was created.

The licensee section of the voucher contains the set of rights granted to the current holder of the
voucher.

Any time that a voucher is issued, the issuing voucher engine will modify the licensee section of
the issued voucher with appropriate rights, depending on the context of the transaction.

7.1.1 Rights Overview
EBX specifies two types of rights. The licensee is granted some or all of these rights.

• = Transfer rights allow the holder to sell, give, or lend the book, or any other similar
operation. These rights are typically applied when the rights holder (licensee) is a voucher
distributor [server].

• = Usage rights allow the holder to display, print, or to copy the book to the clipboard, or any
other similar operation. These rights are typically applied when the rights holder (licensee) is
a consumer.

Rights may be constrained in various ways.

Rights may often be limited in scope.

The scope of transfer rights could be limited by quantities or counts. The scope of usage rights
could be limited by time periods and frequencies. These are only examples, and are not meant to
be mutually exclusive or all-inclusive.

Usage rights may be limited to certain portion of the work, limited by a device class, or to certain
authorization contexts.

86 EBX System Specification – Draft 0.8 09/06/00

7.1.2 Licensee
The rights kernel, or publisher’s rights, are created during the create voucher transaction at the
publisher voucher server. The right kernel “locks in” the rights available to all consumers of the
voucher as it is issued for downstream consumption in the value chain. These consumers are
referred to as the licensees.

When a voucher is issued, the licensee (the entity that the voucher is being issued to) is granted
rights as specified in the rights kernel section that applies to the transaction.

Licensee Description
Voucher Distributor This section of the rights kernel contains the rights that a voucher

distributor has. Obvious examples will be the sell and modify rights.
The lend right would be included here to enable the voucher for lending
by a voucher server on behalf of a library.

Consumer This section of the rights kernel contains the rights that a consumer has.
All usage rights would be specified here. If the voucher is enabled for
consumer-to-consumer lending, some transfer rights would also be
specified here as well.

7.1.3 Transfer Rights
Some set of transfer rights are always granted to the licensee when the voucher is issued to
another voucher distributor. Transfer rights may or may not be granted to the licensee when the
voucher is issued to a consumer

A transfer right that is not specifically stated in the voucher is not granted to the licensee.

Note: When the master voucher is created, there is an implicit licensee section created that
should grant infinite transfer rights. This master voucher is created on behalf of the rights owner
(publisher), therefore the rights owner can distribute them forever. This allows all voucher
distributors (one of which implicitly operates on behalf of the publisher) to behave generically to
follow rules to flow the vouchers downstream, either directly to consumers or to other voucher
distributors.

Right Description
Sell The licensee may issue vouchers from this voucher as the result of value being

exchanged (sale).
Lend The licensee may issue vouchers from this voucher for the purposes of a loan.
Give The licensee may issue vouchers from this voucher for the purposes of a gift.
Modify The licensee may modify (narrow) rights when issuing a voucher

Other possible transfer rights:

Vend, Distribute, Return, Derive, Share

87 EBX System Specification – Draft 0.8 09/06/00

7.1.4 Usage Rights
Some set of usage rights are always granted to the licensee when the voucher is issued to a
consumer. Usage rights may or may not be granted to the licensee when the voucher is issued to
a voucher distributor.

A usage right that is not specifically stated in the voucher is not granted to the licensee.

Right Description
Display The licensee may display the work.
Print The licensee may print the work
Copy The licensee may copy the work
Narrow Rights The licensee may narrow the rights if vouchers are issued from this voucher

Other possible usage rights:

Backup, Export, Preview, Delete, Annotate, Perform, Install, Uninstall

7.1.5 Authorization context
A right may be modified by an authorization context such that the right is constrained for use by
users (licensees) within the authorization context. If the authorization context is not specified,
the right is available to any licensee that holds the voucher.

It is recognized that the authorization context must be able to be determined by the reading
system. The methods for this have not really been discussed. If the authorization context is
specified, but cannot be determined, then the right is not granted.

Authorization
Context

Description

Network Right is restricted to some network
User Group Right is restricted to some user group
Geographical Area Right is restricted to some geographical area
Specific device Right is restricted to some specific device
Subscription Holder Right is restricted to some subscription holder
IP Address Right is restricted to some IP Address

7.1.6 Consideration
A right may be modified by consideration such that the right is not available for use unless some
exchange of value is performed. The implication is that there would be some URI or other
information provided with the consideration modifier so that the licensee’s reading system can
provide the correct information to exchange value in order to remove the constraint. If
consideration is not specified, the right is available to the licensee that holds the voucher, without
any further consideration.

88 EBX System Specification – Draft 0.8 09/06/00

[Editorial note. Currently in EBX, we have not specified how a voucher may be updated, or
exchanged. The implication of consideration is that the licensee’s voucher is reset to show that
value has been exchanged.]

Consideration Description
Consideration Right is not available until value is exchanged

7.1.7 Portion
A right may be modified by a portion such that the right is restricted to a specific portion of the
work, or on a contained object of the work. If the portion is not specified, the right is available
across the entire work referenced by the voucher.

It is recognized that the portion should specify an appropriate value relative to the file format of
the work. For example, some file formats may not be able to delineate portions such as
paragraph, page, chapter, while others may.

If the portion is specified, and the reading system cannot determine/understand the portion of the
work, then the right is not granted.

Portion Description
TOC Right is restricted to the Table of Contents
Chapter Right is restricted to a certain chapters
Page Right is restricted to certain pages

7.1.8 Target
Certain rights may be modified by a target such that the right is restricted to a specific target
device class. If the target is not specified, the right may be exercised on any device class
available to the licensee.

It is recognized that target is only appropriate when used with certain “rendering” types of rights
(Display, Print, Copy, for example).

If the target is specified, and the reading system does not have the device class available, then the
right is not granted.

Target Description
Screen Right is restricted to use on a screen
Daisy screen reader Right is restricted to use on a ??? daisy screen reader
Braille Device Right is restricted to use on a Braille Device
Image Printer Right is restricted to use on a Image Printer
Trusted printer Right is restricted to use on a Trusted printer
Conventional printer Right is restricted to use on a Conventional printer
Disk Right is restricted to use on a Disk

89 EBX System Specification – Draft 0.8 09/06/00

Target Description
Clipboard Right is restricted to use on the Clipboard

7.1.9 Scope
Certain rights may be limited in scope such that the right is restricted to a certain time period,
interval, or count. If the scope is not specified, the right may be exercised as often as the
licensee desires, forever into the future.

Scope Description
Start time Right may be exercised after the start time [absolute time]
End time Right may be exercised until the end time [absolute time]
Metered time Right may be exercised for a duration not to exceed the metered time

[time period]
Count Right may be exercised a certain number of times [integer]
Interval Restricted rights may be exercised on a recurring interval [time period].

This normally would be used in conjunction with count or metered time.
Maximum Maximum limits may be set upon the Count. [integer]

When count is used, there will be appropriate modifiers relative to the right that the count is
limiting. For example:

Print 3 pages - Sell 5,000 copies – Display 30 times

Here are some other simple examples of how scope could limit a right:

Print 5 pages every 3 days (count, interval)

Print 5 pages every 3 days maximum 30 pages (count, interval, maximum)

Display starting 8/10/2000 until 8/15/2000 (start time, end time)

Display until 8/3/2000 (end time)

Display for 14 hours (metered time)

7.1.10 Consumer’s knowledge of rights
A consumer in legitimate possession of an e-book should be advised of the specific rights
available to the consumer.

7.2 Voucher Object
[Editorial note. This section has not yet been edited for Version 0.8.]

This section lists the initial set of EBX Voucher elements. A complete XML DTD will
eventually be provided to formally define the syntax of a voucher.

An example of an EBX voucher encoded in XML is:

90 EBX System Specification – Draft 0.8 09/06/00

<?xml version="1.0" ?>
<EBX-Voucher version="0.5">

<ID type="ISBN"> 0130614661 </ID>
<ContentKey type="DES56" EncryptedWith=”RSA1024”>

34293aaNKi83jaJKsdfkjakkajssdf849238989=
</ContentKey>
<CopyCount> 1 </CopyCount>
<Rights> Lendable, Givable, Sellable </Rights>
<PersonalUse>

<Interval> Week </Interval>
<CopyUnit> Paragraph </CopyUnit>
<CopiesAllowed> 10 </CopiesAllowed>
<CopiesMade> 0 </CopiesMade>
<StartOfInterval> 1010 </StartOfInterval>

</PersonalUse>
<Lending>

<Status> Lent </Status>
<Period> 14 </Period>
<StartTime> 1010 </StartTime>
<TimeoutTime> 1024 </TimeoutTime>

</Lending>
<MAC Hash=”SHA1”> 23abCuH23748== </MAC>

</EBX-Voucher>

7.2.1 EBX-Voucher – Voucher start-tag
Each voucher must be enclosed in an EBX-Voucher element. The EBX-Voucher start-tag which
serves to identify the element as a Voucher, identify the revision code of the format.

The following attribute is required in the EBX-Voucher start tag:

• = Version - Version number. A string where the first digit is the major rev code, the second
digit is the minor rev code. The current version number is:

• = “0.5”

An example EBX-Voucher element is:
<EBX-Voucher version=”0.5”>

</EBX-Voucher>

7.2.2 ID – ISBN, DOI, or URN element
The ID element contains the ISBN or DOI of the protected e-book. ISBNs are numeric, and
contain 10 digits (excluding hyphens). DOIs are in the standard DOI format [DOI] which is a
DOI prefix, a delimiter (“/”) and a publisher-assigned value (typically an ISBN). The ID can
also be a URN [URN97], which has the general form “type=name”.

The following attributes are required in the ID start-tag:

• = Type – specifies the type of the identifier: “ISBN”, “DOI”, or “URN”.

An example ID element is:

<ID type=ISBN> 0130614661 </ID>

91 EBX System Specification – Draft 0.8 09/06/00

7.2.3 ContentKey – Content decryption key element
This element describes the type of the symmetric content decryption key for the book, and
contains the key itself. The symmetric key value is ALWAYS sent and stored encrypted with
the EBX public key of the owner of the voucher.

The following attributes are required for the ContentKey start-tag:

• = Type – specifies the algorithm and key size of the symmetric key. Currently defined
values are:

• = “RC440” – 40-bit RC4.

• = “DES56” – 56-bit DES (recommended).

• = “3DES” – Triple-DES.

• = EncryptedWith – specifies the public key algorithm and key size that was used to
encrypt the symmetric content key. Currently defined values are:

• = “RSA512” – RSA with a modulus of 512 bits.

• = “RSA1024” – RSA with a modulus of 1024 bits (recommended).

• = “RSA2048” – RSA with a modulus of 2048 bits.

The content of the ContentKey element is a symmetric key padded and encrypted with the RSA
algorithm using the encryption process defined in Section 8 of PKCS#1 [PKCS95]. Since the
symmetric key is encrypted with a public key, the block type is always 02. Therefore, if either a
56-bit DES or a 40-bit RC4 key is to be used and encrypted with a 512-bit RSA key, the
resulting value is always the size of the modulus of 512 bits (64 bytes). [Is there any reason to
use PKCS#12 here?]

Since the value of a PKCS#1 encryption block is binary, it is always converted to base64
encoding before it is used as the content of a ContentKey element.

7.2.4 CopyCount – Count of authorized copies element
The content of this value is the number of copies the holder of the voucher owns. There are
currently no attributes defined for the CopyCount start-tag.

Typically, this element has the value “1” for consumers and libraries and a higher value for
booksellers and distributors. If a library (or consumer) purchases more than one copy of an e-
book, then this count will be higher than 1 in their vouchers as well. For booksellers and
distributors, the CopyCount represents the number of copies of the e-book that the bookseller or
distributor has purchased and is allowed to resell.

For example:

92 EBX System Specification – Draft 0.8 09/06/00

<CopyCount> 1 </CopyCount>

7.2.5 Rights – Basic permissions element
The basic rights define whether the owner has the permission to give, lend, and/or sell copies of
the voucher. There are no attributes currently defined for the Rights start-tag.

The values in the content of the Rights element are separated by commas. The allowable values
for the content of the Rights element are:

• = Lendable – The e-book can be lent to another consumer or library.

• = Givable – The e-book can be given to another consumer or library.

• = Sellable – The e-book can be sold to another consumer, distributor, or bookseller.

For example:

<Rights> Lendable, Givable, Sellable </Rights>

7.2.6 Lending – Lending Timeout and Status Element
This element might not be present (the book has not been lent or borrowed). It contains a "status"
code (book is borrowed, book is lent out, book is not lent out), which tells the system whether
the book can be accessed on the current device. If the element is missing, then access is allowed.

The Lending elements are:

• = Status: Possible status codes are:

• = Borrowed - Book is borrowed;

• = Lent - Book is lent out;

• = Owned - book is not lent out (equivalent to no Lending element).

• = Period – Total number of days the book has been lent or borrowed.

• = StartTime - A number indicating (in days) the time at which a lending period started. It
is initialized on the current machine when a book is lent or borrowed, and is used to
determine when the lending period is over. This field is only present when the status is
either "Borrowed" or "Lent". The value is calculated as: (current clock ticks) / (ticks per
day).

• = TimeoutTime - A number representing the end of the lending period, in days. The
system gets the current "day" as above (current ticks / ticks-per-day), and compares with
the Lending Start Time element to determine whether or not the lending period has
expired. This element is only present if the status is either "Borrowed" or "Lent". The
StartTime

93 EBX System Specification – Draft 0.8 09/06/00

For example:

<Lending>
<Status> Lent </Status>
<Period> 14 </Period>
<StartTime> 1010 </StartTime>
<TimeoutTime> 1024 </TimeoutTime>

</Lending>

7.2.7 PersonalUse – Personal use element
If this element is missing, no personal use permissions are allowed. The PersonalUse element is
a container element for the actual personal use permissions elements. The personal use
permissions specify how often and what quantity of information can be copied (or printed) from
the e-book. The personal use permissions elements are:

• = Interval - The interval during which personal use copies and/or printouts are tracked.
The choices are: Day, Week, Month, Year.

• = NumberAllowed - The number of personal use copies and/or printouts that can be made
during Interval.

• = CopyUnit – A value indicating what portions of the work can be copied and/or printed.
The choices are: Paragraph, Page, Chapter, EntireWork.

• = StartOfInterval: The number of "days", calculated as: (current ticks) / (ticks per day).
This field is used to determine when an interval has expired. This a local state value and
is not transmitted between systems. It should be initialized the first time the voucher is
used by the current owner.

• = CopiesMade - The number of personal use copies and/or printouts that have been made
in the current interval. This a local state value and is not transmitted between systems. It
should be initialized the first time the voucher is used by the current owner.

For example:

<PersonalUse>
<Interval> Week </Interval>
<CopyUnit> Paragraph </CopyUnit>
<CopiesAllowed> 10 </CopiesAllowed>
<CopiesMade> 0 </CopiesMade>
<StartOfInterval> 1089 </StartOfInterval>

</PersonalUse>

7.2.8 MAC – Message Authentication Code element
The MAC element is required to be the last element in all EXB-Vouchers and is used to provide
a check on the rest of the elements in the EBX-Voucher element. The MAC is a hash of all of
the elements in the EBX-Voucher (up to, but not including, the MAC element) combined with
the symmetric content key (a plaintext version of it, of course) according to the algorithm
described in the HMAC RFC, RFC2104 [HMAC].

94 EBX System Specification – Draft 0.8 09/06/00

The purpose of the MAC is to prevent anyone from tampering with the voucher, while it is in
transit in the network or stored in permanent storage. However, to provide both privacy and
integrity with a single key, the symmetric content decryption key is used to encrypt the hash.

To verify the MAC and validate the voucher, the recipient should first decrypt the content key
element and then compute the HMAC hash on the voucher elements (up to but not including the
MAC element). If the computed hash matches the encrypted hash in the MAC element, then the
voucher is valid and has not been tampered with; otherwise, it should be rejected.

The MAC element content is currently computed using an SHA-1 hash (160 bits) combined with
the symmetric content key. The resulting HMAC hash is then base64 encoded.

The following attribute is required on the MAC start-tag:

• = Hash – Hash algorithm name. The only value currently supported is:

• = “SHA1” – Secure Hash Algorithm 1.

For example:

<MAC Hash=”SHA1”> 23abCuH2akjskdjfkjjskdjkjdj3748== </MAC>

95 EBX System Specification – Draft 0.8 09/06/00

8 Format of Other Objects

8.1 Credentials Object Format
This section lists the initial set of EBX Credentials elements. A complete XML DTD will
eventually be provided to formally define the syntax of credentials.

An example of a Credentials object is:

<?xml version="1.0" ?>
<ebx:credentials version="0.8">

<ebx:authenticationScheme
ebx:encryptionAlgorithmID=”tueh87yRHiuy975hfh4rd”
ebx:encryptionAlgorithmName=”RSA”
ebx:signatureAlgorithmID=”n457skYh29H8erg”
ebx:signatureAlgorithmName=”RSA-SHA1”>pki-rsa-sha1

</ebx:authenticationScheme>
<nonce>lbJkMjTeUz1OL9tXaYhNSnR42iIq</nonce>
<signedData>MIIDwQYJKoZIhvcNAQcCoIIDsjCCA64CAQExCzAJBgUrDgMCGgUAM
AsGCSqGSIb3DQEHAaCCAnQwggJwMIIB2aADAgECAgEAMA0GCSqGSIb3DQEBBQUAMG
oxaDAJBgNVBAYTAlVTMBQGA1UECBMNTWFzc2FjaHVzZXR0czAhBgNVBAsTGlRFU1Q
gQ0VSVElGSUNBVEUgQVVUSE9SSVRZMCIGA1UEChMbR2xhc3Nib29rLCBJbmMuIC0g
VEVTVCBPTkxZMB4XDTAwMDcwOTIwMjYzOFoXDTEwMDcwODIwMjYzOFowajFoMAkGA
1UEBhMCVVMwFAYDVQQIEw1NYXNzYWNodXNldHRzMCEGA1UECxMaVEVTVCBDRVJUSU
ZJQ0FURSBBVVRIT1JJVFkwIgYDVQQKExtHbGFzc2Jvb2ssIEluYy4gLSBURVNUIE9
OTFkwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANPWjIW6aw8yE9PwLD+IevFz
Q4aONTzI8ptNUSlauKzNWhh8QlYXYp5eiSgQsS6yl9zvXodl7tgQxw5Wc3uvRsjTl
nU5LRqIAlj+6z3BHoVVbUoUX6QUoVWFfZz575XXHZ5c8DxeCwVQJWNWSZ9qJA4HgW
6BvNUczVC/aYQaS6mDAgMBAAGjJjAkMBIGA1UdEwEB/wQIMAYBAf8CAQAwDgYDVR0
iAQH/BAQwAjAAMA0GCSqGSIb3DQEBBQUAA4GBAHpAL2BuMHbPRgfSPg/SZDUsN81q
nxAZLtgzkd5hzYw68rCJfL8MZWGCBaTm7M60Cza95HYoeiFT68Sg85ZehcmBjNebZ
ypt4tYCh5A4uqjOuUIBzXzZcbCA8vouCPkUPcTDljJ0hrJc/SZZUe5wkE2GWjn1t8
7PM0Z5JbJzczQxMYIBFTCCARECAQEwbzBqMWgwCQYDVQQGEwJVUzAUBgNVBAgTDU1
hc3NhY2h1c2V0dHMwIQYDVQQLExpURVNUIENFUlRJRklDQVRFIEFVVEhPUklUWTAi
BgNVBAoTG0dsYXNzYm9vaywgSW5jLiAtIFRFU1QgT05MWQIBADAJBgUrDgMCGgUAM
A0GCSqGSIb3DQEBAQUABIGAkyw6vEziW8aPiWJ/BPFCIAxRnFnYRy4xXYruM5myTg
eygAff//CbaFN92pXOE/48Mf987PRbECOvJxQ1kY2M6bHQq7r7CDEx8VmYEXjf6v6
IlCaEmESmTyPzUwbKzhtuBM8VHg6xlRm/GgPcdUDuAol0///lcujXJQ6+U/w/s9w=
</signedData>

</ebx:credentials>

8.1.1 Credentials – Credentials start-tag
Each credentials object must be enclosed in an Credentials element. The Credentials start-tag
which serves to identify the element as a Credentials and identify the revision code of the
element.

The following attribute is required in the Credentials start tag:

• = Version - Version number. A string where the first digit is the major rev code, the second
digit is the minor rev code. The current version number is:

• = “0.8”

96 EBX System Specification – Draft 0.8 09/06/00

An example Credentials element is:

<ebx:credentials version=”0.8”>

</ebx:credentials>

8.1.2 AuthenticationScheme
The authenticationScheme element contains the authentication scheme that the recipient is using
for the transaction. The authentication scheme used in the example is only an example. Refer to
Appendix A, Certification Policies and Procedures, for details on the algorithms supported. The
authentication scheme element contains the following optional attributes:

8.1.2.1 EncryptionAlgorithmID
The encryptionAlgorithmID attribute contains the OID of the encryption algorithm used in a
public-private key or other authentication scheme. This algorithm identifier specifies how the
server should encrypt the content key, including any particular variations (e.g., padding, etc.).
The algorithm identifier also specifies how the server should interpret the recipient’s public key.
The OID is encoded using the Basic Encoding Rules (BER) [Reference to ***], and then base64
encoded [MIME]. This attribute is optional.

8.1.2.2 EncryptionAlgorithmName
The encryptionAlgorithmName attribute contains a human-readable name for the encryption
algorithm. This attribute is optional, and is present only for readability.

8.1.2.3 SignatureAlgorithmID
The signatureAlgorithmID attribute contains the OID of the signature algorithm used to produce
the signed data message. The OID is encoded using the Basic Encoding Rules (BER) [Reference
to ***], and then base64 encoded [MIME]. This attribute is optional.

8.1.2.4 SignatureAlgorithmName
The signatureAlgorithmName attribute contains a human-readable name for the signature
algorithm. This attribute is optional, and is present only for readability.

8.1.2.5 Value
The value of the ebx:authenticationScheme element is a human-readable mnemonic, representing
the entire authentication scheme. The server must be able to interpret the credentials based
solely this value, and must not rely on the algorithm IDs or names.

8.1.3 Nonce
The nonce element contains a cleartext copy of the nonce issued by the current voucher owner.
For a purchase or borrow transaction, the nonce is obtained from the fulfillment instructions
described in the Voucher Server Processing of Handoff Request section on page 53. For a give or

97 EBX System Specification – Draft 0.8 09/06/00

lend transaction, the nonce is obtained from the transfer data as described in the Transfer Request
from Owner to Receiver (give, lend) section on page 64. The nonce is base64 encoded. For
example:

<nonce>lbJkMjTeUz1OL9tXaYhNSnR42iIq</nonce>

8.1.4 SignedData
The signed data element contains a base64-encoded PKCS #7 signed data message [PKCS]. The
following constraints apply to the signed data message:

The signed data message must contain a single signerInfo.

The signed data message must not contain any authenticatedAttributes.

The signed data message must include the signer’s certificate and all certificates that form a
certificate chain up to and including a certificate that is signed by an EBX trusted Root CA.

The signed data message may contain the certificate of an EBX trusted Root CA, but is not
required to contain such a certificate. The certificate(s) of the EBX Root CA(s) may be assumed
to be available at the server end of any transfers involving certificate chains.

The signed data message should not contain any crls. The voucher server must ignore any crls
found in the signed data message.

The voucher server may any supported algorithm combinations as defined in Appendix A,
Certification Policies and Procedures, and should list them in the algorithm negotiation section of
the transfer protocol. See section 4.7 and 4.8 for details on the algorithm negotiation.

98 EBX System Specification – Draft 0.8 09/06/00

9 Appendix A: Certification Policies and Procedures
This appendix will be enlarged to describe methods, policies, and procedures used by certifying
organizations. Initially the policies will be based on interpretation of this specification. Reports
from certifying organizations and from inspections will be used by the EBX Working Group to
refine these procedures.

99 EBX System Specification – Draft 0.8 09/06/00

10 Appendix B: Applicable Laws

10.1 U.S. Export Laws
Export of encryption software in American-made software products requires an export license
from the U.S. government. U.S. implementers are cautioned to check carefully with their legal
advisers and with the relevant U.S. government agencies (such as the Bureau of Export
Administration, www.bxa.doc.gov).

Traditionally, applications of usefully strong cryptography have been frustrated by export control
laws and regulations administered by the U.S. government. These regulations limit the rights of
U.S. companies to export products that use cryptography. Specifically forbidden are such
practices as:

• = Exporting software products (or other products) that have “plug-replaceable” encryption
functions.

• = Exporting software products that use encryption keys longer than a specified number of
bits; the minimum value slowly increases as previous values become trivial to break.

Key exchange applications (use of strong encryption to encrypt and decrypt content keys, like
the ones in EBX vouchers) and most digital signature applications (such as the authentication
methods used in EBX) are loosely regulated if at all. The government’s motive for the
regulations is to prevent strong encryption from being used by spies or other criminals, to
encrypt data.

In 1999 the Clinton Administration announced its intention to relax these rules, although new
regulations were not published until the turn of the century and still are being interpreted by
regulators and lawyers. At this time (May 18, 2000), the net of these regulations appears to be as
follows:

• = A software product that is classified as both a “retail” and a “mass market” software
product, according to specific government definitions, can use key lengths up to and
including 64 bits.

o Products classified this way still cannot be legally exported to certain countries,
such as Serbia and Cuba.

o Products classified this way are exempt from reporting requirements—in other
words the vendor does not have to report individual shipments.

• = Use of key lengths longer than 64 bits requires a specific review by the government of the
software design and may also require reporting of specific exports.

• = All products require a license if they do bulk data encryption. In other words, you cannot
simply say after the fact that you use only 64 bit keys; you still need to have apply to the
government and get the green light.

100 EBX System Specification – Draft 0.8 09/06/00

Some observers following this area, including some attorneys specializing in export law, think
that all key length restrictions may be dropped in the future, at least for applications that are
specifically aimed at copyright protection. However, that has not yet happened.

10.2 (U.S.) Digital Millennium Copyright Act
The Digital Millennium Copyright Act is the U.S. law implementing the “World Intellectual
Property Organization Copyright Treaty and Performances and Phonograms Treaty,” to which
the U. S. A. is a signatory. The law was signed by the President of the United States and became
public law 105-304 in October 1998.

The law has several implications for this specification and for copyright protection in general and
is useful reading for most readers of this specification. Two implications are:

• = Chapter 12 of the law states, “No person shall circumvent a technological measure that
effectively controls access to a work protected under this title [this law].” With some
exceptions, it is illegal in the United States (as of October 2000) to reverse engineer a
copyright protection system, traffic in tools that have no other purpose than this, etc.

• = The law contains a specific exception: the law does not protect activity that circumvents
such a ‘technological measure’ if the motive of the circumvention is to remove
“personally identifying” information from the technical protection. This section is
sometimes cited as a reason to avoid inclusion of personal identifying information (such
as a purchaser’s identity) in data used in the copyright protection system, data such as a
digital signature.

A PDF version of the full law is available at:

 (http://frwebgate.access.gpo.gov/cgi-
bin/getdoc.cgi?dbname=105_cong_bills&docid=f:h2281enr.txt.pdf).

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=105_cong_bills&docid=f:h2281enr.txt.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=105_cong_bills&docid=f:h2281enr.txt.pdf

101 EBX System Specification – Draft 0.8 09/06/00

11 Appendix C - Content Format Requirements
[Editorial note. This section has not yet been edited for Version 0.8.]

EBX is designed to support multiple content formats. However, there are some minimal
requirements imposed on the content format by EBX. The content format must provide the
following capabilities:

• = Single Container File - The content must be capable of transfer and storage in a single
container file. This requirement is necessitated by the EBX use of HTTP for distribution,
which for simplicity and efficiency, provides for the transfer of a single content object per
transaction.

• = Encryption – The content must be encryptable with a symmetric key from an EBX voucher.

• = Bibliographic Metadata - The content format must provide for a small number of directly
accessible bibliographic metadata attributes to be stored in the content file. For example, the
Title, Author, Publisher, Copyright, and ISBN must be stored in the content file.

• = Scalable Text and Graphics – The content format should provide scalable text, bit-mapped
images, and, if provided at all, scalable vector graphics. This requirement is necessitated by
the need for the same content to be displayable on displays of differing sizes.

The following are not required capabilities:

• = Re-flowable pages – The content format can include either pre-paginated content or
paginate-on-the-fly pages.

102 EBX System Specification – Draft 0.8 09/06/00

12 Appendix D - Content Format Usage Guidelines
[Editorial note. This section has not yet been edited for Version 0.8.]

The following sections specify how the content formats supported by EBX should be used.

12.1 Open eBook Format
NOTE: This is a very rough concept of how Open eBook could be supported. Comments are
gratefully encouraged.

The Open eBook 1.0 Publication Structure Specification, Version 0.8 is the current draft
document defining the Open eBook format. To quote the document:

“The Open eBook 1.0 Publication structure defines a format for content as released by the
publisher ready for packaging and delivery to an end-user’s reading device. Other intermediate
forms of the data may be used during delivery to the reading device; such intermediate formats
are beyond the scope of this specification. In particular, secured delivery of non-public domain
content requires a secure distributor, who is responsible for delivery the content in usable but
protected form, perhaps using intermediate parties as appropriate.”

In other words, to provide interoperability of Open eBook publications, EBX must define an
intermediate file format, encryption, etc. suitable for distribution and delivery.

12.1.1 Container File Format
The first problem to be solved is to define an intermediate “container file” format for Open
eBook. Open eBook requires a container file because it is based on HTML and XML, which
implies that many of the components of a book (e.g., images, fonts, etc.) are contained in
individual files (e.g., GIF, JPEG) and addressed by links within the HTML/XML.

One solution to this problem is MIME [RFC2045]. However, MIME is a 7-bit ASCII, stream-
oriented format. In other words, it is usable as a transfer format, but to provide reasonable
performance (i.e., efficient random access), it must be parsed and stored in a different format.
Using the standard MIME encoding also is very inefficient because of the need to convert all
data to 7-bit ASCII.

Another choice for an container file format is ZIP [ZIP98]. ZIP files provide a number of
features that make it ideal as container file format:

• = Compression – ZIP uses LZW compression.

• = Full file path specification – Links in Open eBook typically use a full pathname.

• = Random access – ZIP provides random access to the files in the ZIP file, which also is
needed for efficiency.

103 EBX System Specification – Draft 0.8 09/06/00

• = Tools – Tools for ZIP file handling are widely available. For example, Java includes ZIP
file handling classes and PKWARE, among others, provides “C” language libraries.

The ZIP file should contain a special Manifest file named “manifest.xml” that contains an
ordered list of file names for the cover page, front matter, table of contents, chapters, index, and
back matter of the book. The definition of this file is T.B.S.

12.1.2 Encryption
One of the requirements for EBX is that the content must at all times be encrypted with a
symmetric encryption key. For good interactive performance, rather than encrypting the whole
container file, the individual contained files should be encrypted separately so they can be
decrypted as needed.

PKZIP has defined a ZIP file encryption algorithm which provides individual file-level
decryption. Unfortunately, according to some analyses [SCHNEIER96] the PKZIP encryption
algorithm is “not that great”.

Therefore, the EBX encryption technique is to individually encrypt all the files and then
compress them into a ZIP container file. Encrypting before compressing does not yield the best
compression, but it does provide the best security.

12.1.3 Metadata
The Open eBook specification defines how the Dublin Core Metadata Element Set [DUBLIN97]
is to be encoded in an Open eBook file. [Is it be stored in a separate XML file in the ZIP
container file or embedded in the HTML?]

12.1.4 Display Properties
The Open eBook 1.0 specification defines that the minimum display must support 1 bit / pixel
monochrome images of at least 320 x 320 pixels. Larger screens with more colors are also
supported, though not defined at this time.

Properties like display resolution, size, orientation, etc. are not currently defined by the Open
eBook specification. [To provide true interoperability, should they be specified in EBX?]

12.1.5 Font Embedding
T.B.S.

12.1.6 Open eBook Book Design Guidelines
When Open eBook is used as an EBX content format, the following design criteria should be
used:

• = ?? Aspect Ratio – [Does it matter?]

104 EBX System Specification – Draft 0.8 09/06/00

• = Nominal Page Size – [Does it matter?]

• = Minimum Font Size – To ensure easy viewing of text on the lowest resolution screen the
minimum font size used in the body of the text should be 11 point. Smaller sizes can be
used, but they will be difficult to read on low resolution screens.

• = Cover Page –The ZIP file should contain a cover page named “FirstPage.html. This will be
the first page displayed by the reading device. The cover page should contain a (color if
possible) image of the cover of the book. Additional pages may simply be also contained in
the FirstPage file, or there may be links to the additional pages.

• = Table of Contents – The ZIP file should contain at least one file that is a table of contents.
The table of contents should provide links to the pages listed in the contents. It should be
named “Contents.html.

• = Index – If the ZIP file contains an index, it should be named “Index.html.

• = Chapters – If the book contains chapters, each chapter should be contained within a separate
HTML file in the ZIP container file. The chapters should be linked-to from the Cover Page
and the Table of Contents, as well as listed in the Manifest.

105 EBX System Specification – Draft 0.8 09/06/00

13 Appendix E - References
[Editorial note. This section has not yet been edited for Version 0.8.]

This specification makes use of other standards and specifications. The following are references
to those documents.

[DC11] Dublin Core Metadata Element Set, Version 1.1: Reference Description,
http://purl.org/dc/elements/1.1/

[DCQ10] Dublin Core Metadata Qualifiers Set: Reference Description,
http://purl.org/dc/qualifiers/1.0/

[DES93] National Institute of Standards Data Encryption Standard, FIPS 42-6.
http://www.nist.gov/itl/div897/pubs/fip46-2.htm

[DOI] Digital Object Identifier System, http://www.doi.org/.

[DUBLIN97] The Dublin Core Metadata Element Set, 1997. http://purl.oclc.org/dc and
http://purl.org/DC/about/element_set.htm

[HMAC] HMAC: Keyed-Hashing for Message Authentication, RFC2104.
http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2104.txt

[HTTP1.1] Hyper Text Transfer Protocol – HTTP 1.1, RFC2068,
http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2068.txt

[IMT] Internet Media Types, http://www.isi.edu/in-notes/iana/assignments/media-types/media-
types

[ISBN] International Standard Book Numbering system, ISO Standard 2108.

[MARC21] MARC 21 Format for Bibliographic Data, http://lcweb.loc.gov/marc/

[MIME] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies, RFC2045. http://info.internet.isi.edu/in-notes/rfc/files/rfc2045.txt

[ONIX101] ONIX International Version 1.01, http://www.editeur.org/onix.html

[PKCS95] Pubic Key Cryptography Standard, RSA Laboratories, Security Dynamics, Inc.
http://www.rsa.com/rsalabs/pubs/PKCS/

[PDF96] Portable Document Format Reference Manual, Version 1.2, November 1996, Adobe
Systems, Inc. or Portable Document Format Reference Manual (ISBN 0-201-62628-4).
http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF

[POSTSCRIPT3] Postscript 3, Adobe Systems.
http://www.adobe.com/prodindex/postscript/main.html

http://purl.org/dc/elements/1.1/
http://purl.org/dc/qualifiers/1.0/
http://www.nist.gov/itl/div897/pubs/fip46-2.htm
http://www.doi.org/
http://purl.oclc.org/dc
http://purl.org/DC/about/element_set.htm
http://info.internet.isi.edu/in-notes/rfc/files/rfc2104.txt
http://info.internet.isi.edu/in-notes/rfc/files/rfc2068.txt
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types
http://lcweb.loc.gov/marc/
http://info.internet.isi.edu/in-notes/rfc/files/rfc2045.txt
http://www.editeur.org/onix.html
http://www.rsa.com/rsalabs/pubs/PKCS/
http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF
http://www.adobe.com/prodindex/postscript/main.html

106 EBX System Specification – Draft 0.8 09/06/00

[RSA82] RSA Public Key Crypto System, RSA Data Security Division, Security Dynamics, Inc.

[SCHNEIER96] Applied Cryptography, Second Edition, 1996, Bruce Schneier. ISBN 0-471-
11709-9.

[SSL96] Secure Sockets Layer Specification 3.0, Netscape, Inc.,

[URN97] rfc2141.txt -- URN Syntax. R. Moats. May 1997.

[WIPO96] World Intellectual Property Organization Copyright Treaty, 1996.
http://www.wipo.org/eng/diplconf/distrib/94dc.htm

[X509] ITU (CCITT) Recommendation X.509: The Directory -- Authentication Framework.
1988.

[XML98] Extensible Markup Language, W3C, 1998. http://www.w3.org/XML/

[ZIP98] PKZIP Application Note – General Format of a ZIP File, PKWARE, 1998.
http://www.pkware.com/appnote.html

--

http://info.internet.isi.edu/in-notes/rfc/files/rfc2141.txt
http://www.wipo.org/eng/diplconf/distrib/94dc.htm
http://www.w3.org/XML/
http://www.pkware.com/appnote.html

107 EBX System Specification – Draft 0.8 09/06/00

14 Appendix F - Edit History

14.1 Version 0.1
• = First draft released to EBX Working Group 11/18/98.

14.2 Version 0.2
• = Added new requirements for consumers, publishers, booksellers, and libraries as discussed in

12/7/98 EBX Working Group conference call.

• = Changed smart cards to be optional rather than required consumer voucher engines, as
discussed in 12/7/98 EBX WG.

• = Moved hardware and content format sections to appendices to indicate they are not primary
parts of specification.

14.3 Version 0.3
• = Added additional requirements for consumers and publishers as agreed in 1/29/99 EBX WG

meeting.

• = Changed protocol to use HTTP instead of custom protocol as agreed in 1/29/99 EBX WG
meeting.

• = Changed voucher encoding from binary to XML as agreed in 1/29/99 EBX WG meeting.

• = Changed book indentifier to support ISBN, DOI, or other identifiers as agreed in 1/29/99
EBX WG meeting.

• = Added a proposed section on Open eBook Usage Guidelines. Reworked the Postscript/PDF
Usage Guidelines so both sections are parallel. Removed old Appendix B on Hardware
Requirements. Changed PDF metadata model from MARC to Dublin Core.

14.4 Version 0.4
• = Added URN [RFC2141] as an ID type in a voucher, as agreed in 3/2/99 EBX WG meeting.

• = Changed all hashing from MD5 to SHA-s1, as agreed in 3/2/99 EBX WG meeting.

• = Rename “Fair Use” to “Personal Use” as discussed in 3/2/99 EBX WG meeting.

• = Additional content key crypto algorithms and key lengths were added as discussed in 3/2/99
EBX WG meeting.

• = The Nonce element in a Credentials object has been re-defined to be the signed nonce rather
than simply the encrypted nonce. This change was recommended by a reviewer.

108 EBX System Specification – Draft 0.8 09/06/00

• = Changed the query parameters in the HTTP request to agree with the discussion in the 3/2/99
EBX WG meeting. Added more description and examples as requested. Changed to all
lower-case values to better match “accepted practice”.

• = Changed the voucher MIC to a MAC based on the HMAC RFC because the HMAC appears
to be a better-understood technology than just an encrypted hash.

14.5 Version 0.5
• = Moved PDF to a separate Application Note document, at the request of the Open eBook

Working Group.

14.6 Version 0.6
• = Revised definitions and added roles as discussed in the EBX Working Group Technical

Committee meeting held 29 February and 1 March 2000.

• = Revised transfer protocol.

• = Revised credentials object format.

• = Added a section on ACK attacks.

14.7 Version 0.7
• = Added work on the trust model completed by the Trust Model working group of the

Technical Committee.

• = Revised transfer protocol to make it independent of the transport protocol; converted HTTP
specifications to implementation notes.

• = Revised transfer protocol to move data from headers to XML bodies of requests and
responses.

• = Added metadata format.

• = Revised voucher engine model to add EBX rules, generic operations, and versioning of
basic-rights processing for compatibility with later EBX revisions.

• = Removed Security Considerations section and parts of the voucher engine model that dealt
with security.

14.8 Version 0.8
• = In general, incorporated changes agreed to at the EBX Working Group Technical Committee

meeting held 11-12 July 2000.

109 EBX System Specification – Draft 0.8 09/06/00

• = Added elements to transfer data and response data to allow negotiation of authentication
schemes.

• = Revised credentials object format.

• = Revised voucher engine interfaces, including addition of optional content encryption in the
Issue Voucher operation to accommodate per-user encryption of content.

• = Added proposed rights specification.

	An Overview of the EBX System
	Terms
	Roles
	System Principles
	Consumer Needs
	Bookseller and Distributor Needs
	Publisher Needs
	Author Needs
	Library Needs

	Assumptions
	Basic Design
	Vouchers
	Functional Model
	Publishing
	Distribution to Online Booksellers and/or Distributors
	Delivery to Consumers
	Transfer Between Consumers – “Give/Lend”
	Transfer Between Libraries and Consumers

	Trust Model
	Reliance on Trust for Negotiation of Details
	Results and Effects of the Trust Model
	Need for Prescription
	Trust Model Overview
	Behavior of Components in a Multivendor Environment
	Future Versions
	Evaluation and Rating of Products from Different Manufacturers
	Trustedness and Trust Services
	List of Trust Services
	Factors Affecting the Value of Content

	Characterizing Trust Levels
	Scope of Particular Failures
	Skill, Tools and Expense Required to Cause Failures
	Trust Levels and Certification
	Perspectives on the Six Levels of Trust
	Definitions of Trust Levels
	Level-0 – (lowest) No protection
	Level-1 – Signed by Author/Publisher
	Level-2 – Personalize book to purchaser – Honor system
	Level-3 – Software DRM
	Level-4 – High Value
	Level-5 (highest) – Industrial Level Hacking / Cryptanalysis Required

	Foundation Trust Services
	PKI: Foundation Mechanism for Authentication
	Requirements
	Overall EBX Certificate Authority Architecture
	EBX Root Certificate Authority
	Registration Authority and Registration Authority Operators (RAOs)
	Validation Authorities

	Vendor Certificate Authorities
	Vendor Certificate Services

	Component Trust Level Certification
	Certification Criteria
	Certification Methods
	Certification Entities
	Reviews

	Transfer Protocol
	Transfer Protocol and Transport Protocols
	Domains of Trust
	Example Operation – E-book Purchase
	Notational Conventions and Generic Grammar
	HTTP Implementation Note: EBX HTTP Request
	HTTP Implementation Note: EBX HTTP Header Extensions
	EBX-Action Header
	EBX-Version Header
	EBX Challenge-Response Headers
	EBX-Authenticate Header
	Implied EBX-Authenticate Header

	EBX-Authorization Header
	EBX-Authenticationinfo Header

	Receiving Fulfillment Instructions (handoff)
	Handoff Request to Voucher Server
	HTTP Implementation Note

	Voucher Server Processing of Handoff Request
	Handoff Response from Voucher Server (XML fulfillment instructions)
	HTTP Implementation Note
	Windows Registration Implementation Note

	Client Processing of Handoff Response from Voucher Server (XML fulfillment instructions)

	Getting Voucher(s)
	Voucher Request to Voucher Server (purchase, borrow)
	HTTP Implementation Note

	Voucher Server Processing of Voucher Request (purchase, borrow)
	Response from Voucher Server (purchase, borrow)
	HTTP Implementation Note

	Client Processing of Response from Voucher Server for Voucher Request (purchase, borrow)
	Acknowledgment Request to Voucher Server (ACK)
	HTTP Implementation Note

	Voucher Server Processing of Acknowledgment Request (ACK)
	Acknowledgment Response from Voucher Server (ACK)
	HTTP Implementation Note

	Client Processing of Acknowledgment Response from Voucher Server (ACK)

	Getting Encrypted E-book(s)
	Content Request to Content Server (purchase, borrow)
	HTTP Implementation Note

	Content Response from Content Server (purchase, borrow)
	HTTP Implementation Note

	Giving or Lending a Book (consumer to consumer)
	Transfer Request from Owner to Receiver (give, lend)
	HTTP Implementation Note

	Transfer Response from Receiver to Owner (give, lend)
	HTTP Implementation Note

	Owner Processing of Transfer Response from Receiver (give, lend)
	Voucher Transmission Request from Owner to Receiver (give, lend)
	HTTP Implementation Note

	Receiver Processing of Voucher Transmission Request (give, lend)
	Voucher Transmission Response from Receiver to Owner (give, lend)
	HTTP Implementation Note

	Owner Processing of Voucher Transmission Response from Receiver (give, lend)
	Content Transmission Request from Owner to Receiver (give, lend)
	HTTP Implementation Note

	Content Transmission Response from Receiver to Owner (give, lend)
	HTTP Implementation Note

	Electronic Mail Transfer
	EBX Error Handling and Flow
	HTTP Implementation Note
	Successful Requests to Voucher Servers
	Failed Requests to Voucher Servers
	General Errors – 400
	Server Errors – 500 or 503
	No Acceptable Content – 406 (Not Acceptable)
	Order Delivered and ACKed – 410 (Gone)

	Discussion of Voucher Fulfillment and ACK

	Voucher Engine Model
	Voucher Engine Processing
	Voucher Engine Rules
	Voucher Engine Interfaces
	Create Voucher
	Issue Voucher
	Revoke Voucher
	Import Voucher
	Delete Voucher
	Issue Nonce
	Issue Credentials
	Encrypt Content
	Decrypt Content

	Voucher Engine Processing of EBX Rights
	Writing EBX Rights in a Voucher
	Enforcing EBX Rights in a Voucher

	Metadata Format
	Metadata Element
	Identifier Element
	Format Element
	Metadata Example

	Voucher Format
	Rights Specification
	Rights Overview
	Licensee
	Transfer Rights
	Usage Rights
	Authorization context
	Consideration
	Portion
	Target
	Scope
	Consumer’s knowledge of rights

	Voucher Object
	EBX-Voucher – Voucher start-tag
	ID – ISBN, DOI, or URN element
	ContentKey – Content decryption key element
	CopyCount – Count of authorized copies element
	Rights – Basic permissions element
	Lending – Lending Timeout and Status Element
	PersonalUse – Personal use element
	MAC – Message Authentication Code element

	Format of Other Objects
	Credentials Object Format
	Credentials – Credentials start-tag
	AuthenticationScheme
	EncryptionAlgorithmID
	EncryptionAlgorithmName
	SignatureAlgorithmID
	SignatureAlgorithmName
	Value

	Nonce
	SignedData

	Appendix A: Certification Policies and Procedures
	Appendix B: Applicable Laws
	U.S. Export Laws
	(U.S.) Digital Millennium Copyright Act

	Appendix C - Content Format Requirements
	Appendix D - Content Format Usage Guidelines
	Open eBook Format
	Container File Format
	Encryption
	Metadata
	Display Properties
	Font Embedding
	Open eBook Book Design Guidelines

	Appendix E - References
	Appendix F - Edit History
	Version 0.1
	Version 0.2
	Version 0.3
	Version 0.4
	Version 0.5
	Version 0.6
	Version 0.7
	Version 0.8

