
SAP®

Intern

Elements versus Attributes

20. March 2002
Gunther Stuhec
Verteiler: UBL-Group

1 Introduction
A common cause of confusion, or at least uncertainty, in the design of a schemas is the choice
between specifying parts of the document as elements or attributes. Elements and Attributes
are both containers for information. Many times the choice between an Element and an
Attribute seems very arbitrary, almost matter of style.

There is some information that could go either way. For example, Country could be an
Attribute or an Element. Neither way is right or wrong, it is just a choice. While the choice
may indeed be arbitrary in some cases, the 'typical' roles of Elements and Attributes and the
different types of content models and constraints of these two containers will be explained in
this document very shortly.

2 Characteristics
The fundamental difference between Elements and Attributes in XML 1.0 is to be define the
limits of what the two containers can be used for. It means that elements can contain child
elements as well as content and attributes can only hold content only. The distinction between
attribute and content element then becomes the distinction between an attribute and a
containment relationship with another object.

The following table shows the elementary differences of Elements and Attributes:

Elements Attributes

Can have child Elements nested within them Can't have nested Elements or Attributes; can
contain only strings, or lists of strings

Typically used for structured data items but can
be and are used for simple data items as well Typically used for "atomic" items of data

Elements must appear in the order specified in
the schema, but may appear several times.

Each Attribute of a particular Element can
only be specified once, but more than one
Attribute inside of one Element can be
specified in any order

Elements usually represent the natural, core
content, which would generally appear in every

Attributes represent data of secondary
importance; often metadata?

Copyright © 2000 SAP AG, All rights reserved Page 1 of 17

printout/display?
(Sub-)Elements usually represent parts of an
Element

Attributes usually represent properties of an
Element

2.1 Elements
Elements are logical units of information in a schema. They represent information objects.
Elements either contain information (text), or have a structure of subelements. Therefore
elements are good for representing structurally significant information.

Elements are more extensible than attributes in an evolving standard because elements can
contain other elements or substructures directly while attributes cannot. If a concept is defined
as an attribute initially, and then needs to be expanded to hold fine-grained information, it
must be changed to an element to be modeled correctly.

Elements can have attributes attached to them as metadata, while attributes cannot. Elements
are repeatable within the same container structure, but attributes can only appear once in the
attribute list of an element. In addition, if order of occurrence is significant, elements are the
only option because attributes do not have order.

2.2 Attributes
Attributes are atomic, referentially transparant characteristics of an object that have no
identity of their own. Generally this corresponds to primitive data types (e.g., Strings, Date,
etc.). Taking a more logical view, an attribute names some characteristic of an object that
models part of its internal state, and is not considered an object in its own right. That is, no
other objects have relationships to an attribute of an object, but rather to the object itself.

Attributes can be divided into the following types:

• The type of attribute that relating to element identification (ID and IDREF type
attributes, and those attributes of type CDATA that have application-specific
identification rules, such as the name attribute of the A element in HTML)

• Those containing tokens that identify one or more contexts in which the element
applies, or which identify one or more options to be used during processing of the
element (entity names, notation names, name tokens or values from a predefined set of
tokens)

• Those tokens that carry data to be used as part of the application (typically CDATA
type attributes).

• Attributes can also be describing the characteristics of information: a property of an
information object. For example, notation attributes clearly define the coding of the
data within the element, and so clearly control the processing of the contents.
Similarly entity attributes clearly identify external, unparsed, entities that will need to
be processed according to the rules applicable to the notation defined in the entity
declaration.

The general characteristics of attributes are:

• Attribute values can have no substructure

 Page 2 of 17

• Attributes are unordered, so there is no standard way to specify that one attribute's
value should precede the other's (there is no guarantee that an API will give you the
attributes in the same order that you specified them)

• Attributes can only contain multiple values if they are tokens (e.g., NMTOKEN) or
references to other elements (e.g., IDREFS)

• Attributes can only describe structures by using for example “xsi:type” and they can
link to them (IDREF or ENTITY) but they cannot contain subelements directly in
markup.

3 Advantages and Disadvantages of Attributes
It is much more easier to describe any general rule for using attributes esspecially, if the
advantages and disadvantages are putted into the opposite before.

The advantages of using Attributes are:

• In XML 1.0, and in the XML Schema, only attributes may have default values
assigned to them by the schema.

• Attributes can have names that indicate the role the value plays in the element.
Element contents have content names, but there can be by Attributes only to say what
role the content plays in any particular element that contains it.

• Attributes have (minimal) data types.
• Attributes take up less space as there is no need for an end tag. Using attributes for

data points results in a drastically smaller document representing the same
information.

• Attributes are easier to access in DOM.
• Attributes can be built in are unordered.
• Attributes can be used for data points disambiguates structure and information. Code

is much cleaner when using attributes for data points – attributes always contain data
points, and elements always contain structure.

• When extracting information from an XML document to store to an RDBMS, or vice-
versa, using attributes for data points forms a very clean mapping between the systems
- attributes always correspond to columns, while elements always correspond to
tables. This makes code to import and export data between RDBMS systems and
XML documents easy to write and very flexible.

• Attributes can be constrained against a predefined list of enumerated values.
• Attributes can have default values.
• Attributes are concise and easier to parse than elements.

The disadvantages of using Attributes are:

• Attributes aren't as convenient for long text, large values, or binary entities.
• Attributes can't contain other elements. Therefore, there can't contain nested info.
• Attribute values are harder to search for in search engines
• Attribute values often don't appear on the screen in editing tools (you have to open a

special dialog or popup to see them)
• Attribute values can be slightly more awkward to access in processing APIs

 Page 3 of 17

• Attributes are ambiguity and not expandable for future changes. Each attribute is
either there or not. There is no way to indicate that if you provide this one, you can't
provide that one, or if these two are present, then you can't have that one, or if this one
is present, then that one has to also be present, and so on

• Whitespace can't be ignored in an attribute value.
• Attributes can only contain multiple values by using tokens.
• Attributes can describe structures in a difficult form by using “xsi:type” only. There is

no way to describe a srtucture by using like child elements.
• Attributes are more difficult to manipulate by program code

4 Guidelines
Attributes can actually be used to display of the information what would otherwise be
displayed withing the child elements. How can be done a decision when a piece of
information is an child-element or an attribute? Tim Bray has written to this proplem:
"...when the property has a simple value like a string, we put that in the content of the
element; when the property's value is another object, we put a pointer to it in an attribute
value and leave the element decribing the property empty."

That solution is one way but a efficient choice for definition depents not on values only. It
must be done additionally a consideration of the limitations and special properties of
Elements and Attributes which are depending on the disadvantages and advantages of each
too.The following considertions may be helpful for using of Elements or Attributes:

• The definition of an Element is advantangeous if the document property relate to the
structure of the document.

• An Element should be used to represent a piece of information that can be considered
an indpendent object.

• An Element should be used when the information is related via a parent/child
relationship to another piece of information. In this case, the element is also a
subelement of the element to which it is related.

• An Attribute should be used to represent any information "left over" after defining the
objects that have relationships to other objects (and should thus be elements and
subelements).

• An Attribute should be used to represent any information that describes other
information, such as a status or id.

• An Elemente must be used, if an item needs to occur multiple times, because attributes
can have only occur once in an element.

• An Attribut is very useful, if it necessary to limit values to a predefined list, since it is
possible to specify a valid list of values for an element.

• Attributes are a better choice, to minimize the file size of target documents.

The following diagram illustrates a way to find out how want to be an Element or an
Attributes necessary to be define it. This definition process depends by considering the
limitation and special propertiers which are in the following diagram included.

 Page 4 of 17

flat

unordered

hierachical

program

free-form

ordered

yes

yes

no meta-data

human

Create an
Element

undesired to be
spell-checked

to be spell-checked

enumeration

Are multiple information
flat or hierarchical?

Break information down
into flat structure.

Does a
specific value

represent information about
content of same hierachy,

or is the information
content itself?

Are the unordered
information existing of

two values only?

Are multiple
information unordered

or ordered?

Are the ordered
information existing of

two values only?

Create an
Attribute with

Enumeration-List

Does the value have
one of an enumeration

of values or is the value
of free-form?

Is each information
to be specified, manipulated,
organized, consumed by a

program or by
a human?

Is the content to be
spell-checked?

Create an
Attribute

Create an
Groupelement

higher
hierachies

5 Recommendation
In the Core Components Technical Specification a Core Component Type will be used for the
creation of Core Components. It consists of one Content Component for the value and one ore
more Suplementary Components for giving an essential extra definition to the Core
Component itself. The Core Component Type will be used for creation of Basic Core
Component (BBC) or Aggregate Core Components (ACC) respectively, which are necessary
for building of Basic Business Information Entities (BBIEs) or Aggregate Business
Information Entities.

 Page 5 of 17

Since this BBIEs are a derivation of BCCs and must have a human-readable business
semantic definition, the BCCs itself has to be defined as Elements. The content of each
Component Content are to be spell-checked in the most of situations. Therefore the
Component Content will be represented as an Element-Value.

The Supplementary Components will be represented as Attributes. Since, as the most of the
information of each Supplementary Components are restricting attributes, will be used by
programs and represented can be represented in a unordered form. Furthermore, the
Supplementary Components could be including information as enumerations.

All Aggregate Components (ACCs and ABIEs) are nodes in an hierachical order and nodes
inside of hierachies will be defined as Groupelements. The following figure describes the
relationship between the Core Components and the Business Information Entities and type of
representation in XML-syntax of each component.

Core
Component

Type

Basic
Core Component

Basic Business
Information

Entity

Aggregate
Core

Component

Aggregate
Business Information

Entity

Message /
Document

CORE BUSINESS

Repository
Core Component Library

defines in
context

defines in
context

containscontains

contains

contains

is of type

Content
Component

Supplementary
Component

1

1..*

Element-Value

Attribute
+Attributevalue

Elements + Attributes
(if Attributes for
Supplementary
Compoenents
necessary)

Elements + Attributes
(if Attributes for
Supplementary
Compoenents
necessary)

Elements + Attributes
(if Attributes for
Supplementary
Compoenents

necessary)

Groupelement

Groupelement
Groupelement

Data Dictionary

 Page 6 of 17

6 Proposal
I would like to do the following proposal for using attributes:

1. Attributes must be used for representation of the Global Unique Identifier by using ID
within all components like BCC, ACC, BBIE and ABIE.

2. Attributes should be used for defining the relationship between components. The
relationships in XML can also be represented with ID-IDREF(S) attributes. Using
these attributes, an element may refer to one or more other elements (by including the
value of those elements' ID fields in the pointing element's own IDREF or IDREFS
field). While this may seem to be directly analogous to a relational database's key
mechanisms, there's one important difference: Most parsers treat these pointers as
unidirectional. In other words, given an IDREF or IDREFS field, it's possible to
quickly find the element or elements with the associated ID or IDs, but not the other
way around. As you'll see when I discuss modeling solutions, this turns out to be a real
impediment to design.

3. An attribute should be be used, if the tagname of each CC or BIE will be represented
in another language as the Oxford English language. The language Oxford English
will be used as default.

4. Attributes should be used only inside of Core Component Types which are used for
defining of the Basic Core Components (Leaf Elements).

5. Attributes should be used only for defining of supplementary components only. The
supplementary components are fixed defined inside of the ebXML Core Component
Specification and must not expanded normally.

6. The content component should be defined only as an element content of each leaf
element.

7. An attribute should be not necessary, if it exists a default value for the specific
supplementary component.

As the following diagram shows, it will be two types of attributes are necessary:

Leaf ElementsGroups

Common Attributes
-uid (ID)
-uidRef (IDREF)
-uidRefs (IDREFS)
-Language (xml:lang)

ABIEsACCs BBIEs BCCs

Attributes for
Supplementary Components
e.c.
-(cct)*Identifier
-(cct)*AgencyIdentifier
-(cct)VersionIdentifier
-(cct)Name
-Language

*(cct) is a placeholder for the
specific core component type

 Page 7 of 17

The summary of the properties and the advantages of the proposed way is:

• For each Basic Core Component (BCC) is only one leaf-element necessary. We don’t
need a element group, which includes a bunch of child elements for the content
components as well as for the supplementary components.

• This definition is well structured and easy to read / easy to understand by a user.
• On the other hand the context-dependent BIEs can be easily used in the OO-design

and in the implementing coding.
• The information about supplementary components contained in the attribute value

only. This attribute values can be omitted in the instances, if the default value is
defined.

6.1 Empty Elements
All of the following type of empty elements are not necessary for building Basic Core
Components (BCCs) are Basic Business Information Entities (BBIEs) respectively:

 <ElementName/>

 <ElementName></ElementName>

 <ElementName attributeName=”Value”/>

 <ElementName attributeName=”Value”></ElementName>

Every BBIE derived from a BCC includes a content which is expressed by the element value
of a leaf element. Otherwise, it is a content not needed, the specific BBIE must not to be
expressed.

6.2 Common Attributes
For the definition of the common attributes (ID, IDREF, IDREFs and language) which will be
used within every Core Component and Business Information Entity respectively, there is a
attributegroup (the choosen name of that attribute group is “UidAttributeGroup” yet) defined.
This attribute group includes the following attributes:

• uid – The attribute “uid” identify each CC or BIE uniquely by expressing the GUID
(Global Unique Identifier). The “uid” based on the built-in datatype “ID”. The ID
must be represented in every CC and BIE.ID represents the ID attribute type from
[XML 1.0 (Second Edition)].

• uidRef – The attribute “uidRef” use a single IDREF relationship to point the relating
element back to the element it needs to reference. IDREF represents the IDREF
attribute type from [XML 1.0 (Second Edition)].

• uidRefs – The attribute “uidRefs” based on the built-in datatype IDREFS. IDREFS
can habve serveral targets (IDs). IDREFS represents the IDREFS attribute type from
[XML 1.0 (Second Edition)].

• xs:language – The Attribute “language” may be inserted in documents to specify the
language used for the tagnames for BIEs and CCs. The attribute represents natural

 Page 8 of 17

language identifiers as defined by [RFC 1766]. It will be used, if the tagname of each
CC or BIE will be not in the Oxford English language. The language Oxford English
will be used as default.

namespace CoreComponentTypes.xsd

used by complexTypes AmountType CodeType DateTimeType IdentifierType MeasureType NumericType QuantityType
TextType

attributes Name Type Use Default Fixed Annotation
uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

source <attributeGroup name="UidAttributeGroup">
 <attribute name="uid" type="xs:ID" use="required"/>
 <attribute name="uidRef" type="xs:IDREF" use="optional"/>
 <attribute name="uidRefs" type="xs:IDREFS" use="optional"/>
 <attribute name="lang" type="language" use="optional" default="en"/>
</attributeGroup>

6.3 Attributes for Supplementary Components
Attributes are useful for supplementary components especially. This will show the first
example:

<complexType name="AmountType" id="000105">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">
 A number of monetary units specified in a currency where the unit of currency is explicit or implied.
 </documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:AmountContentType">
 <attribute name="amountCurrencyIdentificationCode" type="cct:AmountCurrencyIdentificationCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

The first example represents the core component type "AmountType". The AmountType is
derived by the content component "AmountContentType". Therefore it is possible, that the
value of AmountType will represent in the derived Core Component directly and not by an
additional child element. And the "AmountType" includes on supplementary component
"AmountCurrencyIdentificationCode". This supplementary component is derived by
"AmountCurrencyIdentificationCodeType" and is represented as an attribute. The XML
instance of this "AmountType" is represented as is follows:

<Amount amountCurrencyIdentificationCode="EUR" uid="ID000000" uidRef="ID000000" uidRefs="ID000000 ID000001"
language="en">3.14</Amount>

The next example shows the "AmountType" without any attribute:

 <xs:complexType name="AmountType_0p2">
 <xs:sequence>

 Page 9 of 17

 <xs:element name="AmountContent" type="cct:AmountContentType"/>
 <xs:element name="AmountCurrencyIdentificationCode" type="cct:AmountCurrencyIdentificationCodeType"/>
 </xs:sequence>
 </xs:complexType>

It will be more complicated for the parser as well as the user, if the content will be
represented in an additional childelement inside the complexType "AmountType". Therefore
it is necessary to create two childelements inside of "AmountType". The XML instance will
be then shown as the following example:

 <Amount_0p2>
 <AmountContent>33.34</AmountContent>
 <AmountCurrencyIdentificationCode>EUR</AmountCurrencyIdentificationCode>
 </Amount_0p2>

It will be much more data necessary for building an instance of "AmountType". This will be
influenced the parsing of big documents especially. As well as that example is not better
readable as the first example. The new version of DOM as well as the SAX parser parsing all
attributes in a very fast and elegant way, faster as a lot of additional childelements.

The following example shows the creation of date-time elements in two different ways:

The first example shows the definition of the dateTime format with a built-in simpleType:

 <element name="DateTime_0p3" type="dateTime"/>

It is although possible to create the Date Time format in a special format, based on ISO 8601:

 <complexType name="DateTimeType_0p1">
 <simpleContent>
 <extension base="cct:DateTimeContentType">
 <attribute name="dateTimeFormat" type="cct:DateTimeFormatType"/>
 </extension>
 </simpleContent>
 </complexType>

The attribute “dateTimeFormat” gives the information about the representation of the special
format:

 <DateTime_0p1 dateTimeFormat="YY-MM-DD">02-02-05</DateTime_0p1>

This XML instance represented the content in the same element. Therefore, there is no
changing of the representation. That will be not so, if the description of the format will be
done by an additional child element:

 <DateTime_0p2>
 <DateTimeContent>02-02-05</DateTimeContent>
 <DateTimeFormat>YY-MM-DD</DateTimeFormat>
 </DateTime_0p2>

 Page 10 of 17

There are two child elements necessary. One for the content and the other for the format
description. That makes much more data and is not so easy understandable as the example
before.

There are might be a problem by using more than one supplementary components for one
Core Component Type. For example "codeType". Since as the values of each supplementary
components do represent some processable data or codes respectively.

There are some examples:

A.)
 <Code_0p1 codeListIdentifier="1B" codeListAgencyIdentifier="28" codeListVersionIdentifier="1" codeName="Special Code"
languageCode="en">ABCX</Code_0p1>

In the first example (A) are all supplementary components represented as attributes. The
problem is that will happen no direct relationship between codeName and languageCode. This
must be necessary, because the languageCode is related to the codeName.

B.)
<Code_0p2 CodeListAgencyIdentifier="1B" CodeListIdentifier="28" CodeListVersionIdentfier="1">
 <CodeContent>ABCX</CodeContent>
 <CodeName languageCode="en">Special Code</CodeName>
 </Code_0p2>

In the second example (B) are the supplementary components shared in attributes and child
elements. Supplementary components would like represented as attributes, if the data could be
processably or coded information respectively. Supplementary components which represents
user readable information represented as child elements. The content component is
represented as child element, too. One expection have the attribute "languageCode" due to
related to the readable name of the code it will be placed inside of the child element
"CodeName".

C.)
<Code_0p3>
 <CodeContent>ABCX</CodeContent>
 <CodeListAgencyIdentifier>1B</CodeListAgencyIdentifier>
 <CodeListIdentifier>28</CodeListIdentifier>
 <CodeListVersionIdentifier>1</CodeListVersionIdentifier>
 <CodeName>Special Code</CodeName>
 <LanguageCode>us</LanguageCode>
 </Code_0p3>

The last example the CodeType without any attributes. There are much more data and there is
no relationship between CodeName and LanguageCode, too.

The attributes doesn't make the readability much more complicated. It help us, to build
relationship in a very short and easy matter. The XML instances are much shorter and there

 Page 11 of 17

are not so much hierachies for representing that data. That helps that the parsing of that
structure is much more faster. And is helpful to map elements in an internal workflow or
database respectively.

6.4 Attributes within the Core Component Types
The following subchapters shows the different core component types with the use of attributes
as examples.

6.4.1 complexType AmountType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:AmountContentType

facets totalDigits 10
fractionDigits 2

attributes Name Type Use Default Fixed Annotation
amountCurrency
IdentificationCod
e

cct:AmountCurr
encyIdentificatio
nCodeType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A number of monetary units specified in a currency where the unit of currency is explicit or implied.

source <complexType name="AmountType" id="000105">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A number of monetary units specified in a currency where the unit of
currency is explicit or implied.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:AmountContentType">
 <attribute name="amountCurrencyIdentificationCode" type="cct:AmountCurrencyIdentificationCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Amount amountCurrencyIdentificationCode="EUR" uid="ID000000" uidRef="ID000000" uidRefs="ID000000
ID000001" language="en">3.14</Amount>

 Page 12 of 17

6.4.2 complexType CodeType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:CodeContentType

attributes Name Type Use Default Fixed Annotation
codeListIdentifie
r

cct:CodeListIden
tifierType

codeListAgencyI
dentifier

cct:CodeListAge
ncyIdentifierTyp
e

codeListVersionI
dentifier

cct:CodeListVer
sionIdentifierTyp
e

codeName cct:CodeNameT
ype

languageCode cct:LanguageCo
deType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A character string (letters, figures or symbols) that for brevity and/or language independence may be
used to represent or replace a definitive value or text of an attribute together with relevant
supplementary information.

source <complexType name="CodeType" id="000089">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A character string (letters, figures or symbols) that for brevity and/or
language independence may be used to represent or replace a definitive value or text of an attribute together with relevant
supplementary information.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:CodeContentType">
 <attribute name="codeListIdentifier" type="cct:CodeListIdentifierType"/>
 <attribute name="codeListAgencyIdentifier" type="cct:CodeListAgencyIdentifierType"/>
 <attribute name="codeListVersionIdentifier" type="cct:CodeListVersionIdentifierType"/>
 <attribute name="codeName" type="cct:CodeNameType"/>
 <attribute name="languageCode" type="cct:LanguageCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Code codeListIdentifier="CODEID01" codeListAgencyIdentifier="CodeAgency" codeListVersionIdentifier="V01"
codeName="CodeName" languageCode="en-us" uid="ID000001" uidRef="ID000001" uidRefs="ID000000 ID000001"
language="en">COD</Code>

 Page 13 of 17

6.4.3 complexType DateTimeType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:DateTimeContentType

attributes Name Type Use Default Fixed Annotation
dateTimeFormat
Text

cct:DateTimeFor
matTextType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A particular point in the progression of time together with relevant supplementary information.
Can be used for a date and/or time.

source <complexType name="DateTimeType" id="000066">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A particular point in the progression of time together with relevant
supplementary information.
Can be used for a date and/or time.
</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:DateTimeContentType">
 <attribute name="dateTimeFormatText" type="cct:DateTimeFormatTextType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <DateTime dateTimeFormatText="YYYY-MM-DD" uid="ID000002" uidRef="ID000002" uidRefs="ID000001
ID000002" language="en">2002-03-05</DateTime>

6.4.4 complexType IdentifierType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:IdentifierContentType

attributes Name Type Use Default Fixed Annotation
identificationSch
emeName

cct:Identification
SchemeNameTy
pe

iIdentificationSc
hemeAgencyNa
me

cct:Identification
SchemeAgency
NameType

languageCode cct:LanguageCo

 Page 14 of 17

deType
uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A character string to identify and distinguish uniquely, one instance of an object in an identification
scheme from all other objects within the same scheme together with relevant supplementary
information.

source <complexType name="IdentifierType" id="000101">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A character string to identify and distinguish uniquely, one instance
of an object in an identification scheme from all other objects within the same scheme together with relevant supplementary
information. </documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:IdentifierContentType">
 <attribute name="identificationSchemeName" type="cct:IdentificationSchemeNameType"/>
 <attribute name="iIdentificationSchemeAgencyName" type="cct:IdentificationSchemeAgencyNameType"/>
 <attribute name="languageCode" type="cct:LanguageCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Identifier identificationSchemeName="IDNAME01" iIdentificationSchemeAgencyName="IdAgency"
languageCode="en-us" uid="ID000003" uidRef="ID000003" uidRefs="ID000002 ID000003" language="en">ID01022-
XX</Identifier>

6.4.5 complexType MeasureType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:MeasureContentType

attributes Name Type Use Default Fixed Annotation
measureUnitCo
de

cct:MeasureUnit
CodeType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation The size, volume, mass, amount or scope derived by performing a physical measure together with
relevant supplementary information.

source <complexType name="MeasureType" id="000152">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">The size, volume, mass, amount or scope derived by performing a
physical measure together with relevant supplementary information.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:MeasureContentType">
 <attribute name="measureUnitCode" type="cct:MeasureUnitCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Measure measureUnitCode="KGM" uid="ID000004" uidRef="ID000004" uidRefs="ID000003 ID000004"
language="en">3.14</Measure>

 Page 15 of 17

6.4.6 complexType NumericType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:NumericContentType

attributes Name Type Use Default Fixed Annotation
numericFormatT
extType

cct:NumericFor
matTextType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A representation of a number. May or may not be decimal

source <complexType name="NumericType" id="000182">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A representation of a number. May or may not be
decimal</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:NumericContentType">
 <attribute name="numericFormatTextType" type="cct:NumericFormatTextType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Numeric numericFormatTextType="nnnnnn" uid="ID000005" uidRef="ID000005" uidRefs="ID000004 ID000005"
language="en">123324</Numeric>

6.4.7 complexType QuantityType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:QuantityContentType

attributes Name Type Use Default Fixed Annotation
quantityUnitCod
e

cct:QuantityUnit
CodeListAgency
IdentifierType

quantityUnitCod
eListIdentifier

cct:QuantityUnit
CodeListIdentifie
rType

quantityUnitCod
eListAgencyIden
tifer

cct:QuantityUnit
CodeListAgency
IdentifierType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en

annotation documentation A number of non-monetary units together with relevant supplementary information.

 Page 16 of 17

 Page 17 of 17

source <complexType name="QuantityType" id="000108">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A number of non-monetary units together with relevant
supplementary information.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:QuantityContentType">
 <attribute name="quantityUnitCode" type="cct:QuantityUnitCodeListAgencyIdentifierType"/>
 <attribute name="quantityUnitCodeListIdentifier" type="cct:QuantityUnitCodeListIdentifierType"/>
 <attribute name="quantityUnitCodeListAgencyIdentifer" type="cct:QuantityUnitCodeListAgencyIdentifierType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 </extension>
 </simpleContent>
</complexType>

example <Quantity quantityUnitCode="token" quantityUnitCodeListIdentifier="token"
quantityUnitCodeListAgencyIdentifer="token" uid="ID000006" uidRef="ID000006" uidRefs="ID000005 ID000006"
language="en">10</Quantity>

6.4.8 complexType TextType
diagram

namespace CoreComponentTypes.xsd

type extension of cct:TextContentType

attributes Name Type Use Default Fixed Annotation
languageCode cct:LanguageCo

deType

uid xs:ID required
uidRef xs:IDREF optional
uidRefs xs:IDREFS optional
language language optional en
language xs:language optional

annotation documentation A character string with or without a specified language.

source <complexType name="TextType" id="000090">
 <annotation>
 <documentation source="CCTS V1.7" xml:lang="en">A character string with or without a specified
language.</documentation>
 </annotation>
 <simpleContent>
 <extension base="cct:TextContentType">
 <attribute name="languageCode" type="cct:LanguageCodeType"/>
 <attributeGroup ref="cct:UidAttributeGroup"/>
 <attribute name="language" type="xs:language" use="optional"/>
 </extension>
 </simpleContent>
</complexType>

example <Text languageCode="en-us" uid="ID000007" uidRef="ID000007" uidRefs="ID000006 ID000007" language="en"
lang="en-us">Hello World</Text>

	Introduction
	Characteristics
	Elements
	Attributes

	Advantages and Disadvantages of Attributes
	Guidelines
	Recommendation
	Proposal
	Empty Elements
	Common Attributes
	Attributes for Supplementary Components
	Attributes within the Core Component Types
	complexType AmountType
	complexType CodeType
	complexType DateTimeType
	complexType IdentifierType
	complexType MeasureType
	complexType NumericType
	complexType QuantityType
	complexType TextType

