Comparative Analysis of Six XML Schema Languages*

Dongwon Lee

Wesley W. Chu

Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095, USA

Email: {dongwon,wwc}@cs.ucla.edu

UCLA-CS-TR 200008" : June 7, 2000

Abstract

As XML [5] is emerging as the data format of the inter-
net era, there is an substantial increase of the amount of
data in XML format. To better describe such XML data
structures and constraints, several XML schema lan-
guages have been proposed. In this paper, we present a
comparative analysis of the six noteworthy XML schema
languages.

1 Introduction

As of June 2000, there are about a dozen of XML
schema languages that have been proposed. Among
those, in this paper, we choose six schema languages
(XML DTD [5], XML Schema [9, 22, 1], XDR [17, 10, 15],
SOX [8], Schematron [11], DSD [12, 13]) as representa-
tives.

Our rationale in choosing the representatives is as fol-
lows: 1) they are backed by substantial organizations so
that their chances of survival is high (e.g., XML DTD
and XML Schema by W3C, XDR by Microsoft, DSD by
AT&T), 2) there are publically known usages or applica-
tions (e.g., XML DTD in XML, XDR in BizTalk, SOX in
xCBL), 3) the language has a unique approach distinct
from XML DTD (e.g., SOX, Schematron, DSD).

First, we briefly review each schema language.

1.1 XML DTD

XML DTD (DTD in short), a subset of SGML DTD,
is the de facto standard XML schema language of the
past and present and is most likely to thrive until XML
Schema finally arrives. It has limited capabilities com-
pared to other schema languages. Its main building
block consists of an element and an attribute. The real

*The title and structure of this paper imitate those of [2] in the
hope of being a sequel.
Available at http://www.cs.ucla.edu/~dongwon/paper/

world is typically represented by the use of hierarchical
element structures.

1.2 XML Schema

XML Schema is an ongoing effort of W3C to aid and
eventually replace DTD in the XML world. XML Schema
aims to be more expressive than DTD and more usable
by a wider variety of applications. It has many novel
mechanisms such as inheritance for attributes and ele-
ments, user-defined datatypes, etc.

1.3 XDR

First known as XML-Data, then later trimmed and im-
proved to XDR (XML-Data Reduced), this language is
a joint effort of Microsoft and others and is being used
in Microsoft’s BizTalk framework. XDR is heavily in-
fluenced by another proposal co-developed by IBM and
Microsoft, DCD (Document Content Description), and
thus shares many similar features.

1.4 SOX

SOX (Schema for Object-Oriented XML) is an alterna-
tive schema language for defining the syntactic structure
and partial semantics of XML document types. As the
name implies, it extends DTD in an object-oriented way
by allowing extensible data types and inheritance among
element types. The current version, 2.0, is being devel-
oped by Commerce One.

1.5 Schematron

Schematron, created by Rick Jelliffe, is quite unique from
others in that it focuses on walidating schemas using
patterns instead of defining schemas. Its schema defi-
nition is simple enough to be defined in a single page,
yet provides very powerful constraint specification via
XPath [7]. The latest version is 1.4.

1.6 DSD

DSD 1.0 was co-developed by AT&T Labs and BRICS
with the goals of context-dependent description of el-
ements and attributes, flexible default insertion mech-
anisms, expressive power close to XSLT [6], etc. Like
Schematron, DSD has a strong edge on schema con-
straints.

1.7 Other Languages

In addition, DCD [4], DDML [3], Assertion Gram-
mars [19], RELAX [16] have been proposed.

2 Features Classification

In the following, we denote a constant value with single
quotes regardless of the language specification for sim-
plicity. Furthermore, any attribute A or element E in
the language is denoted by (A) or (E). When a schema
language supports a certain feature fully or partially, we
denote it as Yes or Partial. Otherwise, we denote No.
Furthermore, when there is no explicitly equivalent con-
struct in the language, but the feature can be simulated
using other constructs with reasonable complexity, we
consider the feature supported by the language.

2.1 Schema

1. Syntax in XML: Using XML syntax for the schema
language brings several benefits [14]: 1) users do not have
to learn new proprietary syntax, 2) the schema language
can be readily applicable to existing XML applications
(e.g., editor, browser), 3) the schema file can be stored
in a XML storage system along with XML documents,
and 4) the schema language is extensible. All the schema
languages except DTD are written in XML syntax:

DTD: No XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Yes

2. Namespace: All languages except DTD and DSD
support namespace.

DTD: No XML Schema: Yes
SOX: Yes Schematron: Yes

XDR: Yes
DSD: No

Suppose one wants to define the book element by reusing
the address element defined elsewhere (denoted as URI)
and defining his own title element. This can be written
in XML Schema as follows:

<schema xmlns:z=’URI’ ...>
<element name=’book’>
<complexType>
<element name=’title’ type=’string’>
<element name=’address’ type=’z:address’>
</complexType>

</element>
</schema>

Similarly, in XDR:

<ElementType name=’title’ dt:type=’string’/>
<ElementType name=’book’ xmlns:z=’URI’>

<element type=’title’><element type=’z:address’>
</ElementType>

SOX supports elements (Namespace) to declare names-
pace and two attributes (Prefix) and (Type) to qualify
names.

<namespace prefix=’z’ namespace=’URI’/>
<elementtype name=’book’>
<model>
<element type=’title’>
<element prefix=’z’ type=’address’>
</model>
</elementtype>

Similarly, Schematron provides an attribute Ns for the
element (Schema).

3. Include & import: Sometimes, it is convenient to
pull in externally defined schema fragments to the cur-
rent schema. This is especially true when the schema
gets larger; it becomes more desirable to have modular
schema definitions for better maintainence and readabil-
ity. Several schema languages support this feature. If
the newly pulled-in fragments can have only the same
target namespace as the current schema, then we refer
to it as include. Otherwise, we refer to it as import.
First, Include is supported as follows:

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: Yes

In XML Schema, using (Include schemal.ocation="URI’)
is conceptually equivalent to replacing the include clause
with all the definitions in the URI. The namespace of the
included fragments must be the same as that of the cur-
rent schema. In SOX, a construct (Join) allows schema
definitions belonging to the same namespace to be pulled
in. Similarly, {Include) is supported in DSD as well.
Furthermore, Import is supported as follows:

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: No

In XML Schema, a construct (Import) exists. By import-
ing multiple namespaces, XML Schema allows definitions
and declarations contained in schemas under different
namespaces. In SOX, special processing indicator (? im-
port ?) is used to import schema that can override the
default namespace declared in the current schema.

2.2 Datatype

Datatype can be categorized into two types: simple or
complex. A simple type cannot have element content

nor carry attributes while a complexr type can. Al-
though most schema languages support simple types sep-
arately, the support of complex type is a bit fuzzy due to
the mixed definition of complex type and element type.
Therefore, here, we only explicitly compare features of
the simple type. The features of the complex type are
interspersed through Sections 2.4 and 2.5.

1. Built-in type: This is either a primitive or derived
simple type provided by the schema language specifica-
tion. Most schema languages, except Schematron and
DSD, support an array of built-in types including the
plain string and XML-related types (e.g., ID, NMTOKEN).
The number of such built-in types are:

DTD: 10 XML Schema: 37 XDR: 33
SOX: 17 Schematron: 0 DSD: 0

While DTD supports only XML-related primitive types,
XML Schema supports an extensive set of 37 built-in
types, covering most types being used in general pro-
gramming languages. So does XDR or SOX. Since the
focus of Schematron is validating XML structure, it does
not provide any explicit built-in types. Similarly, DSD
has no built-in types. However many types can be easily
simulated through its support of regular expressions.

2. User-defined type: When schema, designers consider
certain types be defined as simple types in their schema,
XML Schema, SOX, and DSD provide such a facility:

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: Yes

In XML Schema, new simple types can be created
by deriving from built-in or derived types via the in-
heritance. Details will be found in Section 2.5. In
SOX, new datatypes can be defined using three facets
(Enumeration), (scalar) and (varchar). Although types
can be simulated in Schematron, they are not treated
as first-class objects as in other languages. DSD uses a
construct (StringTypeDef) along with a rich set of op-
erators and regular expressions to support user-defined
types. For instance, a 9 digit US zipcode definition can
be written as follows in DSD:

<StringTypeDef ID=’zipcode’>
<Sequence>
<Repeat value=’5’>
<CharSet Value=’0123456789°>
</Repeat>
<0Optional>
<String Value=’-’>
<Repeat value=’4’>
<CharSet Value=’0123456789°>
</Repeat>
</Optional>
</Sequence>
</StringTypeDef>

3. Domain constraint: Not only the type itself, but

also the legal values for the type are important. Some
languages support a set of constructs to limit the valid
domain values for datatypes as follows:

DTD: No XML Schema: Yes
SOX: Partial Schematron: Yes

XDR: No
DSD: Yes

Towards this feature, XML Schema supports a multitude
of facets (e.g., range, precision, length, mask) and reg-
ular expressions. SOX provides a primitive set of facets
including enumeration, min or max value, maxlength,
etc. However, the pattern language is not supported. Al-
though built-in or user-defined types are not allowed in
Schematron, one can simulate such types using Schema-
tron’s support of XPath. For instance, the integer type
for the element E can be simulated as follows [18]:

<rule context=’E’>
<assert test=’floor(.) = number(.)’>
E can have only integer value.</assert>
</rule>

As shown in the example of the user-defined type case,
DSD supports a set of pattern-related operators to con-
strain the legal domain for user-defined types.

4. Null: It is often preferable to differentiate among un-
known, inapplicable or others by supporting the explicit
“null” values.

DTD: No
SOX: No

XML Schema: Yes
Schematron: No

XDR: No
DSD: No

In XML Schema, there is an attribute (Nullable) to in-
dicate that the element content is null. In a XML in-
stance document, the element fullname carries an at-
tribute null=’true’ to represent the nullness as shown
below:

schema : <element name=’fullname’ nullable=’true’/>

instance: <fullname xsi:null=’true’></fullname>

2.3 Attribute
1. Default value: All support this feature.

DTD: Yes XML Schema: Yes XDR: Yes
SOX: Yes Schematron: No DSD: Yes

In an attribute declaration of DTD, if the declaration
is neither #REQUIRED nor #IMPLIED, then the attribute
value contains the declared default value.

<!ATTLIST list type (bullets|ordered) ’ordered’>
<!ATTLIST form method CDATA #FIXED ’POST’>

Here, the attribute type of the element 1ist has a de-
fault value of “ordered” while the attribute method of
the element form has a fixed value of “POST”. Other
languages support default values similarly. The follow-
ing three snippets in the order of XML Schema, XDR and
SOX illustrate an attribute nm with a default value “John
Doe”:

<attribute name=’nm’ use=’default’ value=’John Doe’/>

<AttributeType name=’nm’ dt:type=’string’/>
<attribute type=’fullname’ default=’John Doe’/>

<attrdef name=’nm’ datatype=’string’>
<default>John Doe</default>
</attrdef>

DSD provides a more sophisticated way of defining de-
fault for attributes by associating them with a boolean
expression. For instance, in DSD, one can specify a de-
fault value of “John Doe” for male employees as follows:

<Default>
<Context><Element Name=’employee’>
<Attribute Name=’gender’ Value=’M’/>
</Element></Context>
<DefaultAttribute Name=’nm’ Value=’John Doe’/>
</Default>

2. Choice among attributes: This feature comes in
handy when schema designers want to associate multiple
attributes with an element and constrain validity to one
attribute at any given time.

XML Schema: No
Schematron: Yes

DTD: No
SOX: No

XDR: No
DSD: Yes

Schematron and DSD can express the requirement that
exactly one of the two attributes fn and gn must be
present as an attribute of person element as follows:

<rule context=’person’>
<assert test=’@fn or Qgn’>0r semantics</assert>
<assert test=’count(attribute::*) = 1°’>
Only one attribute</assert>

</rule>

<ElementDef ID=’person’>
<AttributeDecl Name=’fn’ IDType=’ID’/>
<AttributeDecl Name=’gn’ IDType=’ID’/>
<0One0f>
<Attribute Name=’fn’/><Attribute Name=’gn’/>
</0ne0f>
</ElementDef>

3. Optional vs. required: In all languages, whether or
not an attribute definition is required in a XML docu-
ment instance can be expressed.

DTD: Yes
SOX: Yes

XML Schema: Yes
Schematron: Yes

XDR: Yes
DSD: Yes

To denote an attribute must be present, DTD
uses a keyword #REQUIRED while XML Schema uses
(Use="required’) in the attribute declaration. Similarly,
in XDR, an attribute (Required=’yes’) is used while in
SOX, an element (Required/) is used for mandatory at-
tribute definition. Schematron can enforce this feature

using a pattern (Assert test="Qattribute-name’). Like
XDR, DSD supports an attribute {(Optional="no’).

4. Domain constraint: Some languages can specify ad-
missible values for attributes.

XDR: Partial
DSD: Yes

DTD: Partial XML Schema: Yes
SOX: Partial Schematron: Yes

DTD and XDR provide only the enumeration capability
by which users can list all legal values for the attribute
being defined. For instance, the following snippets show
examples of DTD and XDR for such an enumerated at-
tribute type, RGB:

<!ATTLIST spec RGB (red|green|blue)>

<AttributeType name=’RGB’ dt:type=’enumeration’
dt:values=’red green blue’/>

In XML Schema, domain values for simple types can first
be constrained using various facets and then new at-
tributes can be defined using the simple types. SOX pro-
vides (Enumeration) to constrain the attribute domain.
In Schematron, the support for an arbitrary domain con-
straint rule for attribute values is possible as shown in
the case of the domain constraint for datatypes in Sec-
tion 2.2. In DSD, one can apply numerous operators such
as (Union) or (Repeat) to the construct (StringType) to
constrain domain values.

5. Conditional definition: Often, an attribute a; of an
element E is relevant only when an attribute as has a
certain value.

DTD: No
SOX: No

XML Schema: No
Schematron: Yes

XDR: No
DSD: Yes

For instance, the following Schematron schema states
that if the element E has the attribute one, then it must
have the second attribute two as well:

<rule context=’E’>
<report test=’(Qone) or not(Qone and Qtwo)’>
E cannot have attribute ’one’ alone.</report>
</rule>

DSD supports this feature easily using its rich boolean
operators. For instance, the following snippet states that
the salary attribute is defined only when the student
isa “TA”:

<ElementDef ID=’student’>
<If><Attribute Name=’TA’ Value=’yes’>
<Then><0ptional>
<AttributeDecl Name=’salary’/>
</0Optional></Then>
</If>
</ElementDef>

2.4 Element

1. Default value: Elements can have either simple or
complex default values.

XML Schema: Partial XDR: No
Schematron: No DSD: Yes

DTD: No
SOX: No

In XML Schema, one can provide a string value as the
default value when the element has a simple type.

<element name=’fullname’ type=’string’
default=’John Doe’/>

DSD allows both simple and complex defaults for ele-
ments using (DefaultContent). For instance, one can
specify that a default address is “Los Angeles” and
((CA”:

<Default>
<Context><Element Name=’address’/></Context>
<DefaultContent>
<city>Los Angeles</city><state>CA</state>
</DefaultContent>
</Default>

2. Content model: The element content model can be
1) empty, 2) text (including datatype), 3) element, or 4)
mixed (text + element).

DTD: Yes XML Schema: Yes
SOX: Partial Schematron: Yes

XDR: Yes
DSD: Yes

DTD supports all four content models as follows:

empty : <!ELEMENT o EMPTY>

text : <!ELEMENT p (#PCDATA) >
element : <!ELEMENT q (x7|y*|z+) >
mixed : <!ELEMENT r (#PCDATA|[x)* >

Similarly, XML Schema and XDR support the four con-
tent models using a construct (Content) which sup-
ports values such as “empty”, “textOnly”, “elemen-
tOnly” (“eltOnly” for XDR), “mixed”. Furthermore,
XML Schema allows specification of a datatype for an
element. SOX supports three content models using con-
structs (Empty/), (String/) and (Element/), respectively,
but does not explicitly support the mixed content model.
In Schematron, the following XPath expression can be
used as a value for {Assert) construct to specify the four
content models:

empty : not(*)

text : string-length(text()) > 0

element : count(element::*) = count(*)

mixed : by default

DSD also supports all four models using con-
structs (Empty/), (StringType/), (Element/) and

(AnyElement/), respectively.

3. Ordered sequence: The order among sub-elements is

consequential.
DTD: Yes XML Schema: Yes XDR: Yes
SOX: Yes Schematron: Yes DSD: Yes

In DTD, sub-elements listed with an operator obey
the order among them. Likewise, in XML Schema, the
order needs to be preserved unless otherwise specified.
Otherwise, one can explicitly specify that the order is se-
quential using a grouping construct {Sequence). In XDR,
the (order=’seq’) attribute specifies that sub-elements
are required to appear in a sequential order. SOX sup-
ports (Sequence) content models as well. For instance, in
SOX, the following states that the person element must
have the sub-element fn followed by the sub-element 1n:

W
’

<elementtype name=’person’>
<model><sequence>
<element name=’fn’/><element name=’1n’/>
</sequence></model>
</elementtype>

The same schema can be written in Schematron as fol-
lows:

<rule context=’person’>
<assert test=’(*¥[position()=1] = fn)
and (*[position()=2] = 1n)’>
fn must be followed by 1n.</assert>
</rule>

The ordered sequence in DSD is expressed in a similar
fashion by the construct (Sequence) in an element con-
tent definition.

<ElementDef ID=’person’>
<Sequence>
<Element Name=’fn’/><Element Name=’1n’/>
</Sequence>
</ElementDef>

4. Unordered sequence: The order among sub-elements
is inconsequential.

DTD: No XML Schema: Yes
SOX: No Schematron: Yes

XDR: Yes
DSD: Yes

Unlike SGML which offers an operator & to create an
unordered sequence, DTD does not offer an explicit op-
erator for unordered sequence. Instead, one needs to en-
code all the possible combinations of the sub-elements.
For instance, to express an unordered sequence of sub-
element (a & b & ¢) of SGML in DTD, one has
to write ((a,b,c)(a,c,b)|(b,a,c)[(b,c,a)|(c,a,b)|(c;b,a)) or
somewhat incorrectly (a|b|c)* [20]. Using a grouping
construct (All) in XML Schema, one can specify the un-
ordered sequence. In XDR, the (Order="many’) attribute
specifies that sub-elements can appear in any order. In
Schematron, if one does not specify any patterns, then it
takes the unordered sequence by default.

In DSD, a single content expression describes a set of
allowed sequences of string data and elements. Several

content expressions describe all mergings of sequences,
one from each expression. Thus, by cleverly using this
feature, one can capture ”floating elements”, i.e., mixes
of ordered and unordered contents. This feature in DSD
is more expressive than the simple ordered or unordered
content model.

5. Choice among elements:
among candidates is allowed.

Only one sub-element

DTD: Yes
SOX: Yes

XML Schema: Yes
Schematron: Yes

XDR: Yes
DSD: Yes

DTD uses an operator “|” to denote choice among el-
ements. Using a grouping construct (Choice) in XML
Schema, one can specify that only one of the sub-
elements in the group must appear. In XDR, the
(order=’one’) attribute specifies that only one sub-
element can be used. SOX supports the (Choice) content
model for an element. Schematron can express its choice
among elements using rules similar to the case of choice
among attributes in Section 2.3. In DSD, the construct
(OneOf) is supported as follows:

<ElementDef ID=’person’>
<0One0f>
<Element Name=’fn’/><Element Name=’gn’/>
</0ne0f>
</ElementDef>

6. Min & Max occurrence: In this scheme, the language
can support if minimum occurrence is k£ and maximum
occurrence is [.

XDR: Yes
DSD: Partial

DTD: Partial XML Schema: Yes
SOX: Yes Schematron: Yes

In DTD, the occurrences of elements can be only prim-
itively controlled by the three kleene operators: 1)
“?7 for 0 or 1, 2) “«” for 0 or many and 3) “+”
for 1 or many. In XML Schema, an element declara-
tion carries MinOccurs="k’ and MaxOccurs="". In XDR,
(MinOccurs) and (MaxOccurs) attributes specify how
many times an element can appear within another el-
ement. In SOX, an element definition carries (Occurs)
attribute that indicates the number of repetitions of the
instanced element. It can take 1) the three kleene op-
erators (i.e., 7, x, +), 2) a value of the form “k,l”, or
3) “k,x”. In Schematron, this can be written as (Assert
test="count(E)>=k’) and (assert test="count(E)<=I").
In DSD, the occurrences of elements can be specified as
(Optional), (ZeroOrMore), (OneOrMore), and (Union),
but cannot be specified with respect to the exact mini-
mum and maximum numbers.

7. Open model: An open content model enables ad-
ditional elements or attributes to be present within an
element without having to declare each and every ele-

ment. This provides an extensibility mechanism.

DTD: No XML Schema: No XDR: Yes
SOX: No Schematron: Yes DSD: No

In XDR, the model is open by default. One has to spec-
ify a closed model explicitly with (Model="closed’). Sup-
pose, for instance, one has the following person element
definition (the city and state elements are defined else-
where):

<ElementType name=’address’ model=’closed’>
<element type=’city’/><element type=’state’/>
</ElementType>
<ElementType name=’person’>
<element type=’address’/>
</ElementType>

This definition states that the address element can have
only two sub-elements city and state while the person
element can have a sub-element address and possibly
others since it is an “open” content model. Thus, the
following XML document instance is valid although the
unknown element name is added to the person element.

<person>
<address>
<city>Los Angeles</city><state>CA</state>
</address>
<name>John Doe</name>
</person>

In Schematron, the content model is open by default.
The closed model also can be expressed using a count ()
function in XPath. For instance, the following schema
states that the person element is closed (when the name
and address are all the sub-elements of the person):

<rule context=’person’>
<assert test=’count(nameladdress) = count(*)’>
There is an extra element.</assert>
</rule>

In languages that support “any” element concept,
since any well-formed XML fragment is allowed for the
any element, the open model can be simulated in some
sense. However, since this requires the “any” element be
defined in the schema beforehand, it is less flexible than
the explicit open model.

8. Conditional definition: Often, elements are allowed
only in certain situations.

DTD: No XML Schema: No
SOX: No Schematron: Yes

XDR: No
DSD: Yes

For instance, the following Schematron schema states
that, in HTML, the element input can appear only if
it is inside the element form.

<rule context=’E’>
<report test=’not(parent::form) and input’>
Element input cannot appear.</report>
</rule>

DSD supports this feature using its boolean operators.
The usage is similar to the case of the conditional defi-
nition for attributes.

2.5 Inheritance

As in object-oriented inheritance, inheritance is done by
extending or restricting the base type. In this section, we
divide the target of the inheritance into simple and com-
plex types. When some languages support inheritance
toward attribute and element instead, we treat them as
the simple and complex type inheritance, respectively.

1. Simple type by extension: In this scheme, new simple
types may be created by deriving from other simple types
with more relaxed domain constraint. The set of legal
values of the new type is a superset of that of the base
type. No languages support this feature.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: No DSD: No

2. Simple type by restriction: The set of legal values of
the new type is a subset of that of the base type.

DTD: No XML Schema: Yes XDR: No
SOX: Yes Schematron: No DSD: No

In XML Schema, inheritance among simple types are al-
lowed as shown in the following example, where a 9 digit
US zipcode is created from the base type string:

<simpleType name=’zipcode’ base=’string’>
<pattern value=’[0-9]{5}(-[0-9]1{4})7’/>
</simpleType>

By constraining the domain values using the pattern ex-
pression, the legal values for the zipcode have been re-
stricted from the string type. In SOX, new datatypes
may be refined from built-in or derived types. For in-
stance, the new datatype RGB allows only three values
from the color type.

<datatype name=’RGB’>
<enumeration datatype=’color’>
<option>Red</option>
<option>Green</option>
<option>Blue</option>
</enumeration>
</datatype>

3. Complex type by extension:

DTD: No XML Schema: Yes
SOX: Yes Schematron: No

XDR: No
DSD: No

XML Schema supports type inheritance using constructs
(Base) and (perivedBy=extension’). Newly added ele-
ments are always appended at the end. In SOX, (Extends
type="basetype’) is supported, where appending new el-
ements and attributes are allowed. Given the person

element defined elsewhere, the following example illus-
trates how the new element new-person inherits the con-
tent model of the person element and has an additional
element address and attribute email.

<elementtype name=’new-person’>
<extends type=’person’>
<append>
<element name=’address’ type=’addr’/>
</append>
<attdef name=’email’ datatype=’string’>
</extends>
</elementtype>

In DSD, any definition can be redefined using the
(RenewID) and (CurrIDRef) constructs. However, once
the new type is defined, the original type is no longer
accessible. Therefore, this feature is for renewing rather
than deriving.

4. Complex type by restriction:

XML Schema: Yes
Schematron: No

DTD: No
SOX: No

XDR: No
DSD: No

In XML Schema, it is possible to derive new types by re-
stricting the content models of existing types. The values
represented by the new type are a subset of the values
represented by the base type. For instance, the following
schema shows the newly defined element E whose type is
ResItemType which is required to have at least one item
sub-element as a new restriction.

<complexType name=’ItemType’>
<element name=’item’ minOccurs=’0’>
</complexType>
<complexType name=’ResItemType’
base=’ItemType’ derivedBy=’restriction’>
<element name=’item’ minOccurs=’1’>
</complexType>
<element name=’E’ type=’ResItemType’>

2.6 Being unique or key

1. Uniqueness for attribute: All languages support this
feature.

DTD: Yes
SOX: Yes

DTD, XDR, SOX and DSD use ID type for an attribute
to ensure uniqueness while XML Schema uses {Unique)
where the scope and target object of the uniqueness
are specified by (selector) and (Field) constructs, respec-
tively. Since Schematron does not have an explicit con-
struct equivalent to ID in DTD, uniqueness for an at-
tribute must be simulated using pattern “count()=1".

XDR: Yes
DSD: Yes

XML Schema: Yes
Schematron: Yes

2. Uniqueness for non-attribute: Schema languages like
XML Schema, Schematron, or DSD specify uniqueness
not only for attributes but also for arbitrary elements

or even composite objects (attribute + element) in a
portion of the document or the whole document.

XML Schema: Yes
Schematron: Yes

DTD: No
SOX: No

XDR: Partial
DSD: No

This feature can be easily expressed in XML Schema us-
ing the same construct (Unique). For instance, the fol-
lowing schema ensures there exists a unique phone ele-
ment under addr sub-elements of the person element.

<unique>
<selector>person/addr</selector>
<field>phone</field>

</unique>

In XDR, elements support the ID attribute type as if
they are attributes albeit this is not implemented yet in
Internet Explorer 5.

<ElementType name=’phone’ dt:type=’ID’/>

However, XDR cannot support uniqueness of composite
objects. In Schematron, the same constraint can be writ-
ten as follows:

<rule context=’person/addr’>

<assert test=’count(phone) = 1’>
phone is not unique.</assert>
</rule>

3. Key for attribute: In databases, being a key requires
being unique as well as not being null. A similar concept
is defined in XML Schema.

DTD: No XML Schema: Yes
SOX: No Schematron: Yes

XDR: No
DSD: No

Using almost identical syntax as (Unique), a construct
(Key) can specify an attribute as a key in XML Schema.
In Schematron, this feature can be simulated as follows:

<rule context=’person’>
<assert test=’@ssn and count(@ssn) = 1°>
Is ssn unique?</assert>
<assert test=’string-length(@ssn) > 0’>
Is ssn not empty?</assert>
</rule>

4. Key for non-attribute: XML Schema allows specifica-
tion of arbitrary elements or composite objects as key.

DTD: No XML Schema: Yes XDR: No
SOX: No Schematron: Yes DSD: No

For instance, the following schema in XML Schema de-
fines the combination of an employee’s department code
(element) and employee’s name (attribute) as a key.

<key name=’ekey’>
<selector>employee</selector>
<field>dept/code</field><field>@name</field>
</key>

Schematron supports this feature similarly using pat-
terns.

5. Foreign key for attribute: Foreign key states if 1)
who is a referencing key and 2) who is being referenced
by the referencing key.

XDR: Partial
DSD: Yes

DTD: Partial XML Schema: Yes
SOX: Partial Schematron: Yes

Like ID type, DTD, XDR, SOX and DSD use IDREF type
for a referencing attribute. XML Schema uses (Keyref).
In addition to this, XML Schema and DSD support a
method to specify whom the foreign key actually points
to using constructs (Refer) and (PointsTo), respectively.
Furthermore, DSD even allows association of arbitrary
boolean expressions with the (PointsTo) construct. Us-
ing this, for instance, one can specify “an attribute A
points to either attribute B in an element E; or C in
element E5” in DSD. In Schematron, this feature can
be expressed using patterns. For instance, the following
schema states that dno attribute of employee element
should reference the unique identifier of dept element.

<rule context = ’employee[@dno]’>
<assert test=’(name(id(@dno)) = ’dept’)’>
Error occurred.</assert>
</rule>

6. Foreign key for non-attribute:

DTD: No
SOX: No

XML Schema: Yes
Schematron: No

XDR: No
DSD: Yes

Similar to specifying uniqueness for non-attributes, XML
Schema can specify foreign keys for arbitrary elements or
composite objects using the same (Keyref) construct.

<keyref refer=’ekey’>
<selector>project</selector>
<field>emp-dept</field><field>Q@ename</field>
</keyref>

Similarly, the following DSD example illustrates that an
attribute book-ref is referencing an element book.

<AttributeDecl ID=’book-ref’ IDType=’IDRef’>
<PointsTo>
<Context><Element Name=’book’/></Centext>
</PointsTo>
</AttributeDecl>

2.7 Miscellaneous Features

1. Dynamic constraint: In Schematron, one can selec-
tively turn on and off the constraints using {Phase) con-
struct so that only part of the schema constraints can be

dynamically evaluated at any given time.

DTD: No XML Schema: No XDR: No
SOX: No Schematron: Yes DSD: No

2. Version: Sometimes it is desirable to allow several
different attribute or element definitions with the same
name. That is, several versions of an attribute or ele-
ment coexist.

DTD: No
SOX: No

XML Schema: No
Schematron: No

XDR: No
DSD: Yes

XML Schema has a construct (version) for schema def-
inition, but the current specification does not define
any further semantics for that; it is simply provided as
a convenience. DSD utilizes both “Name” as well as
“ID” attributes for element definition so that the at-
tributes with same names are legal as long as their IDs
are different. Furthermore, by using the (RenewID) and
(CurrIDRef), any definition can be renewed, making a
new version of the definition. For instance, the following
schema, illustrates the redefinition of the DSD constraint
book-constraints:

<ConstraintDef ID=’book-constraints’/>
<ConstraintDef RenewID=’book-constraints’>
<Constraint CurrIDRef=’book-constraints’/>
. modification ...
</ConstraintDef>

3. Documentation: At minimum, all languages sup-
port commenting on schema fragments using a construct
<-- comment -->. However, here we consider docu-
mentation features beyond commenting such as: 1) tex-
tual description to explain a schema fragment for human
readers, 2) embedded documentation for application pro-
grams, or 3) error or hint messages to aid schema vali-
dation and debugging.

DTD: No XML Schema: Yes
SOX: Yes Schematron: Yes

XDR: No
DSD: Yes

XML Schema provides {Documentation) and {Appinfo)
elements to support description for both human read-
ers as well as application programs. SOX provides the
(mntro) element to provide an introduction to the schema
as a whole and (Explain) element to provide a hook
for including documentation within a schema fragment.
However, there is no support for automatic debugging
message or application programs. In Schematron, by
using the assertion semantics provided by constructs
(assert) and (Report), detailed documentation for val-
idating XML structures can be provided. DSD supports
three keywords: (Label), (BriefDoc) and (Doc). Using
these, it is straightforward to implement, for instance, a
debugging system.

4. Embedded HTML: Due to HTML’s popularity, it is
often convenient to be able to embed HTML fragments

inside XML documents.

DTD: No XML Schema: Yes
SOX: Yes Schematron: Partial

XDR: No
DSD: Yes

Using (Any) element, XML Schema allows specification
that any well-formed XML is permissible in a type’s con-
tent model. Hence, well-formed HTML code can be eas-
ily embedded in XML document. SOX provides similar
feature using (Explain) element. Schematron allows a
few HTML tags (e.g., <p>, <emph>), but not general
ones. In DSD, one can use the documentation facility to
embed HTML.

5. Self-describability: The following languages provide
a meta schema (i.e., representing the schema specifica-
tion using the schema itself being defined). The meta
schema is useful in bootstrapping the implementation of
the language.

DTD: No
SOX: No

XML Schema: Partial XDR: No
Schematron: Partial DSD: Yes

While XML Schema and Schematron provide meta
schemas that capture only the syntactic requirements,
DSD provides a meta schema that captures both the syn-
tactic and semantic requirements.

definition
oriented

usage
oriented

pattern-based «—————————» granmmar - based
constraints-oriented«——— structure-oriented

Figure 1: XML schema languages classification.

3 Conclusion

Our comparative review of the features is summarized in
Table 1.

From an “ease of use” point of view, DTD is arguably
the easiest schema language to learn despite its use of
proprietary syntax. Since the new additions to XDR and
SOX are relatively manageable, we think the migration
curve from DTD to these languages is not steep. Al-
though the language specification of Schematron is very
simple, it exhibits much power. However, this requires
users to learn yet another language XPath. Due to the
extensive set of features supported by XML Schema and
DSD, we expect them to be more difficult to learn than

w.r.t. SOX it has: wor.t.

nore structure,
dat at ypi ng, inheritance,
uni queness and keyness

SOX it has:
constraint,
nore structure,
docunent ation, version

w.r.t. SOX it has:
constraint,
uni queness and keyness,
docunent ati on

T~ _—

Class 3

s

w.r.t. XDR it has:

w.r.t. DIDit has:

i nheritance,
nor e dat atypi ng,
nmodul ari zati on

nore structure,
nore content nodel,
nore datatyping

/

Class 2

o

has basi ¢ support
for structure

Class 1

Figure 2: Classification of the expressive power of the six languages

others. Since DSD uses explicit operators for regular ex-
pressions (e.g., (Repeat), (OneOf)), DSD schema tends
to be more verbose than XML Schema or Schematron
schema.

From a “language” point of view, the six reviewed
XML schema languages can be roughly divided into
two camps based on factors such as grammar-based
vs. pattern-based, definition-oriented vs. validation-
oriented, structure-oriented vs. constraints-oriented,
etc. The classification is summarized in Figure 1. Based
on our study, DTD, XML Schema, XDR and SOX belong
to the grammar-based language group while Schema-
tron belongs to the pattern-based language group. DSD
stands in-between, supporting both features together.
The grammar-based language group especially has an
advantage in XML querying since knowing the structure
and definition of the schema helps users write more op-
timized queries and detect errors in the queries more
easily. On the other hand, the pattern-based language
group is naturally superior with respect to the expres-
siveness of constraints in the application.

From a “database” point of view, no single language suf-
fices the needs completely. The SQL DDL allows speci-
fication of not only a set of relations and attributes, but
also information about the domain of values associated
with each attribute, integrity constraints, indices for
each relation, security, etc [21]. While XML Schema ful-
fills the support for a variety of built-in domain types, it
could not express, for instance, an arbitrary SQL CHECK
or ASSERT clause. Furthermore, although Schematron or
DSD can express such integrity constraints, they have
no support of physical indices for boosting performance.

Since a substantial amount of web documents are gener-
ated from an underlying database by the user’s request,
it is important to be able to handle such data-centric
features as SQL DDL do. We feel this is one of the areas
where database researchers can contribute.

From an “expressive power” point of view, the six lan-
guages can be organized into the following three classes
as depicted in Figure 2.

e Class 1: DTD has the weakest expressive power.
Its support of schema structure is minimal and it
severely lacks the support for schema datatype and
constraint.

e Class 2: XDR and SOX belongs to the middle
tier. Their support for schema datatype is not
enough (e.g., lack of null and user-defined type) al-
though schema structure can be supported rather
sufficiently. Like DTD, however, they mostly fail to
support constraint specification to express the se-
mantics of the schema.

e Class 3: XML Schema, Schematron and DSD have
the strongest expressive power. Whereas XML
Schema supports features for schema datatype and
structure fully, Schematron provides a very flexible
pattern language that can describe the detailed se-
mantics of the schema. DSD tries to support com-
mon features supported by XML Schema (e.g, struc-
ture) and Schematron (e.g., constraint) along with
some additional features.

In our study, we have found that the support of con-
straints in the schema language (e.g., Schematron, DSD)

is a very attractive feature. However, at the same
time, ignoring the schema definition aspect completely
like Schematron raises some concern as a general pur-
pose schema language. Although XML Schema identifies
many commonly recurring schema constraints and incor-
porates them into the language specification, we still feel
XML Schema is too rigid in that sense. It would be inter-
esting to see if the support of constraints will be added
to XML Schema in the future.

Acknowledgment

The authors wish to thank Rick Jelliffe (ASCC) for an-
swering questions regarding Schematron and Michael I.
Schwartzbach (BRICS) for his helpful comments on DSD
during the writing of this paper.

References

[1] P. V. Biron, A. Malhotra (ed.) “XML Schema
Part 2: Datatypes”, W3C, April 2000.
(http://www.w3.org/ TR /xmlschema-2)

[2] A. Bonifati, S. Ceri, “Comparative Analysis of Five
XML Query Languages”, ACM SIGMOD Record,
29(1), 2000.

[3] R. Bourret, J. Cowan, I. Macherius, S. St. Lau-
rent (ed.), “Document Definition Markup Language
(DDML) Specification, Version 1.0”, January 1999.
(http://www.w3.org/ TR/NOTE-ddml)

[4] T. Bray, C. Frankston, A. Malhotra (ed.), “Doc-
ument Content Description for XML”, July 1998.
(http://www.w3.org/ TR/NOTE-dcd)

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen (ed.),
“Extensible Markup Language (XML) 1.0, W3C,
February 1998. (http://www.w3.org/ TR/REC-xml)

6] J. Clark (ed.) “XML Transformations
(XSLT) Version 1.07, W3C, November 1999.
(http://www.w3.0org/ TR /xslt)

[7] J. Clark, S. DeRose (ed.) “XML Path Lan-
guage (XPath) Version 1.0”, W3C, November 1999.
(http://www.w3.0org/TR/xpath)

[8] A. Davidson, M. Fuchs, M. Hedin, et al., “Schema
for Object-Oriented XML 2.0”, W3C, July 1999.
(http://www.w3.org/ TR/NOTE-SOX)

9] D. C. |Fallside (ed.), “XML Schema
Part O: Primer”, w3sC, April 2000.
(http://www.w3.org/ TR/xmlschema-0)

[10] C. Frankston, H. S. Thompson, “XML-
Data reduced”, Internet Document, July
1998. (http://www.ltg.ed.ac.uk/~ht/XMLData-

Reduced.htm)

[11] R. Jelliffe, “Schematron”, In-
ternet Document, May 2000.
(http://www.ascc.net/xml/resource/schematron/)

[12] N. Klarlund, A. Moller, M. I. Schwatzbach, “Docu-
ment Structure Description 1.0”, Internet Document,
1999. (http://www.brics.dk/DSD/)

[13] N. Klarlund, A. Moller, M. I. Schwatzbach, “DSD:
A Schema Language for XML”, Proc. 3rd ACM
Workshop on Formal Methods in Software Practice,
2000.

[14] S. St. Laurent “Describing Your Data: DTDs
and XML Schemas”, XML.com, December 1999.
(http://www.xml.com/pub/1999/12/dtd/)

[15] A. Layman, E. Jung, et al., “XML-Data”, W3C,
January 1998. (http://www.w3.org/TR/1998/NOTE-
XML-data)

[16] M. Makoto, “RELAX (REgular LAnguage descrip-
tion for XML), Internet Document, April 2000.

(http://www.xml.gr jp/relax/)

[17] Microsoft, “XML Schema Developer’s
Guide”, Internet Document, May 2000.
(http://msdn.microsoft.com/xm|/XMLGuide/schema-
overview.asp)

[18] N. Miloslav, “Schematron Tuto-
rial”, Internet Document, May 2000.
(http://www.zvon.org/HTMLonly/SchematronTutorial /
General/contents.html)

[19] D. Raggett, “Assertion Gram-
mars”, Internet Document, May 1999.
(http://www.w3.org/People/Raggett/dtdgen/Docs/)

[20] A. Sahuguet “Everything You Ever Wanted to
Know About DTDs, But Were Afraid to Ask”,
Proc. 3rd Int’l Workshop on the Web and Databases
(WebDB), Dallas, TX, 2000

[21] A. Silberschatz,
“Database System Concepts
McGraw-Hill Co., 1997.

H. F. Korth, S. Sudarshan,
(3rd Edition)”,

[22] H.S. Thopmson, D. Beech, M. Maloney, N. Mendel-
sohn (ed.) “XML Schema Part 1: Structures”, W3C,
April 2000. (http://www.w3.org/TR/xmlschema-1)

Features | DTD 1.0 | XML Schema 1.0 | XDR 1.0 | SOX 2.0 | Schematron 1.4 | DSD 1.0]
Schema,
syntax in XML No Yes Yes Yes Yes Yes
namespace No Yes Yes Yes Yes No
include No Yes No Yes No Yes
import No Yes No Yes No No
Datatype
built-in type 10 37 33 17 0 0
user-defined type No Yes No Yes No Yes
domain constraint No Yes No Partial Yes Yes
null No Yes No No No No
Attribute
default value Yes Yes Yes Yes No Yes
choice No No No No Yes Yes
optional vs. required Yes Yes Yes Yes Yes Yes
domain constraint Partial Yes Partial Partial Yes Yes
conditional definition No No No No Yes Yes
Element
default value No Partial No No No Yes
content model Yes Yes Yes Partial Yes Yes
ordered sequence Yes Yes Yes Yes Yes Yes
unordered sequence No Yes Yes No Yes Yes
choice Yes Yes Yes Yes Yes Yes
mim & max occurrence Partial Yes Yes Yes Yes Partial
open model No No Yes No Yes No
conditional definition No No No No Yes Yes
Inheritance
simple type by extension No No No No No No
simple type by restriction No Yes No Yes No No
complex type by extension No Yes No Yes No No
complex type by restriction No Yes No No No No
Being unique or key
uniqueness for attribute Yes Yes Yes Yes Yes Yes
uniqueness for non-attribute No Yes Partial No Yes No
key for attribute No Yes No No Yes No
key for non-attribute No Yes No No Yes No
foreign key for attribute || Partial Yes Partial | Partial Yes Yes
foreign key for non-attribute No Yes No No No Yes
Miscellaneous
dynamic constraint No No No No Yes No
version No No No No No Yes
documentation No Yes No Yes Yes Yes
embedded HTML No Yes No Yes Partial Yes
self-describability No Partial No No Partial Yes

Table 1: Summary of the feature comparisons.

