Semantic Data Modeling using XML Schemas

Murali Mani*, Dongwon Lee, and Richard R. Muntz

Department of Computer Science
University of California, Los Angeles
Los Angeles, CA 90095, USA

{mani,dongwon,muntz}@cs.ucla.edu

Abstract. Most research on XML has so far largely neglected the data
modeling aspects of XML schemas. In this paper, we attempt to make
a systematic approach to data modeling capabilities of XML schemas.
We first formalize a core set of features among a dozen competing XML
schema language proposals and introduce a new notion of XGrammar.
The benefits of such formal description is that it is both concise and
precise. We then compare the features of XGrammar with those of the
Entity-Relationship (ER) model. We especially focus on three data mod-
eling capabilities of XGrammar: (a) the ability to represent ordered bi-
nary relationships, (b) the ability to represent a set of semantically equiv-
alent but structurally different types as “one” type using the closure
properties, and (c) the ability to represent recursive relationships.

1 Introduction

With the growing popularity of XML (eXtensible Markup Language) [5] defined
by W3C, XML schemas! expressed by schema languages (e.g., DTD [5], XML-
Schema [14], RELAX [9]) are being widely used to describe data. Even though
XML is largely used for transferring data at present, we envision that in the
not-so-distant future, XML schemas will be used as the “external schema” for a
large portion of the data. This makes the study of modeling capabilities of XML
schemas very important. Furthermore, to bridge with other existing data models,
it is becoming increasingly important to understand how to map features of XML
schema to those of existing models and vice versa. In this paper, we attempt to
make a systematic approach to data description using an XML schema and
compare it to the widely-used conceptual model, the Entity-Relationship (ER)
model [7]. Our contributions in this paper are as follows:

— We formalize a core set of features found in various XML schema languages
into XGrammar — a grammar notation commonly found in formal language
theory. The important building blocks of any XML schema language such

* This author is partially supported by NSF grants 0086116, 0085773, 9817773.

! We differentiate two terms — XML schema(s) and XML-Schema. The former refers
to a general term for a schema for XML, while the latter [14] refers to one kind of
XML schema language proposed by W3C.



(1,1) (1, %)
Dept @ Employee

Fig. 1. Cardinality representation in ER model.

as element-subelement relationships are well captured in XGrammar in a
coherent and precise manner.

— We describe three features of XGrammar in detail and compare them with
features of ER model: (a) representing ordered binary relationships, (b) rep-
resenting a set of semantically equivalent but structurally different types as
“one” type using the property that XGrammar is closed under the union
boolean operation, and (c) representing recursive relationships using recur-
sive type definitions. By doing so, we also identify features lacking in ER
model to natively support the XML model and extend it to EER model.

Besides the new features present in XGrammar, they can also represent data
modeling features such as n-ary relationships, composite attributes, generaliza-
tion hierarchy etc. However, they are still in a development phase for schema
language proposals such as RELAX, and we do not focus on them in this paper.

1.1 Background: ER Model and Our Extensions

Entity-Relationship model (ER model) and Entity-Relationship diagram (ER
diagram) are defined by Chen in 1970s and has been widely used in data mod-
eling ever since [7]. The basic features of the ER model are entity types and
relationship types. An entity type is represented by a rectangular labeled box,
and a relationship type is represented by a diamond labeled box in an ER dia-
gram. For our purposes, we use ER diagram notations in [1]. Here a cardinality
of an entity in a relationship is represented as a 2-tuple (minC, mazC). We use
this 2-tuple notation mainly to distinguish between the cardinalities: (0,1) and
(1,1), and also (0,%) and (1, %), which are commonly found in XML schemas.
Here * means that there is no upper bound on the cardinality. For instance, the
diagram in Fig. 1 illustrates “Dept can have one or many Employees while each
Employee can belong to one and only one Dept”. Note that our notations of
cardinalities are exactly reverse of those used in [1].

In this paper, we are not concerned with the more advanced features of ER
model such as the role of an entity in a relationship, n-ary relationships where
n > 2, attributes of a relationship, and constraints. Instead, we focus only on
the basic features of the ER model, and extend it with the following additional
features:

— Order in a binary relationship: ER model is based on a notion of set, and
thus does not have a construct for order. However, in XML model, order is
important. For instance, the first and second authors of book are different
in XML model. To express such ordering in an ER diagram, we denote



the in-between edge by a thick line. For instance, there is ordering among
Employees in Fig. 1.

— FElement-subelement relationship: One of the main constructs in XML model
is the element-subelement (i.e., parent-child) relationship. We represent this
relationship using a dummy “has” relationship in ER model (i.e., a diamond
box with the label has). For instance, the relationship that Employee is a
subelement of Dept is shown in Fig. 1.

For convenience, we denote ordered and unordered relationships, say X between
two entities A and B, where the cardinality of A is (m1, M1), and the cardinality
of B is (mz, Mg) by A(ml,Ml) _—&> B(mg, Mg) and A(ml,Ml) i) B(mQ,MQ),
respectively. ER model with our extensions will be referred to as “EER model”
throughout the rest of the paper.

1.2 Related Work

Data modeling is an inherent part of database design, and deals with the struc-
ture, organization and effective use of data and the information they represent
[15]. Such conceptual modeling of the data has been helped by data models
such as ER model [7], which models an enterprise as a set of entities and rela-
tionships. However these data models cannot specify ordered relationships (i.e.,
cannot specify order between objects in a relationship). Ordered relationships
exist commonly in practice such as the list of authors of a book. XML schemas,
on the other hand, can specify such ordered relationships.

Semantic data modeling using XML schemas has been studied in the recent
past. ERX [13] extends ER model so that one can represent a style sheet and
a collection of documents conforming to one DTD in ERX model. But order
is represented in ERX model by an additional order attribute. Other related
work include a mapping from XML schema to an extended UML [4], and a
mapping from Object-Role Modeling (ORM) to XML schema [2]. Our approach
is different from these approaches; we focus on the new features provided by an
XML Schema - element-subelement relationships, new datatypes such as ID or
IDREF (8), recursive type definitions, and the property that XGrammar is closed
under union, and how they are useful to data modeling.

1.3 Outline of the Paper

The remainder of this paper is organized as follows. In Sect. 2, we describe
XGrammar that we propose as a formalization of XML schemas. In Sect. 3, we
describe in detail the main features of XGrammar for data modeling. In Sect. 4,
we show how to convert an XGrammar to EER model, and vice versa. In Sect. 5,
an application scenario using the proposed XGrammar and EER model is given.
Finally, some concluding remarks are followed in Sect. 6.



2 Notation for XML Schemas: XGrammar

Recently about a dozen XML schema languages have been proposed. Some pro-
posals aim at full-fledged schema languages while others take a minimalistic
approach. Therefore, they are not directly comparable with each other. Never-
theless, we believe it is meaningful to compare the main building blocks of each
language. In [10] and [12], present authors analyzed various schema language pro-
posals using comparative analysis and formal language theory and categorized
them into different classes.

In this section, we propose a new notation called XGrammar. Instead of
choosing one XML schema language as the basic data modeling language, we
extract the most important features from the proposed XML schema languages
and formalize them into XGrammar. This is an extension of the regular tree
grammar definition in [12] (Def. 24), where we used a six tuple notation to
precisely describe content models of XML schema languages. In this paper, we
extend this 6-tuple notation with attribute definitions and data types.

Informally, XGrammar takes the structural specification feature from DTD
and RELAX and the data typing feature from XMIL-Schema. Therefore, un-
like DTD, XGrammar can specify the exact types of attributes. Furthermore,
attributes of IDREF(S) type can specify which “target” types the current at-
tributes refer to. XGrammar is thus our attempt to formalize some of the core
ideas found in the various XML schema languages proposed recently. The bene-
fits of a formal description is that it is both concise and precise. From RELAX,
we borrow the notion of tree and hedge types: the values of a tree type are trees
and the values of a hedge type are hedges — a sequence of trees (or an ordered list
of trees) [11]. Both tree and hedge types are together called regular expression
types in [8].

We use G to denote an XGrammar and L(G) to denote the language that G
generates. We assume the existence of a set N of non-terminal names, a set T
of terminal names and a set 7 of atomic data types defined in [3] (e.g., string,
integer, etc), including ID and IDREF(S). We use the notations: € denotes the
empty string, “4+” for the union, “,” for the concatenation, “a’” for zero or one
occurrence, “a*” for the Kleene closure, and “at” for “a,a*”. Now let us define
XGrammar formally:

Definition 1 (XGrammar) An XGrammar is denoted by a 7-tuple G =
(Nt,Ng,T,S,E,H, A), where:

— Nr is a set of non-terminal symbols that are tree types, where Ny C N s

— Npg is a set of non-terminal symbols that are hedge types, where Ny C N.
We use N to denote N7 U Npg. Also, we pl@pe the constraint Ny N Ng = ¢.

— T is a set of terminal symbols, where T C T,

— S is a set of start symbols, where S C N.

— E is a set of element production rules of the form “X — a RE”, where
X € Npr,a €T, and RE is:

RE :=¢|7|n|(RE)| RE+ RE | RE,RE | RE" | RE* | RET



Table 1. An example XML-Schema library.xsd.

<schema xmlns:t=’http://www.w3.org/namespace/’>
<element name=’Library’>
<comp1exTyge>
<sequence
<element ref=’t:Book’ minOccurs=’0’ max0Occurs=’unbounded’/>
<element ref=’t:Magazine’ minOccurs=’0’ maxOccurs=’unbounded’/>
<element ref=’t:Person’ minOccurs=’0’ maxOccurs=’unbounded’/>
</sequence>
</complexType>

</element>
<element pame=’Book’>
<complexType>

<sequence> <element ref=’t:EMPTY’/> </sequence>
<attribute name=’title’ type=’string’ use=’required’/>
<attribute name=’authors’ type=’IDREFS’ use=’required’/>
<attribute name=’publicationDate’ type=’date’ use=’required’/>
</complexType>

</element>

<element name=’Magazine’>
<complexType>
<sequence> <element ref=’t:EMPTY’/> </sequence>
<attribute name=’title’ type=’string’ use=’required’/>
<attribute name=’editor’ type=’IDREF’ use=’optional’/>
<attribute name=’publicationDate’ type=’date’ use=’optional’/>
</complexType>

</element>

<eleme
<comp
<sequence

<element ref=’t:Spouse’ minOccurs=’0’ maxOccurs=’1/>
<element ref=’t:Person’ minOccurs=’0’ maxOccurs=’unbounded’/>

</sequence>
<attribute name=’personID’ type=’ID’ use=’required’/>
<attribute name=’name’ type=’string’ use=’optional’/>
</complexType>

</element>

<element name=’Spouse’> <complexType mixed=’true’/> </element>

</schema>

=2 )
E2x¥ame Person’>

yge>

where 7 € T and n € N. Note that RE is actually a hedge type, but it might
not have a name associated with it. In other words, we can have anonymous
hedge types not captured by Ng. Our examples will elaborate this point.

— H is a set of hedge production rules of the form “X — RE”, where X € Ng,
and RE is the same as the one for E.

— A is a set of attribute production rules of the form “X — a RE”, where
X eN,aeT,and RE:=¢|a|(RE) | RE,RE, where a is an attribute
definition expression defined as:

RE; ::
RE, ::

“Qr [ 4] T if 7 ¢ {IDREF, IDREFS}

n=1Q “@” a [ “?”] “w” T “~»” REy if T = IDREF

“Q" a [ “?7" ] “” 7 “~” RE, if T = IDREFS
n | (REl) | RE; + RE;, where n € Nr
e|n|(REy) | REy + RE; | REy, RE, | RE, | RE; | RES, wheren € N

For representation, we distinguish attributes from elements in the grammar
using “@” as in [6] and specify the type 7 of an attribute using “:”. A
specified attribute is considered mandatory unless qualified by “*”. O



Table 2. An example DTD library.dtd equivalent to library.xsd in Table 1.

<!DOCTYPE Library [

<!ELEMENT Library  (Book*,Magazine#*,Personx)>

<'ELEMENT Book (EMPTY) >

<TATTLIST Book title CDATA  #REQUIRED authors IDREFS #REQUIRED
publicationDate CDATA  #REQUIRED>

<!ELEMENT Magazine (EMPTY)>

<!ATTLIST Magazine title CDATA #REQUIRED editor IDREF #IMPLIED
publicationDate CDATA  #IMPLIED>

<!ELEMENT Person (Spouse?,Person%*) >

<!'ATTLIST Person personID ID  #REQUIRED name CDATA  #IMPLIED>

<!ELEMENT Spouse (#PCDATA)>

1>

Table 3. An example XML Document library.xml conforming to schemas defined in
Tables 1 and 2.

<library>
<book title="Data Structures and Algorithms" authors="aho hopcroft ullman"
publicationDate="January, 1983"/>
<book title="Principles of Compiler Design" authors="aho ullman"
publicationDate="1979"/>
<book title="Introduction to Automata Theory" authors="hopcroft ullman"
publicationDate="1979"/>
<magazine title="Communication of ACM" editor="aho"/>
<magazine title="IEEE Comp." editor="ullman" publicationDate="Sep,2000"/>
<person personlD="aho" name="Alfred. V. Aho">
<spouse>Wife0fAho</spouse>
<person personID="sonl" name="Junior_1 Aho"/>
<person personID="son2" name="Junior_2 Aho"/>
</person>
<person personID="ullman" name="Jeffrey. D. Ullman">
<spouse>Wife0fUllman</spouse>
</person>
<person personID="hopcroft" name="John. E. Hopcroft"/>
</library>

Example 1. Consider a scenario of “library” in the real world. Tables 1 and 2
show exemplar schema definitions to model the scenario. Note that not all con-
straints expressed in Table 1 are expressed in Table 2 due to the insufficient
expressive power of DTD. Then, the schema definition can be encoded into
XGrammar: Gy = (Nr,¢,T,S,E ¢, A), where

Nr = {Library, Book, Magazine, Person, Spouse}

T = {library, book, magazine, person, spouse, title, authors, editor, publicationDate,
personI D, name}

S = {Library}

E = {Library — library (Book™, Magazine”, Person™), Book — book (¢), Magazine —
magazine (€), Person — person (Spouse’, Person™), Spouse — spouse (string)}

A = {Library — library(e), Book — book (Qtitle :: string, Qauthors :: IDREFS ~» Person™,
@publicationDate :: date), Magazine — magazine (Qtitle :: string,
@editor’ :: IDREF ~» Person, @publicationDate7 :: date), Person —
person (QpersonID : ID, @name’ :: string), Spouse — spouse(e) }



Observe that the IDREF (S) attributes identify the target types. For instance, an
attribute @editor of type IDREF identifies the target type as Person. This means
that in a document conforming to this schema, the value of the @editor attribute
should be a valid ID value of an element of type Person. In addition, the target
type of an IDREFS attribute is specified as a hedge type. For instance, the IDREFS
attribute Qauthors of Book identifies its target type as Person™, which is an
anonymous hedge type. This means that the value of Qauthors should be a list of
values that are ID values of Person. Table 3 shows an example XML document
that conforms to Gy . O

3 Semantic Data Modeling with XGrammar

Three main features of XGrammar that help to model XML data are as follows:

1. Ordered binary relationships: XGrammar can represent ordered bi-
nary relationships using element-subelement relationships and IDREF (S) at-
tributes. Such relationships occur commonly in real world scenarios. For
example, the authors of a book are typically ordered. The EER model can
represent ordered binary relationships.

2. Union types: The closure properties of the different XML schema language
proposals under boolean set operations are studied in [12]. Here, it was shown
that (a) proposals such as DTD and XML-Schema are closed under inter-
section, but are not closed under union and difference operations, and (b)
proposals such as RELAX, XDuce and TREX are closed under intersection,
union and difference operations. Since XGrammar is equivalent to RELAX
with respect to its structural expressiveness, XGrammar is also closed under
all three boolean set operations. Therefore one can define union between
any two tree types or hedge types. This is useful for several real-world data
integration problems.

For example, we can define one type representing two semantically equivalent

but structurally different types. Consider the types Book1 — book(T'itle, Author™)
and Book2 — book(Title, Author™, Publisher). We can take union of these

two types, and define the union type as Book — book(T'itle, Author™, Publisher?).
Similarly consider the types Book — book(T'itle, Authort, Publisher®), and
Magazine(Name, Editor™), we can define the union type as Reading M aterial

— (Book + Magazine).

3. Recursive types: XGrammar can represent recursive relationship types
using recursive type definitions. In G; of Example 1, we have a recursive type
for Person in its element production rule; here the subelements of a Person
represent the children of that Person. Unlike ER model, in general, XML
model has two different notions of recursion: structural and semantic recur-
sions. XGrammar can express both using element or attribute production
rules, respectively. For instance, consider the classical “employee-manager-
subordinate” relationships of ER model in Fig. 2. This model can be best
represented by the two DTDs below. DTD (a) forms a recursion semanti-
cally if the subord attribute is assumed to point to some employee’s name



name phone addr

(0,1) (0, n)

employee

has_manager has_subord

Fig. 2. An example of recursion in ER model.

attributes, while DTD (b) forms a recursion structurally since employee el-
ement can contain subord subelement which can in turn contain employee
element as child again.

// DTD (a) // DID (b)

<ELEMENT employee EMPTY> <ELEMENT employee (subord*)>

<ATTLIST employee <ATTLIST employee name ID #REQUIRED
name ID #REQUIRED phone CDATA #IMPLIED
phone CDATA #IMPLIED addr CDATA #IMPLIED>
addr CDATA #IMPLIED <ELEMENT subord (employee)>

subord IDREFS #IMPLIED>

The two DTDs (a) and (b) can be captured in XGrammar differently. At-
tribute production rule will capture the semantic recursion:

A = {Employee — employee (Qsubord’ :: IDREFS ~» Employee™)}
while element production rule will capture the structural recursion:

E = {Employee — employee (Subord™), Subord — subord (Employee)}

4 XGrammar & EER Model

In this section, we discuss the relationships between XGrammar and EER model.
Especially, we investigate issues of conversion between the two models.

4.1 Converting XGrammar to EER Model

XGrammar Gy of Example 1 can be, for instance, converted to EER model
as shown in Fig. 3. The different types and production rules are converted as
follows:

1. Tree type: Every tree type in Nt of XGrammar is represented as an entity
type. For instance, in G; of Example 1, there are five tree types and hence
five entity types {Library, Book, M agazine, Person, Spouse}.



(1,1) (1,1)

(0, %) (0,*)
title — . title
has . .
publicationDate — Book Magazine [_publicationDate
(0, %) (0, %)
<o o)
(1,*) (0,1)
1 1
@ (1,1) —e personID
- Person

name

(0,1) (0,1) (0, *)

Spouse @

Fig. 3. An EER model representation of XGrammar G; of Example 1.

2. Element production rule: For every “child” tree type in the element produc-
tion rule, a has ordered relationship is created. The cardinalities of the parent
and child types are decided appropriately based on the regular expression
operators such as “,”, “+7, “*¥”_ “?”_ TFor example, consider the element pro-
duction rule Library — library (Book*, Magazine*, Person*). There are

three child tree types. Therefore in EER model, this element production rule
will be represented as three ordered relationships, given by Library(1,1) hag
Book(0, *), Library(1,1) hog Magazine(0, ), Library(0,1) hog Person(0, ).
Note that since Book and M agazine can occur in the document only as child
of Library, the cardinality of Library in these relationships is (1,1). How-
ever, Person can occur as child of either Library or Person. Therefore, the
cardinality of Library in this relationship is (0, 1).

3. IDREF attribute: IDREF attribute is represented as an unordered binary re-
lationship. The cardinality of the type that specifies the IDREF attribute in
the relationship is (0, *). For identifying the cardinality of the target types,
we consider three cases with examples:

— Case 1. The target type of an IDREF attribute is a union of at least two
tree types: For example, consider the attribute rule of type X to specify
@A :: IDREF ~ (B | C). This is represented as two unordered relation-
ships X (0, %) N B(0,1) and X (0, %) N C(0,1). This is irrespective of
whether the attribute A is optional or not.

— Case 2: The target type of an IDREF attribute is a single tree type, and
this IDREF attribute is optional: For example, consider the attribute
Qeditor” :: IDREF ~» Person for the tree type Magazine in G; of Exam-
ple 1. This is represented as an unordered relationship: Magazine(0, *)



Table 4. The relationships specified by G; of Example 1.

Type Order Relationships

1:1 - {Spouse(0,1) hag Person(1,1)}

1:n| Ordered |{Library(l,1) Lag Book(0, %), Library(1,1) beg Magazine(0, *),
Library(0,1) hag Person(0, %), Person(0,1) L Person(0, %)}
n:1| Unordered [{Magazine(0,x*) edited Person(0,1)}

n : m|Ordered RHS|{Book(0, *) authoged Person(1,%)}

edited Person(0,1). Note that the name of the relationship is changed to

a verb form (i.e., from “editor” to “edited”) for clarity.

— Case 8: The target type of an IDREF attribute is a single tree type, and this
IDREF attribute is mandatory: For example, consider the IDREF attribute
for tree type X specified as @A :: IDREF ~» (B). This is represented as

one unordered relationship X (0, *) N B(1,1).

4. IDREFS attribute: IDREFS attribute is used to specify ordered relationships.
As for IDREF attribute, the cardinality of the type that specifies the IDREFS
attribute in the relationship is (0, *). For identifying the cardinality of a
target type in the relationship, we consider two cases:

— Case 1: The IDREFS attribute is optional: For example, consider the at-
tribute rule of type X to specify @A’ :: IDREFS ~» Bt. This is repre-

sented as X (0, %) = B(0, ). In other words, the minimum cardinality
of a target type in the relationship is 0.

— Case 2: The IDREFS attribute is mandatory: This is represented as an
ordered binary relationship named with the attribute name just like in
the previous case. However, the minimum cardinality of a target type
need not be 0. For example, consider the attribute specification for the
tree type Book in G; of Example 1 given by @QAuthors :: IDREFS ~»

(Person™). This is represented in the EER diagram as Book(0, *) authoged
Person(1, ).

The different relationships expressed in G; of Example 1 are summarized in
Table 4. The reader should observe that what we described above are binary
relationships expressed in XGrammar. This represents only a subset of the rela-
tionships expressible in an XGrammar. For example, G; of Example 1 specifies
other relationships such as “the list of Magazines in Library occur after the list
of Books in the Library”. Such order specifications are outside the scope of this
paper and not discussed further.

4.2 Converting EER Model to XGrammar

XML schema supports constraints such as key and foreign key constraints. Based
on these constraints, we define “joinable tree types” — tree types that have a key-
foreign key constraint. Joinable tree types are used to represent relationships,



similar to key-foreign key constraints in the relational model. The translation of
a given EER model to an XGrammar is done using the following steps. These
steps are summarized in Table 5.

1. Each entity in EER model is translated to a tree type in XGrammar. For
example, we will have a tree type corresponding to Book, a tree type cor-
responding to Magazine etc. Every simple attribute can be translated to
an attribute for that tree type in XGrammar, a composite attribute can
be translated to a subelement of the tree type. In our EER example, we
have an entity Book with two attributes name and publicationDate. They
are translated to a tree type Book with an attribute production rule as
Book — book(Qtitle, QpublicationDate).

2. A 1:1 relationship is translated as follows. Consider a relationship:
A(ml,Ml) :R> B(mQ,MQ), where M1 = M2 =1.

— my = 0 and my = 0: This is represented using two different tree types
with IDREF or with foreign key constraints (joinable tree types).

— my = 1 (or similarly my = 1): This is represented using an element-
subelement relationship, where B is a child of A (or vice versa). If my =
1, then the content model of the element production rule for A will spec-
ify B, otherwise if ms = 0, then the content model will specify B?. For

example, Fig. 3 has the 1 : 1 relationship Person(1,1) hog Spouse(0,1).
This is represented in the XGrammar as an element-subelement rela-
tionship, where Spouse’ is a subelement of Person. If both m; = 1 and
mg = 1, then we can also represent this relationship using just one tree
type as in the ER-relational conversion [1].
3. A 1:n relationship is translated as follows.
— The relationship is ordered: We can represent this as an element-subelement

relationship, or using IDREFS attributes. The EER diagram of Fig. 3 has
four ordered 1 : n relationships. We represent all of them as element-

subelement relationships in the XGrammar. For example, Library(1, 1) hog
Book(0, %) is represented by having Book* as a subelement of Library.
— The relationship is unordered: We can represent this using IDREFS at-

tribute or using joinable tree types. The EER diagram of Fig. 3 has

one unordered 1 : n relationship Magazine(0, %) edited Person(0,1),

which is represented by having an IDREF attribute for Magazine as
@editor’ :: IDREF ~» Person.

4. A n : m relationship is translated as follows.

— The relationship is ordered: We can represent this using IDREFS at-

tribute. For example, consider the ordered n : m relationship in the
authored

EER diagram of Fig. 3, Book(0,*) " =" Person(0, ). This is repre-
sented in XGrammar using IDREFS attribute for Book as Qauthors? :
IDREFS ~» Person™.

— The relationship is unordered: This is represented using joinable tree

types.



Table 5. Representing the different binary relationships in an XGrammar to satisfy
the goodness criterion.

Relationship Type|Ordered/Unordered How to represent them
1:1 - {element-subelement, IDREF, joinable tree types}
1:n Ordered {element-subelement, IDREFS}
1:n Unordered {IDREF, joinable tree types}
n:m Ordered {IDREFS}
n:m Unordered {joinable tree types}

Table 6. The relationships specified by EER diagram of Fig. 4.

Type Order Relationships
1:n| Ordered |{Agency(1,1) fungs ResearchProject(1, *),
ResearchProject(1,1) produges ResearchReport(1, %),

has

ResearchDB(1,1) = ResearchT opic(0, *),
ResearchDB(1,1) hag Employee(0, %),

has

ResearchDB(1,1) = Agency(0, %)}

addresses

n:1| Unordered |{ResearchReport(0,*) " —  ResearchTopic(0,1),
Employee(0, *) isSuperpised Employee(0,1),
1S_PI

ResearchProject(0,*) =" Employee(1,1)}
n : m|Ordered RHS|{ResearchProject(0, ) hasEmployee Employee(1,*)}

5. A recursive relationship is represented either using semantic recursion or
structural recursion. The EER diagram has one recursive relationship,

Person(0,1) hog Person(0, x), which is represented using structural recur-
sion in the XGrammar by having Person* as a subelement of Person.

5 Application

In this section, we consider a real world example - that of a Research Projects
database. This example is modified slightly from the one given in [1] (page 49).
We illustrate how this is modeled using XGrammar. The EER diagram is shown
in Fig. 4. To convert EER diagram to XGrammar, first introduce a root tree type
for the XGrammar — ResearchDB. The child elements of the root are the entities
shown in EER diagram through has relationships from ResearchDB. There are
six entities in this EER model - {ResearchDB, ResearchTopic, Agency, Employee,
ResearchProject, ResearchReport}. The entity ResearchDB is mapped to the
root tree type for XGrammar. The relationships in this EER diagram are shown
in Table 6. For this example, we can represent all the ordered 1 : n relationships
using element-subelement relationships, the unordered n : 1 relationships using
IDREF attribute, and the ordered n : m relationships using IDREFS attributes.
The XGrammar is given by Go = (Nr1,¢,T, S, E, €, A), where

Nr = {ResearchDB, Agency, ResearchT opic, Employee, ResearchProject, ResearchReport}

T = {researchDB, agency, researchT opic,employee, researchProject,researchReport}



1,1
has (LD ResearchDB

a.n
has
(0, %) (L1
(0, %)
name— | name has
ResearchTopic Agency
code—| — address
(1,1)
(1,1)
funds (0,
IS_PI
addresses
(1,%) {0, * a2
name A ::bﬂnﬂ]c
ResearchProject Employee [ S
(0,*)
(1,1 0,%) =2y
{0,1) {0, %)
number —] hasEmployee
ResearchReport produces .
title — sSupervised

Fig. 4. Application scenario using XGrammar and EER model.

S = {ResearchDB}

E = {ResearchDB — researchDB(Agency”, ResearchTopic*, Employee™), Agency —
agency(ResearchProject™), ResearchProject — researchProject(ResearchReport™),
Employee — employee(c), ResearchReport — researchReport(e),

ResearchTopic — researchT opic(e)}

A = {ResearchDB — researchDB(e),

Agency — agency(Qname :: string, Qaddress :: string),

ResearchT opic — researchT opic(Qname :: string, Qcode :: integer),

ResearchProject — researchProject(@Qname :: string, QPI :: IDREF ~» Employee,
@Qmembers :: IDREFS ~» Employee+),

ResearchReport — researchReport(Qnumber :: integer, Qtitle :: string,
@topic :: IDREF ~» ResearchT opic)

Employee — employee(@Qname :: string, Qssn :: integer, Qtitle :: string,

@phone :: integer, @supervisor® :: IDREF ~» Employee)}

6 Conclusions

In this paper, we examined several new features provided by XML schemas for
data description. In particular, we examined how ordered binary relationships -



1 :n (through parent-child relationships and IDREFS attribute) as well as n : m
(through IDREFS attribute) can be represented using an XML schema. We also
examined the other features provided by XML grammars - representing recursive
relationships using recursive type definitions and union types. EER model, con-
ceptualized in the logical design phase, can be mapped on to XGrammar (or its
equivalent) and, in turn, mapped into other final data models, such as relational
data model, or in some cases, the XML data model itself (i.e., data might be
stored as XML documents themselves). We believe that work presented in this
paper forms a useful contribution to such scenarios.

References

[1]

[10]
[11]

[12]

[13]

[14]

[15]

C. Batini, S. Ceri, and S. B. Navathe. “Conceptual Database Design: An Entity-
Relationship Approach”. The Benjamin/Cummings Pub., 1992.

L. Bird, A. Goodchild, and T. Halpin. “Object Role Modeling and XML-Schema”.
In Int’l Conf. on Conceptual Modeling (ER), Salt Lake City, UT, Oct. 2000.

P. V. Biron and A. Malhotra (Eds). “XML Schema Part 2: Datatypes”. W3C
Recommendation, May 2001. http://www.w3.org/TR/xmlschema-2/.

G. Booch, M. Christerson, M. Fuchs, and J. Koisti-
nen. “UML for XML Schema  Mapping Specification” .
http://www.rational.com/media/uml/resources/media/uml_xmlschema33.pdf.

T. Bray, J. Paoliy and C. M. Sperberg-McQueen (Eds). “Extensi-

ble Markup Language (XML) 1.0”. W3C Recommendation, Feb. 1998.
http://www.w3.0org/TR/1998/REC-xmI-19980210.

A. Brown, M. Fuchs, J. Robie, and P. Wadler. “MSL: A Model for W3C XML
Schema”. In Int’l World Wide Web Conf. (WWW), Hong Kong, May 2001.

P. P. Chen. “The Entity-Relationship Model”. ACM Trans. on Database Systems
(TODS), 1:9-36, 1976.

H. Hosoya and B. C. Pierce. “XDuce: A Typed XML Processing Language”. In
Int’l Workshop on the Web and Databases (WebDB), Dallas, TX, May 2000.
ISO/IEC. “Information Technology — Text and Office Systems — Regular Language
Description for XML (RELAX) — Part 1: RELAX Core”, 2000. DTR 22250-1.
D. Lee and W. W. Chu. “Comparative Analysis of Six XML Schema Languages”.
ACM SIGMOD Record, 29(3):76-87, Sep. 2000.

M. Murata. “Hedge Automata: a Formal Model for XML Schemata”. Web page,
2000. http://www.xml.gr.jp/relax/hedge_nice.html.

M. Murata, D. Lee, and M. Mani. “Taxonomy of XML Schema Languages using
Formal Language Theory”. In Eztreme Markup Languages, Montreal, Canada,
Aug. 2001. http://www.cs.ucla.edu/~dongwon/paper/.

G. Psaila. “ERX: A Data Model for Collections of XML Documents”. In ACM
Symp. on Applied Computing (SAC), Villa Olmo, Italy, Mar. 2000.

H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn (Eds).
“XML Schema Part 1: Structures”. W3C Recommendation, May 2001.
http://www.w3.org/TR/xmlschema-1/.

D. C. Tsichritzis and F. H. Lochovsky. “Data Models”. Prentice-Hall, 1982.



