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Abstract

As Extensible Markup Language (XML) is emerging as the data format of the In-
ternet era, there are increasing needs to efficiently store and query XML data. One
path to this goal is transforming XML data into relational format in order to use
relational database technology. Although several transformation algorithms exist,
they are incomplete in the sense that they focus only on structural aspects and
ignore semantic aspects. In this paper, we present the semantic knowledge that
needs to be captured during transformation to ensure a correct relational schema.
Further, we show an algorithm that can 1) derive such semantic knowledge from a
given XML Document Type Definition (DTD) and 2) preserve the knowledge by
representing it as semantic constraints in relational database terms. By combining
existing transformation algorithms and our constraints-preserving algorithm, one
can transform XML DTD to relational schema where correct semantics and be-
haviors are guaranteed by the preserved constraints. Experimental results are also
presented.
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1 Introduction

As the World-Wide Web becomes a major means of disseminating and sharing
information, Extensible Markup Language (XML) (Bray et al., 2000) is emerg-
ing as a possible candidate data format because it is simpler than SGML, and
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more powerful than HTML. One way to query XML data is to reuse the es-
tablished relational database techniques by converting and storing XML data
in relational storage. Since the hierarchical XML and the flat relational data
models are not fully compatible, the transformation is not a straightforward
task.

To this end, several XML-to-relational transformation algorithms have been
proposed (Deutsch et al., 1998; Florescu and Kossmann, 1999; Shanmugasun-
daram et al., 1999). For instance, Shanmugasundaram et al. (1999) presents
3 algorithms that focus on the table level of the schema while Florescu and
Kossmann (1999) studies different performance issues among 8 algorithms that
focus on the attribute and value level of the schema. They all transform the
given XML Document Type Definition (DTD) to relational schema. Similarly,
Deutsch et al. (1998) presents a data mining-based algorithm that instead uses
XML documents directly without a DTD.

Although they work well for the given applications, they miss one important
point. That is, the transformation algorithms only capture the structure of
a DTD and ignore the hidden semantic constraints. Consider the following
example.

Ezample 1. Consider a DTD modeling conference publications:

<!ELEMENT conf (title,society,year,mon?,paper+)>
<!ELEMENT paper (pid,title,abstract?)>

Suppose the combination of title and year uniquely identifies the conf.
Using the hybrid inlining algorithm (explained in Section 3), the DTD would
be transformed to the following relational schema:

conf (title,society,year,mon)
paper (pid,title,conf_title,conf_year,abstract)

While the relational schema correctly captures the structural aspect for the
DTD, it does not force correct semantics. For instance, it cannot prevent a
tuple t;: paper (100, ’DTD...’,”ER’,3000,’...7) from being inserted. How-
ever, tuple t; is inconsistent with semantics of the given DTD since the DTD
implies that the paper cannot exist without being associated with a conference
and there is apparently no conference “ER-3000” yet. In database terms, this
kind of violation can be easily prevented by an inclusion dependency saying
“paper [conf title,conf _year] C conf[title,year]”. 0

The reason for this inconsistency between the DTD and the transformed re-
lational schema is that transformation algorithms only capture the structure
of the DTD and ignore the hidden semantic constraints. Via our constraints-
preserving inlining (CPI) algorithm, we show the kinds of semantic constraints
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Fig. 1. Overview of our approach. Numbers 1) to 3) specify: 1) transforming schema,
2) discovering constraints via findConstraints (), and 3) preserving constraints via
rewriteConstraints().

that can be derived from DTDs during transformation, and illustrate how to
preserve them by rewriting them in an output schema notation. Since our
algorithm to capture and preserve semantic constraints from DTDs is inde-
pendent of the transformation algorithms, our algorithm can be applied to
various transformation processes such as Deutsch et al. (1998); Florescu and
Kossmann (1999); Shanmugasundaram et al. (1999) with little change. Fig-
ure 1 presents an overview of our approach. First, given a DTD, we transform
it to a corresponding relational scheme using an existing algorithm. Second,
during the transformation, we discover various semantic constraints in XML
notation. Third, we rewrite the discovered constraints to conform to relational
notation.

This paper is organized as follows. Section 2 gives background information and
related work. In Section 3, the transformation algorithm is discussed in de-
tail. Section 4 presents various semantic constraints that are hidden in DTDs.
Section 5 proposes our algorithm to preserve such constraints during transfor-
mation. Section 6 reports some experimental results and Section 7 illustrates
two example applications where the discovered semantic constraints are fur-
ther utilized. Finally, Sections 8 and 9 discuss our vision on future work and
concluding remarks.

2 Background and Related Work

Relational Schema: We define a relational schema R to be composed of a re-
lational scheme (S ) and semantic constraints (A). That is, R = (S, A). In turn,
the relational scheme S is a collection of table schemes such as r(aq, ..., ax),
where q; is the i-th attribute in the table » and the semantic constraints A is
a collection of semantic knowledge such as domain constraints, inclusion de-
pendency, equality-generating dependency, tuple-generating dependency, etc.

XML and DTD: XML is a textual representation of the hierarchical data
model defined by the World-Wide Web Consortium (W3C) (Bray et al., 2000).
The meaningful piece of the XML document is bounded by matching start-



Table 1
A DTD for Conference.

<!'ELEMENT conf (title,date,editor?,paper*)>
<!'ATTLIST conf id D #REQUIRED>
<!ELEMENT title (#PCDATA)>

<!ELEMENT date EMPTY>

<!'ATTLIST date year CDATA #REQUIRED
mon CDATA #REQUIRED
day CDATA #IMPLIED>

<!ELEMENT editor (person*)>

<!ATTLIST editor eids IDREFS #IMPLIED>

<!ELEMENT paper (title,contact?,author,cite?)>

<!ATTLIST paper id ID #REQUIRED>

<!ELEMENT contact EMPTY>

<!ATTLIST contact aid IDREF #REQUIRED>

<!ELEMENT author (person+)>

<!'ATTLIST author id ID #REQUIRED>

<!ELEMENT person (name,(email|phone)?)>

<!ATTLIST person id ID #REQUIRED>

<!ELEMENT name EMPTY>

<!'ATTLIST name fn CDATA #IMPLIED
1n CDATA #REQUIRED>

<!ELEMENT email (#PCDATA) >

<!ELEMENT phone (#PCDATA)>

<!ELEMENT cite (paperx*)>

<!'ATTLIST cite id D #REQUIRED
format (ACM|IEEE) #IMPLIED>

ing and ending tags such as <name> and </name>. In XML, tags are defined
by users, while in HTML, permitted tags are pre-defined. Thus, XML is a
meta-language that can be used for defining other customized languages. Us-
ing DTDs, users can define the structure of the XML document of particular
interest. Conceptually, a DTD in XML is very similar to a schema in a rela-
tional database. The main building blocks of DTD are elements and attributes,
which are defined by the keywords <!ELEMENT> and <!ATTLIST>, respectively.
In general, components in DTD are specified by the following BNF syntax:

<!ELEMENT> <element-name> <element-type>
<!ATTLIST> <attr-name> <attr-type> <attr-option>

For a detailed description of a DTD model, refer to Lee and Chu (2000a).
Table 1 shows a DTD for Conference which states that a conf element can
have four sub-elements: title, date, editor and paper in that order. As
common in regular expressions, 0 or 1 occurrence (i.e., optional) is represented
by the symbol “?”, 0 or more occurrences is represented by the symbol “x”,
and 1 or more occurrences is represented by the symbol “+”. A sub-element
without any such symbols (e.g., title) represents a mandatory one.

Keywords #PCDATA and CDATA are used as string types for elements and at-
tributes, respectively. For instance, the type of title element is defined as
#PCDATA so that title element can be arbitrary character data. <attr-option>
can be #REQUIRED or #IMPLIED among others. An attribute with a #REQUIRED
option is a mandatory one, while an attribute with an #IMPLIED option is an
optional one. <attr-type> keywords ID and IDREF are used for the pointed



Table 2
A valid XML document conforming to the DTD for Conference of Table 1.

<conf id="erQ5"> X .
<title>Int’l Conference on Conceptual Modeling (ER)</title>

<date>
<year>2005</year> <mon>May</mon> <day>20</day>
</date> |
<editor eids="sheth bossy">
<person id="klavans">
<name fn="Judith" 1ln="Klavans"/>
<email>klavans@cs.columbia.edu</email>
</person> </editor>
<paper id="p1">
<title>Indexing Model for Structured...</title>
<contact aid="dao"/>
<author>
<person id="dao"><name fn="Tuong" 1n="Dao"/></person>
</author>
</paper>
<paper id="p2">
<title>Logical Information Modeling of...</title>
<contact aid="shah"/>

<aythor>
<person id="shah">

<name fn="Kshitij" 1n="Shah"/>
</person>
<person id="sheth">
<name fn="Amit" 1ln="Sheth"/>
<email>amit@cs.uga.edu</email>
</person>
</author>
<cite 1d=98190" format="ACM">
<paper id="p3">
<title>Making Sense of Scientific...</title>

<author>
<person id="bossy">

<name fn="Marcia" 1ln="Bossy"/>
<phone>391.4337</phone>
</person>
</author> </paper> </cite> </paper>
</conf>
<paper id="p7">
<title>Constraints-preserving Transformation from...</title>

<contact aid="lee"/>
<author .
<person id="lee">

<name fn="Dongwon" ln="Lee"/>
<email>dongwon@cs.ucla.edu</email>
</person> </author>
<cite id="c200" format="IEEE"/>
</paper>

and pointing attributes, respectively. IDREFS is a plural form of IDREF. For
instance, the author element must have a mandatory id attribute and this
attribute is used when other attributes point to this attribute. On the other
hand, the contact element has a mandatory aid attribute that must point to
the id attribute of the contacting author of the current paper. One interesting
definition in Table 1 is the cite element; it can have zero or more paper ele-
ments as sub-elements, thus creating a cyclic definition. Table 2 shows a valid
XML document conforming to the DTD for Conference. The document rep-
resents a portion of the fictional ER conference to be held in 2005. The first
two paper elements are described with id="p1" and id="p2", respectively.
The paper element with id="p2" further has a cite element that describes
the references in the paper. The paper element with id="p7" shows an ex-
ample of the valid XML document that is not rooted at conf element. Note
that when a root element is not specified in a DTD (i.e., no <!DOCTYPE root>
clause is given), a valid XML document can be rooted at any level of the DTD
hierarchy as long as their sub-elements and attributes are valid.



XML-Schema: XML-Schema® (Fallside (Eds), 2001; Thompson et al., 2001;
Biron and Malhotra (Eds), 2001) is an ongoing effort of W3C as a next
generation XML schema language. XML-Schema aims to be more expressive
than DTD and more usable by a wider variety of applications. It has many
novel mechanisms such as inheritance for attributes and elements, user-defined
datatypes, more expressive constraints, etc.

XML-Schema supports some features that cannot be easily captured in rela-
tional schema. For instance, in XML-Schema, one can define arbitrary combi-
nations of elements and/or attributes as a key. The following snippet defines
a key ekey for an element student that consists of an attribute Sname and
two sub-elements Advisor and Course.

<key name="ekey">

<selector xpath="//student"/>

<field xpath="@Sname"/><field xpath="Advisor"/><field xpath="Course"/>
</key>

If a student is allowed to have multiple Advisors and to take multiple
Courses, typical XML-to-relational conversion algorithms would store Advisor
and Course in separate tables ¢, and ¢3 to avoid violating 1NF, while storing
remaining attributes and sub-elements of student in a table ¢;. Thus, when
Sname, Advisor, and Course are all stored in separate tables t;, t5, and %3,
respectively, it is not clear how to preserve the key constraint ekey.

There are more intriguing features of XML-Schema that one cannot easily
capture in relational schema such as user-defined types, namespace, <any>
types, etc. For the rest of this paper, we restrict ourselves to the case of DTDs
only and leave the support for XML-Schema as a future work.

Assumptions: Without loss of generality, to simplify our presentation, we
assume that: 1) the input DTD has been already simplified using a technique
in Shanmugasundaram et al. (1999), 2) the input XML documents are all
valid, and 3) the physical XML features such as entities or notations are not
discussed but handled in the implementation.

2.1 Related Work

Conversion between different models has been extensively investigated. For
instance, Christophides et al. (1994) deals with transformation problems in
the OODB area; since OODB is a richer environment than RDB, their work is

1 We differentiate two terms in this paper - XML schema and XML-Schema. The
former refers to a general term for schema in the XML model, while the latter refers
to one particular kind of XML schema language proposed by W3C.



Table 3
Classification of schema conversion between XML and relational models.

Conversion Methods Structure-oriented Constraints-oriented

XML to Relational Deutsch et al. (1998); Shanmugasundaram et al. (1999) | Lee and Chu (2000b)
Florescu and Kossmann (1999); Bourret (1999)
Kappel et al. (2000); Schmidt et al. (2000)
Klettke and Meyer (2000); Cheng and Xu (2000), etc

Relational to XML Turau (1999); Fernandez et al. (2000) Lee et al. (2001)
Shanmugasundaram et al. (2000); Banerjee et al. (2000)
Carey et al. (2000), etc

not readily applicable to our application. The logical database design methods
and their associated transformation techniques to other data models have been
extensively studied in ER research. For instance, Batini et al. (1992) presents
an overview of such techniques. However, due to the differences between ER
and XML models, those transformation techniques need to be modified sub-
stantially. More recently, Bernstein et al. (2000) studies a generic mapping
between arbitrary models with the focus of developing a framework for model
management. Apart from conversion approaches, it is worthwhile to note that
there have been also recent investigations on native XML storage systems such
as Kanne and Moerkotte (2000).

Towards conversion between XML and relational models, an array of research
has addressed the particular issues lately. On the commercial side, database
vendors are busily extending their databases to adopt XML types. Typically,
they can handle XML data using BLOB/CLOB formats along with a limited
keyword searching or using some object-relational features (Cheng and Xu,
2000; Banerjee et al., 2000), but not many details have been revealed. On the
research side, Table 3 shows the classification of such related work.

e Structure-oriented XML to Relational conversion: Work done in
STORED (Deutsch et al., 1998) is one of the first significant and concrete
attempts to this end and deals with non-valid XML documents. STORED
uses a data mining technique to find a representative DTD whose support
exceeds the pre-defined threshold and convert XML documents to relational
format using the DTD. Bourret (1999) discusses template language-based
transformation from DTD to relational schema which requires human ex-
perts to write an XML-based transformation rule. Shanmugasundaram et al.
(1999) presents three inlining algorithms that focus on the table level of the
schema conversions. On the contrary, Florescu and Kossmann (1999) stud-
ies different performance issues among eight algorithms that focus on the
attribute and value level of the schema. Shimura et al. (1999) proposes a
DTD-independent mapping algorithm. While ignoring specific characteris-
tics hidden in each DTD, Shimura et al. (1999) decomposes XML documents
into element, attribute, text and path tables, so that the changes of DTDs
of the XML documents do not necessarily result in invalid mapping as found



in examples (Deutsch et al., 1998; Shanmugasundaram et al., 1999). Since
our CPI algorithm provides a systematic way of finding and preserving con-
straints from a DTD, ours is an improvement to the existing transformation
algorithms. Recent work in Kappel et al. (2000) attempts a conversion ap-
proach based on the notion of meta schema between XML and relational
models, but mainly focuses on the structural mapping unlike ours.

Constraints-oriented XML to Relational conversion: Lee and Chu
(2000b) proposes a method where the hidden semantic constraints in DTD
are systematically found and translated into relational formats. Since the
method is orthogonal to the structure-oriented conversion methods, it can
be used along with algorithms (Deutsch et al., 1998; Bourret, 1999; Shanmu-
gasundaram et al., 1999; Florescu and Kossmann, 1999) with little change.

We are not aware of any other work on this problem. This paper is an
extended work of Lee and Chu (2000b).

Structure-oriented Relational to XML conversion: Some primitive
work has been done in Turau (1999) dealing with the transformation from
relational tables to XML documents. SilkRoute (Fernandez et al., 2000)
provides a declarative query language (RXL) for viewing relational data in
XML. Applications express the answer data as a query over the view and
SilkRoute dynamically materializes the fragment of an XML view. Shan-
mugasundaram et al. (2000) extends SQL to specify the conversion pro-
cess declaratively, whereas SilkRoute proposes a new language RXL and
describes an extensive study on the issues of efficiently implementing the
algorithms. Similar to SilkRoute, XPERANTO (Carey et al., 2000) aims
to provide a uniform XML interface to underlying ORDB, transparently
providing an XML-to-SQL query rewriter and a table-to-XML answer con-
verter. Its output XML view is, however, mainly specified by the user’s input
XML queries.

In addition, there have been other DTD inference algorithms that take
as “input” a set of XML documents (Garofalakis et al., 2000) or a view
description (Papakonstantinou and Velikhov, 1999).

Constraints-oriented Relational to XML conversion: Path constraints
on a semi-structured model (Buneman et al., 1998) or XML model (Fan
and Siméon, 2000) have been studied, mostly with respect to their impli-
cation problems. However, to our best knowledge, there has not been much
work on this direction of conversion problem. For instance, Fan and Siméon
(2000) proposes three languages to capture the semantics of XML model
and presents implication results, but does not deal with issues on convert-
ing constraints from RDB to XML model. Recently, the authors proposed to
convert relational schema to XML schema using the hidden data semantics
found by the nest operator in Lee et al. (2001).



3 Transforming DTD to Relational Schema

Transforming a hierarchical XML model to a flat relational model is not a
trivial task. There are several difficulties including non 1-to-1 mapping, set
values, recursion, and fragmentation issues (Shanmugasundaram et al., 1999).
For a better presentation, we chose one particular transformation algorithm,
called the hybrid inlining algorithm (Shanmugasundaram et al., 1999) among
many algorithms (Bourret, 1999; Deutsch et al., 1998; Florescu and Koss-
mann, 1999; Shanmugasundaram et al., 1999). It is chosen since it exhibits
the pros of the other two competing algorithms in Shanmugasundaram et al.
(1999) without severe side effects and it is a more generic algorithm than
those in Bourret (1999); Deutsch et al. (1998). Since issues of discovering and
preserving semantic constraints in this paper is independent of that of trans-
formation algorithms, our technique can be applied to other transformation
algorithms easily.

3.1 Choice Elimination Algorithm

Before describing the hybrid algorithm, let us first discuss an algorithm that
eliminates the choice operators (|) from the content models of a DTD while
trying to maintain the same semantics. Shanmugasundaram et al. (1999) does
not provide any details on this subtle but important issue and simply assumes
that such pre-processing has been already done.

The choice operators are heavily used in XML model, but are not natively sup-
ported in relational model. For instance <!ELEMENT r (a|b)> in XML model
implies that “r can have either a or b but not both at the same time”. Trans-
lating this to relational model, the closest mapping with the same semantics
would be having a table “r” with two nullable columns “a” and “b”, (i.e.,
(a?,b?)) with a constraint enforcing one of the two columns must be null at

all times as follows:

CREATE TABLE r (

a VARCHAR(20),

b VARCHAR(20) ,

CHECK ((a is NOT NULL AND b is NULL) OR (a is NULL AND b is NOT NULL))

);

Hence, when there is no nested content models, any arbitrary long content
models with | operators <!ELEMENT r (a; | ... | a,)> can be treated as
if it were <!ELEMENT r (a;?, ..., a,7?)> with an additional constraint like

CHECK ((a; is NOT NULL AND a, is NULL AND ... a, is NULL) OR ... OR
(a; is NULL AND a, is NULL AND ... a, is NOT NULL)). Let us call this



Algorithm 1. migrateChoice
Input : Regular expression r

Output: Regular expression (r1|rs|...|r,) equivalent to r

switch r do

case r does not contain “|” operator
| return 7r;
case r = (r)*
migrateChoice(r;) = (ai]as|...|a,);
| return (af,al, ..., a’)";
case 7 = (r1|r3)
migrateChoice(r;) = (ai|as|...|an);
migrateChoice(ry) = (b1]ba]...|by);
| return (a|az|...|a,|bi|bs] ... |bs);
case 7 = (r1,79)
migrateChoice(r;) = (a1]as|...|a,);
migrateChoice(ry) = (by|by|...|by);
return ((al, b1)|(a1, b2)| e |(a1, bn)|(a2, b1)|(a2, b2)| . |(GQ, bn)|
L - [(@n, b1)[(an, b2)[(an, bn));

mapping heuristics as convertChoice().

Now consider a general case where a content model can in turn contain further
nested content models in it and all use | operators in a complex manner. From
a basic regular expression algebraic law (Hopcroft et al. (2001), page 118), the
following equality holds: (a | b)* = (a*, bx)*. Using the law, the shown
Algorithm migrateChoice() determines an equivalent regular expression of
the form (r{|re|...|r,), where no r; (1 < ¢ < n) contains | operator (i.e.,
remove | in inner groups except ones in the outermost group)

Once we have a content model returned from migrateChoice(), then all |
operators have migrated from inside to outside. Next step is to flatten content
models out. For instance, Shanmugasundaram et al. (1999) describes various
heuristics such as a*x? = a*x or (ax,a*) = (ax). Let us call such steps as
flatten().

As a conclusion, content models of DTDs using the choice operator can be in
general converted to relational schema by going through 1) migrateChoice ()

for each content model 7 and 2) successively convertChoice(r) and 3) flatten(r).
For further details of the algorithm, refer to Mani et al. (2001).

Ezample 2. Consider <!ELEMENT r ((a|b)*|c)>. First, migrateChoice(r)

is converted to migrateChoice ((a|b)*|c)) and is in turn converted to two calls:
migrateChoice((a|b)*) and migrateChoice(c). Further, migrateChoice((alb)*)
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returns migrateChoice((a*,b*)*) while migrateChoice(c) remains intact.
Hence, eventually migrateChoice(r) returns migrateChoice((a*,b*)*|c) At
second stage, (a*,b*)*|c is simulated by ((a*,b*)*?,¢?) by convertChoice()
and in turn simplified to ((a*, b*)*,c?) by flatten(), generating <!ELEMENT
r (a*,bx,c?)> with a proper constraint at the end. The new content model
is free of the choice operator and can be fed into the hybrid algorithm in the
next section. O

3.2 Hybrid Inlining Algorithm

The hybrid algorithm (Shanmugasundaram et al., 1999) essentially does the
following 2 :

(1) Create a DTD graph that represents the structure of a given DTD. A
DTD graph can be constructed when parsing the given DTD. Its nodes
are elements, attributes, or operators in the DTD. Each element appears
exactly once in the graph, while attributes and operators appear as many
times as they appear in the D'TD.

(2) Identify top nodes in a DTD graph. A top node satisfies any of the fol-
lowing conditions: 1) not reachable from any nodes (e.g., source node),
2) direct child of “¥” or “+” operator node, 3) recursive node with in-
degree > 1, or 4) one node between two mutually recursive nodes with
indegree = 1. Then, starting from a top node T, inline all the elements
and attributes at leaf nodes reachable from 7T unless they are other top
nodes.

(3) Attribute names are composed from the concatenated path from the top
node to the leaf node using “” as a delimiter. Use an attribute with
ID type as a key if provided. Otherwise, add a system-generated integer
key 3.

(4) If a table corresponds to the shared element with indegree > 1 in the
DTD, then add a field parent_elm to denote the parent element to which
the current tuple belongs. Further, for each shared element, a new field
fk_$X$ is added as a foreign key to record the key values of parent element
X. If X is inlined into another element Y, then record the Y’s key value
in the fk_$Y$ field.

(5) Inlining an element Y into a table r, corresponding to another element
X (i.e., top node), creates a problem when an XML document is rooted

2 We have made a few changes to the hybrid algorithm for a better presentation
(e.g., renaming, supporting “|” operator), but the crux of the algorithm remains
intact.

3 In practice, even if there is an attribute with ID type, one may decide to have a
system-generated key for better performance.
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Fig. 2. A DTD graph for the DTD in Table 1.

at the element Y. To facilitate queries on such elements, a new field
root_elm is added to a table 7.

(6) If an ordered DTD model is used, a field ordinal is added to record
position information of sub-elements in the element. (For simplification,
the ordinal field is not shown in this paper.)

For further details of the algorithm, refer to Shanmugasundaram et al. (1999).
Figure 2 illustrates a DTD graph that is created from the DTD of Table 1.
Table 4 shows the output of the transformation by the hybrid algorithm.

Among eleven elements in the DTD of Table 1, four elements — conf, paper,
person, and eids — are top nodes and thus, chosen to be mapped to the dif-
ferent tables. For the top node conf, the elements date, title, and editor
are reachable and thus inlined. Then, the id attribute is used as a key and
the root_elm field is added. For the top node paper, the elements title,
contact_aid, author, cite_format and cite_id are reachable and inlined.
Since the paper element is shared by the conf and cite elements (two in-
coming edges in a DTD graph), new fields parent_elm, fk_conf and fk cite
are added to record who and where the parent node was. Note that in the
paper table (Table 4), a tuple with id="p7" has the value "paper" for the
root_elm field. This is because the element <paper id="p7"> is rooted in
the DTD (Table 2) without being embedded in other elements. Consequently,
its parent_elm, fk_conf and fk_cite fields are null. For the top node person,
the elements name_fn, name_1n and email are reachable and inlined. Since the
person is shared by the author and editor elements, again, the parent_elm
is added. Note that in the person table (Table 4), a tuple with id="klavans"

12



Table 4
A relational scheme (S) along with the associated data that are converted from the
DTD of Table 1 and XML document of Table 2 by the hybrid algorithm. Note that

the hybrid algorithm does not generate semantic constraints (A).

conf_editor_eids
conf
id root. title date. date. date_ id rgﬁ}; C%{ﬁf eids
elm year mon day
100001 conf er05 sheth
er05 conf ER 2005 May 20 100002 conf er05 bossy
paper
id root_. parent_. fk_ fk_ title contact. cite.  cite_
elm elm conf cite al id  format
pl  conf conf er0b - Indexing ... dao - -
p2 conf conf  er05 - Logical . shah cl00 ACM
p3 conf cite - cl00 Making . - - -
pP7 paper - - - Constraints ... lee c200 IEEE
person
id root_ parent. fk_ fk_ name_ name._ email phone
elm elm conf paper in In
klavans conf  editor er05 - Judith  Klavans klavans...
dao conf  paper - pl Tuong Dao - -
shah conf  paper - p2 Kshitij Shah -
sheth conf  paper - p2 Amit Sheth  amit@Qcs... -
bossy conf  paper - p3 Marcia Bossy - 391.4337
lee paper  paper - p7 Dongwon Lee dongwon... -

has the value "editor", not "paper", for the parent_elm field. This implies
that “klavans” is in fact an editor, not an author of the paper.

4 Semantic Constraints in DTDs

4.1  Domain Constraints

When the domain of the attributes is restricted to a certain specified set of
values, it is called Domain Constraints. For instance, in the following DTD,
the domain of the attributes gender and married are restricted.

<!ATTLIST author gender (male|female) #REQUIRED
married (yes|no) #IMPLIED>

In transforming such DTD into relational schema, we can enforce the domain

13



constraints using SQL CHECK clause as follows:

CREATE DOMAIN gender VARCHAR(10) CHECK (VALUE IN ("male", "female"))
CREATE DOMAIN married VARCHAR(10) CHECK (VALUE IN ("yes", "mo"))

When the mandatory attribute is defined by the #REQUIRED keyword in the
DTD, it needs to be forced in the transformed relational schema as well. That
is, the attribute 1n cannot be omitted below.

<!ELEMENT person EMPTY>
<!'ATTLIST person fn CDATA #IMPLIED 1n CDATA #REQUIRED>

We use the notation “X -» ()" to denote that an attribute X cannot be null.
This kind of domain constraint can be best expressed by using the NOT NULL
clause in SQL as follows:

CREATE TABLE person (fn VARCHAR(20), 1n VARCHAR(20) NOT NULL)

4.2 Cardinality Constraints

In a DTD declaration, there are only 4 possible cardinality relationships be-
tween an element and its sub-elements as illustrated below:

<!ELEMENT article (title, author+, reference*, price?)>

(0,1). (“at most” semantics): An element can have either zero or one sub-

element. (e.g., sub-element price)
1,1). (“only” semantics): An element must have one and only one sub-element.
y y

(e.g., sub-element title)

(0,N). (“any” semantics): An element can have zero or more sub-elements. (e.g.,
sub-element reference)

(1,N). (“at least” semantics): An element can have one or more sub-elements.
(e.g., sub-element author)

Following the notations in Batini et al. (1992), let us call each cardinality rela-
tionship as type (0,1), (1,1), (O,N), (1,N), respectively. From these cardinality
relationships, mainly three constraints can be inferred. First, whether or not
the sub-element can be null. Similar to the attribute case, we use the nota-
tion “X -» ()” to denote that an element X cannot be null. This constraint is
easily enforced by the NULL or NOT NULL clause. Second, whether or not more
than one sub-element can occur. This is also known as singleton constraint
in Wood (1999) and is one kind of equality-generating dependencies. Third,
given an element, whether or not its sub-element should occur. This is one
kind of tuple-generating dependencies. The second and third types will be
further discussed below.
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4.8 Inclusion Dependencies (IDs)

An Inclusion Dependency assures that values in the columns of one fragment
must also appear as values in the columns of other fragments and is a gener-
alization of the notion of referential integrity.

Trivial form of IDs found in the DTD is that “given an element X and its
sub-element Y, Y must be included in X (i.e., Y C X)”. For instance, from
the conf element and its four sub-elements in DTD, the following IDs can
be found as long as conf is not null: {conf.title C conf, conf.date C
conf, conf.editor C conf, conf.paper C conf}. Another form of IDs
can be found in the attribute definition part of the DTD with the use of the
IDREF (S) keyword. For instance, consider the contact and editor elements
in the DTD in Table 1 shown below:

<!ELEMENT person (name,(email|phone)?>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT contact EMPTY>

<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT editor (personx)>

<!ATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts the aid attribute of the contact element such that it can
only point to the id attribute of the person element*. Further, the eids
attribute can only point to multiple id attributes of the person element.
As a result, the following IDs can be derived: {editor.eids C person.id,
contact.aid C person.id }.IDs can be best enforced by the “foreign key”
concept if the attribute being referenced is a primary key. Otherwise, it needs
to use the CHECK, ASSERTION, or TRIGGERS facility of SQL.

4.4 Equality-Generating Dependencies (EGDs)

The Singleton Constraint (Wood, 1999) restricts an element to have “at most”
one sub-element. When an element type X satisfies the singleton constraint
towards its sub-element type Y, if an element instance z of type X has two
sub-elements instances y; and y, of type Y, then y; and y, must be the same.
This property is known as FEquality-Generating Dependencies (EGDs) and
denoted by “X — Y in database theory. For instance, two EGDs: {conf —
conf.title, conf — conf.date} can be derived from the conf element

4 Precisely, an attribute with IDREF type does not specify which element it should
point to. This information is available only by human experts. However, new XML
schema languages such as XML-Schama and DSD can express where the reference
actually points to (Lee and Chu, 2000a).
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of Table 1. This kind of EGDs can be enforced by SQL UNIQUE construct.
In general, EGDs occur in the case of the (0,1) and (1,1) mappings in the
cardinality constraints.

4.5  Tuple-Generating Dependencies (TGDs)

Tuple-Generating Dependencies (TGDs) in a relational model require that
some tuples of a certain form be present in the table and use the “—” sym-
bol. Two useful forms of TGDs from DTD are the child and parent con-
straints (Wood, 1999).

(1) Child constraint: "Parent — Child" states that every element of type
Parent must have at least one child element of type C'hild. This is the
case of the (1,1) and (1,N) mappings in the cardinality constraints. For in-
stance, from the DTD in Table 1, because the conf element must contain
the title and date sub-elements, the child constraint conf — {title,
date} holds.

(2) Parent constraint: "Child —» Parent" states that every element of
type Child must have a parent element of type Parent. According to
XML specification, XML documents can start from any level of elements
without necessarily specifying its parent element, when a root element is
not specified by <!DOCTYPE root>. In the DTD of Table 1, for instance,
the editor and date elements can have the conf element as their parent.
Further, if we know that all XML documents were started at the conf
element level, rather than the editor or date level, then the parent
constraint {editor, date} — conf holds. Note that the title —» conf
does not hold since the title element can be a sub-element of either the
conf or paper element.

5 Discovering and Preserving Semantic Constraints

To help find semantic constraints, we use the following data structure:

Definition 1. An annotated DTD graph (ADG) G is a pair (V, E), where
V is a finite set and E is a binary relation on V. The set V consists of element
and attributes in a DTD. Each edge e € E is labeled with the cardinality
relationship types as defined in Section 4.2. In addition, each vertex v € V
carries the following information:

(1) indegree stores the number of incoming edges.
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Fig. 3. An Annotated DTD graph for the Conference DTD of Table 1. The associ-
ated values of the nodes (i.e., indegree, type, tag, and status) are not shown.

Table 5

Cardinality relationships and their corresponding semantic constraints.
Relationship Symbol Semantics not null EGDs TGDs
(0,1) ? at most no yes no
(1,1) only yes yes yes
(O,N) * any no no no
(1,N) at least yes no yes

(2) type contains the element type name in the content model of the DTD
(e.g., conf or paper).

(3) tag stores a flag value whether the node is an element or attribute (if
attribute, it contains the attribute keyword like ID or IDREF, etc.).

(4) status contains “visited” flag if the node was visited in a depth-first
search or “not-visited”. ]

Note that the cardinality relationship types in ADG considers not only ele-
ment vs. sub-element relationships but also element vs. attribute relationships.
For instance, from the DTD <!ATTLIST X Y #IMPLIED Z #REQUIRED>, two
types of cardinality relationships (i.e., type (0,1) between element X and at-
tribute Y, and type (1,1) between element X and attribute Z) can be derived.
Figure 3 illustrates an example of ADG for the Conference DTD of Table 1.
Then, the cardinality relationships can be used to find semantic constraints in
a systematic fashion. Table 5 summarizes 3 main semantic constraints that can
be derived from and the findConstraints() algorithm below is immediately
derived from Table 5.
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Algorithm 2. findConstraints
Input : Node v and w

switch edge(v,w) do

case type (0,1)

Lv—w

case type (1,1)

| wisnot null; v — w; v —» w
case type (0,N)

| /* empty */

case type (1,N)

| w isnot null; v - w

Semantic constraints discovered by findConstraints() have additional us-
age as we further discuss in Section 7. However, to enforce correct semantics
in the newly generated relational schema, the semantic constraints in XML
terms need to be rewritten in relational terms. This is done by the algorithm
rewriteConstraints().

5.1 CPI: Constraints-preserving Inlining Algorithm

We shall now describe our complete DTD-to-relational schema transformation
algorithm: CPI (Constraints-preserving Inlining) algorithm is a combination
of the hybrid inlining, findConstraints() and rewriteConstraints() algo-
rithms. The CPI algorithm is illustrated in CPI() and hybrid().

The algorithm first identifies all the top nodes from the ADG. This can be
done using algorithms to find sources or strongly-connected components in a
graph (Shanmugasundaram et al., 1999). Then, for each top node, the algo-
rithm generates a corresponding table scheme using hybrid (). The associated
constraints are found and rewritten in relational terms using findConstraints ()
and rewriteConstraints(), respectively. The hybrid() algorithm scans an
ADG in a depth-first search while finding constraints. The final output schema
is the union of all the table schemes and semantic constraints.

Table 6 contains the semantic constraints that are rewritten from XML terms
to relational terms. As an example, the CPI algorithm will eventually spit out
the following SQL CREATE statement for the paper table. Note that not only is
the relational scheme provided, but the semantic constraints are also ensured
by use of the NOT NULL, KEY, UNIQUE or CHECK constructs.
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Algorithm 3. rewriteConstraints
Input : Constraints A’ in XML notation

Output: Constraints A in relational notation

switch A’ do

case X - ()

If X is mapped to attribute X’ in table scheme A, then A[X'] cannot
| be null. (i.e., “CREATE TABLE A (...X’ NOT NULL...)”)

case X C Y

If X and Y are mapped to attributes X’ and Y’ in table scheme A and
B, respectively, then rewrite it as A[X'] C B[Y"]. (i.e., If Y’ is a primary
key of B, then “CREATE TABLE A L"FOREIGN KEY LX@ REFERENCES
B(Y")...)”. Else “CREATE TABLE A (...(X') CHECK (X' IN (SELECT Y”
FROM B))...”)

case X — XY

If element X and Y are mapped to the same table scheme A (i.e., since
Y is not a top node, Y becomes an attribute of table A) and Z is
the key attribute of A, then rewrite it as A[Z] — A[Y]. (i.e., “CREATE
| TABLE A (...UNIQUE (Y), PRIMARY KEY (Z)...)”)

case X —» X.Y
if (element X and Y are mapped to the same table) then
Let A be the table and Z be the key attribute of A. Then rewrite it
asl4pﬂ —»14Dq.(iew “CREATE TABLE.A.C“Y'NOT NULL, PRIMARY
| KEY (2)...)")
else
Let the tables be A and B, respectively and Z be the key attribute
of A. Then rewrite it as B[fk_A] C A[Z]. (i.e., “CREATE TABLE B
| (...FOREIGN KEY (fk_A) REFERENCES A(Z)...)")

return A

CREATE TABLE paper (

id NUMBER NOT NULL,
title VARCHAR(50) NOT NULL,
contact_aid VARCHAR(20),
cite_id VARCHAR(20) ,

cite_format VARCHAR(50) CHECK (VALUE IN ("ACM", "IEEE")),

root_elm VARCHAR(20) NOT NULL,

parent_elm VARCHAR(20),

fk_cite VARCHAR(20) CHECK (fk_cite IN (SELECT cite_id FROM paper)),
fk_conf VARCHAR.(20),

PRIMARY KEY (id),

UNIQUE (cite_id),

FOREIGN KEY (fk_conf) REFERENCES conf (id),

FOREIGN KEY (contact_aid) REFERENCES person(id)
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Algorithm 4. CPI
Input : Annotated DTD Graph G = (V, E)

Output: Relational Schema R

V <+ topnode(G)
for each v € V do
table_def < {}
if v.tag = ’element’ then
| add(’root_elm’, table_def); /* start where? x/

if v.indegree > 1 then
add(’parent_elm’; table_def); /* shared elements case */
L add(concat(’fk_’, parent(v)), table_def)
W« Adj[v]; w e W
if any w.tag = >ID’ then add(w.type, table_def);
else add(’id’, table_def); /* system-generated primary key */
| R+ R + hybrid(v, table_def, 0)

return R

Algorithm 5. hybrid
Input : Vertex v, TableDef table_def, string attr_name
Output: Relational Schema R

v.status < ’visited’
for each w € Adjlv] do
if w.status = ’not-visited’ then
A" + findConstraints(v, w); A < rewriteConstraints(A’)
L hybrid(w, table_def, concat(attr_name, ’’, w.type))

add(attr_name, table_def); R < table_def + A
return R

6 Experimental Results

We have implemented the CPI algorithm in Java using the IBM XML4J pack-
age. Table 7 shows a summary of our experimentation. We gathered test DTDs
from “http://www.oasis-open.org/cover/xml.html” and Sahuguet (2000). Since
some D'TDs had syntactic errors caught by the XML4J, we had to modify them
manually. Note that people seldom used the ID and IDREF(S) constructs in
their DTDs except the XMI and BSML cases. The number of tables generated
in the relational schema was usually smaller than that of elements/attributes
in DTDs due to the inlining effect. The only exception to this phenomenon
was the XMI case, where extensive use of types (0,N) and (1,N) cardinality
relationships resulted in many top nodes in the ADG.

The number of semantic constraints had a close relationship with the design
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Table 6

The semantic constraints in relational notation for the Conference DTD of Table 1.

Type Semantic constraints in relational notation
ID conf_editor_eids|eids] C personlid], paper|[contact_aid] C person][id]
conflid] — conf[title,date_year,date_mon,date_day]
EGD paper[id] — conf[title,contact_aid,cite_id,cite_format]
person[id] — conflname_fn,name_In,email]
conflid] — conf[title,date_year,date_mon,date_day]
paper[id] — conf[title,contact_aid,cite_id,cite_format]
TGD person[id] — conflname_fn,name_ In,email]
conf_editor_eids|fk_conf] C conf[id]
paper[tk_conf] C conf[id], paper[tk_cite] C paper[cite_id]
person[fk_conf] C confid], person[fk_paper| C paper[id]
conf[id,title,date_year,date_mon,root_elm| —» (
not null  conf editor_eids[id,root_elm] - ()
paper[id,title,root_elm] - (}, person[id,name_ In,root_elm] -» ()
Table 7
Experimental results of the CPI algorithm.

DTD Semantics DTD Schema Relational Schema
Name Domain Elm/Attr ID/IDREF(S) Table/Attr — —» -—»10
novel literature 10/1 1/0 5/13 6 9 9
play Shakespeare  21/0 0/0 14/46 17 30 30
tstmt religious text  28/0 0/0 17/52 17 22 22
vCard business card  23/1 0/0 8/19 18 13 13
ICE content synd. 47/157 0/0 27/283 43 60 60
MusicML music desc. 12/17 0/0 8/34 9 12 12
0sD s/w desc. 16/15 0/0 15/37 2 2 2
PML web portal 46/293 0/0 41/355 29 36 36
X¥bel  bookmark  9/13 3/1 9/36 9 1 1
XMI metadata 94/633 31/102 129/3013 0 7 7
BSML  DNA seq. 112/2495  84/97 104/2685 99 33 33

of the DTD hierarchy and the type of cardinality relationship used in the
DTD. For instance, the XMI DTD had many type (0,N) cardinality relation-
ships, which do not contribute to the semantic constraints. As a result, the
number of semantic constraints at the end was small, compared to that of ele-
ments/attributes in the DTD. This was also true for the 0SD case. On the other
hand, in the ICE case, since it used many type (1,1) cardinality relationships,
it resulted in many semantic constraints.
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7 Application of the Semantic Constraints

The constraints that are discovered during the transformation are useful to
ensure correct semantics of the resulting relational schema. Additionally, they
can be used as semantic knowledge in a variety of areas (Abiteboul et al.,
1999; Béhm et al., 1998; Lee and Chu, 1999; Wood, 1999). Since the focus of
this paper is not on the application of the constraints, in this section, we will
only illustrate a few motivating examples for the possible applications.

7.1 Semantic Query Optimization

The most common use of the constraints occurs in semantic query optimiza-
tion where a user’s query is typically rewritten using constraints to a simpler
form to minimize the processing cost of the query. For instance, consider the
following query @Q1: “Find titles of the paper that has at least an author with
a non-null last name”. In XQL (Robie et al., 1998) notation, this query can
be written against Conference DTD of Table 1 as follows:

XQL: /paper [author/person/name/1n]/title

The [ ] notation in XQL is called the filter expression. That is, the given query
(2 finds all paper elements that have at least one sub-element author x, such
that = has a sub-element person y as a child, such that y has a sub-element
name z as a child, such that z has a sub-element 1n as a child. When @) is
translated to SQL based on the relational schema of Table 4, it will be as
follows:

SQL: SELECT P.title
FROM paper P, person Q
WHERE P.id = Q.fk_paper AND

Q.parent_elm = ’paper’ AND
Q.name_1n is NOT NULL

Note that a filter expression in XQL had to be translated to a join expression
between the paper and person tables in SQL. However, if we had used the
semantic constraints in the query formation stage, we could have first created
the following XQL query:

XQL: /paper/title

Intuitively, this makes sense since the filter expression in (), is satisfied by all
the paper elements. That is, according to the DTD, all papers must have at
least one author sub-element (paper — paper.author), author must have at
least one person sub-element (author — author.person), person must have
one name sub-element (person — person.name), and name must have one 1n
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attribute (name — name.ln). Therefore, the filter expression is redundant and
does not have to enforced in the translated SQL, resulting in the following
SQL at the end:

SQL: SELECT title
FROM paper

7.2 Semantic Caching

In a client and server architecture, client caching is commonly used to speed up
query response time and to prepare for unexpected network partition. When
such a client caching uses the user’s query description as a key value to local
cache, it is called semantic caching. To maximize the usage of such a client
caching, we recently proposed a technique called query matching in Lee and
Chu (1999). In the query matching technique, a user’s query is examined to
determine if it can be answered from any of the locally stored answers with
the help of semantic knowledge to avoid unnecessary access to the server. If
so, it is beneficial since the user’s query does not have to be shipped to the
server side to get answers.

Suppose a client cache stores the following query @), that selects person ele-
ments that are directly or indirectly related to ER conf element:

XQL: /conf[title="ER’]/*/person

This query can be translated to the following SQL query based on the rela-
tional schema of Table 4:

SQL: SELECT P2.id, P2.name_fn, P2.name_ln, P2.name_email
FROM conf C, conf_editor_eids C2, paper P, person P2
WHERE C.title = ’ER’ AND
(C.id = C2.fk_conf AND C2.eids = P2.id)
OR (C.id = P.fk_conf AND P.id = P2.fk_paper)

Now the user asks the second query (), that selects the editor’s names of the
ER conf element:

XQL: /conf [title="ER’]/editor/person/name

Then, ()5 does not have to be shipped to the server to find answers since (2 C
(2:- This is intuitively true since in both XQL queries (); and ()5, person.name
C person and editor C *. Therefore, given the cached answer A; to the
query (1, answers As to the query ()> can be obtained by computing “Ay; =
A; A Q2" on the client side, which is more efficient than sending )2 to and
receiving answers from the server.
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8 Future Work

Due to many benefits from using relational databases as storage systems for
XML data, the need for efficient and effective conversion between relational
and XML models will significantly grow in a foreseeable future. We believe
the following directions of research are very important.

First, as we move to more expressive next generation XML schema languages
such as XML-Schema (Fallside (Eds), 2001) or RELAX (Murata, 2000), the
degree of complexities captured in a XML schema is far greater than that
in a DTD. For instance, XML-Schema supports an extensive set of features
to specify structural and semantic constraints. However, all existing XML to
relational conversion algorithms (discussed in Section 2.1) focus only on the
DTD case, which is the simpliest and least expressive XML schema language
according to Lee and Chu (2000a); Lee et al. (2000). Therefore, there is an
immediate need to modify and extend the current conversion algorithms to
support more complex schema languages.

Second, with XML emerging as the data format of the Internet era, there is a
substantial increase in the amount of data encoded in XML. However, the ma-
jority of everyday data is still stored and maintained in relational databases.
Therefore, we expect the needs to convert such relational data into XML doc-
uments to grow substantially as well. Although commercial database vendors
already support tools that generate XML documents out of relational data, the
types of XML documents generated are very simple in their structure and con-
sequently cannot capture all semantics in the original relational schema. For
instance, a majority of tools can only convert the so-called “flat translation”
where a table ¢ and columns ¢; of relational model is mapped to an element
e and its attributes a; of XML model. We have proposed the “nesting-based
translation” to capture certain semantics in the original relational schema (Lee
et al., 2001), however, more research efforts in that direction are needed.

9 Conclusion

This paper presents a method to transform XML DTD to relational schema
both in structural and semantic aspects. After discussing the semantic con-
straints hidden in DTDs, two algorithms are presented for: 1) discovering the
semantic constraints using the hybrid inlining algorithm, and 2) rewriting the
semantic constraints in relational notation. Our experimental results reveal
that constraints can be systematically preserved during the conversion from
XML to relational schema. Such constraints can also be used for semantic
query optimization or semantic caching.
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Despite the obstacles in converting from XML to relational models and vice
versa, there are several practical benefits:

e Considering the present market that is mostly dominated by RDB products,
it is not easy nor practical to abandon RDB to support XML. It is very likely
that industries would be reluctant to adopt the new technology if it does
not support the existing RDB techniques as they were reluctant towards
object-oriented database in the past.

e By using RDB as an underlying storage system, the mature RDB techniques
can be leveraged. That is, a vast number of sophisticated techniques (e.g.,
OLAP, Data Mining, Data Warehousing, etc.) developed for RDB can be
applied to XML data with minimal changes.

e The integration of a large amount of XML data on the Web with the legacy
data in relational format is possible.

We strongly believe that devising more accurate and efficient conversion metholodo-
gies between XML and relational models is very important and our CPI al-
gorithm can serve as an enhancement for such conversion algorithms. The
prototype of CPI algorithm is available at:

http://www.cobase.cs.ucla.edu/projects/xpress/

The interested readers are welcome to experiment, improve and extend further.
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