Datatyping for Electronic Data Interchange

CEN/ISSS Workshop Agreement

Version 1.0, 2000-11-01

Contents

3Foreword

3Introduction

31.
Scope

32.
Normative References

43.
Abbreviations

44.
Existing datatyping methods

4Existing EDI datatyping rules

6ISO Basic Semantics Register representation classes

7ISO 11404 datatypes

8The W3C XML Schema datatype specification

8Comparison of datatypes

95.
Recommendations and Guidance

9Applying datatypes to electronic commerce

9Managing Strings using XML Schemas

11Expressing Boolean Values

11Using Decimals as XML Schema Datatypes

12Using Times as Datatypes

14Managing Binary Datatypes

15Using URIs as Datatypes

15Managing the Language of Elements

15Deriving New Datatypes

17Accessing Datatype Definitions

17Identifying Datatype Resource Centres

Foreword

This report has been prepared by members of the CEN/ISSS Electronic Commerce Workshop’s working group on Defining and Maintaining Semantics and Datatypes (DAMSAD). It forms part of a series of documents recommending useful techniques for recording semantics and datatype information in a computer interpretable format.

This document concentrates on techniques for defining and constraining data or code set values used within business-to-business (B2B) electronic data interchange messages. Whilst not limited by existing constraints used within EDIFACT and related EDI standards, the document does not intend to cover the full range of B2B data interchange, such as those required for the exchange of manufacturing data, but concentrates on messages used for the exchange of commercial information related to the areas of administration, commerce and transport traditionally covered by EDIFACT.

Introduction
The experiences of previous projects undertaken by the CEN/ISSS Electronic Commerce Workshop, as well as the CEN/ISSS XML/EDI Working Group, have highlighted the need for a common, long-term approach to the inter-related areas of:

· Datatyping

· Semantics definition and description

· Repository contents and access.

Developments in the above areas will have a critical impact on the development of electronic commerce applications and services, irrespective of the protocols used for data interchange.

The Recommendations of the CEN/ISSS Electronic Commerce (EC) Workshop on the Basic Semantic Register (BSR) and XML/EDI-related issues provide specific statements in the area of semantics definition and repository access, in the context of future development of BSR and XML/EDI DTDs.

This CEN Workshop Agreement discusses the datatyping aspects highlighted in the EC Workshop’s recommendations. It compares existing datatyping rules applied to EDI messages with the datatyping rules defined in BSR and ISO 11404 and those defined in the W3C XML Schemas: Datatypes Candidate Recommendation issued on 24th October 2000.

1. Scope

To develop a consistent policy for defining and managing sets of datatypes that can be used to create European electronic commerce messages, irrespective of the syntax used for message interchange.

2. Normative References

ISO 7372:1993 United Nations Trade Data Elements Directory (UNTDED).

ISO 8601:1988 Data elements and interchange formats -- Information interchange -- Representation of dates and times

ISO 9075 Information technology -- Database languages -- SQL
ISO 9735:1998 Electronic data interchange for administration, commerce and transport (EDIFACT) -- Application level syntax rules (Syntax version number: 4)
ISO 10646:1993 Information technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane

ISO 11179 Information technology -- Specification and standardization of data elements
ISO 11404:1995 Information Technology — Programming languages, their environments and system software interfaces — Language-independent datatypes
ISO TC154 Basic Semantic Register (under development)

UN/ECE Working Party on Facilitation of International Trade Procedures Codes for Units of Measure Used in International Trade

W3C Candidate Recommendation XML Schema Part 2: Datatypes
3. Abbreviations

B2B – Business-to-business

BSR – Basic Semantic Register

CEN – European Center for Standardization

ebXML – Electronic Business using XML (not strictly an abbreviation)

EDI – Electronic Data Interchange

ISO – International Organization for Standardization

ISSS – Information Society Standardization System

PBDH – Product and Business Data Harmonization

SQL – Standard Query Language

STEP - ISO 10303 Product data representation and exchange (also known as PDES)
UN/ECE – United Nations Economic Commission for Europe

UN/EDIFACT – United Nations Electronic Data Interchange for Administration, Commerce and Transport

UNTDED – United Nations Trade Data Elements Directory

XML – W3C eXtensible Markup Language

4. Existing datatyping methods

Existing EDI datatyping rules

The UN/EDIFACT Syntax Rules (ISO 9735)
 defines the following types of information objects:

· Service characters

· Data elements

· Data element values (including codes).

In the UNTDED (ISO 7372) data elements are grouped into various categories, including:

· Group 1 Service data elements

· Group 2 Dates, times and periods of time

· Group 3 Parties, addresses, places, countries

· Group 4 Clauses, conditions, terms, instructions

· Group 5 Amounts, charges, percentages

· Group 6 Measure identifiers, quantities (other than monetary)

· Group 7 Goods and articles: descriptions and identifiers

· Group 8 Transport modes and means, containers

· Group 9: Other data elements.

For practical purposes (e.g. message design), a distinction is generally drawn between service data elements (Group 1) and user data elements (Groups 2 – 9).

ISO 9735 specifies the following basic datatyping functions:

· Alphabetic characters (a)

· Numeric characters (n)

· Alphanumeric characters (an)

· Fixed length of data unit (e.g. 3, which indicates a fixed length of 3 characters)

· Variable length of data unit (e.g. ..17, which indicates the maximum number of available character positions is 17).

Recommendation No. 20, adopted by the UN/ECE Working Party on Facilitation of International Trade Procedures, covers Codes for Units of Measure Used in International Trade. As well as providing codes to identify ISO 31 SI units of measure, and their UK and US equivalents such as feet/inches, pints/quarts, etc, the recommendation also allows for industry specific units of measure. Each unit is represented by a unique alphanumeric code and number, e.g MTR (10) for metre, KGM (138) for kilogram.

The UN/EDIFACT standards also use other forms of message content constraints that are not datatypes. These include:

Status

· Mandatory (M)

· Conditional (C)

Occurrence

· Sequential position of occurrences

· Maximum number of occurrences

Entities dependency

· D1
One and only one (One and only one of the entities in the list shall be present)

· D2
All or none (If one entity in the list is present, the rest shall be present)

· D3
One or more (At least one of the entities in the list shall be present)

· D4
One or none (No more than one entity in the list shall be present)

· D5
If first, then all (If the first entity in the list is present, then all of the others shall be present. It is permissible that one or more of the entities not specified as the first entity in the list may be present, without requiring the first entity to be present)

· D6
If first, then at least one more (If the first entity in the list is present, then at least one more shall be present. It is permissible that one or more of the entities not specified as the first entity in the list may be present, without requiring the first entity to be present)

· D7 If first, then none of the others (If the first entity in the list is present, then none of the others shall be present).

In addition there are restrictions, mutually defined between EDI partners in message implementation guidelines in relation to specific message types. These may include, for instance, limits of the values that can be applied to specific data elements when used in specific message segments. In general, these rules require that datatyping of data elements be context-dependent, or at least sector-specific. The formulation of such rules is outside the standardization process of UN/EDIFACT.

A further form of datatyping can be expressed within message implementation guidelines by stating that the entered value must be a valid member of a code list defined by an external organization. For example, the set of country codes defined by ISO, or the set of product codes that have been assigned by UPC/EAN identifiers. The data element pair 1131/3055 enables reference to code lists maintained by an external organisation, as well as code lists mutually defined by EDI partners.

ISO Basic Semantics Register representation classes

The rightmost component of a Basic Semantic Unit (BSU) name, as defined in the ISO Basic Semantics Register (BSR), indicates its representation class. The original set of representation classes was:

· Amount

· Code

· Date

· DateAndTime

· Description

· Identifier

· Indicator

· Name

· Number

· Percent

· Quantity

· Rate

· Text

· Time

· Value.

To allow for harmonization with the semantics used in the STEP community a Label representation class was added to the list as a result of the CEN/ISSS EC Workshop PBDH project.

BSR does not define any restrictions on the lengths, maximum or minimum permitted values, or the enumeration of sets of permitted values for any of its semantic units.

ISO 11404 datatypes

ISO 11404:1995 Information Technology — Programming languages, their environments and system software interfaces — Language-independent datatypes is the standard that forms the basis for datatyping within ISO standards, including things like the standardized version of SQL. ISO 11404 specifies the nomenclature and shared semantics for a collection of datatypes commonly occurring in programming languages and software interfaces. The standard identifies the following categories of datatypes:

· Primitive datatypes (Boolean, State, Enumerated, Character, Ordinal, Date-and-Time, Integer, Rational, Scaled, Real, Complex and Void)

· Subtypes and extended datatypes (Range, Selecting, Excluding, Size and Explicit subtypes, and Extended types)

· Generated datatypes (Choice, Pointer and Procedure)

· Aggregate datatypes (Record, Set, Bag, Sequence, Array and Table)

· Defined datatypes.
The notation used for expressing the datatypes is specific to the standard, being derived from the Backus-Naur form. ISO 11404 expressly distinguishes three notions of datatype, namely:

· the conceptual, or abstract, notion of a datatype, which characterizes the datatype by its nominal values and properties;

· the structural notion of a datatype, which characterizes the datatype as a conceptual organization of specific component datatypes with specific functionalities; and

· the implementation notion of a datatype, which characterizes the datatype by defining the rules for representation of the datatype in a given environment.

ISO 11404 defines the abstract notions of many commonly used primitive and non-primitive datatypes which possess the structural notion of atomicity. It does not define all atomic datatypes; it defines only those which are common in programming languages and software interfaces. The standard also defines structural notions for the specification of other non-primitive datatypes and provides a means by which datatypes not defined therein can be defined structurally in terms of its base datatypes.
The W3C XML Schema datatype specification

In October 2000 the World Wide Web Consortium (W3C) published a Candidate Recommendation for the datatyping of XML elements and attributes defined within XML Schemas (http://www.w3/org/TR/xmlschema-2/). This specification defines the following datatypes:

· Primitive datatypes (string, binary, boolean, float, double, decimal, timeDuration, recurringDuration, uriReference, Qname, ID, IDREF, ENTITY)

· Derived datatypes (CDATA, token, language, IDREFS, ENTITIES, NMTOKEN, NMTOKENS, Name, NCName, NOTATION, integer, nonPositiveInteger, nonNegativeInteger, positiveInteger, negativeInteger, long, int, short, byte, unsignedLong, unsignedInt, unsignedShort, unsignedByte, timeInstant, time, timePeriod, date, month, year, century, recurringDate, recurringDay)

· User-derived datatypes.

The last of these classes allows users to create complex datatypes that are composed of sets of primitive datatypes. User-derived classes can include enumerated lists of values, which can include values of different datatypes. For the string data type users can define patterns that the string must conform to. For numeric values maximum and minimum values can be specified (inclusively or exclusively), as can scale and precision. Booleans can be represented as true or 0 and false or 1. Dates and time can be expressed using various ISO 8601-based formats. Datatypes can also be derived as the union of two other datatypes, as lists of values conforming to another datatype, or as restrictions on an existing datatype.

Comparison of datatypes

The datatypes employed to validate EDI messages are basic when compared with the advanced features defined in ISO 11404 and the W3C specification. In addition they are not rigorously defined, which makes them prone to error. The use of documentation to express constraints on permitted values makes it difficult to automate the validation of EDI messages.

The ISO BSR representation classes provide an extremely limited set of datatypes, with no mechanisms for setting limits on lengths, ranges or permitted values. They cannot be used to express the constraints expressed in the documentation, notably message implementation guidelines, associated with specific EDI messages.

ISO 11404 provides an abstract mechanism for defining a wide range of datatypes, but does not define any concrete exchangeable information. Its primitive datatypes include options that are not widely supported at present, particularly in key environments such as relational databases.

The W3C Candidate Recommendation includes primitive datatypes that are specific to XML (ID and IDREF) and to the Internet (uriReference) as well as those primitive datatypes widely supported in relational databases (including binary data). Its derived datatypes include many datatypes defined as primitives in ISO 11404. Whilst the W3C specification does not support the full range of ISO 11404 aggregated datatypes (especially those relating to complex structures such as arrays and tables) these can mostly be represented within XML Schema using the structural components of the language defined in the other part of the specification. The ability to create user-derived datatypes which include enumerated lists of values of different types means that complex datatypes can be defined using this specification.

5. Recommendations and Guidance

The W3C datatype specification should be used as the basis for exchanging computer processable datatyping specifications for use by electronic commerce applications.

Applying datatypes to electronic commerce

The following datatypes are considered to be particularly relevant to B2B applications:

· String

· Boolean

· Decimal

· Positive Integer

· Time (including Date/Month/Year and RecurringDate/Day)

· Binary

· URI Reference

· Language.

Other datatypes are required for product data, particularly those relating to measurements conforming to the ISO 31 System International (SI), but these can normally be treated as qualified decimal values.

Managing Strings using XML Schemas

Strings are used for two purposes within XML documents:

1. As the values of attributes

2. As the contents of an element

String is a basic datatype for XML Schemas. It is defined as “a finite-length sequence of characters” encoded using the ISO 10646 Universal Code Set (i.e. Unicode 3.0).

A simple, unconstrained, string data type to be used as the definition for an address line by an element called Street could be defined as

<xsd:simpleType name=”AddressLine” base=”xsd:string”/>

<xsd:element name=”Street” type=”AddressLine”/>

To indicate that an attribute called Code was to contain a string you would enter the type directly as part of the attribute definition

<xsd:attribute name=”Code” type=”xsd:string”/>

The following properties (known as facets) can be used to constrain strings within XML Schemas:

· length

· minLength

· maxLength

· pattern

· enumeration

· maxInclusive

· maxExclusive

· minInclusive

· maxExclusive

Facets are defined in the contents of the type definition using a set of elements defined as part of the XML Schema Definition. Such elements are normally distinguished using the default xsd namespace.

The length, minLength and maxLength facets must have their values expressed as non-negative integers.

For example, to constrain the Code attribute to be a fixed length string of three characters you would enter

<xsd:attribute name=”Code” type=”xsd:string”>

 <xsd:length value=”3”/>

</xsd:attribute>

To constrain the Street element to be a string of between 5 and 35 characters you would enter

<xsd:element name=”Street>

 <xsd:simpleType type=”xsd:string”>

 <xsd:minLength value=”5”/>

 <xsd:maxLength value=”35”/>

 </xsd:simpleType>

</xsd:element>

Note: In this example the unnamed type definition is embedded within the element definition, rather then being defined as a named reusable component which is referenced from the element definition, as in the initial example.

Within XML Schemas patterns are expressed using a variant of the Perl pattern language. A detailed explanation of this language can be found in The Perl Programming Language, Version 5.6 (http://www.perl.com/language/misc/ann58/index.html).

For example, the values of the Code attribute could be constrained to consist of two uppercase letters from the basic Latin alphabet (with no accents) followed by a single digit as follows:

<xsd:attribute name=”Code” type=”xsd:string”>

 <xsd:pattern value=”[A-Z]{2}\d”/>

</xsd:attribute>

Alternatively a set of permitted values could be defined in an enumeration list.

<xsd:attribute name=”Code” type=”xsd:string”>

 <xsd:enumeration value=”AB1”/>
 <xsd:enumeration value=”CD2”/>

 <xsd:enumeration value=”EF3”/>

</xsd:attribute>

The meaning of the enumeration can be recorded as the part of the enumeration element, e.g.

<xsd:attribute name=”Code” type=”xsd:string”>

 <xsd:enumeration value=”AB1”>

 <annotation><documentation>Top Grade</documentation></annotation>

 </xsd:enumeration>
 <xsd:enumeration value=”CD2”/>

 <annotation><documentation>Middle Grade</documentation></annotation>

 </xsd:enumeration>

 <xsd:enumeration value=”EF3”/>

 <annotation><documentation>Lower Grade</documentation></annotation>

 </xsd:enumeration>

</xsd:attribute>

The maxInclusive, maxExclusive, minInclusive and minExclusive facets can be used to set limits on the range of permitted values by defining either the end points of the range (minInclusive and maxInclusive) or the points immediately outside the range (minExclusive and maxExclusive). For example, to restrict the set of values to those ranging from ABC to DEF you would specify:

<xsd:attribute name=”Code” type=”xsd:string”>

 <xsd:minInclusive value=”ABC”/>

 <xsd:maxInclusive value=”DEF”/>

</xsd:attribute>

Two derived datatypes based on the string datatype have been defined for compatibility with XML. The CDATA datatype is used to indicate a string in which all carriage return, line feed and tab characters have been ‘normalized’ by being replaced by spaces (as they would within an XML attribute value). The token datatype goes one stage further, requiring that there be no leading or trailing spaces to the string, and that at not point are there adjacent spaces.

Expressing Boolean Values

The Boolean datatype is a primitive XML Schema datatype. It is expressed using the reserved strings true and false.

To express that the permitted values of an attribute are to be Boolean the following would be specified:

<xsd:attribute name=”approved” type=”xsd:boolean”/>

Using Decimals as XML Schema Datatypes

The XML Schema decimal datatype allows the specification of arbitrary precision decimal numbers. If the number is not preceded by a sign (+ or -) it is presumed to be positive. Leading and trailing zeros are optional.

The facets used to control decimals are:

· precision

· scale

· pattern

· enumeration

· maxInclusive

· maxExclusive

· minInclusive

· minExclusive

The precision facet identifies the maximum number of digits the number is allowed to contain. The scale facet defines the maximum number of digits permitted after the decimal place. The other facets are defined as for strings, and can be used as shown in the following examples.

To restrict a currency value to less than one million, with no more than two decimal places, the following definition can be applied

<xsd:simpleType name=”Amount” base=”xsd:decimal”>

 <xsd:precision value=”8”>

 <xsd:scale value=”2”>

</xsd:simpleType>

To restrict a decimal value to only quarters, halves and threequarters a pattern can be used, e.g.

<xsd:simpleType name=”Amount” base=”xsd:decimal”>

 <xsd:pattern value=”[0-9]{6}(.(25|5|75))?”>

</xsd:simpleType>

To restrict the value to ones that are positive and less than 100 you could enter

<xsd:simpleType name=”Amount” base=”xsd:decimal”>

 <xsd:minExclusive value=”0”>

 <xsd:maxExclusive value=”100”>

</xsd:simpleType>

Restricting Values to Integers

The integer datatype is a built-in XML Schema datatype that is “derived” from the decimal datatype. It has a fixed value for the scale attribute of 0 so that decimal places cannot be defined. It does permit the addition of a sign in front of the number to indicate whether or not the integer is a negative one.

To restrict an element to containing only integers you would define it as

<xsd:simpleType name=”Reading” base=”xsd:integer”/>

If you need to restrict the integer to positive or negative values you can use the nonNegativeInteger and nonPositiveInteger derived datatypes, which allows values including 0, and from these are further derived positiveInteger and negativeInteger, which do not allow 0 to as a valid value.

For example, to require a length to be specified as a positive number of metres within the content of an element you would define the element as

<xsd:element name=”Length”>

 <xsd:SimpleType name=”length” base=”xsd:positiveInteger”/>

 <xsd:attribute name=”units” type=”xsd:string”
 use=”fixed” value=”metres”/>

</xsd:element>

Using Times as Datatypes

The two basic time measurement types defined for XML Schemas are the ISO 8601 compliant timeDuration and the recurringDuration datatype.

Time durations are periods expressed in terms of years, months, days, hours, minutes and/or seconds according to the Gregorian calendar. These are expressed as an integer (or decimal number) followed by a letter. The letter P is used to identify the start of the period definition, the letter T being used to identify the start of the time components within the period. The basic format of a timeDuration definition is PnYnMnDTnHnMnS, where n is the appropriate integer/decimal. Values can be truncated by omitting one or more of the lower order numbers and the associated qualifying letter. If the number of years, months, days, hours, minutes, or seconds in any expression equals zero, the number and its corresponding designator may be omitted. The whole of the date can also be omitted by following the P with a T.

Recurring durations are expressed in terms of specific centuries, years, months, days, hours, minutes and/or seconds. They are expressed, using a restricted set of the ISO 8601 syntax, in the form CCYY-MM-DDThh:mm:ss.sss. Additional digits may be added at both ends of the sequence. The century can be preceded by a hyphen to identify dates that occurred before the current era. To indicate which time zone the date/time applies to, the seconds value can be followed by the letter Z to indicate the time is specified using the Universal Time Co-ordinate (the Greenwich meridian), or by a number of hours and minutes the time zone differs from that at Greenwich, a preceding hyphen being used to indicate time zones west of Greenwich and a + being used to indicate time zones east of Greenwich.

Note: When summer time is in force the timezone value should be adjusted to show the actual time with respect to the time at the Greenwich meridian (i.e. without British Summer Time being applied.)
The facets that apply to recurring durations are:

· duration

· period

· pattern

· enumeration

· maxInclusive

· maxExclusive

· minInclusive

· maxExclusive

The duration facet is a time duration that defines how long the recurring time is deemed to apply for. The period facet identifies the length of time between recurrences of the recurring duration. The other facets are defined as for strings.

The types of time that are derived from recurringDuration help to understand how the duration and period facets can be applied.

A timeInstance can be used to represent a moment in time. It is a recurringDuration whose duration and period are both fixed at P0Y. An example of a time instance is 2000-01-01T12:00+01:00, which represents 12 noon on the 1st January 2000 in the European time zone.

A time is an instance of time that occurs every day. It has a fixed duration of P0Y and a fixed period of P1D. An example of a time is 13:30.00-05.00.
A timePeriod is a recurringDuration with a period facet of P0Y and a user-defined value for the duration facet.

Note: Because a duration must be defined for each use of a timePeriod it is only valid for use with derived datatypes and must not be employed directly within the schema.

The following datatypes are derived from timePeriod:

· date: a time period with a duration of 24 hours (P1D)
· month: a time period with a duration of one month (P1M)
· year: a time period with a duration of one year (P1Y)

· century: a time period with a duration of one hundred years (P100Y).

A typical date would be expressed as 2000-02-14. A specific month could be entered as 2000-03, while a year on its own would just be 2000. A number of the form 19 can be used to represent the 20th century in its entirety.

A recurringDate is a recurringDuration with a period facet of P1Y and a duration of P1D. For example, --05-01 can be used to represent any 1st May.

A recurringDay is a recurringDuration with a period facet of P1M and a duration of P1D. For example, ----01 can be used to represent the 1st of every month.

Other datatypes can be derived from the recurringDuration datatype. For example, to identify recurring days within a week you can define a simple datatype of the form.

<xsd:simpleType name='Mondays' base='xsd:recurringDuration'>

 <xsd:duration value='P1D'/>

 <xsd:period value='P7D'/>

 <xsd:minInclusive value=”2000-04-17”>

</xsd:simpleType>

In this case the minInclusive date is a date which identifies which day of the week is being referred to (Mondays in this example).

Managing Binary Datatypes

The XML Schema binary datatype is defined as a “set of finite-length sequences of binary octets”. The facets used to record its characteristics are:

· encoding

· length

· minLength

· maxLength

· pattern

· enumeration.

The encoding facet of the binary datatype has a value of either hex or base64. The value is set to hex when the binary data is encoded as pairs of hexadecimal characters identifying the value to be used. The base64 value indicated that the data has been encoded to according to IETF RFC 2045.

Note: XML only allows binary data to be used within the content of elements. Elements containing binary data should have a notation attribute that identifies which type of is being transmitted (e.g. GIF, PNG or JPEG).

The length, minLength and maxLength facets can be used to constrain the size of binary data streams.

A typical example might be:

<xsd:element name=”img”>

 <xsd:simpleType base=”xsd:binary>

 <xsd:encoding value=”base64”>

 <xsd:maxLength value=”512000”>

 </xsd:simpleType>

 <xsd:attribute name=”notation” use=”fixed” value=”GIF”/>
</xsd:element>
Using URIs as Datatypes

Internet Uniform Resource Identifiers (URIs) are needed for elements and attributes that contain references to other files accessible over the Internet. The data format for URIs is defined in Section 4 of IETF RFC 2396, as amended by IETF RFC 2732. Both absolute and relative URIs can be defined, as can fragments within a document.

The following facets can be used to constrain the URI datatype:

· length

· minLength

· maxLength

· pattern

· enumeration.

A typical use of this datatype is for defining hypertext references in link anchors, e.g.

<element name=”a-link”>

 <attribute name=”href” type=”xsd:uriReference”>

</element>

Managing the Language of Elements

The XML Schema language datatype is a derived datatype that identifies strings that conform to the rules for identifying languages and dialects defined in IETF RFC 1760.

The following facets can be used to constrain the language datatype:

· length

· minLength

· maxLength

· pattern

· enumeration

· maxInclusive

· maxExclusive

· minInclusive

· maxInclusive.

A typical use of this datatype is for defining the xml:lang attribute used to identify the language of the contents of an element, e.g.

<element name=”EnglishTitle” base=”xsd:string”>

 <attribute name=”xml:lang” type=”xsd:language” use=”fixed” value=”en-us”/>

</element>

Deriving New Datatypes

New datatypes can be derived from existing ones. However, there some trade-offs may be required. For example, to define an ISO 6709 position as an XML Schema datatype you could either base your datatype on a string pattern or, using only one of the permitted values, on the decimal primitive.

If you could live with just using the decimal degrees variant the datatype could be defined accurately as:
<xsd:simpleType name="decimalISO6709position" base="xsd:decimal">
 <xsd:minInclusive value="-180"/>
 <xsd:maxInclusive value="180"/>
</xsd:simpleType>
but to allow both decimal degrees and degrees and minutes or degrees and minutes and seconds to be used you would need to use a pattern of the following complex type:

<xsd:simpleType name="ISO6709position" base="xsd:string">
 <xsd:pattern value="([+-][0-9]{1,3}[.][0-9]{1,2} |
 [+-][0-9]{1,3}[0-5][0-9][.]0-9]{1-3} |
 [+-}[0-9]{1,3}[0-5][0-9][0-5][0-9][.][0-9]{1-2})
 ([+-][0-9]{1,3}[.][0-9]{1,2} |
 [+-][0-9]{1,3}[0-5][0-9][.]0-9]{1-3} |
 [+-}[0-9]{1,3}[0-5][0-9][0-5][0-9][.][0-9]{1-2})"/>
 <xsd:minInclusive value="-0"/>
 <xsd:maxInclusive value="+1795959.99"/>
</xsd:simpleType>

Note that there is a problem with the minInclusive and maxInclusive values if you are using strings as your basic datatype rather than decimals as you have to work on the character position of the string rather than the decimal value, so -0 is the lowest pairing of character positions and +179 degrees, 59 minutes and 59.99 seconds is the longest permitted string.

Note also that the patterns shown above still will not allow use of the slash-delimited truncated forms permitted by ISO 6709.

Using Compound Datatypes

Many B2B applications require the use of compound derived datatypes. For example, to express a value in a specific currency you need both a decimal value and currency indicator

<xsd:element name=”Amount”>

 <xsd:simpleType name=”Amount” base=”xsd:decimal”>

 <xsd:precision value=”8”>

 <xsd:scale value=”2”>

 </xsd:simpleType>

 <xsd:attribute name=”currency” type=”xsd:string>

 <xsd:enumeration value=”USD”/>
 <xsd:enumeration value=”GBP”/>

 <xsd:enumeration value=”FRF”/>

 …

 </xsd:attribute>

</xsd:element>

A similar technique can be used for measurements, using patterns for the measurements units, e.g.

<xsd:element name=”Measurement”>

 <xsd:simpleType name=”Amount” base=”xsd:decimal”>

 <xsd:minExclusive value=”0”/>

 </xsd:simpleType>

 <xsd:attribute name=”units” type=”xsd:string>

 <xsd:pattern value=”[mckMGT]{0,1}[glmsKCAWN](^[0-3]){0.1}

 (/[msKC]{0.1}(^[0-3]){0.1})”/>

 </xsd:attribute>

</xsd:element>

This could be extended to allow for uncertaintiy in measurements by adding converting the decimal specification as follows:

<xsd:element name=”Measurement”>

 <xsd:simpleType name=”Amount” base=”xsd:string”>

 <xsd:pattern value=”[0-9]{1,}(.[0-9]{1,}){0,1}

 (&plusmin;[0-9]{1,}(.[0-9]{1,}){0,1}){0,1}”>

 </xsd:simpleType>

 <xsd:attribute name=”units” type=”xsd:string>

 <xsd:pattern value=”[mckMGT]{0,1}[glmsKCAWN](^[0-3]){0.1}

 (/[msKC]{0.1}(^[0-3]){0.1})”/>

 </xsd:attribute>

</xsd:element>

In some cases two or more types of date may be valid for a particular element. For example, you may be permitted to use both a number and a value from a list of permitted values. Where this is the case the union construct can be used, as shown in the following example:

 <xsd:element name='size'>

 <xsd:simpleType>

 <xsd:union>

 <xsd:simpleType>

 <xsd:restriction base='integer'/>

 </xsd:simpleType>

 <xsd:simpleType>

 <xsd:restriction base='string'>

 <xsd:enumeration value='S'>

 <xsd:annotation>

 <xsd:documentation>Small</xsd:documentation>

 </xsd:annotation>

 </xsd:enumeration>

 <xsd:enumeration value='M'>

 <xsd:annotation>

 <xsd:documentation>Medium</xsd:documentation>

 </xsd:annotation>

 </xsd:enumeration>

 <xsd:enumeration value='L'>

 <xsd:annotation>

 <xsd:documentation>Large</xsd:documentation>

 </xsd:annotation>

 </xsd:enumeration>

 <xsd:enumeration value='XL'>

 <xsd:annotation>

 <xsd:documentation>Extra Large</xsd:documentation>

 </xsd:annotation>

 </xsd:enumeration>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:union>

 </xsd:simpleType>

 </xsd:element>

Accessing Datatype Definitions

The ebXML repository is based on a metamodel that recognizes data formats and code sets (enumerated lists) as separate “data representation” formats. Where these formats are defined in terms of XML Schema datatypes they can be included in an XML schema using an include command if they are to be used in the target namespace of the derived schema, e.g.:

<xsd:inlcude

 schemalocation=”http://www.ebxml.org/datatypes/measurements.xsd”>

or imported if the codes are to be used in their own namespace, e.g.:

<xsd:import namespace=”http://www.ebxml.org/”

 schemalocation=”http://www.ebxml.org/datatypes/measurements.xsd”>
Identifying Datatype Resource Centres

At the time of writing (October 2000) there are no known resource centres that can provide access to sets of XML Schema datatype definitions that can be referenced by other applications, though a number of plans have been proposed for such repositories at both international level (e.g. OASIS) and regional level (e.g. CEN/ISSS XEEC).

In May 2000 the Core Components group of the ebXML initiative defined a metamodel for the definition of core components of electronic business messages. This metamodel includes a Data Representation entity that references Data Format and Code Set definitions that can be defined in a number of ways, including XML Schema Datatype definitions. It is anticipated that this initiative will result in the development of a set of reusable datatype definitions that will be made public via the ebXML repository interface during 2001.

� Version 4.

� Note that a segment tag is defined as a simple data element.

� Entries in caps indicate XML-specific datatypes

