
 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 1

Modeling XHTML with UML
Dave Carlson

CTO
Ontogenics Corp.
Boulder, Colorado

dcarlson@ontogenics.com
http://XMLmodeling.com

This document describes the first complete XML Schema for XHTML Basic, which was adopted as a
W3C Recommendation in December 2000 [1]. The W3C Recommendation specifies XHTML Basic
with a DTD implementation, principally because DTDs were the only recommendation in force at that
time. However, we will soon reach a point when the W3C has two schema recommendations, and there
are several other XML schema/validation languages that are competing for our attention (RELAX,
TREX, and Schematron). Thus, a new approach was taken to produce the XML Schema described here:
the XHTML Basic specification was manually reverse-engineered into a Unified Modeling Language
(UML) class diagram, then the Schema was automatically generated from that UML model. Other
schema languages can be produced in a similar manner; prototypes are under development for
generation of DTD and RELAX.

XHTML Basic, as its name suggests, represents the essential core of elements required for presentation
of hypertext documents. XHTML Basic was designed to become the document format used by Web
clients with limited display capabilities, such as mobile phones, PDAs, pagers, and television settop
boxes. In addition to reformulating HTML as valid XML documents, XHTML Basic is also part of a
broader effort for the Modularization of XHTML, which decomposes the previous monolithic HTML
and XHTML 1.0 specifications into separable, reusable modules [2].

Another useful application involves embedding XHTML content within other XML vocabularies. In
fact, it is this requirement that created our original motivation for producing a UML model of XHTML
elements. We are using UML to design XML vocabularies such as product catalogs, bibliographies, and
e-learning content. In those applications, it’s often necessary to support HTML presentation content
within other elements; for example, within a product’s description or within a mini-tutorial embedded in
a training markup language. If XHTML elements such as <div>, <p>, or <table> are available as
classes in a UML package, then including them within other vocabularies is a simple matter of drawing
an association between classes in a UML diagram. The schema generator takes care of the rest,
including generation of the necessary import statements for the XHTML schema definitions.

The focus of the remainder of this document is on presenting the UML model for XHTML Basic. I will
not attempt to describe XHTML itself, but instead focus on describing its representation in UML [3].
The XML Schema generated from this model is available as a separate document [4]. For more
information on the mapping between UML and XML, refer to my recent book on this subject [5].

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 2

XHTML Modularization and UML Packages
The XHTML Modularization specification defines a set of modules that are independent or loosely
coupled and that may be combined as necessary to support markup in a particular application. In the
example cited previously, where the elements div, p, and table are required, a limited schema can be
produced from the Text and Basic Tables modules; all other XHTML markup is not included and
therefore invalid for this application. The Text module includes a basic set of elements for headings,
blocks, and inline tags.

I’m really quite pleased with how well the XHTML modularization mapped into a combination of
packages and generalization in the UML model. In the UML, a package defines a namespace for the
model elements it contains. The model containing a set of packages may also include dependency
relationships between the packages. The full XHMTL Basic package is dependent on eleven packages
(modules), plus a set of datatypes defined for XHTML are required by all packages. Four of the
packages are further grouped into a Core package. A high-level view of these packages and their
dependencies is shown in the following UML package diagram (in a UML diagram, a file folder icon
denotes a package).

Structure

(from Core)

Text
(from Core)

Hypertext
(from Core) List

(from Core)

Basic Forms
(from XHTML)

Basic Tables

(from XHTML)Image
(from XHTML)

Object
(from XHTML) Metainformation

(from XHTML)
Link

(from XHTML)

Base
(from XHTML)

Core
(from XHTML)

XHTML Basic
(from Logical View)

<<XSDschema>>

XHTML Datatypes

(from Logical View)

<<XSDschema>>

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 3

Attribute Collections
The XHTML Modularization specification defines four attribute groups, which are then selectively
aggregated into the CommonAttributes. For XHTML Basic, only CoreAttributes and I18nAttributes are
included. These definitions are depicted in the following UML diagram. An XML Schema
attributeGroup is defined in UML by adding a stereotype <<XSDattributeGroup>> to a UML
class. The stereotype mechanism is defined as part of the formal UML specification as a means to
extend the UML metamodel for specialized domains. A comprehensive set of UML stereotypes and
tagged values are defined in Appendix C of my book [5].

UML models can include multiplicity constraints on either attributes or association ends. An attribute in
a UML class is [1..1] by default (where m..n is interpreted as a pair of min and max values). So in
order to override this default, we must specify optional attributes by including the multiplicity [0..1]
in their definitions. The XML Schema definitions generated from this model are shown following the
diagram (for those definitions used by XHTML Basic).

CoreAttributes
class [0..1] : NMTOKENS
id [0..1] : ID
title [0..1] : CDATA

<<XSDattributeGroup>>

CommonAttributes
<<XSDattributeGroup>>

lang
(from XML Attributes)

<<XSDtopLevelAttribute>>

I18nAttributes
<<XSDattributeGroup>>

0..10..1

EventAttributes
onclick [0..1] : Script
ondblclick [0..1] : Script
onmousedown [0..1] : Script
onmouseup [0..1] : Script
onmouseover [0..1] : Script
onmousemove [0..1] : Script
onmouseout [0..1] : Script
onkeypress [0..1] : Script
onkeydown [0..1] : Script
onkeyup [0..1] : Script

<<XSDattributeGroup>>
StyleAttributes

style [0..1] : CDATA

<<XSDattributeGroup>>

 <xs:attributeGroup name="CommonAttributes">
 <xs:attributeGroup ref="xhtml:CoreAttributes"/>
 <xs:attributeGroup ref="xhtml:I18nAttributes"/>
 </xs:attributeGroup>

 <xs:attributeGroup name="CoreAttributes">
 <xs:attribute name="class" type="xsd:NMTOKENS"/>
 <xs:attribute name="id" type="xsd:ID"/>
 <xs:attribute name="title" type="xsd:CDATA"/>
 </xs:attributeGroup>

 <xs:attributeGroup name="I18nAttributes">
 <xs:attribute ref="xml:lang"/>
 </xs:attributeGroup>

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 4

Structure Module
The XHTML model in UML specifies a default setting that each class will be generated to a schema
complexType using a <choice> model group (other models might select <sequence> or <all> as their
default). However, the html element must use a <sequence> group, so this is specified by adding a
tagged value {modelGroup=sequence} to the UML class, which is then used by the schema
generator. In a similar way, the title element must allow mixed content, so a tagged value is used to
specify this in the model.

title

head
profile [0..1] : uriReference

11

I18nAttributes
<<XSDattributeGroup>>

html
version [0..1] : string

11

Block
(from Text)

Heading
(from Text)

List
(from List)

CommonAttributes
<<XSDattributeGroup>>

body

11

0..*0..*0..*0..* 0..*0..*

{mixed=true}

{modelGroup=sequence}

The Schema definitions generated for html and body are as follows:

 <xs:element name="html" type="xhtml:html"/>
 <xs:complexType name="html">
 <xs:sequence>
 <xs:element ref="xhtml:head"/>
 <xs:element ref="xhtml:body"/>
 </xs:sequence>
 <xs:attribute name="version" type="xsd:string"/>
 <xs:attributeGroup ref="xhtml:I18nAttributes"/>
 </xs:complexType>

 <xs:element name="body" type="xhtml:body"/>
 <xs:complexType name="body">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xhtml:Block" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:Heading" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:List" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attributeGroup ref="xhtml:CommonAttributes"/>
 </xs:complexType>

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 5

Text Module
The Text module is by far the largest of all those in XHTML. This module defines four content sets in
the W3C specification, named Flow, Heading, Block, and Inline. When mapped to UML, those content
sets are modeled as abstract superclasses that generalize the element definitions they contain. The large
hollow-headed arrow in UML diagrams represents a generalization relationship, and an abstract class is
denoted by a class name in italic font.

This module is defined in two UML class diagrams. The first diagram specifies the first three content
sets, and the second diagram specifies the Inline elements. You’ll notice one more class name in italics
in the first diagram, List, which represents another content set defined in a separate List module.

Note the association from Block to Inline. Because the Inline content set is represented as a superclass
generalization in the UML model, then this association allows zero or more instances of any subclass of
Inline to be included within a Block. Similar associations are used throughout the remaining module
definitions.

p address

h1

h2

h3

h4

h5 h6

xml:space
= preserve

Heading Block ListInline

div

0..*0..* 0..*0..* 0..*0..*00

Prohibited in
div

Flow

{mixed=true}

CommonAttributes
<<XSDattributeGroup>>

Heading

Inline
0..*0..*

CommonAttributes
<<XSDattributeGroup>>

Block

0..*0..*

{mixed=true} {mixed=true} {mixed=true} {mixed=true}

Heading

Block

List

blockquote

cite [0..1] : uriReference

0..*0..*

0..*0..*

0..*0..*

space
(from XML Attributes)

<<XSDtopLevelAttribute>>

pre

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 6

The second part of this Text module for Inline elements is represented in the following class diagram.
An additional abstract class named NestedInline is added (not part of the XHTML specification) in order
to differentiate those elements that may include other Inline elements within their content.

The XML Schema definitions generated from this model could use complexType extension to
implement the inheritance specified in the UML model. However, we have had some questionable errors
output by validation tools when using extension in this schema, so the following examples are generated
without use of extension in the XML Schema. (Our schema generation tool allows extension to be
turned on and off with a single configuration parameter. Both types of schemas are available for
download on the Web site.)

The Schema definitions for Flow, Block, and blockquote are as follows:

 <xs:element name="Flow" type="xhtml:Flow"/>
 <xs:complexType name="Flow" abstract="true"/>

 <xs:element name="Block" type="xhtml:Block" substitutionGroup="xhtml:Flow"/>
 <xs:complexType name="Block" abstract="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xhtml:Inline" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attributeGroup ref="xhtml:CommonAttributes"/>
 </xs:complexType>

 <xs:element name="blockquote" type="xhtml:blockquote"
 substitutionGroup="xhtml:Block"/>

abbr

acronym spanem

strong

var

{mixed=true}

cite

code

dfn kbd

q

cite [0..1] : uriReference

samp

CoreAttributes
<<XSDattributeGroup>>

br

Inline

CommonAttributes
<<XSDattributeGroup>>NestedInline

0..*0..*

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 7

 <xs:complexType name="blockquote" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xhtml:Inline" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:Block" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:Heading" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:List" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attributeGroup ref="xhtml:CommonAttributes"/>
 <xs:attribute name="cite" type="xsd:uriReference"/>
 </xs:complexType>

The Schema definitions for br and em are as follows:

 <xs:element name="br" type="xhtml:br" substitutionGroup="xhtml:Inline"/>
 <xs:complexType name="br">
 <xs:attributeGroup ref="xhtml:CoreAttributes"/>
 </xs:complexType>

 <xs:element name="em" type="xhtml:em" substitutionGroup="xhtml:NestedInline"/>
 <xs:complexType name="em" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xhtml:Inline" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attributeGroup ref="xhtml:CommonAttributes"/>
 </xs:complexType>

Hypertext Module

a
accessKey [0..1] : Character
charset [0..1] : Charset
href [1..1] : uriReference
hreflang [0..1] : language
rel [0..1] : LinkTypes
tabindex [0..1] : Number
type [0..1] : ContentType

{mixed=true}

Inline
(from Text)

NestedInline
(from Text)

0..*0..*

{not(a/a)}

CommonAttributes
<<XSDattributeGroup>>

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 8

List Module

{mixed=true}

Flow
(from Text)

ListContent

List
CommonAttributes

<<XSDattributeGroup>>

ol ul

li

1..*1..* 1..*1..*

Inline
(from Text)

Flow
(from Text) 0..*0..*

dt

0..*0..*

dd 0..*0..*

dl

1..*1..* 1..*1..*

 <xs:element name="ul" type="xhtml:ul" substitutionGroup="xhtml:List"/>
 <xs:complexType name="ul">
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:element ref="xhtml:li" minOccurs="1" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attributeGroup ref="xhtml:CommonAttributes"/>
 </xs:complexType>

 <xs:element name="li" type="xhtml:li" substitutionGroup="xhtml:ListContent"/>
 <xs:complexType name="li" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xhtml:Flow" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attributeGroup ref="xhtml:CommonAttributes"/>
 </xs:complexType>

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 9

Basic Forms Module

Form

input
accessKey [0..1] : Character
checked [0..1] : CheckedKind
maxlength [0..1] : Number
name [0..1] : CDATA
size [0..1] : Number
src [0..1] : uriReference
type : InputKind = text
value [0..1] : CDATA

textarea

accesskey [0..1] : Character
cols : Number
name [0..1] : CDATA
rows : Number

option

selected [0..1] : SelectedKind
value [0..1] : CDATA

select

multiple [0..1] : MultipleKind
name [0..1] : CDATA
size [0..1] : Number

1..*1..*

{mixed=true}{mixed=true}

SelectedKind

selected

<<enumeration>>

MethodKind

get
post

<<enumeration>>

InputKind

text
password
checkbox
radio
submit
reset
hidden

<<enumeration>>

MultipleKind

multiple

<<enumeration>>

CheckedKind

checked

<<enumeration>>

{mixed=true}

Formctrl

Heading
(from Text)

List
(from List)

CommonAttributes
<<XSDattributeGroup>>

form

action : uriReference
method : MethodKind = get
enctype [0..1] : ContentType

0..*0..* 0..*0..*

label
accesskey [0..1] : Character
for [0..1] : IDREF

Block
(from Text)0..*0..*

{not(form)}

Inline
(from Text)

0..*0..*

{not(label)}

0..*0..*

<xs:element name="form" type="xhtml:form" substitutionGroup="xhtml:Form"/>
<xs:complexType name="form">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xhtml:Inline" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:Heading" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:Block" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="xhtml:List" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attributeGroup ref="xhtml:CommonAttributes"/>
 <xs:attribute name="action" type="xsd:uriReference" use="required"/>
 <xs:attribute name="method" type="xhtml:MethodKind" value="get" use="default"/>
 <xs:attribute name="enctype" type="xhtml:ContentType"/>
</xs:complexType>
<xs:simpleType name="MethodKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="get"/>
 <xs:enumeration value="post"/>
 </xs:restriction>
</xs:simpleType>

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 10

Basic Tables Module

AlignKind

left
center
right

<<enumeration>>
VAlignKind

top
middle
bottom

<<enumeration>>

Inline
(from Text)

caption

0..*0..*

table
summary [0..1] : string
width [0..1] : Length

0..10..1

th

abbr [0..1] : string
align [0..1] : AlignKind
axis [0..1] : CDATA
colspan [0..1] : Number
headers [0..1] : IDREFS
rowspan [0..1] : Number
scope [0..1] : ScopeKind
valign [0..1] : VAlignKind

tr

align [0..1] : AlignKind
valign [0..1] : VAlignKind

1..*1..*

1..*1..*

Flow
(from Text)0..*0..*{not(table)}

td

abbr [0..1] : string
align [0..1] : AlignKind
axis [0..1] : CDATA
colspan [0..1] : Number
headers [0..1] : IDREFS
rowspan [0..1] : Number
scope [0..1] : ScopeKind
valign [0..1] : VAlignKind

1..*1..*

0..*0..*

{not(table)}

ScopeKind

row
col

<<enumeration>>

CommonAttributes
<<XSDattributeGroup>>

TableContent

{mixed=true} {mixed=true}

{mixed=true}

Flow
(from Text)

Block
(from Text)

not(Inline)

maybe XSD
restriction on
extension?

{modelGroup=sequence}

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 11

Image Module

Inline
(from Text) CommonAttributes

<<XSDattributeGroup>>

img
alt : Text
height [0..1] : Length
longdesc [0..1] : uriReference
src : uriReference
width [0..1] : Length

Object Module

Inline
(from Text)

Flow
(from Text)

CommonAttributes
<<XSDattributeGroup>>

param
id [0..1] : ID
name : CDATA
type [0..1] : ContentType
value [0..1] : CDATA
valuetype [0..1] : ValueKind = data

object
archive [0..1] : URIs
classid [0..1] : uriReference
codebase [0..1] : uriReference
codetype [0..1] : ContentType
data [0..1] : uriReference
declare [0..1] : DeclareKind
height [0..1] : Length
name [0..1] : CDATA
standby [0..1] : Text
tabindex [0..1] : Number
type [0..1] : ContentType
width [0..1] : Length

0..*0..*

0..*0..*

ValueKind

data
ref
object

<<enumeration>>

DeclareKind

declare

<<enumeration>>

{mixed=true}

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 12

Metainformation Module

head
(from Structure)

I18nAttributes
<<XSDattributeGroup>>

meta
content : CDATA
http-equiv [0..1] : NMTOKEN
name [0..1] : NMTOKEN
schema [0..1] : CDATA

0..*0..*

Link Module

CommonAttributes
<<XSDattributeGroup>>

I18nAttributes
<<XSDattributeGroup>>

link
charset [0..1] : Charset
href [0..1] : uriReference
hreflang [0..1] : language
media [0..1] : MediaDesc
rel [0..1] : LinkTypes
rev [0..1] : LinkTypes
type [0..1] : ContentType

head
(from Structure)

0..*0..*

Base Module

base
href : uriReference

head
(from Structure)

0..*0..*

 Modeling XHTML with UML

Copyright  2001 Ontogenics Corp. March 5, 2001 Page 13

Known Limitations
The schema is currently generated into one large file. A future enhancement to the generator will
produce separate schema files for each package (module) in the UML model, controlled by parameter
settings.

There are no known omissions in the XML Schema generated from this UML model. There are,
however, several places where the schema incorrectly allows child elements.

• The <div> element should not allow Inline elements in its content. The current schema allows this
because of inheritance from Block. The UML diagram includes an association from div to Inline
with multiplicity [0..0], but this does not restrict the inherited association.

• The same kind of invalid Inline child elements are allowed in the <table> element for the same
reason.

• There are several occurrences where an element should not allow nesting of itself (e.g., <a> within
<a>). Most of these restrictions are noted on the UML diagrams using constraints on associations,
but these constraints are not reflected in the Schema. This issue is similar to the first limitation,
where the invalid child elements are inherited. This situation exists for: a, form, label.

• <table> should not be allowed within <th> and <td>, but is allowed because of inheritance from
Flow. This nesting would be valid for full XHTML tables without the restriction in XTHML Basic.

Future Enhancements
The following enhancements are required to represent the full XHTML Proposed Recommendation, in
addition to the XHTML Basic elements modeled in this version:

• Add remaining module definitions (Text Extension, Frames, etc.).

• Devise a clean approach to insert additional attributes into existing class definitions, as required to
support the Intrinsic Events Module, Name Identification Module, and Legacy Module.

References
1. XHTML Basic W3C Recommendation, 19 December 2000. See http://www.w3.org/TR/xhtml-basic

2. Modularization of XHTML W3C Proposed Recommendation, 22 February 2001. See
http://www.w3.org/TR/xhtml-modularization

3. For a quick, very accessible introduction to UML and its graphical notation, see: Martin Fowler,
UML Distilled, 2nd edition, Addison-Wesley, 2000.

4. A Web portal has been created at http://XMLmodeling.com to aggregate newsfeeds and resource
references related to modeling XML vocabularies, especially using UML. This site will also contain
examples from the book, plus case study examples of modeling XML vocabularies.

5. David Carlson, Modeling XML Applications with UML: Practical e-Business Applications, Addison-
Wesley, 2001.

