
Keys for XML

Peter Buneman� Susan Davidson� Wenfei Fany Carmem Haraz Wang-Chiew Tan�

ABSTRACT
We discuss the de�nition of keys for XML documents, paying
particular attention to the concept of a relative key, which is

commonly used in hierarchically structured documents and
scienti�c databases.
Keywords: Keys, Relative Keys.

1. INTRODUCTION
Keys are an essential part of database design [2, 14]: they

are fundamental to data models and conceptual design; they
provide the means by which one tuple in a relational database
may refer to another tuple; and they are important in up-

date, for they enable us to guarantee that an update will
a�ect precisely one tuple. More philosophically, if we think
of a tuple as representing some real-world entity, the key
provides an invariant connection between the tuple and en-

tity.
If XML documents are to do double duty as databases,

then we shall need keys for them. In fact, a cursory ex-

amination1 of existing DTDs reveals a number of cases in
which some element or attribute is speci�ed { in comments
{ as a \unique identi�er". Moreover a number of scien-
ti�c databases, which are typically stored in some special-

purpose hierarchical data format which is ripe for conversion
to XML, have a well-organized hierarchical key structure.

�University of Pennsylvania. Email:
fpeter,susan,wctang@saul.cis.upenn.edu. Supported in
part by Digital Libraries 2 grant DL-2 IIS 98-17444 and
NSF DBI99-75206.
yTemple University. Email: fan@joda.cis.temple.edu. Sup-
ported by RIF fund.
zUniversidade Federal do Parana, Brazil. Email:
carmem@inf.ufpr.br
1We used the \DTD Inquisitor" of Byron Choi and Arnaud
Sahuguet [15, 10].

Copyright is held by the author/owner.
WWW10,May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

Various forms of key speci�cation for XML are to be found
in the XML standard [7], XML Data [13], XML Schema
[17]. Through the use of ID attributes in a DTD [7], one
can uniquely identify an element within an XML document.

However, it is not clear that ID attributes are intended to
be used as keys rather than internal \pointers". For exam-
ple, ID attributes are not scoped. In contrast to keys, they

are unique within the entire document rather than among a
designated set of elements. As a result, one cannot, for ex-
ample, allow a student (element) and a person (element) to
use the same SSN as an ID. Moreover using ID attributes as

keys means that we are limiting ourselves to unary keys and,
of course, to using attributes rather than elements. Finally,
one can specify at most one ID attribute for an element
type, while in practice one may want more than one key.

XML Data introduces a notion of keys explicitly. However,
its keys can only be speci�ed in types and moreover, can
only be de�ned for element types rather than for certain

collections of elements.
XML Schema has a more elaborate proposal, which is the

starting point of this paper. The proposal extends the key
speci�cation of XML Data by allowing one to specify keys

in terms of XPath [11] expressions. There are a number of
technical problems in connection with XPath. XPath is a
relatively complex language in which one can not only move
down the document tree, but also sideways or upwards, not

to mention that predicates and functions can be embedded
as well. The main problem with XPath is that questions
about equivalence or inclusion of XPath expressions are, as

far as the authors are aware, unresolved; and these issues
are important if we want to reason about keys as we do in
relational databases. Yet until we know how to determine
the equivalence of XPath expressions, there is no general

method of saying whether two such speci�cations are equiva-
lent. Another technical issue is value equality. XML Schema
restricts equality to text, but the authors have encountered

cases in which keys are not so restricted. A more detailed
discussion can be found in section 7.1.
However, the main reason for writing this paper is that

none of the existing key proposals address the issue of hierar-

chical keys, which appear to be ubiquitous in hierarchically
structured databases, especially in scienti�c data formats.
A top-level key may be used to identify components of a
document, and within each component a secondary key is

used to identify sub-components, and so on. Moreover, the

authors believe that the use of keys for citing parts of a

document is su�ciently important that it is appropriate to
consider key speci�cation independently of other proposals
for constraining the structure of XML documents.
How then, are we to describe keys for XML or, more gen-

erally, for semistructured data? From the start, how we
identify components of XML documents is very di�erent
from the way we identify components of relational databases.

Consider the following two structures:

<db>

<student>

<name> Smith </name>

<course> Math2 </course>

<grade> B </grade>

</student>

<student>

<name> Jones </name>

<course> Math2 </course>

<grade> A+ </grade>

</student>

<student>

<name> Brown </name>

<course> Phil5 </course>

<grade> A- </grade>

</student>

</db>

name course grade

Smith Math2 B
Jones Math2 A+
Brown Phil5 A-

To identify a tuple in the relation we need to know, say,

that name and course constitute a key. In the absence of a
key the only way we can be sure of uniquely identifying a
tuple is to give the entire tuple. For relational databases,
the way we specify a key constraint is to say that if two

tuples agree on their key attributes they agree everywhere.
By contrast, XML documents are, �rst of all, documents
and we can therefore use the position in the document (say

a byte o�set) to identify some part of it, therefore the way
we might constrain the XML document is to say that if two
elements agree on the name and course subelements then
they are the same element. Put in the contrapositive: two

distinct student elements must di�er on a name or course

subelement. This raises two issues that precede any discus-
sion of the structure of keys: that of node identi�cation and
that of equality. The latter is a thorny topic, but needs some

attention.

Organization. The rest of the paper is organized as fol-
lows. Section 2 introduces the notion of node addresses and

value equality. Node addresses are used in node equality
testing, i.e., testing whether two nodes are the same node
and value equality is used for testing whether two nodes
have the same value. Section 3 introduces our path expres-

sion language which is used in the de�nition of keys dis-
cussed in section 4. Section 5 addresses issues in connection
with reasoning about XML keys. The concept of relative

or hierarchical keys together with its alternative notation is

discussed in section 6. In section 7, we examine the XML-

Schema proposal in some detail, discuss an alternative form
of keys and various issues concerning keys.

2. NODE ADDRESSES AND EQUALITY
The Document Object Model (DOM) [3] provides some

insight into a semantics for XML documents. According to

the DOM, a document is a hierarchical structure of nodes.
Nodes are of several types, but there are three types that
are important to this discussion: element nodes, attribute

nodes, and text nodes. As illustrated in Figure 1 text nodes
(T) have no name but carry text, attribute nodes (A) have
both a name and carry text, and element nodes (E) have
a name. Element nodes may have children; attribute and

text nodes are terminal. In addition the DOM speci�es how
to reach the children of an element node. Text and element
children are held in what is essentially an array, the index in

the array being determined by the order of the subelements
in the document. Attribute children are held in a dictionary.
The name of the attribute, which must be unique within an
element, is used as the index. These indexes, an integer

for an element or text child, or the name pre�xed by an
\@" for attributes, are shown as edge labels in Figure 1.
The important point here is that the edge labels uniquely
identify children.

A consequence of this model is that a path of edge labels
from the root uniquely identi�es a node. We shall call such
paths node addresses and write them hl1# : : :#lni, for ex-
ample h1#2#1i and h1#3#@numi. Node addresses will be our
basic means of identifying nodes. Note that an attribute
name can only occur at the end of a node address. We
can also talk about the address of a subnode relative to a

node. For example any subnode of a node with address hai
will have a node address of the form ha#bi where hbi is the
address of the subnode relative to hai. By a subnode of a
node x we mean any node in the subtree rooted at x, not

necessarily a child node of x.

Value equality. Equality is essential to the de�nition of
keys, and in order to de�ne keys we need �rst to de�ne equal-

ity of the \values" associated with nodes. XML-Schema
restricts equality to text nodes, but the authors have en-
countered cases in which keys are not so restricted. An

immediate example is that when one treats name as a key
for person nodes, name may have a complex structure con-
sisting of first-name and last-name subelements. A more
general way of describing equality is to use tree equality.

The value of a node is speci�ed by giving (1) a set S of rel-
ative addresses of its subnodes, (2) a partial function from
S to names and (3) a partial function from S to strings.

Two nodes are value-equal if they agree on (1), (2) and (3).
With respect to the textual representation of an XML el-
ement, this de�nition states that the order of attributes is
unimportant in de�ning equality. Observe that the order

of subelements is speci�ed and preserved by their indexes
(integers).

Notation. We shall use =v for value equality.

It should be pointed out that neither equality of text nodes

hdbi
hcomposeri

hnamei J.S. Bach h/namei
hborni 1685 h/borni
hwork num="BWV82"i

htitlei Ich habe genug h/titlei
h/worki
hwork num="BWV552"i
h/worki

h/composeri
hcomposer period="baroque"i

hnamei G.F. Handel h/namei
hwork num="HWV19"i

htitlei Art Thou Troubled? h/titlei
h/worki

h/composeri
h/dbi

composer

db
2

2

1

name born

"J.S.Bach"

work

title

"Art Thou Troubled?"

"HWV19"

"baroque"

period

1

1 1
1

@period

@num

E

E

T

E

T

E

E

A

T

E

A

num"1685"

E

"Ich habe genug"

1

1

titleE

T

A

@num

work E work

numAnum

1 42 3

@num

"BWV82" "BWV552"

1

nameE

"G.F. Handel"

T

1

Ecomposer

Figure 1: Some XML and its representation as a tree

nor tree equality is entirely satisfactory in the presence of
types. XML-Schema does a thorough job of de�ning base

types, and one might want to use this to de�ne a coarser
form of equality. For example, hid type="int"i 0 h/idi
and hid type="int"i -0 h/idi should probably be treated
as value-equal. Also, there are types such as real numbers

for which equality is problematic. A complete speci�cation
of keys would have to take account of these issues.

3. PATH EXPRESSIONS
A path expression is an expression involving node names

(tags and attribute names) that describes a set of paths in
the document tree.
The choice of what language we use to de�ne path ex-

pressions is important to the expressive power of keys, and
there are a number of choices. In XML-Schema, XPath [11]
expressions are used, while in semistructured data regular

expressions [1] have been used. Neither subsumes the other.
In the following analysis we shall assume two properties of
path expressions:

� There should be a concatenation operation: P:Q is the
result of following �rst the path P and then the path
Q.

� A path should move down the tree. That is if we start
at a node n1 and, by following a path described by P ,
we reach a node n2 then n2 is a subnode of n1 (the

address n1 is a pre�x of the address n2.)

The second property is not enjoyed by XPath. We shall
discuss the choice of a language of path expressions later,

but in the meantime adopt for illustrative purposes a sim-
ple language that is certainly a subset of both XPath and
regular expressions. Our language for path expressions has

the following syntax:

� The empty path, \�".

� A node name (a tag or attribute name).

� A wild card \ ", matching any single node name.

� An arbitrary path \ �".

� The concatenation of paths P:Q, where P and Q are
paths de�ned by these rules.

We have chosen an alternative syntax to that of XPath

because the concatenation operation, which is central to
our understanding of keys, does not have a uniform rep-
resentation in XPath. However, the translation to XPath
is straightforward: Any path meant to start from the root

is pre�xed with \/". In XPath, \/" itself denotes the root
node. \." is used as the empty path in place of \�", *"
in place of \ " and \//" in place of \ *". Also, \/" is used

as the path concatenator in place of \.". In XPath, \/" is
used as a separator between location steps. Therefore, we
have to disallow certain concatenations. If for example we
concatenate a=b with =c=d we get a=b==c=d with an entirely

di�erent meaning.
We shall use the notation n[[P]] to denote the set of nodes

(node addresses) reached by starting at node n and following
a path that conforms to (is in the language of) P . We shall

sometimes use [[P]] as an abbreviation for root[[P]]. The syn-
tax is borrowed from Wadler's [18] description of semantics
for patterns in XSL. Examples (from Figure 1):

h2#2i[[title]] = fh2#2#1ig
[[composer:]] = fh1#1i, h1#2i, h1#3i, h1#4i,

h2#1i, h2#2ig
h2#2i[[�]] = fh2#2i, h2#2#1i, h2#2#1#1i,

h2#2#@numig
[[composer:work]] = fh1#3i, h1#4i, h2#2ig

[[� :num]] = fh1#3#@numi, h1#4#@numi,
h2#2#@numig

In some cases, it will be useful to restrict the path expres-

sion language so that paths are merely sequences of labels
and do not contain or �. Such paths are called simple

paths. For example, composer.work is a simple path.

4. DEFINITION OF KEYS
In de�ning a key we specify two things: a set on which we

are de�ning the key (in relational databases this is a relation

{ the set of tuples identi�ed by a relation name) and the \at-

tributes" (relational terminology for a set of column names)
which together uniquely identify elements in the set. This
is the motivation for our central de�nition of a key speci�-

cation, which is a pair (Q; fP1; : : : ; Png) where Q is a path

expression and fP1; : : : ; Png is a set of simple path expres-
sions. The idea is that the path expression Q identi�es a
set of nodes, which we refer to as the target set, on which

the key constraint is to hold. Let us refer to Q as the tar-

get path, and the set fP1; : : : ; Png as the key paths. These
correspond to the absolute and relative location paths re-
spectively in XPath terminology. Observe that for any node

n 2 [[Q]] there is a set of nodes n[[Pi]] found by following
Pi from n. There is no restriction on the size of n[[Pi]]; in
particular it may be empty. The key paths constrain the
target set as follows: Take any two nodes (n1; n2) 2 [[Q]]

and consider the pair of sets of nodes found by following
the key path Pi from n1 and n2, (n1[[Pi]], n2[[Pi]]). If there
is a non-empty intersection with respect to value equality

for all such pairs of sets of nodes then the nodes n1 and n2
are the same node. For example, consider the following key
de�nition:

(person.employees; fname.�rstname, name.lastnameg)

The target path person.employees identi�es a set of nodes
in the document. This is the target set. Each of these nodes
will de�ne a subtree with an employees label at the root.

Within such a subtree we will �nd zero or more key paths
name.�rstname and zero or more key paths name.lastname.
Two nodes n1, n2 in the target set are distinct if either they
do not agree on any of the nodes reachable via key path

name.�rstname or they do not agree on any of the nodes
reachable via name.lastname.
As another example, observe that the document in Fig-

ure 1 satis�es the key (composer, fnameg): There are two
nodes at the end of the target path composer. For each
node, there is one element in the set of nodes found by fol-
lowing the key path name, \J.S.Bach" and \G.F.Handel".

These elements are not value-equal. Less intuitively, the
document also satis�es the key (composer, fborng) since the
subelement <born> only appears in the �rst composer and
is absent from the second composer.

We are now ready to give the formal de�nition of a key.
For reasons which will emerge shortly, it is useful to de�ne
a key with respect to a given node in the document rather

than assuming that the target path starts at the root.

De�nition. A node n satis�es a key speci�cation
(Q; fP1; : : : ; Pkg) i� for any n1; n2 in n[[Q]], if for all i, 1 �
i � k, there exist z1 2 n1[[Pi]] and z2 2 n2[[Pi]] such that

z1 =v z2, then n1 = n2. That is,

8n1 ; n2 2 n[[Q]]

((
^

1�i�k

9 z1 2 n1[[Pi]] 9z2 2 n2[[Pi]] (z1 =v z2)) ! n1 = n2)

Note that both forms of equality are used in the de�nition

of a key. The �rst deals with value-equality (=v) while the
second is node equality (=). Two nodes are node equal if
they have the same node address.

When we talk about document satisfying a key speci�ca-

tion we mean that the root of the document satis�es the

key speci�cation. The key has no impact on those nodes at
which some key path is missing, i.e. nodes n such that n[[Pi]]
is empty for some Pi. Observe that for any n1; n2 in [[Q]],
if Pi is missing at either n1 or n2 then n1[[Pi]] and n2[[Pi]]

are by de�nition disjoint. This is similar to unique con-

straints introduced in XML-Schema. In contrast to unique
constraints, however, our notion of key speci�cation is ca-

pable of comparing nodes at which a key path may lead to
multiple nodes. As an example, consider a key (A, fBg) ex-
pressed with respect to the root of the following document:

<db>

<A> 1

<A> 1 2

</db>

This key asserts that an A element is uniquely identi�ed
by the values of its B subelements. The document does not
satisfy the key because the B subelement in the �rst A el-
ement and the �rst B subelement of the second A element

have the same value. And with our de�nition of keys, these
two A elements are required to be the same element.
Here are some further examples of keys, expressed with

respect to the root of a document.
(� :person; fidg) Any person element, if it has id

subelements, is uniquely identi�ed
by the values of the id's. In other

words, any two person elements are
disjoint on their id �elds up to value-
equality.

(person; f�g) Any two person nodes immediately

under the root have di�erent values
(� is the empty path).

(employees; fg) An empty key. This means that the
path employees, if it exists, is unique

at the root. That is, there is at most
one employees node immediately un-
der the root.

(�; fidg) Any element that has id subelements
is uniquely identi�ed by the values
of the id's. That is, any two nodes
are disjoint on their id �elds up to

value-equality. Note that an id el-
ement does not have to have an id
itself. This key captures the seman-
tics of an ID attribute in the XML

standard in that id is unique within
the entire document.

As with keys in relational databases, this de�nition of a

key asserts that the values associated with key paths uniquely
identify a node in the target set. However since one cannot
require XML documents to be in some kind of �rst normal
form, there are important di�erences between the two def-

initions. First, the paths that de�ne keys need not exist 2

2This might be taken as allowing null-valued keys, but
whether we should equate missing key paths with null values
is arguable and depends on the semantics of the languages
we use to query XML documents.

and do not have to be unique. In contrast, in relational

databases since key values cannot be null, the key must ex-
ist. Moreover, �rst normal form requires attribute values to
be atomic values, not sets. Second, our key paths specify
a set of addresses within a document, unlike the relational

case in which keys specify a value.
There are, of course, other ways of de�ning keys, both

more and less restrictive than what we have described. Some

justi�cation of the choices is in order.

� We have used a set of key paths to de�ne a key. In
order to talk about a set (as opposed to a tuple or list)

of path expressions we need to be able to talk about
equality of path expressions. The equivalence of two
path expressions in our language of path expressions is
decidable, as it is for the more general class of regular

expressions.

� Given that we have de�ned equality on trees, do we
need to have more than one key path in a key speci�-
cation? We could always design our documents so that
all the key \attributes" are represented as subnodes of

some node. The problem here is that we would have
to constrain the node to contain only these subnodes
for tree equality to have the desired e�ect. This seems

to be too restrictive and constitutes unnecessary inter-
ference between key speci�cations and data models.

� The de�nition of key satisfaction di�ers signi�cantly
from the relational case by allowing a (possibly empty)
set of nodes at the end of each key path. We shall

examine a more restrictive de�nition in which key sat-
isfaction requires each of the key paths to exist and to
be unique from any node in n[[Q]] in Section 7.

� The language of path expressions may be regarded

both as too weak and too powerful. Consider the key
(Q; fP1; : : : ; Pkg): For now, we have allowed Q to be
an arbitrary path expression but have restricted the Pi
to be simple paths. Would one ever want an arbitrary

path (�) in one of the Pi? Also, it is not hard to come
up with examples in which one would like something
more powerful to express Q, e.g., (person:(mother j
father)�; fidg). This means a person element followed
by zero or more father or mother elements. Our em-
phasis is that the language of path expressions is pro-
visional, and that allowing arbitrary path expression

for the Pi merely complicates the de�nition of key but
does not change much in the way of the theory.

5. KEY INFERENCE
In relational databases one can infer some keys from the

presence of others. Indeed, if a set S of attributes is a key for
a relation R, then any superset of S is also a key for R. This
obvious fact is of great importance in query optimization.

Keys are typically used as physical indexes, and this simple
inference rule tells us when we have enough information to
use such an index. For XML keys as we have presented them

so far, the inference rules are far from obvious. These rules

are fully discussed in a companion paper [8]. Here are some

examples.

Fact. If (Q; S) is a key and S � S0, then so is (Q; S0).

This is the counterpart of the relational inference rule. Be-
low are two examples that have no such counterpart.

Fact. If (Q:Q0; fPg) is a key then so is (Q; fQ0:Pg).

This is sound because in a document with a tree-like struc-
ture, sharing of nodes is not allowed. As a result, if a node

is identi�ed in a tree then its ancestors are also determined.
In other words, if a key path P uniquely identi�es a node n
in [[Q:Q0]] then Q0:P is a key path for the ancestor of n in

[[Q]].

Fact. If (Q;S) is a key and Q0 is contained in Q (i.e., the
path language de�ned by Q0 is included in the one de�ned

by Q), then (Q0; S) is also a key.

This fact is sound because any key of the set [[Q]] is also a
key for any subset of [[Q]]. Observe that [[Q0]] is a subset of

[[Q]] if Q0 is contained in Q.

The last fact requires one to reason about the inclusion of

path expressions.
Key inference is closely related to the question of key im-

plication: suppose it is known that an XML document sat-
is�es certain keys, does it follow that the document must

necessarily satisfy some other key? We have developed al-
gorithms for reasoning about the inclusion of certain classes
of path expressions as well as for determining implication of

XML keys. A detailed discussion of these algorithms as well
as �nite axiomatization and complexity results in connection
with our key languages can be found in [8].
Another natural question to ask is whether key constraints

are �nitely satis�able. In relational databases, all keys are
�nitely satis�able: given any schema S and any �nite set �
of keys, one can always construct a �nite database instance

of S that satis�es �. The same holds for XML documents
under our de�nition of a key.

Fact. For any �nite set � of keys, there exists an (�nite)

XML document satisfying �.

This last fact only holds because key paths may be miss-
ing. Recall the (�; id) example: if key paths were required

to exist at all nodes speci�ed by the target path the XML
document would have to be in�nite to satisfy the key (see
strong keys in section 7.)

Also, we note that the last fact only holds in the absence
of DTDs. To illustrate this, let us consider a simple key

' = (X; f g)

and a simple DTD D:

<!ELEMENT foo (X, X)>

Obviously, there exists a �nite XML document that con-
forms to the DTD D (see, e.g., Fig. 2 (a)), and there is a
�nite XML document that satis�es the key ' (e.g., Fig. 2

(b)). However, there is no XML document that both con-
forms to D and satis�es '. This is because D requires an
XML tree to have two distinct X elements, whereas ' re-

quires that there is at most one X node immediately under

the root. This shows that DTDs interact with XML key

constraints. It should be mentioned that keys de�ned in
other proposals for XML, such as those introduced in XML
Schema [17], also interact with DTDs or other type systems
for XML. For a study of the interaction between constraints

such as keys and DTDs see [12].

6. RELATIVE KEYS
The need for relative keys is partly motivated by scienti�c

data formats. Many scienti�c databases do not use conven-
tional database technology, and even those that do trans-
mit their data in one of a variety of data formats. Some of

these data formats are general purpose (such as ASN.1, used
in GenBank [6], and ACeDB [16]) while others are domain
speci�c (such as EMBL [4]). These data formats have easy

translations to XML. XML itself is also emerging as a stan-
dard for data exchange, especially with micro-array data
(see for example the DTDs GEML [20] and MAML [21]).
All of these speci�cations have a hierarchical structure, and

typically at the top level consist of a large set of entries (the
order of which is usually unimportant). Molecular biology
databases contain particularly rich structures of metadata.

In the protein sequence database Swissprot [5] there is an
accession number (a key) for each entry. Within each entry
there is a sequence of citations, each of which is identi�ed by
a number 1,2,3... within the entry. Thus to identify a cita-

tion fully, we need to provide both an accession number for
the entry and the number of the citation within the entry.
Another intriguing example is to be found in linguistic

databases3. In this case the data sets (typically recordings

of speech) are held in �les, but the metadata is provided in
part by the directory structure [19]:

/timit/train/dr1/fcjf0/sa1.wav

(TIMIT corpus, training set, dialect region 1, female speaker,
speaker-ID "cjf0", sentence text "sa1", speech waveform
�le.) It would be quite reasonable to represent such meta-

data in XML, but it is immediately obvious that it requires
a non-trivial hierarchical key structure.
In relational database design we also �nd the notion of a

hierarchical key structure in weak entities. The key of a weak
entity consists of the parent key and some additional iden-
ti�cation of the dependent entity [14] (e.g. course Math120,
section B).

To describe hierarchical key structures we introduce the
notion of a relative key, which consists of a pair (Q;K) where
Q is a path expression and K is a key.

De�nition. A document satis�es a relative key speci�ca-

tion (Q, (Q',S)) i� for all nodes n in [[Q]], n satis�es the key
(Q0; S).
In other words (Q;K) is a relative key if K is a key for

every \sub-document" rooted at a node in [[Q]]. Examples:

� (bible.book.chapter; (verse; fnumberg)). A verse num-

ber uniquely identi�es a verse within a chapter.
3We are grateful to Mark Liberman and Steven Bird of the
Linguistic Data Consortium at the University of Pennsylva-
nia for providing us with this example.

� (bible.book; (chapter; fnumberg)). Chapter numbers
uniquely identify a chapter within a book.

� (bible; (book; fnameg)). If there is only one bible node
immediately under the root, this is the same as speci-
fying a key (bible.book; fnameg).

Observe that in a relative key (Q; (Q0; S)), Q starts from
the root whereas Q0 starts at a node in [[Q]]. It is for this
reason that we de�ned key satisfaction at arbitrary nodes.

Transitivity of relative keys. The purpose of keys is to
uniquely specify certain components of a document. Obvi-
ously, a relative key such as (bible.book.chapter; (verse;

fnumberg)) alone does not uniquely identify a particular
verse in the bible. However we believe that if we give a
book name, a chapter number, and a verse number, we have
speci�ed a verse. It is this intuition that we need to formal-

ize.
First observe that the relative key (�; (Q0; S)) is equivalent

to the key (Q0; S). Thus keys de�ned in section 4 are a spe-

cial case of relative keys. To distinguish these two notions
we refer to the former as absolute keys or simply keys. Now
consider two relative keys. We say that (Q1; (Q

0
1; S1)) im-

mediately precedes (Q2; (Q
0
2; S2)) if Q2 = Q1:Q

0
1. Also, any

absolute key immediately precedes itself. De�ne the pre-

cedes relation as the transitive closure of the immediately
precedes relation.

De�nition. A set � of relative keys is transitive if for any
relative key (Q1; (Q

0
1; S1)) 2 � there is a key (�; (Q0

2; S2)) 2
� which precedes (Q1; (Q

0
1; S1)).

As an example, this set of keys is transitive:

(�; (bible.book; fnameg))
(bible.book; (chapter; fnumberg))

This set is not:

(�; (bible.book; fnameg))
(bible.book.chapter; (verse; fnumberg))

Any transitive set of relative keys must contain some ab-
solute key.

Updatable relative keys. Consider the following (transi-
tive) key speci�cation:

(�; (university; fnameg))
(university; (dept.employee; femp-idg))

To identify an employee node in this database, we need
only to specify a university name and an emp-id within that
university. However, to add a new employee to the database,
we clearly need to specify a department for the employee.

However, although this key speci�cation is transitive, there
is no way to identify a department and hence there could
be many ways to add an employee. This motivates our �nal

de�nition of updatability as shown below: With updatability,
one can always insert an element in the \keyed" part of the
document unambiguously by specifying where to insert the
element using keys.

De�nition. A set � of relative keys is updatable if it is tran-

sitive and whenever (Q1; (Q2:n; S1)) 2 � there is a relative

X

(a)

X X

(b)

foo foo

Figure 2: An XML tree conforming to D, and an XML tree satisfying '

key (Q1; (Q2; S2)) 2 � where jQ2j > 0. Here n is a node
name.

Informally, this de�nition gives us the property that every
element with a pre�x along the path Q1:Q2 can be identi�ed
through some keys. Therefore, it is easy to see that the

addition of the following key will make the previous example
updatable. In particular, to insert an employee, we now can
specify which department they are in (in addition to the
university).

(university; (dept; fdept-nameg))

Even though we can now add new employees, there is still
something anomalous: Although employees are nested un-

der departments, nothing about the department is necessary
to identify them. This is reminiscent of the anomalies that
occur in non-second normal form of relational databases.
There is something wrong with the design of this document

in that employees should not be children of department
nodes, but only of university nodes. The linkage between
employees and departments should be expressed through a
foreign key. Formalizing the concept of a well-designed doc-

ument with respect to its key speci�cation is beyond the
scope of this paper.

6.1 A notation for relative keys
If a system of relative keys is transitive, it forms a hier-

archical structure. We can therefore create a compressed

syntax for such systems. The basic syntactic form is

Q1fP
1

1 ; : : : ; P
1

k1
g:Q2fP

2

1 ; : : : ; P
2

k2
g: : : : :QnfP

n

1 ; : : : ; P
n

kn
g

This describes a system of relative keys: a relative key

(Q1: : : : :Qi�1; (Qi; fP
i

1 ; : : : ; P
i

ki
g)) is de�ned for each i,

1 � i � n. It should be noted that the �rst of these is of the
form (�; (Q1; fP

1

1 ; : : : ; P
1

k1
g)) and is a key.

For example

biblefg:bookfnameg:chapterfnumberg:versefnumberg

speci�es the updatable system of keys:

(�; (bible; fg))
(bible; (book; fnameg))
(bible.book; (chapter; fnumberg))
(bible.book.chapter; (verse; fnumberg))

So far the key hierarchies we have speci�ed are linear.
Consider the following two speci�cations:

companyfnameg:employeefidg
companyfnameg:departmentfnameg:

It is helpful to fold these into a single speci�cation:

companyfnameg[.employeefidg, .departmentfnameg]

This is simply a syntactic shorthand: R[R1; : : : ; Rn] for
RR1, : : : , RRn. As a further example, consider

universityfnameg.school[fnameg, .department[fnameg,
.studentfidg]]

This is another example of a transitive set of relative keys.
It is worthwhile to remark again that for identifying student
nodes, one does not need to be aware of which school the

student belongs to. However, to insert a new student into
the document, one needs specify under which school (in ad-
dition to which university) to insert the student element so
as to avoid ambiguity.

Speci�cations such as these are reasonably compact and
understandable. Their importance is not only to ensure the
internal consistency of a document, but also to tell others

how to cite a component of our document. This is espe-
cially important if the document is subject to change. Even
though we have constructed a minimal system for describ-
ing hierarchical key structures, it turns out that this takes

us some way towards describing a data model. Contrast
relational database speci�cation student(snum, name, major)
and enroll(snum,cnum,grade) with a key speci�cation

[studentfsnumg[.namefg, .majorfg],
enrollfsnum,cnumg.gradefg]

They describe closely related structures. The speci�cation

[.namefg, .majorfg] ensures that under a student node there
is at most one name and at most one major node. However
the key speci�cation allows other unspeci�ed nodes to occur
under a student node and, of course, it does not require any

kind of �rst normal form. Nevertheless, we can specify that
our documents have a structured \core" somewhat akin to
the complex object or nested relational structures that have
been studied in databases [2]. Not surprisingly there is close

interaction between key constraints and data models which
requires much further study.

7. DISCUSSION
Our main reason for writing this document was to clarify

the notion of a relative key and to understand the hierarchi-
cal key structure that appears to occur naturally in a variety
of data formats. What we have described here is a proposal

for a key de�nition, and there are a number of variations
on this de�nition which should be considered. This section
contains a brief review of those alternatives, starting with

the proposals in XML-Schema.

7.1 XML-Schema
XML-Schema includes a syntax for specifying keys which

is related to our de�nition, but there are some substantive
di�erences, even if we ignore the issue of relative keys. Pos-
sibly the most important of these is that the language for

path expressions is XPath. As mentioned before, XPath
is a language used for accessing parts of XML documents.
XPath supports a variety of axes that allows one not only
to move down an XML document tree from a node, but

also to move to its ancestors and siblings. Moreover, one
can embed predicates or even functions in XPath. For
example /A/B[last()]/C/D/E/ancestor::* selects all ancestor

nodes along the path A.B.C.D.E starting from the root. Ob-
serve that a predicate (quali�er) is speci�ed in the expres-
sion: B must be the last B child of A. With such complex
functionality, questions about the equivalence or inclusion

of XPath expressions remains open. As demonstrated by
examples in Section 5, these issues are important if we want
to reason about keys as we do { for quite practical pur-
poses { in relational databases. Here is a brief summary of

the other salient di�erences between our de�nitions and the
XML-Schema proposal.

Equality. We have used a more general form of equality
than that in XML-Schema. However, as pointed out

in Section 2 a full treatment of equality might involve
types or even some form of user-de�ned equality.

De�nition of the target set. In XML-schema the path

expression that de�nes the target set is taken to start
at arbitrary nodes. Recall that in a key (Q; (Q0; S)) of
our notation, the target path Q always starts from the
root (also recall that an absolute key (Q0; S) is equiv-

alent to (�; (Q0; S))). But it is straightforward to let
Q start from arbitrary node: one needs simply to sub-
stitute �:Q for Q in our notation. More speci�cally,

we write (�:Q; (Q0; S)) (observe that �:Q starts from
the root). It is, of course, possible to \root" a path
expression XML-Schema.

De�nition of key paths. XML-Schema talks about a list

(not a set) of key paths. While this avoids issues of
equivalence of XPath expressions, one can construct

keys that are, presumably, equivalent, but have dif-
ferent or anomalous presentations. For example (tem-
porarily using [...] for lists):

(person,[�rstname, lastname]),
(person,[lastname, �rstname]),
(person,[lastname, lastname, �rstname])

impose the same constraint. Since the issue of equiv-

alence of XPath expressions is unresolved, there is no
general method of checking whether two such speci�-
cations are equivalent.

Relative keys. While there is no direct notion of a relative
key in XML-Schema, in certain circumstances one can
achieve a related e�ect. Consider for example:

bookfnameg.chapterfnameg.versefnumberg

In XML-Schema one can specify a key for verse (this

is not XML-Schema syntax) as

(book.chapter.verse, [number, up.name, up.up.name])

Here \up" is the XPath instruction to move up one

node. Thus part of the key is outside of the value of a
verse node. One of the inferences one could make for
such a speci�cation is that (book.chapter, [name,
up.name]) is a key provided the nodes in the target set

all contain at least one verse child node. Again, it is not
clear how to reason generally about such speci�cations.

7.2 Some stronger definitions of keys
The de�nition of keys we have adopted in this paper is

quite weak, which we believe is in keeping with the semi-

structured nature of XML. This certainly does not mirror
the requirements imposed by a key in relational databases,
i.e. the uniqueness of a key and equality of key values. We
now explore a de�nition which captures both these require-

ments.

Strong Keys. In a strong key de�nition, we require that
the keys paths exist and are unique, i.e. n[[Pi]] contains
exactly one node for 1 � i � n. The key paths constrain the
target set as follows: Take any two nodes (n1; n2) 2 [[Q]] and

consider the pairs of nodes found by following a key path Pi
from n1 and n2. If all such pairs of nodes are value-equal,
then the nodes n1 and n2 are the same node.

As an example of what it means for a path expression to
be unique, consider Figure 1: name is unique at h1i, but
work and num are not unique at this node. The de�nition
of satisfaction for strong keys now becomes the following.

De�nition. A node n satis�es a key speci�cation

(Q; fP1; : : : ; Pkg) if

� For all n0 in n[[Q]] and for all Pi(1 � i � k), Pi is
unique at n0.

� For any n1; n2 in n[[Q]], if n1[[Pi]] =v n2[[Pi]](1 � i � k)
then n1 = n2.

To distinguish the two de�nitions of keys let us refer to
keys de�ned above as strong keys and the keys de�ned in

Section 4 as weak keys. Given this strong notion of keys, let
us re-examine some examples given before.

(� :person; fidg) Any two person elements, no mat-
ter where they occur, have unique

id subelements and di�er on those
elements.

(person; f�g) The interpretation of this key re-
mains unchanged under a strong key

semantics.

(employees; fg) Again, the semantics of this key is
the same with respect to the strong

and weak key speci�cations.
(�; fkg) This requires that every element

has a key k, including any element

whose name is k.
The last example illustrates that under a strong key se-

mantics, �nite satis�ability (the �nite model property) does
not hold for all keys: The key (�; fkg) imposes an in�nite

chain of k nodes and therefore, there is no �nite document

satisfying it. The problem arises because we require that

key paths must exist. It should be mentioned that the corre-
sponding key in XML-Schema, (==�; [id]), is not meaningful
either, because an id node cannot have a base type if it is to
have an id subelement itself.

Due to the existence requirement on key paths in the de�-
nition of strong keys, a strong key imposes certain structural
(typing) constraints which are typically found in schema

speci�cations in a traditional database system. For exam-
ple, the following document does not satisfy the strong key
(A, fBg) since the key requires that B elements must exist
under every A element (and be unique). In other words, it

does not allow keys paths to have a \null" value. In con-
trast, the same document satis�es the weak key (A, fBg)
as a weak key permits \null" value. Observe, however, the
weak key clearly does not allow one to distinguish between

these A elements.

<ROOT>

<A> 1

<A> 2

</ROOT>

It should be mentioned that the distinction between (tra-
ditional) structural constraints (types) and (traditional) in-

tegrity constraints is not always well-de�ned. It is dictated
largely by what conventional programming languages treat
as types. See [9] for detailed discussion on this topic.
The concept of relative keys can be naturally adapted for

strong keys as well. We say a document satis�es a strong
relative key speci�cation (Q; (Q0; S)) i� for all nodes n in
[[Q]], n satis�es the strong key (Q0; S).

The strong notion and weak notion of keys impose di�er-
ent restrictions on key paths. At one end of the spectrum,
all key paths must exist and be unique (strong keys). At
the other end, no structural constraints are imposed on key

paths (weak keys). There are also possibilities in between;
for example, adopting a slightly stronger notion of weak keys
which substitutes equality for value intersection of the node
sets reachable by a simple key path.

7.3 Choice of a path expression language
We have used a language for path expressions that con-

tains just enough to illustrate most of the issues that occur

in connection with keys for XML. In order to reason about
keys, it is essential that equivalence and inclusion of path
expressions are decidable. This is the case for the more

expressive language of regular expressions, and we could
equally well have used this language; none of the results
would be a�ected. However the examples we found that
used the added expressive power were somewhat contrived,

and it is not clear whether this larger language is of practical
use.
An interesting issue is whether, in de�ning a key

(Q; fP1; : : : ; Png), the language used to describe the target

path Q needs to be the same as the language used to de�ne
the key paths P1; : : : ; Pn. One could choose a simpler lan-
guage for key paths that is a sublanguage of the language

for target paths. In fact, we only require that the composi-

tion Q:Pi of a target path and a key path should be in the

language of target paths.
To simplify the discussion, so far we have required key

paths to be simple paths. However, we could see no other
bene�t to simplifying the language of key paths. Below we

extend the current proposal by allowing key paths to include
and �, i.e., to be expressed in the same language that de-

�nes target paths. To do so, we �rst de�ne a notion of value

intersection. Observe that the regular language de�ned by
a path expression is a set of simple paths. Let us use � to
range over simple paths. Given a path expression P , we use
� 2 P to denote the simple path � in the language de�ned

by P .

Value intersection. Let n1 and n2 be two nodes in an
XML tree T and P be a path expression in the language
de�ned in Section 3. The value intersection of n1[[P]] and

n2[[P]], denoted by n1[[P]] \v n2[[P]], is de�ned as follows:

n1[[P]] \v n2[[P]] =

f(z; z0) j 9� 2 P; z 2 n1[[�]]; z
0 2 n2[[�]]; z =v z

0g

Intuitively, n1[[P]]\v n2[[P]] consists of pairs of nodes that

are value equal and are reachable by following the same sim-
ple path in the language de�ned by P starting from n1 and
n2, respectively.
Using this notation, we extend our key speci�cation as

follows.

Key speci�cation. A key is a pair (Q; fP1; : : : ; Png),
where Q and Pi's are path expressions in the language de-

�ned in Section 3. A node n satis�es the key i� for any
n1; n2 in n[[Q]], if for all i, 1 � i � k, the value intersection
of n1[[Pi]] and n2[[Pi]] is not empty, then n1 = n2. That is,

8n1 n2 2 n[[Q]] ((
^

1�i�k

(n1[[Pi]] \v n2[[Pi]] 6= ;) ! n1 = n2):

It should be mentioned that the complexity results of [8]
were developed for this general de�nition of keys.

7.4 Node names as key values
The choice of an appropriate de�nition for keys for XML

will ultimately be determined by practice. The aim of set-
ting out a key speci�cation is to cover the practical cases
without using de�nitions that are too complex to allow any

kind of reasoning about keys. Have the proposals in this
paper covered the practical cases? There is one issue that
may arise in \unconstrained" XML. Consider the database

<db>

<parts>

<widget>

<id> 123 </id> <weight> 1.5 </weight>

</widget>

<widget>

<id> 234 </id> <weight> 2.5 </weight>

</widget>

<gadget>

<id> 123 </id> <weight> 3.2 </weight>

</gadget>

</parts>

</db>

The type of a part { widget or gadget { is expressed in

the tag. In alternative XML representations it might be
expressed as an attribute or subelement of a part element.
The key for a part is to be taken as its type together with
its id. With our current machinery, the key constraint can

be expressed as partsfg[.widgetfidg, .gadgetfidg]. However,
if we introduce a new part type, a thingy, the key speci�ca-
tion will have to be changed to include a key path involving

thingy. No change would be needed in the alternative repre-
sentations. The problem arises because we are interchanging
structure (the names) with data (their values); but the abil-
ity to do this is supposed to be one of the strong points of

semistructured data and XML.
Our de�nition of a key (weak or strong) can be extended

to express this by adding a \virtual" subelement, node-name
to each named node, whose value consists of the node name.

With this extension, the key for our example can be ex-
pressed as partsfg. fnode-name, idg.
This does not alter any of the properties we expect to hold

for keys and appears to account for any practical use of tag
names in keys.

Acknowledgements. We are grateful to Byron Choi, Hart-
mut Liefke, Arnaud Sahuguet, Keishi Tajima, Chris Brew
and Henry Thompson for a number of useful comments and

discussions.

8. REFERENCES
[1] Serge Abiteboul, Peter Buneman, and Dan Suciu.

Data on the Web. From Relations to Semistructured

Data and XML. Morgan Kaufman, 2000.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.

[3] Vidur Apparao, Steve Byrne, Mike Champion, Scott
Isaacs, Ian Jacobs, Arnaud Le Hors, Gavin Nicol,
Jonathan Robie, Robert Sutor, Chris Wilson, and

Lauren Wood. Document Object Model (DOM) Level 1

Speci�cation. W3C Recommendation, October 1998.
http://www.w3.org/TR/REC-DOM-Level-1/.

[4] Baker, Wendy and van den Broek, Alexandra and
Camon, Evelyn and Hingamp, Pascal and Sterk, Peter
and Stoesser, Guenter and Tuli, Mary Ann. The

EMBL Nucleotide Sequence Database. In Nucleic
Acids Research, 28(1):19-23, 2000.

[5] A. Bairoch and R. Apweiler. The SWISS-PROT

protein sequence database and its supplement
TrEMBL. In Nucleic Acids Research, 28:45-48, 2000.

[6] D. Benson and I. Karsch-Mizrachi and D. Lipman and
J. Ostell and B.A. Rapp and D. Wheeler. GenBank.
In Nucleic Acids Research, 28(1):15-18, 2000.

[7] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. World Wide
Web Consortium (W3C), Feb 1998.

http://www.w3.org/TR/REC-xml.

[8] Peter Buneman, Susan Davidson, Wenfei Fan,

Carmem Hara, and Wang-Chiew Tan. Reasoning
about keys for XML. University of Pennsylvania
Technical Report MS-CIS-00-26, 2000.
http://db.cis.upenn.edu/DL/absolute-full.ps

[9] Peter Buneman, Wenfei Fan, Jerome Simeon and
Scott Weinstein. Constraints for Semistructured Data

and XML. SIGMOD Record 30(1), March 2001.

[10] Byron Choi and Arnaud Sahuguet. DTD Inquisitor
Demonstration. http://xml.cis.upenn.edu/DTDi/.

[11] James Clark and Steve DeRose. XML Path Language

(XPath). W3C Working Draft, November 1999.

http://www.w3.org/TR/xpath.

[12] Wenfei Fan and Leonid Libkin. On XML Integrity
Constraints in the Presence of DTDs. In PODS 2001,

2001.

[13] Andrew Layman, Edward Jung, Eve Maler, and

Henry S. Thompson. XML-Data. W3C Note, January
1998. http://www.w3.org/TR/1998/NOTE-XML-data.

[14] Raghu Ramakrishnan and Johannes Gehrke. Database

Management Systems. McGraw-Hill Higher Education,
2000.

[15] Arnaud Sahuguet. Everything You Ever Wanted to
Know About DTDs, But Were Afraid to Ask. In
WebDB, 2000.

[16] J. Sulston and Z. Du and K. Thomas and
R. Wilson and L. Hillier and R. Staden and
N. Halloran and P. Green and J. Thierry-Mieg and
L. Qiu. The C. elegans genome sequencing project: A

beginning. In Nature, 356(6364):37-41, 1992.

[17] Henry S. Thompson, David Beech, Murray Maloney,

and Noah Mendelsohn. XML Schema Part 1:

Structures. W3C Working Draft, April 2000.
http://www.w3.org/TR/xmlschema-1/.

[18] Philip Wadler. A Formal Semantics for Patterns in
XSL. Technical report, Computing Sciences Research
Center, Bell Labs, Lucent Technologies, 2000.

http://www.cs.bell-labs.com/who/wadler/

xml.html.

[19] TIMIT. CDROM TIMIT Directory and File Structure.

http://www.ldc.upenn.edu/readme files

/timit.readme.html.

[20] GEML. http://www.geml.org/

[21] MAML.
http://www.oasis-open.org/cover/maml.html

