
03/09/01 BEA Systems, Inc. 1

Proposal for
Business Transaction Protocol

Version 1.0

Sanjay Dalal (sanjay.dalal@bea.com)
Pal Takacsi-Nagy (pal.takacsi@bea.com)

Abstract
Long lasting business transactions spanning multiple enterprises pose a unique challenge
to B2B systems. The interdependent workflows among multiple trading partners, which
drive business transactions, need to be coordinated to ensure that the outcome of the
transaction is reliable. In this document we propose a solution to this problem in the
form of a Business Transaction Protocol (BTP). B2B servers participating in business
transactions over the Internet are expected to implement BTP to orchestrate multi-
enterprise transactions.

Status of this Document

This document is a proposal from BEA Systems, Inc. to the OASIS Business
Transactions Protocol Technical Committee. The BTP TC has not approved it.

Distribution of this first draft document is limited to members of the BTP TC.

Copyright Notice

Copyright (C) BEA Systems, Inc. 2001. All Rights Reserved.

mailto:sanjay.dalal@bea.com
mailto:pal.takacsi@bea.com

03/09/01 BEA Systems, Inc. 2

Contents

Abstract ... 1
Status of this Document .. 1
Contents... 2
Introduction ... 3
Approach ... 3

What is a business transaction... 3
What is a business-to-business transaction ... 3
Transaction Management .. 4
Example Scenario.. 4
Transaction models ... 5
BTP and two-phase commit .. 6
Scope of BTP .. 6
BTP and other B2B protocols ... 7

Business Transaction Protocol .. 7
Concepts and terminology... 7

Trading partner.. 7
Transaction .. 7
Initiator and participants.. 7
Transaction coordinator... 7

The life of a transaction... 8
Starting a transaction... 9
Exchanging messages in a transaction .. 10
Transaction infection... 11
Leaving a transaction .. 11
Transaction termination... 11

Termination Protocol... 12
Assumptions.. 12
Sequence of actions... 12
Failure Handling and Recovery... 13

Messages ... 19
Future Work .. 20

Vote from participants... 20
Associated transactions ... 20
Implicit registration of subordinate coordinators .. 20

References ... 20

03/09/01 BEA Systems, Inc. 3

 Introduction
In this document we propose a protocol, called Business Transaction Protocol, which can
be used to orchestrate long running, inter-enterprise business transactions. This protocol
addresses the unique requirements of business-to-business transactions. BTP is based on
the multi-level transaction model that provides the necessary independence for the
participating resource managers – in this case the B2B servers of companies engaging in
business transactions.
This document is not a complete specification; it is rather a proposal that is intended to
serve as a starting point for the work of the OASIS Technical Committee on Business
Transactions.

Approach

What is a business transaction
A business transaction is a consistent change in the state of the business that is driven by
a well-defined business function. Business transactions can be fully or partially
automated. Business processes are composed of several business transactions. An
example of a business transaction is an order. The function is well defined: order some
goods from a company. The completion of an order results in a consistent change in the
state of the affected business: the order database is updated and a paper copy of the
purchase order is filed.

What is a business-to-business transaction
Ordinary business transactions are usually an interaction between a person and a
company. Business-to-Business (B2B) transactions on the other hand – as the name
suggests – are interactions between businesses. B2B transactions are business
transactions that are more often automated and are usually more complex than ordinary
business transactions. In the following we summarize the characteristics of B2B
transactions:

• They represent a function that is critical to the business, such as supply-chain
management

• They are long running
• They can involve more than two parties (companies) and multiple resources

operated independently by each party, such as mainframe applications and ERP
systems

• They utilize machines-to-machine communication
• They are based on a formal trading partner agreement, like RosettaNet PIPs or

ebXML Collaboration Protocol Agreements

Enabling automated B2B transactions is a substantial undertaking, which involves all
aspects and functions of middleware, such as messaging, transaction and workflow
management, authorization, data security, etc.

03/09/01 BEA Systems, Inc. 4

In this paper we focus on the transaction management for B2B transactions.

Transaction Management
A typical automated transaction involves multiple resources such as databases, logs,
transactional objects and persistent queues. The goal of transaction management or
transaction coordination is to orchestrate the termination that can be either committing or
rolling back all updates to all resources of the transaction. This improves reliability,
manageability and accountability of systems utilizing transaction management.

Example Scenario
Let’s consider an example business transaction scenario depicted in Figure 1.

ShipperManufacturer
Check

product
price

Place
Order

Arrange
shipping

Commit

Abort

Supplier
Calculate
product

price

Wait
for order

Book order

Check
truck

schedule

Reserve
shipping

Decline
customer

Business message

Time

Figure 1 Example scenario

A manufacturing company (Manufacturer) needs to order parts from one of its partners
(Supplier). In order to make its production schedule, the Manufacturer has to make sure
that the parts are shipped from the Supplier in a given timeframe by a logistics provider
(Shipper), otherwise the Manufacturer would not be interested in these parts. All the
parties in this example have automated computer systems that can communicate with
each other via XML messages. Below we describe the interactions of this business
transaction:

1. Manufacturer’s production scheduling system sends an Order message to
Supplier

2. Supplier’s order processing system sends back an order confirmation with the
details of the order

03/09/01 BEA Systems, Inc. 5

3. Manufacturer orders delivery from Shipper for the ordered parts. Delivery needs
to occur in two days.

4. Shipper evaluates the request and based on its truck schedule it sends back a
confirmation or a “can’t do” message.

5. Manufacturer either confirms the order and the shipping or it cancels the order,
since the shipper was unable to fulfill the request

From the Manufacturer’s point of view all the business messages described above belong
to a single business transaction. The underlying systems need to make sure that this
business transaction is

• Atomic: The parts either get ordered or the order gets cancelled
• Consistent: If the parts get ordered, the shipping gets set up. If the shipping

company cannot promise shipping with the required terms, the order is cancelled
• Durable: All parties persist the outcome of the transaction

Typically the Supplier will have multiple business transaction with multiple
Manufacturers executing concurrently. The time between the order is placed and it is
confirmed can be long. Therefore it is not feasible for the Supplier to lock its order
database and wait until the confirmation comes. It will rather book the order when it is
placed and in case the order gets cancelled, it will invoke a compensating action to
remove the order from the database. This means that concurrent business transactions are
not executing in isolation: they are exposed to partial updates made by other concurrently
executing transactions.

These requirements are not special to this example; in fact they must be met for any
transaction that is critical to the business of the participating companies. Therefore an
application independent facility should exist that can manage the mission critical multi-
company business transactions to ensure the properties above.

Transaction models
In this section we define a transaction model for business-to-business transactions (see
[3] for a detailed discussion on transaction terminology and models).

The most straightforward and well-known transaction model is the “flat transaction
model”. Flat transactions possess the well-known ACID properties: atomicity,
consistency, isolation and durability. This model provides a single layer of completion
control. One cannot commit or abort parts of a flat transaction or commit results in steps.
Isolation is achieved by locking the resources involved for the duration of the transaction.
This ensures that other transactions cannot see partial results. Since flat transaction
usually end in a short amount of time locking resources for the duration of the transaction
is feasible.

A typical B2B scenario such as a supply chain spans multiple companies that each plays
a distinct role: manufacturer, supplier, logistics provider etc. In automated supply-chains,
computer systems of multiple companies engage in inter-enterprise business transactions.

03/09/01 BEA Systems, Inc. 6

The supply chain transactions are long running and can last for minutes, hours, days,
weeks or even years. In this scenario locking is clearly not a feasible approach to achieve
isolation, since it would require companies to lock their databases while waiting for
others to finish their part of the transaction. Therefore we cannot assume a single layer of
control, as required by the flat transaction model: the transaction model should allow the
main transaction to be broken into independent sub-transactions.
An extension of the flat transaction model that allows sub-transactions is the concept of
nested transactions. In this model there are a number of sub-transactions (flat or nested)
that make up one main or top-level transaction. The outcome of the sub-transactions is
tied to the main transaction. If the main transaction aborts all sub-transactions must abort.
For a detailed description of nested transactions refer to [3].
A special case of the nested transaction model is the multi-level transaction model. Multi-
level transactions provide more flexibility in completion control than the basic nested
transaction model. In this model it is assumed that participating resource managers can
manage their own sub-transactions and can decide to pre-commit their sub-transactions
before the main transaction completes. Pre-committing of the sub-transaction means that
the resources release locks involved in the sub-transaction and the state is saved to
durable storage. While multi-level transactions provide more flexibility in terms of sub-
transaction management for resource managers it also introduces a problem with the
completion of the main transaction. What happens if a sub-transaction has already pre-
committed and the outcome of the main transaction is an abort? The solution is to apply a
compensating transaction to the already committed sub-transaction. The compensating
transaction can reverse all the actions made by the sub-transactions and implement the
local aspect of the failure for the main transaction.
Based on the discussion above, we conclude that the multi-level transaction model can be
successfully applied for B2B transactions. In the second half of this document we are
going to use this model to define the Business Transaction Protocol.

BTP and two-phase commit
The standard method for achieving the ACID properties in short-running transactions
involving multiple (possibly distributed) resources is the two-phase commit protocol.
Since two-phase commit assumes the participating resources to be protected, it is not
suitable for long-running B2B transactions, where resources are managed by systems that
belong to separate companies. We suggest a different approach from two-phase commit,
where participating resources are allowed to pre-commit their sub-transaction and apply a
compensating action in case the main transaction terminates with a failure.

Scope of BTP
The goal of BTP is to manage the propagation of the result (success or failure) of the
business transaction in a reliable way to all the involved resources. BTP does not specify
the business protocol governing the business transaction. It merely provides facilities and
semantics for a reliable termination mechanism to achieve a shared agreement on the
outcome of the business transaction.
BTP alone cannot guarantee the atomicity, consistency and durability. The systems that
participate the protocol have to manage their local resources accordingly to achieve these

03/09/01 BEA Systems, Inc. 7

attributes: e.g. on termination with failure they have to execute the appropriate
compensating action.

BTP and other B2B protocols
BTP is “agnostic” regarding the underlying B2B protocol stack so it can be easily
implemented in conjunction with other standards, such as ebXML or SOAP. For
example, a header can be added to the ebXML message envelope to carry the transaction
context defined by BTP. The system messages that are used by BTP, like
startTransaction or terminateTransaction can be sent as standard ebXML messages.

Business Transaction Protocol
In this section we discuss the specifics of the proposed Business Transaction Protocol.

Concepts and terminology
This section introduces the key concepts and terminology that are used by BTP. We
describe a model for the transaction protocol including the roles the different system
components play during the lifecycle of the transaction.

Trading partner
A trading partner is a representation of an entity, such as a company, that participates in
one or more business transactions. A trading partner has a server (B2B server), which
hosts applications that exchange messages with other trading partners (Note: in this
document we will use the terms trading partner and trading partner application
interchangeably).

Transaction
A transaction is a series of message exchanges between a set of trading partners to
implement a common business process.

Initiator and participants
A transaction is always initiated by an application of a trading partner (initiator). The
applications of trading partners that take part in a transaction are called participants. The
initiator is a special participant. The completion of a transaction can be either due to
termination request issued by the initiating trading partner by the system if the transaction
times out.

Transaction coordinator
The B2B server of a trading partner also runs a transaction coordinator component that
implements the Business Transaction Protocol. It enlists and de-lists participants in a
transaction and participates in the transaction termination protocol. Coordinators can play
the role of a main or subordinate coordinator in a transaction. There is only one main
coordinator in a transaction.

03/09/01 BEA Systems, Inc. 8

Main Coordinator
The main coordinator is the one that receives the createTransaction request from the
initiator of the transaction. It also drives the termination protocol for that transaction.

Subordinate Coordinator
The subordinate coordinator, that cooperates with the main coordinator for terminating a
transaction.

The life of a transaction
The life of a transaction consist of the following events:

• It is started by the initiator
• The initiator and the participants exchange messages
• Participants can leave the transaction
• The transaction can terminate with success, failure or timeout

Initiator ParticipantSubordinate
Coordinator

Main
Coordinator

4: receive business message

5: enlist participant

10: transaction terminated

3: send message

7: enlist subordinate

9: terminate transaction

11: transaction terminated

coordinator

1: create transaction

2: send message

8: terminate transaction

12: transaction terminated

6: register

Figure 2 Transaction lifecycle

03/09/01 BEA Systems, Inc. 9

Starting a transaction
A transaction is created at the request of the initiator. When a transaction is created, it is
assigned a globally unique id by the main coordinator. The transaction is considered to be
in ACTIVE state. Once a transaction is in ACTIVE state, business messages can be
exchanged in that transaction.
The selection of the main coordinator depends on the topology of the participants. For
BTP we consider two kinds of topologies: point-to-point and hub-and-spoke.

Application

B2B Server

Transaction
Coordinator Application

B2B Server

Transaction
Coordinator

Application

B2B Server

Transaction
Coordinator

Messages

Trading Partner 2

Trading Partner 1 Trading Partner 3

Figure 3

Figure 4 Point-to-point topology

In the point-to-point topology servers of trading partners exchange messages directly
with each other. In this case, the coordinator in the initiator’s system becomes the main
coordinator for the transaction.

03/09/01 BEA Systems, Inc. 10

Application

B2B Server

Transaction
Coordinator Application

B2B Server

Transaction
Coordinator

Application

B2B Server

Transaction
Coordinator

Messages

Hub

Transaction
Coordinator

Trading Partner 1

Trading Partner 2

Trading Partner 3

Figure 5 Hub-and-spoke topology

In the hub-and-spoke topology messages are exchanged via an intermediary, the hub. In
this scenario the transaction coordinator in the hub is always the main coordinator.

Exchanging messages in a transaction
Messages are exchanged between participants in a transaction. Each message sent in a
transaction carries a transaction context. The transaction context helps coordinators to
identify the transaction instance to which each message belongs and to take appropriate
action, e.g. enlist a participant in a transaction.

Transaction context
The transaction context consists of three components: transaction identifier, transaction
type and the URL of the main coordinator of the transaction.

Transaction Identifier
The transaction identifier is a globally unique identifier. The main coordinator of the
transaction generates this identifier.

Transaction Type
The transaction type defines the business transaction.

Transaction timeout
The timeout value defines the maximum amount of time the transaction should be active.

Main coordinator’s URL

03/09/01 BEA Systems, Inc. 11

This contains the location information of the main coordinator of the transaction.

Transaction infection
Participants get “infected” by the transaction via receiving a message that carries the
transaction context. Initially only the initiator is “infected”. As the initiator sends
messages to other participants they become “infected”. In turn, “infected” participants
can “infect” others by sending messages to them.

When a message reaches a trading partner’s server, the coordinator at the trading
partner’s server intercepts that message and extracts the transaction context from it.
If the transaction was unknown to the coordinator, it makes a note of the transaction by
storing the transaction context. The message is then delivered to the recipient trading
partner’s application for further processing. After delivering the message, the coordinator
enlists the recipient trading partner’s application as a participant in the transaction. At
this moment, this coordinator becomes a subordinate coordinator for this transaction. It
then notifies the main coordinator of its involvement in the transaction by sending a
register request. The register request contains the URL of the subordinate coordinator as
well as the transaction context. The main coordinator then adds this coordinator as a
subordinate coordinator for this transaction.
(see Future Work section for an alternate approach for subordinate coordinator
registration)

Leaving a transaction
The participants other than the initiator can leave the transaction by notifying the
subordinate coordinator that enlisted them. Leaving the transaction means that the
participant will not be notified about the outcome of the transaction.

Transaction termination
The initiator is the only participant that is allowed to terminate the transaction. In order to
terminate the transaction, the initiator sends a terminate request to the main coordinator.
Then the main coordinator together with all the subordinate coordinators jointly executes
the termination protocol. When the termination protocol starts, the transaction is put into
TERMINATING state. After the termination protocol has completed, the transaction is
put in the TERMINATED state. The coordinators do not allow messages to flow for a
transaction while it is being terminated. In the next section we describe the termination
protocol in detail.
A transaction can be terminated with success or with error. Transaction termination with
error triggers the appropriate compensating transaction at the participating trading
partners’ server. It is outside the scope of the Business Transaction Protocol to define
how the compensating transaction is managed.

Transaction timeout
The initiator assigns a timeout value to each transaction. If a transaction times out while
still ACTIVE, the main coordinator automatically executes the termination protocol with
failure.

03/09/01 BEA Systems, Inc. 12

Termination Protocol
To describe the termination protocol, we have adopted the style used by Bernstein et. al.
[ref 1, 2] for describing the two phase commit protocol. We first list the assumptions
made while defining the protocol. Then we describe sequence of actions in the protocol.
While discussing life cycle of the transaction, we briefly mentioned about the states of
the transaction and the transaction context. We describe in details about the states and the
context here.

Assumptions
The transaction termination protocol makes the following assumptions:

1. All the processes involved in termination get the same decision (terminate with

success or failure) from the initiator directly or indirectly.
2. Only the initiator or the main coordinator (in case of a timeout) can terminate the

transaction. A participant can only leave the transaction. The initiator can’t leave the
transaction.

3. Only one coordinator acts as a main coordinator for a transaction. A coordinator can
act in main and subordinator roles simultaneously only for different transactions.

4. The coordinator fails by stopping. The protocol does not misbehave in case of
malfunction of the system.

5. A coordinator maintains a persistent log and a transactional recovery system.
6. The underlying messaging system offers “exactly-once” delivery semantics as well as

retries in case of delivery failure as required for the transaction termination messages.

Sequence of actions
The following actions take place while terminating a transaction:

1. The initiator issues a terminate request for the transaction. The main coordinator for

this transaction receives the request, which contains the result of the transaction. The
result can be success or failure.

2. The main coordinator first marks the transaction TERMINATING and then sends the
terminate request to all subordinate coordinators for that transaction. Then it waits a
pre-defined amount of time for the termination completion notification from the
subordinate coordinators. If the main coordinator cannot notify a subordinate
coordinator because of network or site failure, it marks the subordinate coordinator
unreachable.

3. On receipt of the terminate request, the subordinate coordinator notifies all the
enlisted participants of the transaction about the result of termination. If the result of
the transaction was failure the participant can invoke the appropriate compensating
transaction.

4. After it notified all its enlisted participants the subordinate coordinator sends
termination completion notification to the main coordinator. This notification
indicates that the subordinate coordinator has completed the process of terminating
the transaction at its end.

03/09/01 BEA Systems, Inc. 13

5. Having received termination completion notification from all the subordinate
coordinators, the main coordinator marks the transaction TERMINATED. If a
subordinate coordinator does not send the termination completion to the main
coordinator in the pre-defined time the main coordinator will re-send the termination
request a pre-defined number of time before marking the subordinate coordinator
unreachable.

6. The main coordinator then notifies the initiator of the completion of termination of
the transaction

M
ain C

oordinator

Tim
e

Initiator

terminate

terminate

terminate

terminate completion

terminate
completion

Subordinate C
oordinator

Subordinate C
oordinator

Participant
Participantterminate

Figure 6 Transaction termination

Failure Handling and Recovery
Various kinds of failures can occur in a distributed system like a B2B commerce system.
Two common failures are the communication link failure and the site failure. For reliable
transaction coordination in such systems, a protocol such as the termination protocol of
the Business Transaction Protocol is required.

Site failure
A site failure may be due to system failure. When a site fails, it stops processing and all
the volatile data is lost. We assume that a site fails by stopping. This means that either it
is operating correctly or not operating at all, it never operates incorrectly. A failed site is

03/09/01 BEA Systems, Inc. 14

recovered by executing a recovery procedure, which brings it to a consistent state ready
for normal processing.

Communication Failures
The other cause of failures in a B2B system is a communication failure. The sites of B2B
systems are connected through network links (the Internet). A communication failure is
considered to have occurred when:

1. A message gets corrupted during communication between two sites.
2. A message is lost due to malfunctioning of a network link.
3. Two sites cannot communicate due to unavailability of a network path.

In the first two cases, we rely on network protocols to provide reliability. We assume that
the network protocol implementation takes measures against message corruption by using
appropriate error correction coding techniques. We also assume that the transport
protocols and the networking infrastructure takes care of masking malfunctioning of
network links by re-routing and re-transmitting packets.
The last case might occur due to network partition. A network partition can occur if a
combination of sites and network links between the sites fail. Such failures can be
avoided by designing networks with redundant communication paths. We take it for
granted that such failures do occur and necessary actions are taken by the underlying
messaging system infrastructure to mask against such failures.

Failure Detection by Timeout
We make an assumption that failure of a communication link or a site can be detected by
a timeout in a distributed B2B system. As processes talk to each other by sending
messages in such systems, a failure can be detected if the sender process does not receive
expected reply within the timeout period. The failure to receive an expected message
could be either due to a communication link failure or a site failure for the receiver. We
also assume that the timeout period is calculated by taking into account events such as
intermittent overloading of the communication network or the load on the process from
which the message is expected.

Following are the cases when a coordinator or a participant is waiting for a message:

1. The main coordinator did not receive the terminate request from the initiator.
2. The main coordinator did not receive a terminate completion notification from a

subordinate coordinator.
3. A participant did not receive the terminate request.

Timeout Actions
In the first case, the main coordinator can take advantage of the transaction timeout
parameter, if it is applicable. If the initiator fails to terminate the transaction due to
communication or site failure, and if the transaction life exceeds the timeout, the main
coordinator terminates the transaction.

03/09/01 BEA Systems, Inc. 15

For the second case, if the main coordinator is not able to receive a terminate completion
notification from one of the subordinate coordinators in time (implementation dependent
parameter), it does not affect the overall result of the termination process. This is only an
indication to the main coordinator to a keep record about the result of the transaction
available, so if it later receives a request from that subordinate coordinator, it can answer
with the result of the transaction.

In the third case, if a participant has not received the terminate request within the
timeframe defined by the transaction timeout value, it can ask to leave the transaction.
Here, if the transaction is still active, the coordinator will appropriately de-list the
participant from the transaction. If the transaction is not active and the coordinator knows
about the result of the transaction termination, it can reply with the result.

Recovery
To ensure the recovery of the main or subordinate coordinator in case of failure, it is
essential to log sufficient information in reliable storage. The convention used to describe
the logging is as follows:

“Eager” (or “forced” or “synchronous”) logging means log before proceeding to the next
step in the protocol while “lazy” (or “asynchronous”) logging means the protocol can
proceed before any actual logging takes place.

03/09/01 BEA Systems, Inc. 16

Initiator

terminate

terminate completion

terminate

terminate completion

Main
Coordinator

Log record (eager)
start-of-termination

Log record (eager)
terminate-completion
-from-subordinate
Log record (lazy)
terminate-completion

Subordinate
Coordinator

Log record (eager)
start-of-termination

Log record (eager)
terminate-completion Tim

e

Participant

term
inate

Figure 7 Logging

The main coordinator needs to write to the log for the following events as depicted on
Figure 7 Logging:

1. When the main coordinator receives the terminate request from the initiator, it should

(eagerly) log a start-of-termination record with the result of transaction (success or
failure). This record also includes the transactions context and the list of subordinate
coordinators infected with this transaction. It is an eager log because, if it fails after
receiving the terminate request from the initiator, it would not know about the result
of the transaction and the list of subordinate coordinators involved in the transaction.

2. On receiving terminate completion notification from each subordinate coordinator; it
should (eagerly) log a record. This is an eager log because it records the outcome of
the termination for the transaction at the subordinate coordinator. If this record is
found on recovery for a subordinate coordinator, the main coordinator does not have
to go through the process of re-sending the terminate request to that coordinator.

3. Once the last subordinate coordinator has sent the terminate completion notification
(or has been marked unreachable), the main coordinator sends a formal termination
completion notification to the initiator, marks the transaction terminated and logs the
record. The record contains the timestamp when the transaction was marked
terminated. This record can be logged lazily as it indicates that termination of
transaction is completed at all subordinate coordinators. If this record was not logged

03/09/01 BEA Systems, Inc. 17

eagerly and on recovery if the log shows reception of terminate completion
notification from all subordinate coordinators, the transaction is considered
terminated.

The subordinate coordinator should log records as follows:

1. On receiving a terminate request from the main coordinator, it should eagerly write

the record to the log. This record includes the result of the transaction (success or
failure), the transaction context and all the participants that are enlisted for this
transaction with this coordinator. This log should be eager because, otherwise the
subordinate coordinator will have to contact the main coordinator (if available) to
find out at least the result of the transaction on recovery.

2. After notifying the participants of the result of the transaction, it should eagerly log a
record of termination completion before sending the termination completion
notification for the transaction to the main coordinator. This record indicates
completion of termination activities for the transaction. On recovery, if this record is
not found in the log, the subordinate coordinator may unnecessarily have to contact
the main coordinator of the transaction to know the outcome of the transaction and
go through the process of probably re-notifying the participants.

terminate

terminate completion

Initiator

terminate

terminate completion

Main
Coordinator

Log record (eager)
start-of-termination

Log record (eager)
terminate-completion
-from-subordinate
Log record (lazy)
terminate-completion

Subordinate
Coordinator

Log record (eager)
start-of-termination

Log record (eager)
terminate-completion

Tim
e

1
1

2

3

2

3

4

Participant

term
inate

Figure 8 Transaction recovery

03/09/01 BEA Systems, Inc. 18

Let’s examine how the logged information helps in recovering the main coordinator and
the subordinate coordinator of a transaction.

The main coordinator of a transaction can be in one of the four states at recovery (Figure
8 Transaction recovery):

1. It has no start-of-termination record in the log on recovery. It did not receive

terminate request from the initiator. The transaction is considered active by the main
coordinator and all subordinate coordinators.

2. It has a start-of-termination record only. This means that the main coordinator either
crashed after logging the start-of-termination record or before it received any
terminate completion notifications from subordinate coordinators. It is possible that
subordinate coordinators are waiting for the terminate request. The main coordinator
sends a terminate request to all the subordinate coordinators. It is also possible that
some or all of the subordinate coordinators have already received such a request.
They will ignore the request.

3. It has terminate-completion-from-subordinate record(s) in the log. Here, there are
two cases, either some of the subordinate coordinators have sent a terminate
completion notification or all of the subordinate coordinators have sent it. In the first
case, it is possible that some coordinators may still be waiting for the terminate
request. The main coordinator will send a terminate request to those subordinate
coordinators and wait for a terminate completion notification from them. If any of
those subordinate coordinators, which were sent the request, have already received it
earlier, they must ignore the subsequent requests. In the second case, the main
coordinator will proceed to mark the transaction terminated and lazily log that
record. It will then notify the initiator of the termination of the transaction. If the
initiator has already received this notification, it must ignore it.

4. It has a terminate-completion record in the log. This means that the main coordinator
has already marked the transaction terminated. Since in this case, the main
coordinator has already completed its portion of the termination protocol it does not
need to do anything further.

A subordinate coordinator of the transaction can be in any of the following 3 states
(Figure 8 Transaction recovery):

1. It does not have a start-of-termination record in the log. In this case, it asks the main

coordinator of the transaction to provide information about the outcome of the
transaction by sending a query status request. If the main coordinator has no
information about termination of the transaction, it must be waiting to receive
terminate request from the initiator. The subordinate coordinator should also wait in
that case for the terminate request from the main coordinator. If the main coordinator
has information about the transaction termination decision, it will reply with the
decision. The subordinate coordinator should then eagerly log the start-of-termination
record and proceed.

2. It has a start-of-termination record. The subordinate coordinator should then notify
participants of that transaction of the termination result. It should then proceed to log

03/09/01 BEA Systems, Inc. 19

(eagerly) a termination-completion record and then send the terminate complete
notification to the main coordinator.

3. It has a terminate-completion record in the log. The subordinate coordinator has
completed termination processing of the transaction locally. It is possible that the
main coordination might still be waiting for terminate completion notification from
this coordinator. It should send a terminate completion notification to the main
coordinator if the timestamp in the record is not too long before recovery started
(implementation dependent decision). The main coordinator can ignore it if it is a
duplicate message.

Messages
This section describes the messages required for transaction coordination. We believe
that these messages can be easily written in XML and sent using popular messaging
protocols such as SOAP or ebXML TRP. We have assumed during the discussion of the
protocol that a reliable messaging system is available for coordinating transactions.
Messages required for transaction coordinator are described below.

Create Transaction
This message is sent from the initiator to the main coordinator. On receiving this
message, the coordinator generates a globally unique identifier. A transaction is created
in the system on behalf of the initiator. This coordinator assumes the role of the main
coordinator for the newly created transaction.

Register Request
The subordinate coordinator must send a register request to the main coordinator of the
transaction to register itself as a subordinate coordinator for that transaction. This request
contains the transaction context and the URL where the subordinate coordinator can be
reached.

Leave Transaction
The leave transaction message is sent from a participant to its locally accessible
coordinator (subordinate coordinator) to indicate its intention to drop out from a
transaction. This message contains the transaction context.

Unregister Request (optional)
When a subordinate coordinator receives a leave transaction message from a participant,
it de-lists that trading partner’s application from that transaction. It can optionally send
unregister request to the main coordinator of that transaction at that time or it can choose
to wait to receive a terminate request from the main coordinator. It sends unregister
request, the request should contain the transaction context and the URL used for
registration. If it decides to wait, it can immediately reply with a terminate notification
when the terminate request eventually arrives.

03/09/01 BEA Systems, Inc. 20

Terminate Request
This message is sent to indicate termination of transaction. Different roles send it in
different circumstances. For example, the initiator sends it to the main coordinator of a
transaction to terminate that transaction. The main coordinator of the transaction sends it
to subordinate coordinators of that transaction to indicate termination of transaction, and
so on. This message contains the context of the transaction being terminated and result
(success or error) of the transaction.

Terminate Completion Notification
The terminate completion notification is sent from a subordinate coordinator of a
transaction to the main coordinator of that transaction notifying the main coordinator of
completion of the termination protocol on its side. This message contains the transaction
context and URL of the subordinate coordinator.

Query Status
This message is sent from the subordinate coordinator to the main coordinator on
recovery to find out the status of the transaction.

Future Work
In this section we discuss some areas for future enhancements.

Vote from participants
The current proposal gives total control to the initiator participant regarding the outcome
of the transaction. A possible enhancement is to provide all participants the ability to vote
on the outcome of the transaction.

Associated transactions
Transaction could be nested within each to provide additional flexibility on the
granularity of transactions.

Implicit registration of subordinate coordinators
In the current BTP proposal subordinate coordinators explicitly register themselves with
the main coordinator, so all subordinate coordinators are known to the main coordinator.
Alternatively, coordinators (the “parent”) could register other coordinators (“children”)
when a message carrying the transaction context is first sent to them (form “parent” to
“children”). This would result in a tree structure of coordinators with the main
coordinator being the root. The termination algorithm would have to be modified so, that
subordinate coordinators would have to act as the main coordinator for the coordinators
registered with them.

References
1. Bernstein, P. A., V. Hadzilacos, and N. Goodman. 1987. “Concurrency Control and

Recovery in Database Systems”. Reading, MA, Addison-Wesley.

03/09/01 BEA Systems, Inc. 21

2. Bernstein, P. A. and E. Newcomer. 1997. “Principles of Transaction Processing”. San
Francisco, CA, Morgan Kaufmann.

3. Gray, J. and A. Reuter. 1993. “Transaction Processing: Concepts and Techniques”.
San Francisco, CA, Morgan Kaufmann.

	Abstract
	Status of this Document
	Contents
	Abstract	1
	Approach
	What is a business transaction
	What is a business-to-business transaction
	Transaction Management
	Example Scenario
	Transaction models
	BTP and two-phase commit
	Scope of BTP
	BTP and other B2B protocols

	Business Transaction Protocol
	Concepts and terminology
	Trading partner
	Transaction
	Initiator and participants
	Transaction coordinator
	Main Coordinator
	Subordinate Coordinator

	The life of a transaction
	Starting a transaction
	Exchanging messages in a transaction
	Transaction context
	Transaction Identifier
	Transaction Type
	Transaction timeout
	Main coordinator’s URL

	Transaction infection
	Leaving a transaction
	Transaction termination
	Transaction timeout

	Termination Protocol
	Assumptions
	Sequence of actions
	Failure Handling and Recovery
	Site failure
	Communication Failures
	Failure Detection by Timeout
	Timeout Actions

	Recovery

	Messages
	
	Create Transaction
	Register Request
	Leave Transaction
	Unregister Request (optional)
	Terminate Request
	Terminate Completion Notification
	Query Status

	Future Work
	Vote from participants
	Associated transactions
	Implicit registration of subordinate coordinators

	References

