
32 Bell Labs Technical Journal ◆ April–June 2000 Copyright 2000. Lucent Technologies Inc. All rights reserved.

Introduction
High-level languages and compilers are a great

success story of software engineering. One way of

understanding this success is to see high-level lan-

guages as allowing a division of labor between problem-

domain expertise, held by the application developer,

and implementation expertise, held by the compiler

developer. With domain-specific languages (DSLs),1

this division is magnified. A language is created specifi-

cally for an application domain, where requirements

for a product in the domain can be precisely and suc-

cinctly captured. A compiler for this language then

generates the product code directly from the require-

ments. The developers of a DSL and its compiler are

sometimes called domain engineers, while the writers

of requirements in the DSL are called application

engineers.

As an approach to automating software engineer-

ing, DSLs have many fascinating aspects. For example,

a DSL compiler can be regarded as a formalization of

the design of a family of products. Once the design is

explicit and formal, the presence of design problems,

inconsistencies, and complexity is apparent.

Furthermore, design improvements can be imple-

mented as changes to the DSL compiler, allowing the

improvements to be applied consistently to all product

instances.

DSLs are not as widely used as they might be

because the return on investment for DSLs is not

always clear. Designing a DSL and implementing a

DSL compiler are expensive and time consuming, and

they also require specialized skills. For example, just

the work of analyzing an application domain prior to

DSL design (called domain analysis) can require a team

of domain experts and considerable time. Training

developers to use a new language is costly.

Furthermore, if the design approach for an application

domain is not well known and stable, the DSL and

compiler may require continual enhancement.

In this paper, we describe a lightweight approach

to DSL-based development using Extensible Markup

Language (XML) and the Java* language. Briefly, the

idea is to define a DSL as an XML dialect and then to

build the DSL compiler using the Java language and

existing XML tools. While XML dialects can be ver-

bose, they are suitable for DSLs because they are easy

to define and to read. This ease of reading XML

dialects stems partly from their similarity to the

Hypertext Markup Language (HTML) and partly from

♦ Automated Software Development with XML
and the Java* Language
Glenn R. Bruns, Alan E. Frey, Peter A. Mataga, and Susan J. Tripp

In software development with domain-specific languages (DSLs), one defines a require-
ments language for an application domain and then develops a compiler to generate
an implementation from a requirements document. Because DSLs and DSL compilers
are expensive to develop, DSLs are seen as cost effective only when many products of
the same domain will be developed. In this paper, we show how the cost of DSL design
and DSL compiler development can be reduced by defining DSLs as Extensible-Markup-
Language (XML) dialects and by developing DSL compilers using commercial XML tools
and the Java* language. This approach is illustrated through the Call View Data
Language (CDL), a new DSL that generates provisioning support code and database
table definitions for Lucent Technologies’ 7R/E† Network Feature Server.

Bell Labs Technical Journal ◆ April–June 2000 33

the paucity of XML language features. As for the Java

language, it is suitable for DSL compiler development

because, in this task, modern language features such

as object orientation and garbage collection are needed

for rapid development and compiler modularity. The

performance penalty one pays for these features is not

an issue for DSL compilers. In short, XML and the Java

language are well suited to the job of rapid DSL and

DSL compiler development.

We present this approach in the context of the

Call View Data Language (CDL). This language

describes the data-driven customization of the services

offered by the Network Feature Server (NFS), a call-

processing platform that is part of Lucent

Technologies’ next-generation telecommunications

product line. CDL has successfully been deployed as

part of the NFS production process, and the generated

code and schemas are in the field. The entire CDL

development period, from conception to language

design to compiler development, occurred within six

months and was performed concurrently with the NFS

development.

In the section immediately below, we provide a

brief summary of the function and the services archi-

tecture of the NFS. In the “Domain Analysis” section,

we define our domain analysis of the data aspects of

NFS services. In the “Language Design” section, we

describe XML and explain how it was used to define

CDL. We follow this in the “Compiler Design and

Implementation” section with a description of the

architecture of the CDL compiler. In the section

“Applications of CDL,” we describe existing and

planned applications of CDL. In the last section, we

survey related work and present our conclusions.

Background
Lucent’s 7R/E† product family2 provides switch-

ing solutions for voice, multimedia, and data.

Elements from the 7R/E family can be combined to

build customized networks that incorporate both cir-

cuit and packet transport media, switches, and end-

points. The NFS is a call-processing services element

that executes the logic of the services provided to the

individual or corporate customer.

An NFS call is handled by one or more communi-

cating processes, or call views, as depicted in Figure 1.

A call view represents a physical or logical entity

involved in a call. For example, a call view might rep-

resent a customer or might encapsulate network

provider logic (for example, the selection of a gateway

to access a remote switch). The NFS architecture

defines a set of call view types; each call view is an

instance of such a type.

Call views have control and data aspects. The con-

trol aspect is the state machine associated with a

call view’s type. A data aspect exists because data is

sometimes needed during execution of a call view’s

state machine. For example, a state machine may need

data to select between two outgoing transitions at a

state, one of which is taken for blocked calls and the

other for unblocked calls. As another example, a state

machine may need the identification of a destination

switch. We call the values required by a call view the

attributes of the call view. A call view obtains attribute

values by invoking functions defined apart from the

Panel 1. Abbreviations, Acronyms, and Terms

API—application programming interface
C—high-level programming language designed

at Bell Labs
C++—object-oriented descendant of C program-

ming language, designed at Bell Labs
CDL—Call View Data Language
DOM—document object model
DSL—domain-specific language
DTD—document type definition
FAST—family-oriented abstraction, specifica-

tion, and translation
HTML—Hypertext Markup Language
JSD—Jackson System Development
NFS—Network Feature Server
SAX—Simple API for XML
SGML—Standard Generalized Markup

Language
SQL—Structured Query Language
XML—Extensible Markup Language
XSL—stylesheet language for XML
XSLT—XSL Transformations; language for trans-

forming XML documents into other XML
documents

yacc—yet another compiler compiler

34 Bell Labs Technical Journal ◆ April–June 2000

state machine. These attribute-computing functions

encapsulate the data aspect of the call view and pro-

vide a way to tailor the behavior of the call view.

The functions of a call view compute their results

using dynamic call parameters, such as the dialed

number and the time of day, and provisioned data,

which is data supplied by the network provider oper-

ating the system. Provisioned data can be configura-

tional or can represent the settings of subscriber

features. An example of configurational data is the list

of gateways that can be used to access a particular

external switch. Examples of subscriber settings are

the routing policy for a company’s toll-free number

and the call-forwarding destination number for an

individual. In the NFS, provisioned data is stored in a

database.

Domain Analysis
Implementing an attribute-computing function is

painstaking work. The implementation involves data-

base design and coding at several layers of the NFS ser-

vices architecture. Because the database tables and the

code layers have many interdependencies, it is hard to

get the pieces to fit together. Furthermore, the work is

tedious, as the implementations of many attribute-

computing functions are similar.

This job is clearly a candidate for automation. The

first step is to analyze what attribute-computing func-

tions are expected to have in common and how they

are expected to vary. This process is called domain

analysis.3,4 The result of domain analysis can be used as

the basis for a requirements language. In our case, the

language describes the attributes of a call view.

Detailed methods exist for domain analysis. For

example, the family-oriented abstraction, specification,

and translation (FAST) approach4 to developing fami-

lies of software includes a domain analysis step that

involves defining a decision model, establishing termi-

nology, establishing domain commonalities, and other

activities. These steps typically involve a team of

domain experts working together for weeks.

With CDL, a lengthy, formal domain analysis was

impossible. The need for automation within the project

was only recognized after manual development was

under way. The project, like most others, was under

tight deadline pressure so the domain experts were not

available to participate in domain analysis. Our domain

analysis was, therefore, informal, relying more on

existing code than on domain experts. We examined

the hand-written code of various attribute-computing

functions, seeing how the code could be parameterized.

Finding the general pattern underlying a body of code

can be difficult because of the many incidental differ-

ences between pieces of hand-written code.

Figure 2 shows the structure of our domain

model in a Jackson System Development (JSD) style

of notation.5 A call view has a name and some attrib-

utes. An attribute has a name, a type, and zero or

Call view

View data
processing

View
ID

Attribute
value

Dynamic
call data

Provisioning
database

Call view

View data
processing

Dynamic
call data

View
ID

Attribute
value

Figure 1.
NFS services architecture.

Bell Labs Technical Journal ◆ April–June 2000 35

more conditions. Furthermore, an attribute can be

optional, in which case the code to compute the

attribute can return a special null value. A condition

consists of a call parameter name, its type, and the

kind of test that is to be made in comparing the

dynamic parameter value to a static provisioned value.

Advantages of this kind of informal domain

analysis are that it is fast and does not rely on the

availability of domain experts. A disadvantage is that

it can be done only if sample hand-written code

exists. Moreover, the analysis is only as good as the

sample code is representative. The approach we used

lacks some of the important advantages gained when

meetings of domain experts are used. For example,

these meetings can be a way for the domain experts

to exchange and systematize their knowledge.

Additionally, bringing domain experts into the

process helps assure they will support the resulting

domain model.

Language Design
Designing a language is a difficult job, even if the

ideas underlying the language are understood. The

choices for syntax are many, and there are issues of

operator precedence and associativity. Even with tools

such as yacc,6 the process of defining a language and

debugging it to remove conflicts and unintended

phrases is time consuming.

We defined CDL with XML,7 which is a simplified

descendant of the Standard Generalized Markup

Language (SGML).8 XML and SGML are meta-languages,

through which one defines dialects. Just as HTML is an

SGML dialect that captures the logical structure of

hypertext documents and forms, CDL is an XML

dialect that captures the logical structure of the data

requirements of call views.

Roughly speaking, an XML document consists of

elements, each of which may have attributes and con-

tained elements. (These XML language attributes are not

to be confused with NFS call view attributes.)

Syntactically, the extent of an element is specified by

opening and closing tags, where tags are delimited

with angled brackets (<>) and specify the element

type. In addition, the opening tag for an element may

contain a set of attribute/value pairs, where the values

must be strings. As an example XML document, see

the CDL specification of Panel 2. Near the top of the

document is a typedef element, which has an id
attribute and a contained int element. The meaning

of this specification is discussed later.

The XML dialect designer defines the structure of a

legal document as a document type definition (DTD). A

DTD specifies the legal element types and their attrib-

utes. In addition, each element has a content model (a

simple grammar) that specifies how elements can be

nested within it. This allows limited, but useful, syntac-

tic validity checking of XML documents. Any additional

checks are outside the scope of the DTD.

Because of XML’s simplicity, an XML dialect

designer does not face many of the issues usually met

in language design. There are virtually no decisions

that need to be made about syntax. Operator prece-

dence and associativity issues are not relevant. The

main decision that is faced is whether information

associated with an element should be captured as a

contained element or as an XML attribute.

Panel 3 is a simplified version of the DTD for

CDL. The work to develop the DTD from the informal

domain description of Figure 2 was straightforward,

taking us only about two hours despite having no

XML experience. Reading through the DTD, we see

that element cdl contains type definition elements,

parameter elements, attribute elements, and view ele-

Call view

Name Attribute*

Name Type Optional Condition*

Parameter Test

Name Type

Figure 2.
A domain model for the NFS data domain.

36 Bell Labs Technical Journal ◆ April–June 2000

ments, in any order. A view element has an id
attribute, and contains an optional description element

followed by zero or more view-attr elements. A

view attribute has a single required attribute attr. It

does not directly contain attribute elements because

we expect attributes to be shared between views. An

attr element has id, type, and optional attrib-

utes. The id and type attributes are optional, while

the optional attribute has default value “no.” The

remainder of the DTD should be understandable from

the parts we have just paraphrased.

The minimality of XML leads to some clumsiness

in CDL specifications and limits the checking that can

be performed by an XML parser. For example, refer-

ring again to Panel 2, we would have liked to say that

low and high attributes must be given integer values.

Instead, like all XML attributes, they take string values.

The string quotations are awkward, and an XML

parser does not check that the given strings represent

legal integer values. As another example, consider the

attr attribute of the view-attr element in this

panel. We would have liked to say that the value of

the attr attribute must be the id of an attr ele-

ment in the specification. The best one can do in XML

is to define the attr attribute to be an IDREF, which

means that its value must be the id of some other ele-

ment in the specification.

We have said nothing yet about what a CDL speci-

fication means. Informally, it simply declares types—a

set of call view types and the types of the attribute-

computing functions associated with each call view. In

Panel 2, a single Switch call view type is declared. It

has only attribute Screen. The function to compute

attribute Screen maps a value of type

lineTypeValue (the type of Screen’s parameter)

to a value of type ScreenValue (the type given for

Screen itself). An attribute may be defined to have

zero parameters, in which case the function is under-

stood as a constant, or may have multiple parameters,

in which case the function has multiple input argu-

ments. If Screen were optional, the function could

produce either a ScreenValue as output or a special

null value.

Since a CDL specification declares only types, not

Panel 2. An Example CDL Specification

<cdl>
<typedef id="lineTypeValue">

<int low="0" high="99" />
</typedef>

<typedef id="ScreenValue">
<desc> Whether to block a call. </desc>

<enum>
<token short-name="Y" long-name="Block"/>
<token short-name="N" long-name="DontBlock"/>

</enum
</typedef>

<parameter id="lineType" type="lineTypeValue"/>

<attr id="Screen" type="ScreenValue">
<condition param="lineType" test="equal" />

</attr>

<view id="Switch">
<view-attr attr="Screen"/>

</view>
</cdl>

Bell Labs Technical Journal ◆ April–June 2000 37

Panel 3. CDL Language Definition

<!ELEMENT cdl (typedef | parameter | attr | view)*>

<!ELEMENT parameter (desc?)>
<!ATTLIST parameter

id ID #REQUIRED
type IDREF #REQUIRED>

<!ELEMENT desc (#PCDATA)>

<!ELEMENT attr (desc?, (condition)*)>
<!ATTLIST attr

id ID #REQUIRED
type IDREF #REQUIRED
optional (yes | no) "no">

<!ELEMENT condition EMPTY>
<!ATTLIST condition

test (equal|not-equal|less-than|greater-than) "equal"
param IDREF #REQUIRED>

<!ELEMENT view (desc?, (view-attr)*)>
<!ATTLIST view

id ID #REQUIRED>

<!ELEMENT view-attr EMPTY>
<!ATTLIST view-attr

attr IDREF #REQUIRED>

<!ELEMENT typedef (int | enum | record)>
<!ATTLIST typedef

id ID #REQUIRED>

<!ELEMENT int EMPTY>
<!ATTLIST int

low NMTOKEN "0"
high NMTOKEN "1000000">

<!ELEMENT enum (token)+>
<!ATTLIST enum

base-type (int|char) "char">

<!ELEMENT token (desc?)>
<!ATTLIST token

short-name NMTOKEN #REQUIRED
long-name ID #REQUIRED>

<!ELEMENT record (field)+>

<!ELEMENT field (int | enum)>
<!ATTLIST field

id ID #REQUIRED>

38 Bell Labs Technical Journal ◆ April–June 2000

operations, one may wonder how the CDL compiler

can produce running code. The explanation is that the

attribute-computing methods it generates are data dri-

ven, so that the value returned by a method depends

on the contents of database tables associated with the

call views and attributes. One can think of the gener-

ated methods as functions that map call parameters

and database table values to attribute values. Thus, the

code generated by the CDL compiler is part of the

mechanism by which the behavior of the NFS (such as

how calls are routed) is customized using the values in

the NFS provisioning tables.

The simple CDL specification of Panel 2 fails to

illustrate many CDL features. For example, a CDL

specification may contain declarations of multiple

call view types, two or more call view types may refer

to the same attribute, and an attribute may have mul-

tiple conditions. The CDL specification used in the NFS

is about 2800 lines long, and contains declarations of

about 50 views and 300 attributes.

Compiler Design and Implementation
The main job of the CDL compiler is to generate

the code and database tables needed by the attribute-

computing functions of a call view. In fact, the NFS

services architecture has three layers for which the

CDL compiler must produce outputs. As shown in

Figure 1, the provisioning database is the bottom layer.

The “view data processing” layer of the figure actually

represents two layers of the services architecture. The

lower of these two is an interface layer that insulates

peculiarities of the database interface from higher lev-

els and provides a transaction batching facility. The

higher of the two, called the data reader, is responsible

for reading call parameters, reading values from data-

base tables, and making computations. Some of the

code in these layers is hand-written infrastructure

code that does not change; the CDL compiler gener-

ates only the code that changes depending on the par-

ticular attributes of the call views.

Besides generating C++ code, “include” files, and

Structured-Query-Language (SQL) table definitions,

the compiler generates HTML data design documenta-

tion. Two kinds of documentation are produced. The

first is a set of table descriptions that shows the struc-

ture of each CDL-related database table, as well as data

integrity constraints associated with the table. The sec-

ond is a data dictionary that shows the name, type,

and data domain for each field of each table.

Figure 3 shows the phases of the CDL compiler:

parsing and error checking, transformation, and code

generation. For the parsing phase, we used IBM’s XML

parser,9 one of the many publicly available XML

parsers. This parser takes an XML document as input,

validates it against the DTD, and produces as output a

Java object that uses the document object model

(DOM)10 application programming interface (API).

The DOM provides a standard interface for Java pro-

grams to use in constructing, manipulating, and exam-

ining XML documents. Optionally, the IBM parser can

produce Java objects that use the Simple API for XML

(SAX),11 an API for event-based XML parsing.

In early versions of the CDL compiler, the subse-

quent compiler phases accessed specification-related

information directly through the DOM. A problem

with this approach is that changes to CDL syntax lead

to changes in many parts of the compiler. Another

problem is that checks for CDL language errors not

expressible in the DTD are made each time the DOM is

used. Furthermore, the DOM interface is sometimes

awkward. For example, to access an attribute of a CDL

call view, one must find the value of the view-attr
attribute and then find the attribute element refer-

enced by it.

These problems led us to define a CDL-specific

API containing classes such as View, Attr, and

Param. Now, as a second parsing step, the CDL

compiler accesses the DOM to create CDL-related

objects. This phase also contains the many CDL-

related type checks that cannot be expressed in a

DTD. The DOM is accessed by the compiler only in

this second parsing step.

The main work of the compiler is in the transfor-

mation phase, which generates intermediate and

output-related objects from the specification-related

objects. The main output classes correspond to the var-

ious layers of the service architecture. For example,

the compiler has a DataReader class, an ADM class,

and a DB class. The DataReader and ADM classes

contain a Java method for each kind of C++ method to

Bell Labs Technical Journal ◆ April–June 2000 39

be generated as output in these layers. The DB class

contains a method for each kind of database table

that can be generated. Intuitively, the values of the

specification-related objects serve as parameters to the

constructors of the output objects. In some cases, the

parameterization is simple, such as the case where the

name of a database table is derived from the name of a

view in the CDL specification. In other cases, the para-

meterization is complicated. For example, attribute-

computing functions in the generated data reader code

vary greatly in structure and size, depending on many

parts of the CDL specification.

The code generation phase is simple. Print meth-

ods of the intermediate and output-related classes gen-

erate code, table definitions, and documentation.

The structure of the compiler changed significantly

during development. The main improvement resulted

from applying the principle that code dealing with syn-

tax of the source or target language should be isolated

from the code dealing with object transformations. As

an example of how this principle was applied, consider

the generation of database-related outputs. For each

SQL table definition that is generated, a similar C++

structure declaration must be generated. In an early

version of the compiler, a single method existed for

each type of table to be generated. The method con-

tained print statements to output the SQL definitions

and the C++ declarations. The code was a tangle of

Java statements and many literal strings representing

fragments of C++ and SQL. When the method was

changed, care was needed to keep the SQL generation

and C++ generation consistent. This code was

improved by creating a new Table class representing

the abstract structure of a database table. The CDL

compiler now constructs a Table object; then during

code generation, the object is printed as an SQL table

definition and as a C++ structure declaration. Similarly,

Method and Class classes were defined to capture the

XML specification

DOM

Specification-related objects

Intermediate objects

Output-related objects

SQL table
definitions

DocumentationC++
headers

C++
code

Parsing and
error checking

Transformation

Code
generation

C – High-level programming language designed
 at Bell labs
C++ – Object-oriented descendant of C programming
 language, designed at Bell Labs
DOM – Document object model
SQL – Structured Query Language
XML – Extensible Markup Language

Figure 3.
Phases of the CDL compiler.

40 Bell Labs Technical Journal ◆ April–June 2000

abstract structure of C++ methods and tables.

We built the CDL compiler after defining the CDL

language, but were we to start a similar project today,

we would do things differently. From the domain

analysis, we would define the abstract structure of the

language, possibly as Java classes. Next, we would

define an XML dialect and write the parser phase of the

compiler. We would then define Java classes for the

output classes and write the print methods for them.

Finally, we would find appropriate intermediate classes

and write the transformation phase of the compiler.

The circumstances under which we developed the

CDL compiler were peculiar but perhaps likely to be

faced by others who attempt DSL-based development.

When we first recognized the potential benefit of a

DSL for the project, NFS software development was

already under way. Project deadlines were too tight to

permit the developers to build a CDL compiler or even

to help us in doing so. Therefore, having little knowl-

edge of the NFS software architecture, we worked by

examining partial and preliminary code. Our work

had a strong reengineering aspect, as much of our time

was spent looking for general patterns in the hand-

written code.

Many of the problems we faced in developing the

compiler were related to this style of working. In partic-

ular, it was often required that generated artifacts con-

form to existing hand-written artifacts. For example,

this was the case for database table definitions. The def-

initions were fixed because they had been standardized

previously and shared with an organization working

on a related NFS provisioning subsystem. The tables

contained various optimizations in which fields were

combined to save space. A major challenge in writing

the compiler was to find general rules for table genera-

tion that would produce tables with exactly the same

fields as those produced by the human designer. With

much work, we found a rule that could duplicate the

hand-applied optimizations. Compatibility of generated

outputs with hand-produced outputs was a critical fac-

tor in the acceptance of CDL.

Applications of CDL
The first release of the NFS software shipped with

the platform in the fourth quarter of 1999. The CDL

compiler is now maintained by the NFS development

organization, and the CDL specifications and gener-

ated code are under version control. In collaboration

with the development team, we have since extended

CDL and the CDL compiler to allow more code and

database tables to be generated. This extension nearly

doubled the amount of CDL-generated output.

Currently about 30,000 lines of C++ code and SQL are

generated from a CDL specification of about

2800 lines. (In both cases, these figures include blank

lines and comments.) However, the real advantage of

using CDL is not that less CDL code needs to be written

than C++ and SQL code; it is that the CDL is much

easier to write. Adding support for a new attribute in

an NFS call view requires adding a block of about ten

lines in the CDL specification. Making the correspond-

ing modification by hand would require changing five

to ten separate source, header, SQL, and documenta-

tion files having different owners and written in differ-

ent languages.

In the initial release of the NFS, CDL-generated

code accounted for only a fraction of the overall

platform code. However, since much of the platform

code is for infrastructure, the CDL contribution has

increased as the NFS feature set has grown, and CDL

has a significant role in speeding incremental feature

development.

There are many further opportunities for automa-

tion from CDL specifications. For example, the CDL

compiler could generate the Web pages and database

code used in the data provisioning system used with

NFS. It could generate a similar data provisioning sys-

tem used by NFS system testers. It could also generate

code to enforce the integrity constraints required of

the provisioned data.

Related Work and Conclusions
The important issue for DSLs and code generation

is not whether they work, but how they can be devel-

oped cheaply and without specialized expertise in

domain analysis, language design, and compiler devel-

opment. In our work on CDL, the compiler develop-

ment was by far the most costly part. As described in

the section “Compiler Design and Implementation,”

the code generation part of the compiler includes

Bell Labs Technical Journal ◆ April–June 2000 41

many target language fragments, making it difficult to

read the compiler code, easy to introduce syntax errors

in generated code, and difficult to port the compiler to

different target languages and architectures.

A code generation technique that solves some of

these problems is language embedding. Here, expres-

sions in the target language are represented as data

structures in the compiler. Liejen and Meijer12 use this

technique for SQL generation. They show that target

language data types can be defined in Haskell so that if

the compiler itself type checks, then so will the code it

generates. However, language embedding is cumber-

some when the target language is a general-purpose

programming language. A multitude of data types

must be defined for all the language constructs, and

representing simple expressions of the language

requires complicated data structures. In our CDL com-

piler, language embedding was only used to the extent

that the compiler has Java classes for C++ methods

and classes. In these classes, the body of a method is

represented as an unstructured character string.

Template languages can also help in code genera-

tion. Here, the target language is extended so that pro-

grams with “holes” can be defined; one instantiates

such templates at compile time by filling the holes

with expressions of the compiler language that evalu-

ate to expressions in the target language. A C++ tem-

plate is a weak form of template in which only type

parameters can be used. A template language for

HTML is described by Ladd and Ramming.13

Unfortunately, the degree of parameterization needed

for many CDL compiler outputs is too large to be cap-

tured in the template style.

The CDL compiler could also have been defined

using a language transformation system such as

XSLT.14 In this system, the code of an XML dialect is

transformed to HTML, another XML dialect, or some

other language through a sequence of applications of

transformation rules. We experimented with XSLT but

found the transformations hard to maintain. The diffi-

culty was that the compilation requires the gathering

of information declared in a variety of places within

the CDL document, and a purely transformational

approach tends to require duplicated side processing

that is hard to understand.

The InfoWiz† system15 supports a template style

but also allows rich internal data structures. Code gen-

eration with XML and the Java language has strong

parallels to the InfoWiz approach. In both approaches,

DSLs are defined as dialects of a simple base language,

making language design easy. The InfoWiz analog of

XML is WizTalk; a WizTalk dialect is called a jargon. In

both approaches, a modern language is used to imple-

ment the code generation. The InfoWiz analog of the

Java language is FIT. A difference in the approaches is

that a fixed scheme for language interpretation is used

in InfoWiz. A language implementer using InfoWiz

defines an action for each special term of a WizTalk

dialect; a generic interpreter then traverses the parse

tree of a WizTalk program in depth-first, left-to-right

order, applying the appropriate action to each node of

the tree. This approach eliminates some of the work of

compiler implementation and makes it easy to com-

bine jargons.

The relative advantages of XML and the Java lan-

guage versus InfoWiz depend heavily on circum-

stances. In our application, a simple, single DSL was

used but the generated code was intricate, and code

generation used intermediate structures. In other

applications, in which the code generation is reason-

ably simple and multiple DSLs are used together,

InfoWiz may be a better choice. A drawback of

InfoWiz is that it does not follow some important tech-

nology trends. XML does roughly the same job as

WizTalk, but only XML has a large and growing body

of tool support. The Java language and FIT are also

similar, but only the Java language is widely known,

standardized, and supported. These technology trends

affect not only short-term project costs—they also

matter because developers and their managers see

value in building expertise in emerging technologies.

We have argued here that XML and the Java lan-

guage work together well in the lightweight develop-

ment of DSLs and DSL compilers. Interestingly, the

claim that XML and the Java language work together

well in general16,17 is based on a different argument.

The argument for the general case is about portability:

XML supports portable data, while the Java language

supports portable programs. The argument for our

case is about rapid development: XML supports the

42 Bell Labs Technical Journal ◆ April–June 2000

rapid development of simple, familiar languages, while

the Java language supports rapid compiler develop-

ment through its modern programming constructs.

We also cite the availability of XML tools based on the

Java language as a factor for rapid compiler develop-

ment; these tools exist perhaps because of the general

synergy between the languages.

Acknowledgments
We would like to acknowledge the contributions

of the NFS development team to CDL, in particular

Moh Barathan, Yumei Dang, and Joanna Wang of

Lucent’s Switching and Access Solutions Group. We

also had fruitful discussions with Michael Benedikt of

Bell Labs’ Software Production Research Department.

*Trademark
Java is a trademark of Sun Microsystems, Inc.

References
1. T. J. Ball, ed., Proc. of the Second USENIX Conf. on

Domain-Specific Languages, Austin, Tex., Oct. 3–5,
1999.

2. Lucent Technologies Switching and Access
Solutions, 7R/E† Packet Solutions, <http://
www.lucent-sas.com/7re>.

3. D. L. Parnas, “On the Design and Development
of Program Families,” IEEE Trans. on Software
Engineering, Vol. Se-2, No. 1, 1976, pp. 1–9.

4 D. M. Weiss and C. T. R. Lai, Software Product-
Line Engineering: A Family-Based Software
Development Process, Addison-Wesley, Reading,
Mass., 1999.

5. M. A. Jackson, System Development, Prentice Hall,
Upper Saddle River, N.J., 1983.

6. B. W. Kernighan and R. Pike, The UNIX Program-
ming Environment, Prentice-Hall, Upper Saddle
River, N.J., 1984.

7. T. Bray, J. Paoli, and C. M. Sperberg-McQueen,
ed., “Extensible Markup Language (XML) 1.0,”
REC-xml-19980210, W3C, Feb. 10, 1998,
<http://www.w3.org/TR/REC-xml>.

8. C. F. Goldfarb, The SGML Handbook, edited by
Y. Rubinsky, Oxford University Press,
New York, 1990.

9. IBM alphaWorks, XML Parser for Java, <http://
www.alphaworks.ibm.com/formula/xml>.

10. V. Apparao, S. Byrne, M. Champion, S. Isaacs,
A. Le Hors, G. Nicol, J. Robie, P. Sharpe,
B. Smith, J. Sorensen, R. Sutor, R. Whitmer,
C. Wilson, “Document Object Model (DOM)
Level 1 Specification,” Ver. 1, edited by
V. Apparao, S. Byrne, M. Champion, S. Isaacs,

I. Jacobs, A. Le Hors, G. Nicol, J. Robie,
R. Sutor, C. Wilson, and L. Wood, REC-DOM-
Level-1-19981001, W3C, Oct. 1, 1998,
<http://www.w3.org/TR/REC-DOM-Level-1>.

11. Megginson Technologies, SAX 2.0: The Simple
API for XML, <http://www.megginson.com/SAX>.

12. D. Leijen and E. Meijer, “Domain Specific Em-
bedded Compilers,” SIGPLAN Notices Conf. Proc.,
Vol. 35, No. 1, ACM, Jan. 2000, pp. 109–122.

13. D. A. Ladd and J. C. Ramming, “Programming
the Web: An Application-Oriented Language for
Hypermedia Service Programming,” Proc. of the
4th Intl. World Wide Web Conf., Boston, Mass.,
Dec. 11–14, 1995, <http://www.w3journal.com/
1/h.251/paper/251.html>.

14. J. Clark, ed., “XSL Transformations (XSLT),”
REC-xslt-19991116, W3C, Nov. 16, 1999,
<http://www.w3.org/TR/xslt>.

15. L. H. Nakatani and M.A. Jones, “Jargons and
Infocentrism,” Proc. of First ACM SIGPLAN
Workshop on Domain-Specific Languages, ACM,
Jan. 18, 1997, pp. 59–74.

16. J. Bosak, “XML, Java, and the Future of the
Web,” Mar. 10, 1997, <http://metalab.unc.edu/
pub/sun-info/standards/xml/why/xmlapps.htm>.

17. K. Sall, “XML and Java: Why These Two,”
Nov. 16, 1998, <http://wdvl.com/Authoring/
Languages/XML/Java/perfect_pair.html>.

(Manuscript approved July 2000)

GLENN R. BRUNS is a member of technical staff in the
Software Production Research Department
of Bell Labs in Naperville, Illinois. He
received a B.S. in chemical engineering
from California State University in Northridge,
an M.S.E. from the Wang Institute in

Tyngsboro, Massachusetts, and a Ph.D. in computer
science from the University of Edinburgh in Scotland.
Dr. Bruns is involved in the development of languages,
theory, and tools for the automated production and
analysis of networking software.

ALAN E. FREY is a Bell Labs Fellow and a consulting
member of technical staff in the 7R/E†
Multi-Services Feature Development
Department of Lucent Technologies’ Service
Provider Networks Group in Naperville,
Illinois. He has both a B.S. and an M.S. in

electrical engineering from Rice University in Houston,
Texas. Currently, he is working on the call processing
architecture and design for the 7R/E Packet
Toll/Tandem Solution.

Bell Labs Technical Journal ◆ April–June 2000 43

PETER A. MATAGA is a former member of technical
staff from the Software Production Research
Department of Bell Labs in Naperville,
Illinois. He has a B.Sc. in mathematics and a
B.E. in engineering science from Auckland
University in New Zealand as well as an S.M.

in engineering and a Ph.D. in engineering sciences
from Harvard University in Cambridge, Massachusetts.
A recipient of the National Science Foundation’s
Presidential Young Investigator Award, he focused his
research at Bell Labs on service creation and domain-
specific languages, especially for converged Web and
telephony services.

SUSAN J. TRIPP is a distinguished member of technical
staff in the 7R/E† Multi-Service Develop-
ment Department of Lucent Technologies’
Switching and Access Solutions Group in
Naperville, Illinois. She received a B.S. in
mechanical engineering from the University

of Illinois in Champaign and an M.S. in computer
science from Northwestern University in Evanston,
Illinois. Her responsibilities include development of the
call processing architecture and services for the 7R/E
Packet Tandem Solution. ◆

