
1

XML Based Schema Definition for Support of Inter-organizational Workflow

W.M.P. van der Aalst1,2 and A. Kumar1

1 College of Business and Administration, University of Colorado,
Campus Box 419, Boulder, CO 80309-0419, USA.

2 Faculty of Technology and Management, Eindhoven University of Technology,
PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.

E-mail: w.m.p.v.d.aalst@tm.tue.nl,akhil.kumar@colorado.edu

Abstract

Commerce on the Internet is still seriously hindered by the lack of a common language for
collaborative commercial activities. Although XML (Extendible Markup Language) allows trading
partners to exchange semantic information electronically, it does not provide support for document
routing. In this paper, we propose the design for an eXchangeable routing language (XRL) using
XML syntax. Since XML is becoming a major international standard, it is understood widely. The
routing schema in XRL can be used to support flexible routing of documents in the Internet
environment. The formal semantics of XRL are expressed in terms of Petri nets and examples are
used to demonstrate how it can be used for implementing inter-organizational electronic commerce
applications.

1. Introduction

Current workflow products are generally intra-organizational and based on centralized architectures.

Therefore, they typically lack scalability and are also not very useful for implementing inter-

organizational applications [1,5,6,7,33]. With the rapid expansion seen in electronic commerce1,

there is a major need for infrastructures and frameworks that can be used to implement inter-

organizational applications. In particular it is essential to provide support for routing of documents

across organizations in a standardized and yet flexible manner to enable open electronic commerce

[16,17,24,31,33,40]. Developing more homogeneous languages for various electronic commerce

activities [21] is one way to facilitate increased productivity and interoperability. Another strategy is

to build autonomous, cooperating agents that can communicate intelligently with one another [32]. In

this paper, we describe an architecture and language called XRL (eXchangeable Routing Language)

that provide support for routing of workflow between trading partners for providing Internet-based

electronic commerce services. The language comprises of routing constructs that can be used as

building blocks to design routing schemas for inter-organizational applications. It is described in

XML syntax because XML parsers are easily available and XML is becoming an international

standard.

1 In 1998, about $ 43 billion worth of business was done over the Web. This volume is projected to

increase to $1.3 Trillion by 2003.

2

Present electronic commerce applications mainly focus on the front side of business documents [31].

EDI based developments such as UN/EDIFACT, XML/EDI, and open EDI concentrate on the

representation of transaction data. In this paper, we focus on the back side of business documents. The

back side of a business document reflects the business process rather than individual transactions or

transaction data. To illustrate the significance of an explicit notion of a business process in the context

of electronic commerce, we use an example taken from [31]. “Consider only a simple postpayment

contract for goods. The buyer assumes that an invoice will be sent after delivery to trigger the

payment obligation. The seller, on the other hand, abides by the practice that payment becomes due

from the time of delivery, and does not send an invoice. Thus, the goods arrive, and the buyer does

not pay, waiting for an invoice. Meanwhile the seller becomes irked, and initiates collection

proceedings. This is an example of the so-called battle of the forms. Each party utilizes standard

documents such as a purchase order, delivery agreement, etc. which contain (typically on the back

side, in small print) the terms and conditions that are their style of doing business.” Supporting

electronic commerce without specifying the “way of doing business” creates many problems. The

only way to avoid such problems is to make inter-organizational workflow explicit. This observation

was the main motivation for developing XRL.

Several electronic commerce applications have been implemented using centralized architectures and

in synchronous mode. In synchronous (or request-reply) mode a transaction is performed

interactively. The biggest problem with a centralized approach is scalability and reliability. The

problem with a synchronous mode operation is that the client and server must establish a connection

between them, and it is not always possible to have a reliable and fast connection either because the

underlying network is unavailable or the server is overloaded. Moreover, synchronous

communication is not very efficient when a large amount of information has to be exchanged. Thus,

there is a need for a framework that provides better support for asynchronous, flow-type commercial

applications. This kind of situation arises frequently in supply chain management [12,13,30]. In such

situations, asynchronous transmission of messages can be more reliable and efficient. For instance, in

many situations it is considerably easier and more efficient for a customer to place large numbers of

orders (for stocks, books, etc.) or make bids in an electronic market (for several products at the same

time) asynchronously. The proposal described in this paper lends itself to both distributed and

asynchronous modes of operation.

A core feature of XRL is that it provides a mechanism to describe processes at an instance level, i.e.,

an XRL routing schema describes the partial ordering of tasks for one specific instance. Traditional

workflow modeling languages describe processes at a class or type level [19,23,29,36]. Workflow

instances, often referred to as cases, typically have a state which is expressed in terms of the class

model. From an efficiency point of view, it is beneficial to split state (i.e., instance level) and process

model (i.e., class level): If there are many instances of the same class, then duplication of routing

information is avoided. However, in the context of inter-organizational workflow such a split is

3

undesirable. It is unrealistic to assume that the different organizations share a common process model.

Moreover, it should be possible to migrate instances (or parts of instances) from one organization to

another without prior agreement on the precise order in which tasks are executed. Since the XRL

routing schema describes the partial ordering of tasks for one specific instance instead of a class:

• the schema can be exchanged more easily,

• the schema can be changed without causing any problems for other instances, and

• the expressive power is increased (workflow modeling languages typically have problems

handling a variable number of parallel or alternative branches).

Note that a few ad-hoc workflow management systems, e.g., InConcert (TIBCO/InConcert Inc.) and

Ensemble (FileNET Corp.), also support workflow process modeling and enactment at an instance

level [3,4]. However, most of today’s commercial workflow systems focus on production workflow

and handle workflows at a class level. Another limitation of these production workflow systems is

that they typically use a centralized enactment service. Therefore, many of the research prototypes

such as MENTOR (University of Saarland at Saarbrucken), METEOR (University of Georgia),

MOBILE (University of Erlangen), Panta Rhei (University of Klagenfurt), and WASA (University of

Muenster) focus on distribution aspects. The MENTOR system is based on state charts which are

partitioned into fragments. These fragments are distributed under the supervision of Tuxedo, a TP

monitor. The METEOR system is entirely based on CORBA to provide a platform independent and

reliable environment. It also supports interoperability mechanisms like SWAP and JFLOW.

Moreover, the METEOR3 model introduces the notion of foreign task vs. native tasks. A foreign task

refers to a task whose realization (implementation) is unknown to workflow designer, whereas the

implementation details are known to the workflow designer for a native task. Another important

feature for electronic commerce are channels (also called sink nodes) that are used to specify

communication or synchronization between two independent workflows. An interesting project

focussing on the application of workflow technology to electronic commerce is the WIDE Project

(http://dis.sema.es/projects/WIDE/). The goal of this project is to enable inter-organizational

workflows across multiple platforms by linking geographically separated applications including

IBM’s MQSeries Workflow, SAP R/3, Opera, and Structware. Unfortunately, the systems/projects

mentioned (i.e., InConcert, Ensemble, MENTOR, METEOR, MOBILE, Panta Rhei, WASA, and

WIDE) use a propriety format which makes it hard to exchange workflow instances between systems

of different vendors. XRL is based on XML and is not shackled by the history or particularities of an

existing system. The DTD (Document Type Definition) of XRL given in Appendix 1 illustrates the

succinct nature of the language.

4

The semantics of XRL are expressed in terms of Petri nets [8,10,15,34]. Such formal semantics allow

for powerful analysis techniques, an efficient and compact implementation, interfaces to many

existing tools, and, last-but-not-least, an unambiguous understanding of XRL.

This paper is organized as follows. Section 2 provides background material related to workflow

support for Electronic Commerce. Section 3 gives an overview of the architecture based on routing

slips. Next, Section 4 describes the various constructs of the XRL routing language. Then, Section 5

shows that XRL can be mapped into Petri nets. Section 6 illustrates the language with real examples.

Finally, Section 7 concludes the paper.

2. Basic Background and Examples

2.1 HTML, DHTML, CGI, XML

The Web has evolved through various stages. It started as a way of accessing distributed information

on the Internet using a GUI interface based on the HTTP protocol and the HTML language. It was a

successor to Gopher, WAIS and Archie, which were also information access and knowledge

discovery tools but were based on text-based interfaces. The next important advancement was to

make the HTML protocol more interactive using the FORMS programming and Dynamic HTML so

that commercial tasks such as buying and selling, filling in surveys, searching databases, etc, could

also be performed. Several architectures for Web commerce have been proposed, e.g. Commerce Net,

etc. [21] and protocols like SSL and SET [18] have been developed to address security issues that

arise on the Web.

Table 1 summarizes the main stages through which the web has evolved. Stages 2 and 3 reflect the

current stage of development of the web. XML [14,37,38] makes it possible to add semantic

information to an HTML document so that trading partners can understand the meaning of various

fields in the document. Figure 1 shows a common model of how the web operates to provide

interactive services such as shopping, database access, etc. The various steps are as follows:

1,2. A client connects to the server and downloads a form.

3. The client fills in information on the form and submits it.

4,5. A CGI program on the server processes the form.

6. The server sends a reply to the client.

5

Stage 0: Gopher, WAIS and Archie [27] were primitive, text-based

tools for knowledge discovery.

Stage 1: Web as a hypertext navigation tool for knowledge

discovery using GUI interface.

Stage 2: Web users could interact with a server program and

databases using CGI [20] gateways (see Figure 1).

Stage 3: Asynchronous mode interaction between a series of trading

parties using a semantic language XML [21].

Stage 4: Add workflow constructs in XML to support routing.

Table 1: Stages of Web evolution.

The features of this model are that all interaction is in synchronous (request, reply) mode.

Figure 1: Existing model of the Web using CGI-gateways.

XML is a markup language that allows users to define a set of tags that define the structure of a

document [14,37,38]. For example, a user may specify tags for NAME, AGE, DEPARTMENT,

EMAIL, etc. This logical structure may be stored either in the document file itself or in an associated

file called the Document Type Definition (or DTD) file which is linked to the document file. While

XML can help in exchange of semantic information, it still lacks routing information. Such

information is critical to enable proper routing of a document within an organization and across

organizations.

In the next subsection we describe some basic electronic commerce scenarios where support for inter-

organizational workflow is necessary.

6

2.2 Workflow in Mail Order Processing

In this subsection, we describe an example of a workflow related to electronic commerce in some

detail. This example will be used later to illustrate our techniques. The following narrative

accompanies Figure 2, where the numbers denote the approximate sequence in which various steps

are performed.

Consider that a customer places an order for three books with Amazon.com. Since these three books

come from different publishers, Amazon in turn places three different orders (one for each book) with

the publishers. Then Amazon must wait for confirmations from the publishers about whether they can

deliver the books within the deadline specified by the customer. Moreover, the customer may also

have specified conditions like "all of nothing" or "at least two out of three" etc. If the conditions

stipulated by the customer cannot be met, then he/she must be notified accordingly. If the conditions

can be met, then Amazon must confirm the order with the publishers involved and next find a shipper.

The shipper coordinates the receipt of and onward delivery of the three different shipments from the

publishers. Here again several situations can arise. The books are likely to arrive separately,

possibly even on different days, and the shipper must determine whether to batch the order into one

shipment or in multiple shipments as they arrive. It is interesting to note that in general, there are

12 −n combinations of partial shipments. Finally, billing must be handled. Since customers are

normally billed upon shipment, the shipper must notify Amazon immediately after the shipment is

sent, and Amazon or its billing company will bill the customer at this point. Again, billing can also be

either batched or done singly for each partial order that is shipped.

This simple example illustrates the complexity that can arise in performing a simple workflow over

the Internet. There are seven parties who have to coordinate among themselves in order to

successfully complete the order. Other complications that can arise are:

• The customer may cancel or change the order before it is shipped.

• A publisher may not be able to ship the book as committed.

• The shipper may not be able to deliver on time.

In all these scenarios there is need for additional coordination and, possibly negotiation.

7

Customer
(Joe or Jane)

AmazonBilling Co.

Publisher 1 Publisher 3Publisher2

Shipping Co.

(1)

(8)

(7)

(6)

(5)

(4)(3)(2)

Figure 2: Mail order example.

2.3 Workflow in Health Care

Patient PCP Orthopedist

MCOBank

Figure 3: Workflow in Healthcare.

Figure 3 shows an example of workflow in Healthcare. This workflow begins with a patient with an

ankle injury who visits a Primary Care Physician (PCP). The PCP decides to refer the patient to an

orthopedist. In order to find an approved orthopedist, the PCP must consult with the Managed Care

Organization (MCO) and seek approval for the patient to see the orthopedist. Then, the PCP must

inform the patient and the orthopedist, and arrange to deliver the patient’s document to the selected

orthopedist. Eventually, the payment has to be coordinated between the MCO, PCP, orthopedist,

patient (for the copayment) and one or more banks. Again, even though only five organizations are

involved, the coordination issues can get quite complex.

2.4 General considerations for inter-organizational workflows

The following general considerations apply to inter-organizational workflow over the web.

1. Trading partners should be able to perform asynchronous and distributed transactions.

2. Workflow transactions do not follow ACID properties and usually do not have a well-defined end

point as in a database transaction. There should be support for repair, service, returns, warranties,

repeat purchases, and a transaction can remain open for a long time or run for a long time (as in a

30-year mortgage).

8

3. Trading partners should be able to query the status of a workflow at any time.

3. Architecture

We first give a brief discussion of our general approach before developing the architecture. The

approach is based on the notion of a routing slip that defines the routing schema. In the subsequent

discussion the terms routing schema and routing slip are used interchangeably. A routing slip is a

simple sequence of roles or users who must review the documents in a certain sequence. One or more

documents can be attached to, modified and detached from the routing slip by various workers (or

nodes) on the slip. An owner creates the routing slip and defines the routing patterns in terms of

various constructs, to be discussed in the next section. Each slip has a unique ID that can be used to

trace the routing slip.

Figure 4 shows the WFMC (Workflow Management Coalition, [29]) reference architecture which is

centered around the workflow engine. The various interfaces shown here have not been fully specified

by WFMC and various vendors have come up with their own definitions. The client applications can

access the engine over a network. The process definition tools allow the process to be specified. The

administration tools are for managing the workflow engine. There is also support for additional

services.

Process
Definition Tools

Administration
& Monitoring

Tools

Interface 1

Interface 4
Interface 5

Workflow Enactment Service

Workflow API and Interchange formats

Other Workflow
Enactment Service(s)

Workflow
Client

Applications

Interface 3Interface 2

Workflow
Engine(s)

Workflow
Engine(s)

Invoked
Applications

Figure 4: WFMC reference model architecture (©WFMC [29]).

Figure 5 shows our own architecture of the workflow engine. The routing schema in XRL is received

at a node through email. It is parsed using a standard XML parser and stored as an XML data

structure. The core of the engine reads this parsed structure and creates a Petri-net representation.

Based on this representation, the engine determines the next step(s) to be performed and presents

them to the user through a user interface. The user enters the action taken by him/her to complete the

step and notifies the workflow engine which determines the next step. When all the steps at this node

9

are completed, the workflow engine writes out the revised XRL data structure and sends it to the next

node in the workflow.

Parse
XRL

User
interface

Write
XRL

Email,
XRL

Email,
XRL

XML Data
Structure

Engine

Petri net
representation

E A

E: enabled steps
A: Action taken

Figure 5: Architecture for a workflow engine

This architecture can work in both centralized and distributed modes. In the distributed mode (see

Figure 6), we envisage multiple nodes each with its own workflow engine. Moreover, the XRL

routing slip or schema for any instance will be replicated at all the workflow engines either in full or

partially. The updates to the schema may be performed at various nodes but they will be kept in

synch. Thus, it will be possible to query the schema and determine the status of the workflow from

any node.

The XRL routing slip can be created and modified using a GUI editor. In the next section we turn to

the description of the routing schema.

Workflow
engine

Workflow
engine

Workflow
engine

Database DatabaseDatabase

Workflow
engine

Database

UserUser User User

Figure 6: A distributed architecture for an inter-organizational workflow system

4. Defining a Routing Schema in XML

XML (eXtensible Markup Language) is very fast becoming a de facto standard for exchange of

information between trading partners. It offers syntax, semantics and presentation support. Therefore,

XML was chosen as the basis for our routing language that is called XRL (eXchangeable Routing

Language). In this section we describe various routing constructs that serve as building blocks. Later

we show that these constructs can be used to provide support for designing and implementing

complex routing scenarios. Moreover, each element begins with a construct like <element1> (the

start-tag) and ends with </element1> (the end-tag) where element1 is the name of the element.

10

4.1. Route

A routing slip or schema must start with a <route> start-tag and end with a </route> end-tag.

The route element has a reference attribute to uniquely identify the routing slip. A route consists of a

routing element which is described next. The route element has the following attributes associated

with it:

 route_name: Name of the routing slip

 created by: Creator of the routing slip

 date: Creation data

4.2. Routing Element

A routing element is defined as follows:

 <!ENTITY % routing_element
 "task|sequence|any_sequence|choice|condition|parallel_sync|
 parallel_no_sync|parallel_part_sync|wait_all|wait_any|while_do|
 stop|terminate">

Thus, the routing element can be:

1. Task: This is a step to be performed.

2. Sequence: A set of tasks to be done in a specific order forms a sequence.

3. Any_Sequence: A set of tasks to be done in any order forms an any_sequence.

4. Choice: Any one task out of a set of tasks is called a choice.

5. Condition: Test a condition and determine next step based on result of the test.

6. Parallel_sync: Create multiple parallel routing elements and later join them.

7. Parallel_no_sync: Create multiple parallel routing elements (which do not have to join).

8. Parallel_part_sync: Create multiple parallel routing elements, some of which must join.

9. Wait_all: Insert a wait step to wait for the completion of a group of events.

10. Wait_any: Insert a wait step to wait for the completion of any one of a group of events.

11. While_do: Enable repetition of a task while a condition is true.

12. Stop: End the execution of this particular path of the workflow instance.

13. Terminate: End this workflow instance.

4.3. Task

A task is a generic term for a task, step or action. The following attributes are associated with a task:

 name: Name of the task
 address: URL of the task or an email address
 doc_read: documents required that are read-only

11

 doc_update: documents that can be updated
 doc_create: documents that are to be created
 domain: Internet domain within which the task is performed
 result: result of the task as a string value
 status: status of task (ready|running|enabled|disabled|aborted)
 start_time: time at which task was started
 end_time: time at which task was completed
 notify: Email addresses of parties to be notified on task
completion.

A task element must have a unique name attribute which is like an id, and an address that is a URL

(say, an HTML page or ASP or JSP page) or an email address. Several other attributes can be

associated with a task. An example of a task specification is as follows:

<task address="www.order.xyz.com"
 start_time = "01Oct99;9:30AM", end_time = "">

</task>

A task element may contain events as will be explained later. For tasks without event elements, it

is allowed to combine the start-tag and the end-tag:

<task address="www.order.xyz.com"
 start_time = "01Oct99;9:30AM", end_time = ""/>

The status attribute is initially null and can take one of the values from among the ones listed above.

The start_time and end_time attributes correspond to the start and end times of the task and

can be used to determine how long it lasts. Another example of a task element is:

<task address = "john@xyz.com" result = " "
 doc_read ="doc1, doc2"
 start_time = "01Oct99;9:30AM", end_time = "">

</task>

Here the address is an email address. Moreover, it is possible to specify documents to be attached

using the attach attribute. Thus, the workflow engine will send an email to the john@xyz.com

and attach doc1 and doc2 to it.

4.4. Sequence

A sequence represents the simplest routing pattern. It is a way to group together multiple steps into

one group. Here is an example of how a sequential route can be specified using XRL.

<sequence>
 <task name = "task1" address = "user1@xyz.com"
 doc_read = "doc1,doc2" >
 </task>
 <task name = "task2" address = "user3@xyz.com"
 doc_read = "doc3,doc4" >
 </task>
 <task name = "task3" address = "user44@abc.com"
 doc_read = "doc5,doc6" >
 </task>

12

 <task name = "task4" address = "user99@abc.com" >
 </task>

 </sequence>

In this example several steps are grouped together within the <sequence> element. Thus, a

sequence is a logical way of grouping several sequential tasks.

4.5. Parallel Constructs

There are three types of parallel constructs, which are related: parallel_sync, parallel,

no_sync and parallel_partial_sync.

In all these constructs, the common aspect is that they allow sub-workflows to be created which can

proceed independently. The parallel_sync element corresponds to the traditional notion of

parallel routing: First a number of parallel branches is activated (i.e., the so-called AND-split), then

the parallel branches are executed independently, and finally the completed branches are synchronized

(i.e., the so-called AND-join). In a parallel_sync element, the sub-workflows must combine

together at the end of the element. Finally, in the parallel_part_sync only some of the sub-

workflows need to be combined, as specified in the attribute number.

Next we discuss some examples of these three constructs. In the first example below, three vice-

presidents must approve an invoice before it can be paid. The approvals can be done in parallel, but

subsequent steps of the workflow cannot proceed without receiving the approvals.

 <parallel_sync>
 <task name = "vp1" address = "vp1@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp2" address = "vp2@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp3" address = "vp3@xyz.com"
 doc_read = "invoice.doc"/>
 </parallel_sync>

Next, we consider a modified situation where all the tasks do not need to synchronize. In this case we

would express the requirements as follows using the parallel_part_sync construct.

<parallel_part_sync number = 2>
 <sequence>
 <task name = "send-to-vp1" address = "vp1@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp1" address = "vp1@xyz.com"
 doc_update = "invoice.doc"/>
 </sequence>
 <sequence>
 <task name = "send-to-vp2" address = "vp2@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp2" address = "vp2@xyz.com"
 doc_update = "invoice.doc"/>
 </sequence>
 <sequence>

13

 <task name = "send-to-vp3" address = "vp3@xyz.com"
 doc_read = "invoice.doc"/>

 <task name = "vp3" address = "vp3@xyz.com"
 doc_update = "invoice.doc"/>
 </sequence>
</parallel_part_sync>

In the modified description now, only two of three vice-presidents (any two) are required to approve

the invoice. As soon as any two of them have done so, the workflow may proceed to the next stage.

To show the nesting of constructs, the approval tasks vp1, vp2, and vp3 are proceeded by send tasks

send-to-vp1, send-to-vp2, and send-to-vp3. Note that although the workflow may

proceed to the next stage after two approvals, the third approval may be executed, i.e., the remaining

approval task is not withdrawn explicitly.

Finally, the third option (parallel_no_sync) for parallelism in the workflow design is to not

require any synchronization at all. This would effectively mean that as soon as the three approval

tasks are assigned, the workflow may continue to other tasks. In this case some other mechanism may

be employed to check later that the approvals have indeed been done. For instance, while the

approvals are in progress, other tasks such as printing the check may be performed. However, the

mailing of the check can be delayed until the approvals are obtained. Therefore this semantics would

be expressed in the following way.

<sequence>
 <parallel_no_sync >
 <task name = "vp1" address = "vp1@xyz.com"
 doc_update = "invoice.doc"/>
 <task name = "vp2" address = "vp2@xyz.com"
 doc_update = "invoice.doc"/ >
 <task name = "vp3" address = "vp3@xyz.com"
 doc_update = "invoice.doc" />
 </parallel_no_sync>
 <parallel>
 <task name = "check1" address = "check_printing.asp"
 doc_read = "invoice.doc"/>
 <task name = "label1" address = "label_printing.asp"
 doc_read = "invoice.doc"/>
 </parallel>
 <parallel_part_sync number = 2>
 <while_do condition = "vp1.result = ‘Null’ ">
 <wait_all>
 <timeout time = "1 minute" type = "relative"/>
 </wait_all>
 <while_do/>
 <while_do condition = "vp2.result = ‘Null’ ">
 <wait_all>
 <timeout time = "1 minute" type = "relative"/>
 </wait_all>
 <while_do/>
 <while_do condition = "vp3.result = ‘Null’ " >
 <wait_all>
 <timeout time = "1 minute" type = "relative"/>

14

 </wait_all>
 <while_do/>
 </parallel_part_sync>
 <task name = "mail_check" address = "mailroom.xyz.com"/>
</sequence>

In the above XML description, the approval requests are first sent in parallel to the three vice-

presidents. Next, the check printing and label printing tasks are performed. After these tasks are

completed, the parallel_part_sync element is introduced to check how many approvals have

been received. As soon as two approvals are received, the check can be mailed which is the last task.

This example illustrates how all three types of parallel constructs can be combined together. The

while_do construct was used in this example to check if a condition was satisfied. These two

constructs will be explained in more detail in a subsequent subsection.

4.6. Wait, Events, Timeouts.

Next we turn to discuss wait and event elements. There are two types of wait elements: wait_any

and wait_all. Each element encloses one or more combinations of event references and timeouts.

A wait_any element will be considered complete when any one of the events or timeouts it contains

is done. On the other hand, wait_all requires the completion of all of the events or one of the

timeouts it encloses.

An event can be optionally associated with a task by including one or more event elements within a

task element. It is possible to wait for the occurrence of this event within a wait element by specifying

an event reference element. For example,

 <task name = approve>
 <event name = e1 />
 </task>

This construct specifies an approve task and associates an event e1 with it such that upon completion

of the task, event e1 will fire. Now, consider the following XML code, which, perhaps, appears later

in the same workflow instance:

 <wait_all>
 <event_ref name = e1/>
 </wait_all>

This is a way to specify that the workflow instance must wait until the approve task is completed.

Another way to use the wait constructs is in conjunction with timers. There is a timeout element with

attributes time and type. The time attribute specifies a string value of time, while the type

attribute helps to interpret the string value either as an absolute time (January 25, 9 AM),

relative time to the current time (i.e., like a regular timer) or s_relative, i.e., a time which

is relative to the start of the instance. For example,

 <wait_all>

15

 <timeout time = "1 hour" type = "relative"/>
 </wait_all>

The event_ref and timeout elements can be combined within a wait_all or wait_any construct

as follow:

 <wait_any>
 <event_ref name = e1/>
 <timeout time = "1 hour" type = "relative"/>
 </wait_any>

The semantics here is that any one of these two events must occur for the workflow to move further,

either event e1 should occur or 1 hour should elapse from the start of the wait_any element. This

kind of construction can be very useful for monitoring progress of tasks in the workflow. In the above

case, if the approve task is not done within one hour, the next task can be used to specify an action,

such as sending a reminder to the worker involved or to the responsible manager.

4.7. Condition checking and Looping

The condition element is used to check a general condition statement and direct the workflow based

on a Boolean result. The condition element has an attribute called condition that describes the

condition to be tested. The structure is as follows:

 <condition condition = "result = ‘ok’">
 <true>
 <task name = "send_confirmation"
 address="www.xyz.com/confirm"/>
 </true>
 <false>
 <task name = "notify_customer"
 address="www.xyz.com/notify"/>
 </false>
 </condition>

As shown above the true and false elements are associated in conjunction with the condition

element, and at least one of them should be present.

The while_do construct is introduced to allow repetition of workflow routing elements and steps. It

has a condition attribute that describes the condition (in the same way as with the condition

element), and the elements enclosed within the while_do construct are executed until the condition

evaluates to true. Here is a snippet that appeared in an earlier example:

 <while_do condition = "vp3.result = ‘Null’ ">
 <wait_all>
 <timeout time = "1 minute" type = relative/>
 </wait_all>
 </while_do>

16

In this example, the condition to be tested is the value of vp3.result attribute. Since vp3 is a task

name and result is an attribute associated with a task, we can check its value and make a decision

based on that. The routing element inside the while_do is a wait_all element. This causes a wait

of 1 minute to occur every time before the vp3.result value is checked.

4.8. Terminate, Stop and State Elements

The stop element is used to end a sub-workflow of the workflow instance. The terminate

element on the other hand terminates the entire instance that includes all its paths that may be

executing separately. Both stop and terminate do not have any attributes and are typically used

within a condition element. For example, if a condition in one of several parallel branches

evaluates to false, the entire workflow instance is terminated. The following fragment shows such a

construct in one of the parallel branches:

 <condition condition = "result = ‘ok’">
 <true>
 <task name = "transfer_money"
 address="www.bank.com/transfer"/>
 </true>
 <false>
 <terminate/>
 </false>
 </condition>

The state element is required to write out the state of the workflow at any point. This is a useful

feature to make a record of the exact state of the workflow instance in the XRL routing slip. The

location of the state element determines the progress of one thread of the workflow instance. In a

purely sequential process there will be only one state element. In case of parallelism there can be

multiple state elements, each indicating the state of one parallel branch (i.e., one thread). To avoid

confusion, state elements are only allowed inside sequence elements. This is not a limitation

since can routing construct can be embedded in a sequence containing just one routing element.

Consider for example the approval process again:

 <parallel_sync>
 <sequence>
 <task name = "vp1" address = "vp1@xyz.com"
 doc_read = "invoice.doc"/>
 <state/>
 </sequence>
 <sequence>
 <state/>
 <task name = "vp2" address = "vp2@xyz.com"
 doc_read = "invoice.doc"/>
 </sequence>
 <sequence>
 <task name = "vp3" address = "vp3@xyz.com"
 doc_read = "invoice.doc"/>

17

 <state/>
 </sequence>
 </parallel_sync>

The three approval tasks have been embedded in a sequence construct in order to add the state

elements. The state elements following tasks vp1 and vp3 indicate that these tasks have been

completed. The state element before the task vp2 indicates that task vp2 is enabled but has not

been executed yet. The state following the completion of vp2 can be represented as follows:

 <sequence>
 <parallel_sync>
 <task name = "vp1" address = "vp1@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp2" address = "vp2@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp3" address = "vp3@xyz.com"
 doc_read = "invoice.doc"/>
 </parallel_sync>
 <state/>
 </sequence>

For the explicit representation of the state of a workflow instance, it is also necessary to record the

events that have occurred. Therefore, the state element may contain event elements.

4.9. Formal DTD

A Document Type Definition (DTD) which describes all the constructs is given in Appendix 1 using

standard XML notation [14,37]. The DTD contains markup declarations for the class of XRL

documents. The document element, also called the root, is the route element. Any XRL document

should be well-formed, i.e., taken as a whole it should match the production labeled document in the

XML version 1.0 standard [14]. Moreover, any XRL document should also be valid, i.e., the

document should satisfy the constraints expressed by the declarations in the DTD.

5. Formal Semantics

In Section 4, we introduced the XRL (eXchangeable Routing Language). The syntax of this language

was defined in terms of a DTD. XRL is used to describe the dynamics of inter-organizational

workflows. Therefore, it is of the utmost importance to have clear semantics for each of the constructs

supported by XRL. For this purpose, we map XRL onto Petri nets [34]. On the one hand, Petri nets

can be used to represent the business logic in a graphical manner. In fact, the Petri net language is

close to many of the diagramming languages used by both commercial workflow management

systems and researchers active in this domain [8,10,15]. For example, workflow management systems

and ERP systems such as COSA (Software Ley), Income (Promatis), BaanERP (Baan), and

ARIS/SAP (IDL/SAP) use (variants of) Petri nets. On the other hand, Petri nets are a formal language

with clear semantics, powerful analysis techniques, and strong theoretical results. By mapping XRL

18

onto Petri nets, we give formal semantics, are able to reason about XRL (e.g., about its expressive

power), can use state-of-the-art analysis techniques, and can use existing software. Before we show

the mapping of XRL onto Petri nets, we introduce some of the basic concepts of Petri nets. For a more

elaborate introduction to Petri nets and the application of Petri nets to workflow management, we

refer to [8,10,15,23,34] for further pointers. For more information on the application of Petri nets to

inter-organizational workflows we refer to [1,5,6,7, 31,36]. Petri nets and also other diagramming

techniques used in existing workflow management systems are often too rigid to support business

processes which require flexibility. This is a direct result of the fact that the workflow model is

prescriptive for all possible instances (workflow cases). Note that one of the powerful features of

XRL is the fact that it is used to describe the routing of a single instance, i.e., the model can be

changed on the fly for one particular workflow case. Therefore, the mapping of XRL onto Petri nets

refers to one single case in a given state. If the XRL routing schema is changed, then the

corresponding Petri net is also changed. Hence the Petri net formalism does not restrict the flexibility

of XRL. For more discussion on flexibility issues we refer to [2,3,4].

5.1. Petri Nets

A Petri net is represented graphically by squares and circles. The squares are called transitions and in

the context of workflow management are tasks to be executed. The circles are used to represent the

state of a workflow and are called places. The arrows between places and transitions are used to

specify causal relations. Figure 7 shows a Petri net composed of six places and six transitions. A place

p is called an input place of a transition t iff there exists a directed arc from p to t. Place p is called an

output place of transition t iff there exists a directed arc from t to p. At any time a place contains zero

or more tokens, drawn as black dots. The state of the net, often referred to as marking, is the

distribution of tokens over places. In Figure 7, only place p1 contains a token. The number of tokens

may change during the execution of the net. Transitions are the active components in a Petri net: They

change the state of the net (also called marking) according to the following firing rule:

• A transition t is said to be enabled iff each input place p of t contains at least one token.

• An enabled transition may fire. If transition t fires, then t consumes one token from each input

place p of t and produces one token for each output place p of t.

19

serve_donut

accept_order

serve_coffee

serve_tea

order_donut

handle_paymentp1

p2

p3 p5

p4

p6

Figure 7: A Petri net modeling the simplified workflow of a waiter in a donut bar.

By using this rule it is possible to determine which transitions can fire and in what order. In Figure 7,

transition accept_order is enabled because input place p1 is marked (i.e., contains a token). Transition

accept_order will fire and as a result the token is consumed from p1 and two tokens are produced:

one for p2 and one for p3. Then three transitions are enabled: serve_donut, serve_coffee, and

serve_tea. If transition serve_donut fires, a token is moved from place p2 to place p4. Transitions

serve_coffee and serve_tea both compete for the token in p3, i.e., they are both enabled, but only one

of them can fire. If serve_coffee fires, a token is moved from place p3 to place p5 and serve_tea

becomes disabled. Firing serve_tea results in the same state, thus disabling serve_coffee. After firing

transition serve_donut, transition order_donut becomes enabled. The result of firing transition

order_donut is that place p2 is marked, thus enabling serve_donut again. Transition handle_payment

is enabled if both p4 and p5 contain at least one token. Firing handle_payment results in the state with

just one token in p6. In this state no transitions are enabled. The Petri net shown in Figure 7, contains

all kinds of routing constructs, e.g., sequential routing (serve_donut can only be executed if

accept_order is executed), conditional routing (the choice between serve_coffee and serve_tea),

parallel routing (serve_donut can be executed in parallel with serve_coffee or serve_tea), and iteration

(serve_donut can be executed arbitrarily many times by executing order_donut). A transition can be

thought of as an AND-join/AND-split building block. A place corresponds to an XOR-join/XOR-split

building block. By using these building blocks accordingly, it is fairly straightforward to model the

routing constructs present in today’s workflow management systems. In addition, as is shown in [8],

the Petri net model allows for useful routing constructs missing in some of these systems.

5.2. Mapping the DTD onto Petri-Net Constructs

A routing schema specified in XRL should be consistent with the DTD specified in Section 4, i.e., the

XML document should be both valid and well-formed according to the W3C standard for XML [37].

In this subsection we map routing elements as identified in the DTD onto Petri net constructs. The

20

root element of a routing schema is of type route. An element of type route contains one routing

element. As was explained in the previous section, there are different types of routing elements

ranging from a simple task to complex routing constructs.

<!ENTITY % routing_element

"task|sequence|any_sequence|choice|condition|parallel_sync|parallel_

no_sync|parallel_part_sync|wait_all|wait_any|while_do|stop|terminate

">

<!ELEMENT route (%routing_element;)>

<!ATTLIST route name ID #REQUIRED

 created_by CDATA #IMPLIED

 date CDATA #IMPLIED>

In this section, we show that it is possible to recursively construct parts of the routing schema in terms

of Petri nets. For this purpose we introduce the symbols shown in Figure 8. In addition to places,

transitions, and arcs, we allow for routing elements, interfaces, and routing transitions. Routing

transitions are ordinary transitions added solely for routing purposes, i.e., they do not correspond to

the actual execution of work. The dashed lines are added to show the interface between a decomposed

routing construct and its surroundings, i.e., this is used to recursively unfold the XRL routing

specification. The routing elements correspond to parts that still need to be unfolded.

routing element

interface

place

transition

routing transition

arc

Figure 8: The symbols used in illustrate the mapping.

A task has various data attributes. In this section, we focus on the control flow and abstract away the

attributes associated with elements. Moreover, we postpone discussion of events until later in the

paper.

<!ELEMENT task (event*)>

<!ATTLIST task name ID #REQUIRED

 address CDATA #REQUIRED

 doc_read NMTOKENS #IMPLIED

21

 doc_update NMTOKENS #IMPLIED

 doc_create NMTOKENS #IMPLIED

 result CDATA #IMPLIED

 status (ready|running|enabled|disabled|aborted) #IMPLIED

 start_time NMTOKEN #IMPLIED

 end_time NMTOKEN #IMPLIED

 notify CDATA #IMPLIED>

The execution of a task takes time. Firing a transition in a Petri net is instantaneous, i.e., it does not

take any time. Therefore, we model a task as shown in Figure 9. The transition begin signifies the start

of the task; transition end signifies the completion of the task. For transactional workflows, one might

distinguish between various internal states and resulting states (e.g., aborted, ready, partial commit,

etc.). The internal states are only of local interest. The resulting states are stored in the XML file and

can be used for conditional routing. Therefore, a more detailed model of the behavior of a task is not

required.

begin endexecutingtask

Figure 9: Construct task.

The dashed lines indicate the interface of the task. All connections to the task (i.e., inward arcs) are

connected to begin and all outward connections are connected to end, i.e., all input places of task are

input places of begin and all output places of task are output places of end.

<!ELEMENT sequence ((%routing_element;|state)+)>

Routing elements can be linked together using the sequence routing construct. As Figure 10 shows

the corresponding Petri net semantics of this construct is straightforward: The routing elements in the

sequence construct are connected through places to make sure that everything is executed in the

predefined order.

re_1 re_2 re_n

...

Figure 10: Construct sequence.

22

The any_sequence routing construct is used to specify that routing elements are executed

sequentially but in any order.

<!ELEMENT any_sequence ((%routing_element;)+)>

Figure 11 shows the corresponding semantics. Routing transition AND-split enables all routing

elements and marks the place mutex. Although all routing elements are enabled only one of them can

be executed at one time, i.e., by temporarily removing the token from place mutex the other routing

elements are blocked until the active routing element terminates. If all routing elements have been

executed, routing transition AND-join fires thus removing the token from place mutex.

re_n

re_2

re_1

...

mutex

AND-split AND-join

Figure 11: Construct any_sequence.

The choice construct is used to specify the selection of one alternative from a given set of

alternatives. The XRL description does not specify the way this choice is resolved, i.e., it is up to the

actors involved to choose one of the alternatives. For choices based on data, the condition

construct should be used.

<!ELEMENT choice ((%routing_element;)+)>

Figure 12 shows the choice construct. Routing transition begin puts a token in the shared input

place of all alternative routing elements. Then precisely one of the alternatives is executed followed

by the firing of routing transition end.

23

re_n

re_2

re_1

...
begin end

Figure 12: Construct choice.

The condition construct is used to make binary decisions based on a pre-specified condition. If the

condition evaluates to true, the routing elements of all true elements are executed (in parallel). If the

condition evaluates to false, the routing elements of all false elements are executed (in parallel).

<!ELEMENT condition (true|false)*>

<!ATTLIST condition condition CDATA #REQUIRED>

<!ELEMENT true (%routing_element;)>

<!ELEMENT false (%routing_element;)>

In Figure 13 it is assumed that there is precisely one true element and precisely one false

element. Routing element re_1 is executed if the condition evaluates to true. Routing element re_2 is

executed if the condition evaluates to false. If there is no true element, routing element re_1 is

omitted. If there are multiple true elements, two routing transitions are added to execute these

elements in parallel when the condition evaluates to true. Similar remarks hold for zero or multiple

false elements.

24

false re_2

re_1true is_true

is_false

begin end

Figure 13: Construct condition.

In contrast to the any_sequence construct, the parallel_sync construct can be used to allow

for the simultaneous execution of routing elements.

<!ELEMENT parallel_sync ((%routing_element;)+)>

As Figure 14 shows, the parallel_sync construct can be modeled straightforwardly in terms of a

Petri net.

re_n

re_2

re_1

...

AND-split AND-join

Figure 14: Construct parallel_sync.

The AND-join transition fires as soon as all routing elements have completed, i.e., subsequent routing

elements connected to the parallel_sync construct must wait until all work is done. The

parallel_no_sync construct enables the subsequent routing elements without any delay.

<!ELEMENT parallel_no_sync ((%routing_element;)+)>

25

Figure 15 shows the precise semantics of the parallel_no_sync construct: Transition start

enables the routing elements inside the construct (re_1, re_2, ... re_n) and the end transition at the

same time.

re_n

re_2

re_1

...

by_pass

AND_split end

Figure 15: Construct parallel_no_sync.

The parallel_part_sync construct is a mixture of the two previous constructs: The subsequent

routing elements are enabled when a specified number of routing elements inside the construct have

been completed.

<!ELEMENT parallel_part_sync ((%routing_element;)+)>

<!ATTLIST parallel_part_sync number NMTOKEN #REQUIRED>

Figure 16 shows the semantics of the parallel_part_sync construct. Let k be the specified

number of the routing elements that need to be completed to proceed. The routing elements inside the

construct (re_1, re_2, ... re_n) are enabled in parallel. Each time one of the elements completes, a

token is put into place count. The arc connecting place count and transition AND-join has multiplicity

k. This means that AND-join is enabled if and only if count contains at least k tokens and by_pass

contains at least one token. Arcs with multiplicity k are a standard concept in Petri nets and hardly

complicate analysis [15]. Note that after AND-join fires the remaining routing elements inside the

construct can still be executed and AND-join remains disabled because there is no token in by_pass.

26

re_n

re_2

re_1

...

AND-split AND-join

k

by_pass

count

Figure 16: Construct parallel_part_sync.

Thus far we did not consider events. Events are crucial for the wait_all and wait_any constructs and

are generated by tasks.

<!ELEMENT task (event*)>

<!ELEMENT event EMPTY>

<!ATTLIST event name ID #REQUIRED>

Figure 17 shows the semantics of a task generating n events. The events are generated when the

routing task end is executed. The dashed oval indicates that the events are visible for any other routing

element, i.e., the scope of the places event_1, event_2, ..., event_n is not limited to the task.

begin endexecuting

...
event_1 event_2 event_n

Figure 17: A task can produce events.

27

The wait_all construct waits for certain events that must occur before any subsequent routing

elements. The wait_all construct can terminate in two ways: (1) after all specified events have

occurred, or (2) when a timeout occurs. The wait_all construct may contain multiple timeout

elements: The wait_all construct terminates when the first timeout occurs. In the absence of any

timeout elements, the only way wait_all can terminate is after all events have occurred. As

explained in the previous section, a timeout element has a type attribute with values of absolute,

relative or s_relative.

<!ELEMENT wait_all (event_ref|timeout)+>

<!ELEMENT event_ref EMPTY>

<!ATTLIST event_ref name IDREF #REQUIRED>

<!ELEMENT timeout (%routing_element;)>

<!ATTLIST timeout time CDATA #REQUIRED

type (relative|s_relative|absolute) "absolute">

Events are global, i.e., an event generated by a task is visible for all wait_all/wait_any

constructs. In Figure 18 it is assumed that there is exactly one timeout element (represented by

re_1) and there are n events (represented by places event_1, event_2, ..., event_n). After executing

transition begin either transition wait fires because all places event_1, event_2, ..., event_n are marked

or transition timeout fires because the time specified is reached. If transition wait fires, then the

routing element wait_all terminates and triggers subsequent routing elements. If transition timeout

fires, routing element re_1 is executed before subsequent routing elements are triggered. Note that

transition wait returns the tokens consumed from the places event_1, event_2, ..., event_n. These

tokens are returned because there may be other wait_all/wait_any constructs waiting for the

same event. If there are no timeouts, the bottom part of Figure 18 is removed. If there are multiple

timeouts, the bottom part is repeated, i.e., there are multiple timeout routing transitions connected to a

shared input place.

28

time_out re_1timed_out

begin endwait

...
event_1 event_2 event_n

Figure 18: Construct wait_all.

The wait_any construct is similar to the wait_all construct. The only difference is that only one

occurrence of the event specified suffices to continue.

<!ELEMENT wait_any (event_ref|timeout)+>

Figure 19 shows the semantics of the wait_any construct. There are n routing transitions (wait_1,

wait_2, ..., wait_n) each monitoring one event. A single event triggers the corresponding transition,

and causes transition end to fire. Timeouts are handled in the same way as in the wait_all

construct.

29

time_out re_1timed_out

begin endwait

...
event_1 event_2 event_n

wait_1 wait_n...

Figure 19: Construct wait_any.

To allow for iteration, the while_do construct has been added to XRL: As long as the condition

holds the routing element inside the while_do construct is executed.

<!ELEMENT while_do (%routing_element;)>

<!ATTLIST while_do condition CDATA #REQUIRED>

Figure 20 shows the Petri net semantics of the while_do construct. If the condition evaluates to

true, transition true fires and routing element re_1 is executed. Then, the condition is evaluated again,

etc.. If the condition evaluates to false, transition false fires thus triggering transition end.

false

re_1true is_true

begin end

Figure 20: Construct while_do.

Sometimes it is convenient to terminate a specific branch of the routing schema, i.e., kill one thread.

The routing element stop can be seen as an empty task which blocks all subsequent tasks.

<!ELEMENT stop EMPTY>

30

Figure 21 shows the semantics of the stop construct. The input place of transition end will remain

empty after the activation of the stop construct. Therefore, transition end will never fire and

subsequent routing elements are never executed.

begin end

Figure 21: Construct stop.

The routing element terminate is similar to the stop construct. However, it terminates the entire

workflow case (i.e., all threads are killed, as opposed to only one). In Petri net terms this corresponds

to the removal of all tokens in the Petri net. Therefore, we do not need to give an explicit construct in

terms of Petri nets.

<!ELEMENT terminate EMPTY>

All the routing constructs discussed thus far relate to the routing of a workflow instance (i.e., a case).

However, if XRL routing definitions are stored or exchanged between different organizational

entities, it is important to store the current state of the workflow instance. For this purpose we added

the element state. States can only be inserted in sequences.

<!ELEMENT sequence ((%routing_element;|state)+)>

<!ELEMENT state (event+)>

Elements of type state correspond to marked places. If a routing element in a sequence is directly

preceded by an element of type state, then the corresponding input place is marked. If a routing

element is followed by an element of type state, then the corresponding output place is marked. If

an element of type state appears between two routing elements in a sequence construct, then the

place in-between the routing elements is marked. Elements of type state are only allowed in

sequences and not in any of the other constructs. However, this is not a real limitation, since it is

always possible to embed a sequence consisting of a routing element and a state in any of the other

routing constructs. By limiting state elements to sequences, the semantics remains clear. Note that

it is possible to create a valid well-formed XML file for which the corresponding marked Petri net

may be in a state that does not make any sense. For example, if in one sequence there are two

elements of type state, then this does not correspond to a state consistent with the normal

interpretation of the XRL routing definition. It is also possible to create states in the corresponding

marked Petri net, which will deadlock. It is not possible to strengthen the DTD such that these

anomalies cannot occur. Fortunately, Petri net theory can be used to detect such anomalies. The

general rule is that the state elements result in a marking that is reachable from the initial state. For

31

this purpose we can use the techniques described in [8,9]. Moreover, the software tool Woflan [9]

partly supports such analysis.

This concludes the mapping of XRL to Petri nets. We showed how every construct in the DTD is

translated into Petri nets. The benefits of this mapping are:

• formal semantics: the behavior of a workflow specified in XRL is fully specified and all

ambiguity is removed,

• availability of analysis techniques and tools: by mapping XRL onto Petri nets we can use the

many techniques and tools developed for Petri nets (see Section 5.3),

• a ready to use implementation model: it is easy to implement a workflow engine based on engines

in existing Petri-net-based simulation and enactment tools (see Section 3), and

• knowledge about the expressive power of XRL: the expressive power of XRL (minus data

attributes) compares to ordinary Petri nets, i.e., it is possible to emulate state machines, it is also

possible to emulate marked graphs, and, using the event mechanism, it is possible to create non-

free constructs [8].

5.3. Analysis

The correctness, effectiveness, and efficiency of the business processes supported by the workflow

management system are vital to the organization. A workflow process definition that contains errors

may lead to angry customers, backlog, damage claims, and loss of goodwill. Flaws in the design of a

workflow definition may also lead to high throughput times, low service levels, and a need for excess

capacity. This is why it is important to analyze a workflow process definition before it is put into

production. Basically, there are three types of analyses:

• validation, i.e., testing whether the workflow behaves as expected,

• verification, i.e., establishing the correctness of a workflow, and

• performance analysis, i.e., evaluating the ability to meet requirements with respect to throughput

times, service levels, and resource utilization.

Validation can be done by interactive simulation: fictitious cases are fed to the system to see whether

they are handled well. For verification and performance analysis more advanced analysis techniques

are needed. Fortunately, many powerful analysis techniques have been developed for Petri nets [8,34].

Linear algebraic techniques can be used to verify many properties, e.g., place invariants, transition

invariants, and (non-)reachability. Coverability graph analysis, model checking, and reduction

techniques can be used to analyze the dynamic behavior of a Petri net. Simulation and Markov-chain

analysis can be used for performance evaluation. The abundance of available analysis techniques

shows that Petri nets can be seen as a solver independent medium between the design of the workflow

process definition and the analysis of the workflow.

32

Today’s workflow management systems provide limited support for performance analysis. Most

provide a rudimentary simulator or a gateway to a simulation tool. Simulation can be used to estimate

key performance indicators by experimenting with the specified workflow under the assumption of a

specific behavior of the environment. Examples of key performance indicators are average throughput

time of cases, average waiting time, occupation rates of resources, service levels, and the average

number of pending cases.

Moreover, most workflow management systems also do not support verification of workflows. As a

result, workflow process definitions become operational before they are thoroughly checked for

correctness. This often results in runtime errors that need on-the-fly repair at high costs. Both

manufacturers and users of workflow management systems see the need for analysis tools that take

care of the verification. It is especially important in the context of inter-organizational workflows to

be able to detect potential anomalies before they occur. Unfortunately, most vendors do not have the

technology to build such tools.

The SMIS group of Eindhoven University of Technology developed two software products: ExSpect

and Woflan. ExSpect (http://www.exspect.com) is a simulation tool based on Petri nets which can

interface with workflow products such as COSA (Software Ley), BaanERP/DEM (Baan), and Protos

(Pallas Athena). Woflan (http://www.win.tue.nl/~woflan/) is a workflow verification tool which uses

state-of-the-art Petri-net-based techniques to verify the correctness of a workflow specification.

Woflan is designed as a WFMS-independent analysis tool. In principle it can interface with many

workflow management systems. At the moment, Woflan can interface with the workflow products

COSA (Software Ley), METEOR (LSDIS), and Staffware (Staffware), and the BPR-tool Protos

(Pallas Athena). The fact that we provided a translation from XRL to Petri nets allows us, in principle,

to use both ExSpect and Woflan. Currently, we are working on an automatic translation from XRL to

Woflan. It is fairly straightforward given the mapping presented in this section.

6. Complete Examples

Now we turn to show how these various constructs can be integrated to design a complete workflow

routing schema for the mail order processing example described in Section 2.2. Figure 22 gives the

XRL description while Figure 23 shows a graphical representation. The various control constructs are

shown within ovals in Figure 23, while the actual tasks or steps are inside rectangles.

The route element denotes the start of the route. It has a reference attribute to uniquely identify an

instance. Next there is a parallel_sync element which contains three branches. In each branch an

inquiry is made with a publisher about whether it can provide a book in a timely manner. These three

inquires are made in parallel. After the parallel_sync construct finishes the condition element

checks if at least two of the publisher inquiry steps were completed with a result value of "ok". If so,

the while_do loop is used to find a shipper. The loop is required because if the first shipper that is

contacted is unable to perform the work then another one may have to be contacted, presumably from

33

a list of shippers. The next construct in the workflow is a parallel_no_sync that consists of

three parallel branches. In each branch, an order is confirmed with one of the publishers. Moreover,

an event is associated with each of these tasks. The events will be triggered when the publishers ship

the orders. Finally, there is a while_do loop that repeats as long as there is a pending event. Inside

this loop, there is a wait_all element that includes a timeout element with a relative time of 2

days. The wait_all element is followed by the billing task. Thus, the semantics here is that partial

(or full) billing should occur at two-day intervals if during the preceding two days some new shipment

event has occurred. At this point the customer will be billed for all partial shipments that occurred

during the preceding 2-day window. Eventually, when all the shipments are done, the workflow

instance is completed.

<?xml version="1.0"?>
<!DOCTYPE route SYSTEM "xrl.dtd">
<route name="example" created_by="Wil" date="120999">
 <sequence>
 <parallel_sync>

<task name="publ1" address="www.taskserver.com/publ1"/>
 <task name="publ2" address="www.taskserver.com/publ2"/>

<task name="publ3" address="www.taskserver.com/publ3"/>
 </parallel_sync>
 <condition condition="(publ1.result=’OK’ and publ2.result=’OK’)

 or (publ1.result=’OK’ and publ3.result=’OK’)
 or (publ2.result=’OK’ and publ3.result=’OK’)">

 <true>
 <sequence>

<while_do condition="find_shipper.result=’OK’">
 <task name="find_shipper"

 address="www.taskserver.com/find_shipper"/>
 </while_do>

<parallel_no_sync>
 <condition condition="publ1.result=’OK’">

<true>
 <sequence>

 <task name="confirm_order1"

address="www.taskserver.com/confirm1"/>
 <task name="ship_order1"
 address="www.taskserver.com/order1">

 <event name="e_order1"/>
 </task>

 </sequence>
 </true>

 </condition>
 <condition condition="publ2.result=’OK’">

 <true>
 <sequence>
 <task name="confirm_order2"

address="www.taskserver.com/confirm1"/>
 <task name="ship_order2"

address="www.taskserver.com/order2">
 <event name="e_order2"/>

 </task>
 </sequence>
 </true>

34

 </condition>
 <condition condition="publ3.result=’OK’">

 <true>
 <sequence>
 <task name="confirm_order3"

 address="www.taskserver.com/confirm3" />
 <task name="ship_order3"
 address="www.taskserver.com/order1">

 <event name="e_order3"/>
 </task>
 </sequence>
 </true>

 </condition>
 </parallel_no_sync>

 <while_do condition = "(publ1.result = ’ok’ AND
not_done(e_order1))
 or (publ2.result = ’ok’ AND not_done(e_order2))

 or (publ3.result = ’ok’ AND not_done(e_order3))">
 <sequence>
 <wait_all>
 <timeout time = "2 days" type = "relative" />
 </wait_all>
 <task name="billing_partial"
 address ="www.taskserver.com/billing_partial" />
 </sequence>

 </while_do>
 </sequence>
 </true>
 </condition>
 </sequence>
</route>

Figure 22: Routing schema description for the mail order example.

Result

 Parallel_sync

/Parallel_sync

Parallel_no_sync

/ Parallel_no_sync
While_do

Condition

/While_do

/While_do

While_do

 Publ1 Publ2 Publ3

Find_Shipper

 Partial_Billing

 Confirm_
Order1

Confirm_
 Order2

Confirm_
Order3

Route

/Route

Result

Result
 Ship_ Order1 Ship_ Order1 Ship_ Order

Condition ConditionCondition

/Condition/Condition/Condition

Wait_all Timeout /Wait_all

/Condition

Figure 23: Graphical representation of the routing schema for the mail order example.

35

The second XRL schema is given in Figure 24 and relates to the healthcare example discussed in

Section 2.3 (see Figure 4). This example involves the complex set of interactions between a patient,

his/her Primary Care Provider (PCP), an orthopedist (specialist) and the Managed Care Organization

(MCO). This workflow is required when the PCP decides to refer the patient to a specialist; however,

it requires prior approval from the MCO. The first task in this workflow is the request to the MCO for

approval of the referral. If the approval is obtained (i.e., result = "ok"), then an appointment is made

with the specialist, else the patient is notified that the request for a specialist visit was rejected and the

workflow is terminated. After approval is received, the specialist does a checkup, and sends a report

and an invoice to the PCP and the MCO. This is followed by approval of the invoice by the MCO

along with payment instructions to the bank. Finally, the while_do loop checks repeatedly to ensure

timely payment is made by the bank. If payment has not been made within 7 days, a reminder is sent

to the bank. Thus, exception processing can be done within our framework. See Figure 25 for an

illustration of this workflow.

<?xml version="1.0"?>
<!DOCTYPE route SYSTEM "xrl.dtd">
<route name="example" created_by="Akhil" date="012200">

<sequence>
<task name="pcp_req_approval" doc_read="case_info.doc"

 address="www.xyz.com/req_approval"/>
 <condition condition="pcp_req_approval.result = ’ok’ ">

 <true>
 <task name="pcp_req_appointment"

doc_read="case_info.doc"
 address="http://www.xyz.com/req_appointment"/>

 </true>
 <false>

 <sequence>
 <task name="pcp_cust_notify" doc_create="notify.doc"

 address="http://www.xyz.com/cust_notify"/>
 <terminate/>

 </sequence>
 </false>

 </condition>
 <task name="ortho_checkup" doc_read="case_info.doc"

 doc_create="report.doc,invoice.doc"
address= "www.checkup.com"

 notify = "pcp@pcp.com,mco@mco.com"/>
 <task name="MCO_approve_payment" address="www.approve_pay.com"

 notify="transfers@bank.com"/>
 <while_do condition="bank_pays_ortho.result != OK">

 <sequence>
 <parallel_no_sync>

 <task name="bank_pays_ortho"
 address="payment.bank.com"

notify="ortho@ortho.com,mco@mco.com,pcp@pcp.co">
 <event name="e-pay"/>

 </task>
 <wait_any>

 <timeout time="7days" type="relative"/>
 <event_ref name="e-pay"/>

 </wait_any>
 </parallel_no_sync>
 <condition condition="bank_pays_ortho.result ’NOT OK’">

 <true>

36

 <task name="reminder_to_bank"
 address="www.remind.xyz.com"

 doc_create="reminder.doc"/>
 </true>

 </condition>
 </sequence>

 </while_do>
 </sequence>
</route>

Figure 24: Routing schema description for the health care example.

Result

 Sequence

Condition

While_do

 pcp-req_approval

Pcp_req_
appointment

 Ortho_checkup

Route

Wait_any

Timeout

/Wait_any

 MCO-approv_
payment

Parallel_no_sync

 Bank_pays_ortho

/Parallel_no_sync

Condition

 Reminder_to
bank

/Condition

/While_do

 /Sequence
/Route

 Sequence

 /Sequence

Pcp_cust_
notify

Figure 25: Illustration of the routing schema for the health care example.

7. Conclusions

This paper presented a complete framework for implementing inter-organizational

workflows. The workflow is specified in XRL, a routing language, based on XML. The

semantics of XRL was expressed in terms Petri nets by providing a direct mapping from each

routing element to a Petri net construction. Thus, any workflow can be expressed in XRL

and then translated into a Petri net representation, which lends itself easily to analysis. A full

DTD for the schema has also been given to enable users to build their routing slips or

schemas according to it and validate it using a standard XML tool.

We are currently building a prototype that would implement this approach according to the

architecture described in Section 3. This prototype benefits from the fact that it is based on

37

both XML and Petri nets. Standard XML tools can be deployed to parse, check, and handle

XRL documents. The Petri net representation allows for a straightforward and succinct

implementation of the workflow engine. XRL constructs are automatically translated into

Petri net constructs. One the one hand, this allows for an efficient implementation. On the

other hand, the system is easy to extend: For supporting a new routing primitive, only the

translation to the Petri net engine needs to be added and the engine itself does not need to

change. Last-but-not-least, the Petri net representation can be analyzed using state-of-the-art

analysis techniques and tools. For example, given a representation of a workflow in terms of

Petri nets, our verification tool Woflan [8,9] can detect design errors.

References

1. Aalst, W.M.P. van der and K. Anyanwu, "Inheritance of Interorganizational Workflows

to Enable Business-to-Business E-commerce," In Proceedings of the Second International

Conference on Telecommunications and Electronic Commerce (ICTEC’99), pages 141-

157, Nashville, Tennessee, October 1999.

2. Aalst, W.M.P. van der and T. Basten, "Inheritance of Workflows: An approach to

tackling problems related to change," Computing Science Reports 99/06, Eindhoven

University of Technology, Eindhoven, 1999.

3. Aalst, W.M.P. van der, "Generic Workflow Models: How to Handle Dynamic Change

and Capture Management Information." In M. Lenzerini and U. Dayal, editors,

Proceedings of the Fourth IFCIS International Conference on Cooperative Information

Systems (CoopIS’99), pages 115-126, Edinburgh, Scotland, September 1999. IEEE

Computer Society Press.

4. Aalst, W.M.P. van der, T. Basten, H.M.W. Verbeek, P.A.C. Verkoulen, and M.

Voorhoeve. "Adaptive Workflow: On the Interplay between Flexibility and Support." In

J. Filipe and J. Cordeiro, editors, Enterprise Information Systems, pages 61-68. Kluwer

Academic Publishers, Norwell, 2000.

5. Aalst, W.M.P. van der, "Interorganizational Workflows: An Approach based on Message

Sequence Charts and Petri Nets," Systems Analysis - Modelling - Simulation, 34(3):335-

367, 1999.

38

6. Aalst, W.M.P. van der, "Loosely Coupled Interorganizational Workflows: Modeling and

Analyzing Workflows Crossing Organizational Boundaries," Information and

Management, 37(2):67-75, March 2000.

7. Aalst, W.M.P. van der, "Process-oriented Architectures for Electronic Commerce and

Interorganizational Workflow," Information Systems, 24(8), 2000 (in print).

8. Aalst, W.M.P. van der, "The Application of Petri Nets to Workflow Management," The

Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

9. Aalst, W.M.P. van der, "Woflan: A Petri-net-based Workflow Analyzer," Systems

Analysis - Modelling - Simulation, 35(3):345-357, 1999.

10. Adam, N.R., V. Atluri, and W. Huang, "Modeling and Analysis of Workflows using Petri

Nets," Journal of Intelligent Information Systems, 10(2):131-158, 1998.

11. Alonso, G., C. Mohan, R. Gunthor, D. Agrawal, et.al., "Exotica/FMQM: A persistent

message-based architecture for distributed workflow management," Proceedings of IFIP

Working Conference on Information Systems Development for Decentralized

Organizations (ISDO ’95), Trondheim, Norway, 1-18 (1995).

12. Arntzen, B.C., G.G. Brown, T.P. Harrison, and L.L. Trafton, "Global supply chain

management at Digital Equipment Corporation," Interfaces Vol.25, no.1, 69-93 (1995).

13. Barbuceanu and Fox., "Coordinating multiple agents in the supply chain," Proceedings of

the 5th Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,

June 1996.

14. Bray, T., J. Paoli, and C.M. Sperberg-McQueen, "Extensible Markup Language (XML)

1.0", REC-xml-19980210, http://www.w3.org/TR/REC-xml, W3C, 1998.

15. Ellis, C.A. and G.J. Nutt, "Modelling and Enactment of Workflow Systems," In M.

Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, Volume 691 of

Lecture Notes in Computer Science, pages 1-16, Springer-Verlag, Berlin, 1993.

16. Fan, M., J. Stallaert and A.B. Whinston, "A Web-based Financial Trading System," IEEE

Computer, Volume 32, No. 4, April 1999.

17. Fingar, P., "Enterprise Architecture for Open Ecommerce," Component Strategies,

February 1999.

18. Ford. W. and M. Baum, Secure Electronic Commerce, Prentice-Hall, (1997).

39

19. Georgakopoulos, D., M. Hornick, and A. Sheth, "An overview of workflow management:

from process modelling to workflow automation infrastructure," Distributed and Parallel

Databases, vol. 3, no. 2, 119-153 (1995).

20. Ghundavaram, S., CGI Programming on the Worldwide Web, O’Reilly, (1996).

21. Glushko, R., J. Tenenbaum and B. Meltzer, "An XML framework for agent-based E-

commerce," Communications of ACM, Vol. 42, No. 3, March 1999.

22. IEEE Computer, Special Issue on Electronic Commerce, vol. 30, no. 5, May (1997).

23. Jablonski, S. and C. Bussler, "Workflow Management: Modeling Concepts, Architecture,

and Implementation," International Thomson Computer Press, London, UK, 1996.

24. Jutla, D., et.al, "Making business sense of Electronic Commerce," IEEE Computer,

Volume 32, No. 3, March 1999.

25. Kalakota, R. and A.B. Whinston, Frontiers of Electronic Commerce, Addison-Wesley,

Reading, Massachusetts, 1996.

26. Keller, G and T. Teufel, SAP R/3 Process-oriented Implementation, Addison Wesley,

1988.

27. Krol, E., The Whole Internet, O’Reilly and Associates, Second ed. (1994).

28. Kumar, A. and Zhao, J.L. "Dynamic Routing and Operational Integrity Controls in a

Workflow Management System," Management Science, Volume 45, No. 2, February

1999, 253-272.

29. Lawrence, P., editor. Workflow Handbook 1997, Workflow Management Coalition. John

Wiley and Sons, New York, 1997.

30. Lee, H.L. and C. Billington, "The evolution of supply-chain-management models and

practice at Hewlett-Packard," Interfaces vol.25, no.5, 42-63 (1995).

31. Lee, R.M., "Distributed Electronic Trade Scenarios: Representation, Design,

Prototyping," International Journal of Electronic Commerce, 3(2):105-120, 1999.

32. Maes, P., et al., "Agents that buy and sell," Communications of ACM, Vol. 42, No. 3,

March 1999.

33. Merz, M., et al. "Supporting electronic commerce transactions with contracting services."

International Journal of Cooperative Information Systems, Dec. 1998, vol.7, (no.4):249-

74.

40

34. Reisig, W. and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, Volume

1491 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998.

35. Segev, A., J. Porra and M. Roldan. "Internet-based EDI strategy," Decision Support

Systems, Nov. 1997, Vol.21, (No.3):157-70.

36. Sheth, A.P., W.M.P. van der Aalst and I.B. Arpinar, "Processes Driving the Networked

Economy: ProcessPortals, ProcessVortex, and Dynamically Trading Processes," IEEE

Concurrency, 7(3):18-31, 1999.

37. Sorenson, J. and L. Wood, "Document Object Model Requirements," WWW

Consortium," http://www.w3.org/TR/WD-DOM/requirements.html, (1998).

38. St. Laurent, S., XML: A Primer, New York : MIS: Press, (1997).

39. Teich, J., H. Wallenius and J. Wallenius, "World-Wide-Web technology in support of

negotiation and communication," International Journal of Technology Management,

1999, vol.17, (no.1-2): 223-38.

40. Zwass, V., "Electronic commerce: structures and issues," International Journal of

Electronic Commerce, 1(1):3-23, 1996.

41

Appendix 1

The data type definition (DTD) file for the workflow specification

<!ENTITY % routing_element
"task|sequence|any_sequence|choice|condition|parallel_sync|
 parallel_no_sync|parallel_part_sync|wait_all|wait_any|while_do|
 stop|terminate">
<!ELEMENT route (%routing_element;)>
<!ATTLIST route name ID #REQUIRED
 created_by CDATA #IMPLIED
 date CDATA #IMPLIED>
<!ELEMENT task (event*)>
<!ATTLIST task name ID #REQUIRED
 address CDATA #REQUIRED
 doc_read NMTOKENS #IMPLIED
 doc_update NMTOKENS #IMPLIED
 doc_create NMTOKENS #IMPLIED
 result CDATA #IMPLIED
 status (ready|running|enabled|disabled|aborted) #IMPLIED
 start_time NMTOKEN #IMPLIED
 end_time NMTOKEN #IMPLIED
 notify CDATA #IMPLIED>
<!ELEMENT event EMPTY>
<!ATTLIST event name ID #REQUIRED>
<!ELEMENT sequence ((%routing_element;|state)+)>
<!ELEMENT any_sequence ((%routing_element;)+)>
<!ELEMENT choice ((%routing_element;)+)>
<!ELEMENT condition (true|false)*>
<!ATTLIST condition condition CDATA #REQUIRED>
<!ELEMENT true (%routing_element;)>
<!ELEMENT false (%routing_element;)>
<!ELEMENT parallel_sync ((%routing_element;)+)>
<!ELEMENT parallel_no_sync ((%routing_element;)+)>
<!ELEMENT parallel_part_sync ((%routing_element;)+)>
<!ATTLIST parallel_part_sync number NMTOKEN #REQUIRED>
<!ELEMENT wait_all (event_ref|timeout)+>
<!ELEMENT wait_any (event_ref|timeout)+>
<!ELEMENT event_ref EMPTY>
<!ATTLIST event_ref name IDREF #REQUIRED>
<!ELEMENT timeout (%routing_element;)*>
<!ATTLIST timeout time CDATA #REQUIRED
type (relative|s_relative|absolute) "absolute">
<!ELEMENT while_do (%routing_element;)>
<!ATTLIST while_do condition CDATA #REQUIRED>
<!ELEMENT stop EMPTY>
<!ELEMENT terminate EMPTY>
<!ELEMENT state (event+)>

