h " The XMP Toolkit
Adobe

Version 2.8

September 14, 2001

ADOBE SYSTEMS INCORPORATED
Corporate Headquarters

345 Park Avenue

San Jose, CA 95110-2704

(408) 536-6000
http://www.adobe.com

Copyright © 2001 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No
part of this publication (whether in hardcopy or electronic form) may be reproduced or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, PostScript, the PostScript logo, and XMP are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. Windows and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Apple,
Macintosh, and QuickTime are trademarks of Apple Computer, Inc., registered in the United
States and other countries. UNIX is a trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of
their respective owners.

This publication and the information herein is furnished AS IS, is subject to change
without notice, and should not be construed as a commitment by Adobe Systems
Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for
any errors or inaccuracies, makes no warranty of any kind (express, implied, or
statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes, and noninfringement of
third party rights.

Chapter

1.1
1.2
13
1.4
15
1.6

Chapter

21
2.2
2.3

Chapter

3.1
3.2
3.3

3.4
3.5
3.6

3.7

3.8
3.9
3.10

The XMP Toolkit

Contents

1 Preface1
About This Document e 1
AudienCce e e 1
ASSUMPLIONS e e e e e 1
How This Document Is Organized i 1
Conventions used inthisDocument 2
Where to Go for More Information 2
2 The XMP Toolkit3

OVEIVIEW o o o e e e s e 3
The XMP Toolkit e e e 3
Implementation Notes e e 4
2.3.1 OVEIVIEW e e e 4
2.3.2 Construction and Destruction e 4
2.3.3 Memory Management. e e e e e e 5
2.3.4 Styleand Conventions. 5

3 MetaXAP. 00000009

MetaXAP OVEerview e e e e e e e 9
Introduction. L L e e e 9
Path Composition e e 10

3.3.1 XPathSyntax e 12
Property Value Features e e 14
Standard Attributes. L 15
MetaXAP Class e e 15

3.6.1 Storage Management e e e e e e 15
Important Types Used In MetaXAP e 16

3.7.1 Namespace Constants i e e 18
MetaXAP Member Functions L 19
MetaXAP Static Functions (Class Methods) 37
XAPPaths Class e e 43

14 Sept 01

Contents

Chapter 4 Utility XAP .

4.1 UtilityXAP
4.2 UtilityXAP Static Functions (Class Methods).

Appendix A XMP Toolkit Exceptions .
Appendix B Runtime Flow of Control.

Appendix C XMP Toolkit Function List .

14 Sept 01

.45

............. 45
............. 45

.55

.59

.69

The XMP Toolkit

1.1

1.2

1.3

1.4

The XMP Toolkit

Preface

About This Document

This Preface contains information about this document, describes its organization and the
conventions used in the document, and where to go for additional information.

Audience

The audience for this document includes developers of applications who have licensed the
XMP Toolkit.

Assumptions

This document assumes that you are familiar with the XMP specification, and that you are
familiar with C++ and an appropriate development environment.

How This Document Is Organized

In addition to this preface, this document consists of the following chapters:

Chapter 2: The XMP Toolkit
Contains an overview of the XMP Toolkit, and a short section on implementation notes.

Chapter 3: MetaXAP

Describes the MetaXAP Class, which provides tools for reading, writing, and manipulating
XMP metadata. MetaXAP is the primary interface to the XMP Toolkit.

Chapter 4: UtilityXAP

Describes the UtilityXAP class, a variety of special purpose utilities to simplify common uses
of MetaXAP.

Appendix A: XMP Toolkit Exceptions

Lists the C++ exceptions that can be raised through the use of the XMP Toolkit member
functions.

Appendix B: Runtime Flow of Control

Provides a detailed roadmap that follows the most important paths through the code.

14 Sept 01 1

1 Preface
Conventions used in this Document

Appendix C: XMP Toolkit Function List
Lists the XMP Toolkit functions along with a brief description of what each one does.

1.5 Conventions used in this Document

The following type styles are used for specific types of text:

Typeface Style Used for:

Serifed Roman Italic Caps Values. For exampld,RUE NULL, etc.

Sans serif bold XMP property names. (Always prefaced with “xap” and
a single colon. For exampleap:MetadataDate.

Monospaced Regul ar All C++ Code, function parameters, file names, etc.

Monospaced Bol d Member function names in text

1.6 Where to Go for More Information

The main reference to be used in conjunction with this docum&Mis— Extensible
Metadata Platformwhich contains the specification of XMP schemas, properties, value types,
and the interchange format.

In addition, the following Internet standard may be of use (a longer list of standards used in
XMP is included inXMP — Extensible Metadata Platfoym

IETF Standard for Language Element Values (RFC 1766):
http://www.ietf.org/rfc/rfc1766.txt?number=1766

2 14 Sept 01 The XMP Toolkit

http://www.ietf.org/rfc/rfc1766.txt?number=1766

2.1

2.2

The XMP Toolkit

The XMP Toolkit

Overview

This document describes the XMP Toolkit which was designed to help applications with
handling XMP operations such as the creation and manipulation of metadata. The availability
of the Toolkit makes it easier for developers to support XMP metadata, and helps to
standardize how the data is represented and interchanged. The XMP Toolkit can be licensed,
royalty-free, from Adobe Systems.

This chapter includes a brief overview of the key features of the Tookit and provides some
basic implementation notes.

The XMP Toolkit

The XMP Toolkit features a C++ interface which uses some modern (ANSI) features, such as
exceptionsSTL stringsandbool. It uses conservative coding and interface design for
maximum portability and to make it easier for applications to adopt.

NoTe: Many namespaces, keywords, and related names in this document are prefaced with the
string “XAP", which was an early internal code name for XMP metadata. Because
Acrobat 5.0 used those names, they were retained for compatibility purposes.

The XMP Toolkit consists of two parts:

. MetaXAPmanages the metadata for a managed resource such as an application document
file. It defines the objects that act as containers for properties relating to a specific
document, and is the primary interface to the XMP Toolkit. MetaXAP provides the top
level abstraction for metadata about a document. Nodes are accessed via string pathnames
which use a simplified form of XPath strings (XML Path Language:
http://www.w3.org/Tr/xpath)

« UtilityXAP provides a variety of special purpose utilities to simplify common uses of
MetaXAP. For example, MetaXAP reads and writes property values as strings. UtilityXAP
has services that include conversion to or from integers and other types.

XMP metadata properties are organized by schema3 ge¥MP Metadata Framewofkr
more information about XMP schemas). In RDF, the schema is defined by a namespace
attribute. Within each schema, properties are namedpaghastring This path string has a
very simple syntax which is modelled on the XPath standard.

The full XMP data model is supported, including values that are simple literals, nested
descriptions, and structured containers. Applications should include ongRiieol ki t . h
file, and optionally thékt i Ii t yXAP. hfile.

In addition, the following points apply to the XMP Toolkit:

14 Sept 01 3

http://www.w3.org/Tr/xpath
http://www.w3.org/Tr/xpath

The XMP Toolkit
Implementation Notes

2.3

2.3.1

2.3.2

o Ituses STL <string> and <stdexcept>.
« Error conditions are handled with exceptions.

« The release version of the Toolkit will not caXi t () orabort () (Debug configuration
uses theassert () macro).

o All strings are UTF-8 encoded.
« PassingNULL as a parameter is a fatal error unless otherwise specified.

Also, the XMP Toolkit provides minimal thread safety, as follows: multiple threads accessing
distinct objects are thread-safe (no globals), and multiple threads accessing the same shared
object are thread-safe for read operations, including enumeration/iteration. If any thread
wishes to do a write while there may be other threads doing reads, the client is expected to
provide mutual exclusion. Also, certain globally static structures are not locked: the client is
expected to provide mutual exclusion, as indicated in the descriptive text.

Implementation Notes

The following sections give an overview of how the Toolkit is put together. You should read
this document in combination with the comments in various header files. Begin with the
implementation notes in this chapter, and then progress to the introductory sections of the
chapters on “MetaXAP” (sectiorg1 through3.6), and finally, “UtilityXAP.” For a detailed
view of how the XMP Toolkit works, see Appendix ‘BRuntime Flow of Contraol

Overview

The XMP Toolkit implements one main objetetaXAP UtilityXAP is a collection of static
utility functions. Various smaller objects, suchXasPClockandXAPPaths are used to
support the main objects. They are described later in this document.

Construction and Destruction

Most clients start by constructing a MetaXAP object.

As explained in thékt aXAP. h header file, MetaXAP is a Handle class. The only member
variable is the opaquéAPTk_Dat a* m dat a. At construction time, a new XAPTk_Data
object is created. Se@PTkDat a. h for its member variables, which are initialized on
construction.

The MetaXAP constructor that takes a XAPClock creates an object capable of tracking
changes to the metadata with timestamps.

The MetaXAP constructor that also takes a buffer of XML is a convenience. It is equivalent to
calling the default constructor, and immediately calieg) aXAP: : par se.

14 Sept 01 The XMP Toolkit

2.3.3

2.3.4

The XMP Toolkit

The XMP Toolkit
Implementation Notes

A MetaXAP object can be used without parsing. You just create properties in it with
Met aXAP: : set andMet aXAP: : creat eFi r st | t em However, most objects will be filled
up by parsing XML. This is done with tiMet aXAP: : par se function.

Copy construction for MetaXAP is prohibited. Instead] ane static function is provided.
These objects manage large and complex data structures; making unintentional copy
construction very expensive, which is why they are prohibited.

Destruction deletes thé\PTk_Dat a object, which in turn deletes all of the memory allocated
for its member variables.

Memory Management

Any non-const data structure returned to the client is a copy. It is up to the client to free it.
Const structures are owned by the XMP Toolkit.

When strings and other data structures are output parameters for functions, they are specified
as non-const reference variables. This guarantees that storage control remains with the client.
Direct return of objects is avoided in order to avoid unintended copy construction.

Style and Conventions
The following is an unordered list of items that will help you understand and navigate through
the code.

Naming Styles

Table2.1, “Naming Styles used in the XMP Tooflists the naming styles used for the XMP
Toolkit.

TABLE 2.1 Naming Styles used in the XMP Toolkit

Item Naming Style
Types Ti t | eCase, sometimes withPr ef i x_Under bar
Module Functions Titl eCase

Class Static Functions Titl eCase (Q assNane: : Ti t| eCase)
Member Functions i nitial Lower M xedCase
Public Enum Members xap_al | _| ower _case_wi t h_underbars

Private Enum Membersi ni ti al Lower M xedCase

14 Sept 01 5

The XMP Toolkit
Implementation Notes
Names Of Constants And Types

Public typesparticularlyenums begin with ‘XAP" with no underbar. Examples are
XAPFeat ur es andXAPSt r uct Cont ai ner Type. Most are defined iKAPDef s. h, though a
few are defined in the class header file that they are most closely associated with.

Public constantssuch as namespace names, begin W##™*. For exampleXAP_NS XAP.
These are also defined XAPDef s. h.

Public enummembers begin withkap_". For examplexap_bag.

Package constantdegin with XAPTK ", Most are defined iXAPTkdef s. h. For example:
XAPTK_ATTR XM._LANG

Names Of Exceptions

With the exception ofap_no_mat ch, all exceptions beginkap_bad” and are derived from
eitherxap_error (same sense as the Java Error classgmrcl i ent _faul t (same sense as
the Java Exception class). S&PExcept . h.

XAPTk_Composite Types, Module Symbols

The header fil&XAPChj W apper . h contains data-structure typedefs built up from STL
building blocks. The naming convention for these, are as follows:

TABLE 2.2 Typedef Naming Convention

STL Name Pattern Example

std:: map XAPTK_{ Foo} By{ Bar} XAPTK_StringByString
std: :vector XAPTK_Vect or Of { Foo} XAPTK_Vector(f String
std::pair XAPTk_Pai r O { Foo} XAPTKk_Pair String
std::stack XAPTK St ack(f { Foo} XAPTK_StackCf String

Where{ Foo} and{Bar} are one of the abbreviations (that is, either @& I'ng” or “Pai r”)
in the second column in the following table:

Expression Abbreviation
std::string String
std::pair Pai r

There are also some types in #¥#Tk: : nanespace that are more implementation specific.
In these casgd-oo} or{Bar} describe the intended usage, rather than the base type, for
example:

6 14 Sept 01 The XMP Toolkit

The XMP Toolkit
Implementation Notes
XAPTK: : Vect or O Pr ops

XAPTK: : St ackCf NSDef s

The name of a class is used as a prefipémkageglobal functions. For example,
Met aXAP_Col | ect Al i ases is a global function defined vkt aXAP. cpp.

On the other hand, when {class} is used as a prefix for variables, it means they are module
static (private). For exampliet axXAP_nsMap is a static module function &kt aXAP. cpp.

As described abov&XAPTk _was used prior to the introduction of t&PTk: : namespace.

The XMP Toolkit 14 Sept 01 7

The XMP Toolkit
Implementation Notes

8 14 Sept 01 The XMP Toolkit

3.1

3.2

The XMP Toolkit

MetaXAP

MetaXAP Overview

This section describes the MetaXAP Class of the XMP Toolkit, which is used to read, write,
and manipulate XMP metadata embedded in, or associated with, managed resources.

Introduction

MetaXAP is a container class equivalent to the <RDF>...</RDF> element.

A single instance of the MetaXAP class represents the metadata about one resource
(application file). A MetaXAP object contains the internal tree representation of a parsed XML
stream of XMP metadata. The nodes of this tree are accessed through namespace and
pathname strings. Input and output is based on a very simple cross-platform buffer-stream
mechanism. Basically, you construct MetaXAP with a buffer of XML, you do read/writes on
the in-memory model, and then you get a buffer of potentially modified XML back.

MetaXAP enables clients to:

« define namespaces

« get and set property values and attributes
« parse existing RDF metadata

« serialize a MetaXAP object to RDF

« enumerate all of the properties, associated with a resource, by schema, or all properties at
and below a specified partial path

MetaXAP also provides a static set of known schema namespace names (s8elTable

“Schema Namespace Constéhishich are provided as constants. When specifying a

property name, you can specify a namespace prefix only when a nested property is defined in a
namespace other than the parent property. This can happen when a property has a structured
value.

Figure3.1shows a diagram of a MetaXAP tree. Properties are organized by schema name.
Each property can be accessed with a path string, as described below.

14 Sept 01 9

MetaXAP
Path Composition

FIGURE 3.1 MetaXAP Tree Diagram

~ ~

ﬁ Schema

Schema

“http://ns.adobe.com/” “http://purl.org/

dc/elements/1.0/”

Property Property Property
“Author” "Keywords” Attribute ‘itle” Attribute
l “xml:lang” “xml:lang”
2
“John Smith”
“API" “metadata” “The XMP “La Specifica
“en-us” Toolkit” Di XMP “it”

Toolkit”

Schema

“http://ns.adobe.com/
xap/1.0/s/” \

Property

“File Disposition”

Legend:

Data structure

Schema name

O Namespace /

Property Property Property
“os” “path” “name” Path element

l l :

“UNIX” “http://atg/projects/ “xmptk.html”
xmp/”

3.3 Path Composition

The MetaXAP object contains one or more trees that represent the metadata properties. Any
value (leaf node) can be directly accessed by composing a path to the value using a string

10 14 Sept 01 The XMP Toolkit

The XMP Toolkit

MetaXAP
Path Composition

notation. Containers and attributes may also be addressed with these path strings.

The path notation is modelled on the XPath standard, but uses a very narrow subset of the
standard. This means that paths that are valid for MetaXAP are also valid in a general XPath
implementation. The converse is not true: general XPath expressions aeeessarily valid

paths for MetaXAP.

The paths specified to the MetaXAP object are all relative to an implicit document root. The
path for the Name property isldnme”, not “/ Nane”.

The paths are not literal paths that match the RDF representation exactly. For one thing, there
are multiple RDF serializations which generate the same abstract tree. Paths are normalized to
the simplified representation exemplified by the diagram above. When in doubt, use paths that
are returned by the enumerate functions.

The most obvious consequence of this is that when referring to structured containers, the
actual element that represents each iteth; | i , is elided. This means that all items of a
container are referred to with a wild card in place ofrtthie: | i item, e.g.,title/*[1]",

is the first title alternative.

Here are some examples which are based on the diagram in Figure

The paths to all of the values (leaf nodes) associated with the “http://ns.adobe.com/xap/1.0/”
namespaceX@P_NS_XAP), and the values as returned are:

Path Value

Aut hor John Smith
Keywor ds/ *[1] API

Keywor ds/ *[2] metadata

The paths to all of the values (leaf nodes) associated with the
“http://purl.org/dc/elements/1.0/” namespace (XAP_NS_DC), and their values, are:

Path Value

title/*[@mn:lang="en-us'] The XMP Toolkit Specification
title/*[@m:lang="it"] La Specifica Di XMP Toolkit

For containers, you may use theast () ” function to specify the last item in the container,
whatever it may be. So, for example, the Italian alternative of the title can be found at
“title[last()]"

Also, you can use ordinal numbers to select items in a container. The first item is “1". Thus,
the English version of the title can be accessed with the path &/ *[1] ".

14 Sept 01 11

12

MetaXAP

Path Composition

3.3.1

The paths to all of the values (leaf hodes) associated with the “http://ns.adobe.com/xap/1.0/s/”
namespaceX@P_NS XAP_S), and their values, are:

Path Value

Fil eDi sposition/*[1]/os URL
FileDi sposition/*[1]/path http://atg/projects/xmp/

Fi | eDi sposition/*[1]/ name xapi.html

In most cases, the path is specified all the way to a leaf node, but in some cases, it is useful to
specify an intermediate node, such as for the count method below. Simply compose the path to
the name of the node, and use the appropriate count terminator (**' for element children). For
example, to count the number of items that the title container has, pass the “title/*” path.

XPath Syntax

A MetaXAP object contains an XML tree. Any node can be accessed by composing a path to
the node. These paths can be simply encoded in a string. You cannot use a fully general XPath
in the XMP Toolkit. You must use paths that conform to the very narrow subset specified
below.

The path notation is modelled on tkBathstandard, but uses a very narrow subset of the
standard. This means that paths that are valid for MetaXAP are also valid in a general XPath
implementation. The converse is not true: general XPath expressiaond aeeessarily valid

paths for MetaXAP.

The following is a complete BNF of the path composition grammar:

pat h = Qwne | path '/' expr
Qane ::=nane | nane ':' nane
expr = Qwune | *[" pred ']
pred c:=ordinal | 'last()' | Qe '= literal | '@n:lang=" literal

No productions are given for ordinal, name, or literal. An ordinal is any positive, non-zero
decimal integer. Avane is a hon-qualified name (NCName) from the XML namespace
grammar. Basically, a name consists of a letter or underscore followed by zero or more letters,
digits, underscores, hyphens, or periods (for more detailsttpeéwww.w3.org/TR/REC-
xml-name}.

A literal is a normal XML quoted string; that is it is surrounded with quotes (") or apostrophes

() and does not contain the quoting character. If it is necessary to use a quote or apostrophe in
a literal, use the HTML character entity namé&guot ; ” or “' ", respectively (that is,

using character entities as escaped versions of those characters).

There are implied prefixes and functions to the path . The implied prefix is derived from the
context of the tree. Paths are always relative to that context, and begin with a child of the

14 Sept 01 The XMP Toolkit

http://www.w3.org/Tr/xpath
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names

MetaXAP
Path Composition

document node. The implied function for element and attribute leaf nodesxis(*) ", which

matches all text node children of the current context node (as specified in the full XPath
grammar, but not in this subset). See the member function descriptions and derived classes for
additional context implications.

Here is an example of a simple RDF tree that we’ll use to illustrate the syntax:

<rdf: ROF xm ns: rdf =" http://wwy wW3. or g/ 1999/ 02/ 22-r df - synt ax- ns#' >
<rdf: Description about="" xmns:ex="http://ns. adobe. com ex/0.0/" >
<ex: si npl e>0</ ex: si npl e>
<ex:struct rdf: parseType=' Resource' >
<ex: a>l</ex: a>
<ex: b>2</ ex: b>
</ ex:struct>
<ex:set>
<r df : Bag>
<rdf:1i rdf:parseType=" Resource' >
<ex: a>3</ ex: a>
<ex: b>4</ ex: b>
</rdf:1i>
<rdf:1i rdf:parseType=" Resource' >
<ex: a>b</ ex: a>
<ex: b>6</ ex: b>
</rdf:1i>
</ rdf: Bag>
</ ex:set>
<ex:text xm:lang="en >English text.</ex:text>
<ex: one- of >

<rdf: Al t>
<rdf:l1i xni:lang="en-us' >trunk</rdf:li>
<rdf:li xn:lang="en-gb' >boot</rdf:li>
</rdf:At>

</ ex: one- of >
</rdf: Descripti on>
</ rdf : RDF>

The paths to all of the leaf nodes in the RDF example given above, are shiatiei3.1

TaBLE 3.1 Path Examples

Path Value
simpl e 0
struct/a 1

The XMP Toolkit 14 Sept 01 13

MetaXAP
Property Value Features

Path Value
struct/b 2
set/*[1]/a 3
set/*[1]/b 4
set/*[2]/a 5
set/*[2]/b 6

text/ @m: I ang en

t ext English text
one-of / *[@&m : | ang="en-us'] trunk

one-of / *[@nl : | ang=' en-gb'] boot

3.4 Property Value Features

Table3.2lists the features that modify the getting and setting of property values.

TaBLE 3.2 Property Value Feature Bits.

Feature Bit Meaning
XAP_FEATURE_NONE No features, value is literal text.
XAP_FEATURE XML Value should be interpreted as XML. Example,

“<DOC>Text </ DOC>". When setting the property, your raw
XML is converted by MetaXAP into literal text, with appropriate
character entities for parsing characters. The property is stored
using an rdf:value, and qualified wittX: i s, whose value is
“XML".

XAP_FEATURE_RDF_RESCURCE Value is a URI stored as anlf : r esour ce.

XAP_FEATURE RDF VALUE Value is stored with an rdf:value. This bit is not set for
XAP_FEATURE_XM._, even though it usedf : val ue.

All features bits are mutually exclusive except %aP_RDF_RESOURCE can be combined
with XAP_RDF_VALUE.

14 14 Sept 01 The XMP Toolkit

MetaXAP
Standard Attributes
3.5 Standard Attributes

Only one standard attribute is supported xhie: | ang attribute.

Attribute Usage

xn : 1 ang Special “xml:” namespace. Specifies the language/locale of the
value. Uses RFC 1766 language codes.

3.6 MetaXAP Class

XMP metadata is a document-ordered collection of RDF description objects. These
description objects are parsed and normalized. Properties in the description objects are
organized by their schema name.

3.6.1 Storage Management

MetaXAP uses standardral | oc. h> and<new> allocators. These allocators may be
overridden at XMP Toolkit compile time by defining tk&P_CUSTOM_ALL CC definitions,
and providing an implementatio@ap_custom_alloc.file. SeeXAPTkAlloc.ifor more details.

All data passed to MetaXAP is copied. All data returned from MetaXAP is a copy that the
client is responsible for freeing. When the MetaXAP class is destroyed, all of its internally
allocated memory is freed.

In order to allow for flexible implementation of internal storage management, clients should
know the following:

o MetaXAP to MetaXAP assignment is prohibited.
« The MetaXAP copy constructor is prohibited.

The XMP Toolkit 14 Sept 01 15

16

MetaXAP

Important Types Used In MetaXAP

3.7

Important Types Used In MetaXAP

XAPDateTime
typedef struct {

short sec; /1 seconds after the mnute - [0, 59]

short mn; /1 mnutes after the hour - [0, 59]

short hour; /1 hours since mdnight - [0, 23]

short nday; /1 day of the month - [1,31]

short rmont h; /1 month of the year - [1,12]

short vyear; /1 years since 1900 (can be negative!)
short tzHour; /1 hours +ahead/-behi nd UTC - [-12,12]
short tzMn; /1 mnutes offset of UTC - [0, 59]

| ong nano; /1 nanoseconds after second (if supported)
| ong seq; /1 sequence nunber (if nano not support ed)

} XAPDat eTi ne;

This structure is used to represent dates and times from metadata, and timestamps for media
management and metadata merging. If the system clock used for time is capable of sub-second
resolution, thaéano field can be used to represent the sub-second value. If the system clock is
not capable of sub-second resolution,dbq field should be used to guarantee unique
timestamps. I5eq is zero, thenano field contains a valid sub-second value. See

Met aXAP: : XAPCl ock below.

MetaXAP:: XAPClock

cl ass XAPC ock {
publi c:
virtual void
timestanp (XAPDateTine& dt) = O;
pr ot ect ed:
virtual ~XAPd ock() {};

};

Description

Clients provide the clock used for creating timestamps. MetaXAP will never try to delete a
XAPClock object.

Even though th&XAPDat eTi nme data structure includes time zone informatdPCl ock
should only generate GMT (UTC) timestamps. Code thatsesXAP: : XAPCl ock will
check to make sure that theHour andt zM n fields are zero. If either is not, a
xap_bad_nunber exception will be thrown.

Theseqfield of XAPDat eTi ne allows flexible implementation of the timestamp function.
Consider an implementation based on a system clock that only guarantees time resolution to
the second. Since it is likely that metadata changes will happen in far less than a second, an
implementation like the following could be used:

14 Sept 01 The XMP Toolkit

MetaXAP
Important Types Used In MetaXAP

class MyXAPd ock : public XAPAQ ock {

public:
| ong m seq; // Internal counter
struct tmmlast; // Last tinestanp

virtual void
timestanp (XAPDateTi me& dt) {
struct tmnow = sysclock(); // 1-second resol ution

if (/* ... now=mlast ... */) {
dt.seq = ++mseq;
} else {
mlast = now,
mseq = 1,
}
/[* ... convert nowto XAPDateTinme, and assign to dt ... */

dt.seq = mseq;
dt.nano = 0; // W are using seq

Note that thesegfield is initialized to 1. The value O feeqis reserved to indicate that the
nanofield should be used insteadsHqis non-zeronano should be set to 0.

If the system clock has better than second resolution, to the extent that consecutive calls to
timestamp will never result in the same time,thaofield can be set to the sub-second value
instead, andeqgshould be set to 0.

MetaXAP::XAPChangeBits
typedef |ong int XAPChangeBits;

Description

Each timestamp record includes an indication of how the property was last changed. Only one
bit is set for any given record, except tRAP_CHANGE_SUSPECT may also be set for any

record. This means that only the most recent change is ever recorded. Each bit is described in
Table3.3.

The XMP Toolkit 14 Sept 01 17

18

MetaXAP

Important Types Used In MetaXAP

TABLE 3.3 XAP Change Bits

Change Bit

Meaning

XAP_CHANGE NONE
XAP_CHANGE_CREATED
XAP_CHANGE SET
XAP_CHANGE REMOVED
XAP_CHANGE_FORCED

XAP_CHANGE_SUSPECT

No change bits are set.

Property was created (defined).

Property value was set.

Property was removed (undefined)

The timestamp for this property was forced to a specified value.

There is reason to believe that the timestamp record is invalid.

3.7.1 Namespace Constants

Use these namespace constants for the specified schema descriptions.

TABLE 3.4 Schema Namespace Constants

Constant Schema Description
XAP_NS XAP XMP Core Schema
XAP_NS_XAP_G XMP Graphics

XAP_ NS XAP G | MG
XAP_NS XAP_DYN
XAP_NS XAP DYN A
XAP_NS XAP DYN V
XAP NS XAP T
XAP_NS XAP T PG
XAP_NS XAP R GHTS
XAP_NS XAP MM
XAP_NS XAP S
XAP_NS_XAP BJ

XAP_NS_PDF

XMP Graphics: Image

XMP Dynamic Media

XMP Dynamic Media: Audio
XMP Dynamic Media: Video
XMP Text

XMP Text: Paged Text

XMP Rights Management
XMP Media Management
XMP Support

XMP Basic Job Ticket
Adobe PDF

14 Sept 01

The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Constant Schema Description
XAP NS USER XMP User Defined
XAP_NS DC Dublin Core
XAP_NS_RDF RDF

3.8 MetaXAP Member Functions

public default constructor
Met aXAP ()

Description
Creates an empty object with no clock.

public construct empty with clock
Met aXAP (XAPd ock* cl ock);

Description

Creates an empty object with a clock. If ¥&P_OPTI ON_AUTO_TRACK option is enabled,
timestamps will be kept per-property for all changes, angdhavietadataDate will be set to
the last modified time of any change.

Exceptions
bad al | oc, xap_bad_nunber

The clock must not be NULL. This constructor will test the clock implementation to make
sure it generates GMT (UTC) time (the timezone fielddour andt zM n must both be
zero). If this test fails, this constructor will throwap_bad_nunber exception.

The XMP Toolkit 14 Sept 01 19

20

MetaXAP

MetaXAP Member Functions

public construct from buffer

Met aXAP (const char* xm buf ,
const long int | en,
const long int opt = XAP_OPTI ON_DEFAULT,
XAPC ock* clock = NULL);
Description

Constructs a populated MetaXAP from a single buffer of raw XML. The buffer is fed into an
XML parser, and the MetaXAP is populated with sub-objects. If there are multiple buffers, use
the default constructor instead and gall se.

The specified optionspt are enabled immediately after the empty MetaXAP instance is
created. This is particularly useful for enabling auto-tracking to capture creation dates for
properties as they are parsed (assuming they don’t already have timestamps).

If cl ock is NULL, no automatic tracking is done. Either the client does it manually with the
get/set timestamp functions (listed below), or no timestamps are generated for this metadata.

MetaXAP destructor

virtual ~MetaXAP ();

Description
Destroy this object and all internally allocated memory.

MetaXAP::append

typedef |ong int XAPFeat ures;
virtual void
append (const std::string& ns,
const std::string& path,
const std::string& value,
const bool inFront = fal se,
const XAPFeat ures f = XAP_FEATURE DEFAULT);

Description

Creates a new property with the specifiedl ue, and adds it next to the property specified by
namespacas andpat h. The path must specify a property in a structured container. The

i nFront parameter says whether to place the new value before or after the named position.
To add a property to the end of a container, uselthet‘() " specifier, for example,
“title/*[last()].” Toadd a property or attribute to the beginning of a container or list of
attributes, use the pattern[“1] ” in the path and padsRUEfori nFront .

14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Theappend function is not supported for attributes.

Examples
m append (XAP_ NS XAP, "FileD sposition/*[last()]/os", "UR");
m append (XAP_ NS XAP, "title/*[1]", "First Title", true);

All properties related to the specified property by alias or actual value that are also containers
are appended as well (Seet aXAP: : Set Al i as). For example, supposzar is an alias of

\Vehicle andAutois an alias o¥khicle If any ofCar, Auto, or\ehicleis appended, all that are
containers are appended as well.

Exceptions

bad_al |l oc, xap_bad_path, xap_bad _type, xap_bad_nunber,
xap_bad_schena

Throws exceptions for syntactically invalid paths, and for attempting to append to a property
that is not a structured container. Throvap_bad_nunber if the specified ordinal is beyond
“l'ast () ". Throwsxap_bad_schenm if ns is not registered or invalid.

MetaXAP::count

virtual size_t
count (const std::string& ns,
const std::string& path) const;

Description
Returns the number of items in the structured container specifies! fydpat h.

Example
sizet n=mcount (XAP_NS DC, "title/*"); [// nunber of |anguage alts

Exceptions
bad al |l oc, xap_bad path, xap bad_schema

Throwsxap_bad_pat h for syntactically invalid paths, or if the path does not end with “*”.
Throwsxap_bad_schena if ns is not registered or invalid.

The XMP Toolkit 14 Sept 01 21

MetaXAP
MetaXAP Member Functions

MetaXAP::createFirstitem

There are two variations:

Variation #1;

typedef |ong int XAPFeat ures;
virtual void

createFirstlitem (const std::string& ns,

const std::string& pat h,

const std::string& val ue,

const XAPSt ruct Cont ai ner Type type = xap_bag,

const XAPFeat ures f = XAP_FEATURE DEFAULT);
Description

Creates a structured container of the specified type, and setlthe of the first item at the
end of the specifiepat h, with the optionally specified features. Nodes are created as needed
to ensure that the path is complete. See next variation for examples and exceptions.

Variation #2:
virtual void
createFirstlitem (const std::string& ns,
const std::string& path,
const std::string& value,
const std::string& selectorNane,
const std::string& selectorVal,
const bool i SAttr = true,
const XAPFeat ures f = XAP_FEATURE DEFAULT);
Description

Creates a structured container of the typp_al t , and set the value of the first item at the

end of the specifiepat h, with the specifiedel ect or Nane andsel ect or Val as the

selector of the alternation, and optional features. Expressed as an XPath predicate, the selector
would be[@el ect or Name=' sel ect orVal '] if thei sAttr is TRUE otherwise it

would be | sel ect or Nanme=" sel ect or Val '] " andval ue is ignored (just pass

sel ect or Val ue or *"). Nodes are created as needed to ensure that the path is complete.

All properties related to the specified property by alias or actual value that are also containers
are created as well (sket aXAP: : Set Al i as). For example, suppos$gar is an alias of

\ehiclg andAuto is an alias offhicle If any of Car, Auto, orVehicledoes not exist and is a
container type, each is created (nothing happens to any that do exist, or are not containers).

22 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Examples

[/Create the first keyword
mcreateFirstitem (XAP_NS XAP, "Keywords", "big");

[ICeate the first Title, selected by xnt:lang of en-us
[/ The path to get this itemwould be "Title/*[@n:|lang="en-us']"
mcreateFirstltem(

XAP_NS XAP, "Title", "Your Photo", "xm:lang", "en-us");

[ICreate the first FileD sposition, selected by sub-prop os of UN X
[/ The path to get this itemwould be "FileD sposition/*[os= UN X]"
mcreateFirstltem(

XAP_ NS XAP S, "FileD sposition*, "", "os", "UNX', false);

Exceptions
bad_al |l oc, xap_bad path, xap bad type, xap_bad_schemna

Throwsxap_bad_pat h for syntactically invalid paths and for a path that leads to a property
that is already defined. Usét aXAP: : append to add additional items to the container.
Throwsxap_bad_schens if ns is not registered or invalid. Throwap_bad_t ype if nota
container.

MetaXAP::enable

typedef long int Options;
virtual void
enabl e (const Options opt,
const bool en) throw ();

Description

Enables or disables the specified option(s), suethBsOPTI ON_DEBUG. Unrecognized
options are ignored.

The options are defined in Taldé, “Option Enable Constarits

The XMP Toolkit 14 Sept 01 23

MetaXAP
MetaXAP Member Functions

TABLE 3.5 Option Enable Constants

Option When option is enabled

XAP_CPTI ON_NONE No options.

XAP_CPTI ON_DEFAULT Default options in force.

XAP_CPTI ON_ALI ASI NG ON Alias mapping occurs during property get, set, etc., (see

Met aXAP: : Set Al i as). If disabled, propertget set
etc., occurs on the specified property only. Enabled by
default.

XAP_CPTI ON_ALI AS_ OQUTPUT If enabled, all forms of aliased properties are written
when serializing. Otherwise only the base form of each
alias set is written. Disabled by default.

XAP_CPTI ON_AUTO TRACK When constructed with 6APCl ock object,
automatically modifykap: metadata properties for
media management that pertain to this metadata
instance. For example, callsdet will cause the
xap:MetadataDate and per-property timestamps to be
updated. See setup below. Enabled by default.

XAP_CPTI ON_DEBUG Pre- and post-condition checking and other assertions
are activated for the debug version of the Toolkit only.
Disabled by default.

XAP_CPTI ON_XAPMETA ONLY If enabled, the parser will only recognize RDF elements
that are descendents of the tag “xapmeta” in
XAP_NS META namespace. If disabled, the parser will
recognize all RDF elements, regardless of their location
in the XML document. See parse for more details.
Enabled by default.

XAP_CPTI ON_XAPMETA QUTPUT A xapmeta element in the XAP_NS_META namespace
is written as the outermost XML element when
serializing. Enabled by default.

Example
net a- >enabl e (XAP_CPTI ON_TAG AQ\LY, false);

24 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

MetaXAP::enumerate

The XMP Toolkit

There are three variations:

Variation #1;

virtual XAPPat hs*
enunerate (const int depth =0);

Description

Returns a pointer to an object that enumerates properties in this MetaXAP object. Properties
are listed in document order, or the order in which they were specified. Attributes are always
listed before child properties. It is the responsibility of the caller to destroy the XAPPaths
object. Changes to MetaXAP (calls to non-const member functions) are not reflected in the
XAPPaths object.

Thedept h parameter limits the depth of the enumeration. If the value is 0 (default), paths to
all leaf nodes are enumerated, regardless of the number of steps to each leaf. If the value is 1,
only the paths with one step (no slash) are generated, which correspond to the top-level nodes
of the tree. If the value is 2, paths that only have two steps (one slash) or less, and generally
include the attributes of top-level nodes if any, and children of top-level nodes, if any. And so
on.

Example
string ns, prop, val;
XAPFeat ures f;

XAPPat hs* p = m >enunerate();
whil e (p->hasMrePaths()) {
p->nextPath (ns, prop);

}

if (m>get (ns, prop, val, f)) {
cout << prop << “=" << val << endl;

}

del ete p;
delete m

Exceptions

bad_al |l oc

Variation #2:

vi rtual XAPPat hs*

enunerate (const std::string& ns,
const std::string& subPath,
const int steps = 0);

14 Sept 01 25

26

MetaXAP
MetaXAP Member Functions

Description

Returns a pointer to an object that enumerates all of the properties in the spetiftath.
Children are listed in the order they are specified, and attributes are always listed before child
properties. It is the responsibility of the caller to destroy the XAPPaths object. Changes to
MetaXAP (calls to non-const member functions) are not reflected in the XAPPaths object. The
steps parameter is described above.

Example

string ns, path, val;
XAPFeatures f;

XAPPat hs* p = m >enurrer at e(XAP_NS XAP, "TestCont");
while (p->hasMrePaths()) {

p->nextPath (ns, path);

if (m>get (ns, prop, val, f)) {

cout << prop << “=" << val << endl;
}
del ete p;
delete m
Exceptions

bad al |l oc, xap_bad path, xap bad_schema
Throwsxap_bad_schenm if ns is invalid. Throwscxap_bad_pat h if the path is invalid.

Variation #3:

typedef enum{
xap_before,
xap_at,
xap_after,
xap_noTi ne,
xap_not Def

1 XAPTi neRel Op;

virtual XAPPat hs*
enunerate (const XAPTi neRel Op op,
const XAPDat eTi me& dt,
const XAPChangeBits how = XAP_CHANGE MASK);

Description

Returns a pointer to an object that enumerates all of the properties whose last modified
timestamp has the relationdo specified byop. For example, ifit has an earlier time than
the timestamp for “Foo” (i.e., “Foo” is newer than whatever dt specifies), “Foo” would be

14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

included in the enumerationadp is xap_af t er, and would not be included if thog is
xap_at orxap_bef or e. ReturndNULL if there are no matches.

Theop xap_noTi me matches any property that does not have a timestammpprlhe

xap_not Def is ignored. The bits set how act as a filter against which properties are
included in the comparison witlp. For example, to enumerate only those properties that have
been removed sina# :

= neta->enunerate (xap_after, dt, XAP_CHANGE REMOVED);

Exceptions

bad_al | oc

MetaXAP::extractSerialization

virtual size_t
extractSerialization (char* buf,
const size t nmax);

Callextract Seri al i zat i on to incrementally extract the contents of the string saved by a
preceding call to serialize. You specify the size of your buffer with parameter. The

function returns the number of bytes (char) that were actually copied. When the function
returns 0, the extraction is complete and the private string is emptied. Subsequent calls to
extract Seri al i zat i on will result in no copies and a return value of O, useiti al i ze

is called again.

Example

const int bufMetahax = 1024,

char buf Met a] nax] ;

(void) = neta->serialize (xap _format_pretty, 0);

while (true) {
if (size == 0) break;
szz = neta->extract Serialization (bufMeta, buf MetaMax - 1);
cout->wite (bufMeta, szz);

The XMP Toolkit 14 Sept 01 27

28

MetaXAP

MetaXAP Member Functions

MetaxXAP::get

typedef |ong int XAPFeat ures;

virtual bool

get (const std::string& ns,
const std::string& path,

std::string& val ,
XAPFeat ur es& f) const;
Description

Gets the value at the property specifiechbyandpat h as a string. If any node along the
pat h does not exisget returnsFALSE otherwise it return§RUEand the string value is
copied intoval . The features of the string value, such as whether or not XML markup is
preserved, are copied into

Example

bool is;
XAPFeat ures f;
std::string v,

is =mget (XAP_NS XAP, "N cknanme", v, f);
is =mget (XAP_NS DC "title/*[@m:lang="it']", v, f);
Exceptions

bad_al |l oc, xap_bad path, xap_no_match, xap_bad_schemra

Throws exceptions for syntactically invalid paths, and paths that do not match any property
(such as trying to get item 5 from an existing simple value). Thxewsbad_schena if ns
is not registered or invalid.

MetaXAP::getContainerType

typedef enum {
xap_al t,
xap_bag,
xap_seq,
xap_sct _unknown
} XAPSt ruct Cont ai ner Type;

virtual XAPStruct Cont ai ner Type

get Cont ai ner Type (const std::string& ns,
const std::string& path) const;

14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Description

Returns the type of the specified container. géieh must specify a container type
(Met aXAP: : get For mmust returrkap_cont ai ner).

Examples

XAPSt ruct Cont ai ner Type t =
m get Cont ai ner Type (XAP_NS XAP, "Fil eD sposition");

Exceptions

bad_alloc, xap_bad_path, xap_no_match, xap_bad_schema

Throwsxap_bad_schena if ns is not registered or invalid. Throwms&p_bad_pat h if the
path is invalid. Throwgap_no_mat ch if the pat h is syntactically valid, but does not match
any defined property.

MetaXAP::getForm

typedef enum {
xap_si npl e,
xap_descri ption,
xap_cont ai ner,
xap_unknown

} XAPVal Form

vi rtual XAPVal Form

get Form (const std::string& ns,
const std::string& path) const;

Description
Returns the type of property specifiedrisyandpat h, as shown below in Tabk6.

The XMP Toolkit 14 Sept 01 29

MetaXAP
MetaXAP Member Functions

TABLE 3.6 Property Type Values

XAPValForm Meaning
xap_si npl e Path to a simple value.
xap_descri ption Path to a nested description objects. Contains other

properties as children.

xap_cont ai ner Path to a structured container. See
Met aXAP: : get Cont ai ner Type.

xap_unknown Unknown value type (treat &ap_si npl e with
parseType=“Literal").

Example
XAPVal Formvt = mgetForm (XAP_NS XAP, "FileD sposition");

Exceptions
bad_al |l oc, xap_bad path, xap no_match, xap_bad_schema

Throwsxap_bad_schema if ns is not registered or invalid. Throwms&p_bad_pat h if the
pat h is invalid. Throwsxap_no_mat ch if the pat h is syntactically valid, but does not
match any defined property.

MetaXAP::getResourceRef

virtual void
get ResourceRef (std::string& resRef) const;

Description

Returns the reference (URI) for the resource that this MetaXAP is about. Returns the empty
string “” if the description is embedded in the resource itself.

Exceptions
bad_al |l oc

30 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

MetaXAP::getTimestamp

virtual bool

getTi mestanp (const std::string& ns,
const std::string& path,
XAPDat eTi ne& dt,
XAPChangeBi t s& how) const;

Description

ReturnsFALSEIf the property specified hys andpat h is not defined. Otherwise, returns
TRUE and copies the timestamp value idta The bits irhow are set according to how the
property was changed. If there is no timestamp record for this propenys set to
XAP_CHANGE_NONE.

Example

XAPDat eTi me dt;
XAPChangeBi ts how,
Met aXAP* neta = new Met axXAP();
bool Ck = neta->get Ti nestanp (
XAP_NS XAP G IM5 "D nensions/stDmw',dt, how);

Exceptions

bad_al l oc, xap_bad_path, xap_bad_schema, xap_no_natch

Throws exceptions for syntactically invalid paths. Threnap bad_schena if ns is not
registered or invalid. Throwsap_no_mat ch if pr operty is not defined.

MetaXAP::isEnabled

vi rtual bool
i sEnabl ed (const Options opt) const throw ();

Description

Returns whether the specified option is enabled, susARSOPTI ON_DEBUG. An
unrecognized option always retuffSLSE Pass a single option bit.

The XMP Toolkit 14 Sept 01 31

MetaXAP
MetaXAP Member Functions

MetaXAP::parse

virtual void
parse (const char* xm buf,
const size t n,
const bool last = false);

Description

Parses a buffer of XML and creates the corresponding XMP objects. This function expects to
be called in the order that buffers occur for a particular XML serialization. The last buffer is
indicated by passingRUEfor | ast . It is legal for tokens, or even multibyte characters, to
cross buffer boundaries.

Only one parsing cycle should be used per MetaXAP instance (a cycle is 0 or more calls to
par se with | ast ==f al se, 1 call topar se with | ast ==t r ue). Callingpar se with

| ast ==f al se after calling it withl ast ==t r ue for the same MetaXAP instance will have
unspecified results.

Theparse function will handle any well-formed XML, and will detect RDF elements
anywhere in the XML. If thXAP_COPTI ON_XAPMETA_ONLY option is enabled, only those
RDF elements that are children of the “xapmeta” tag irKkie NS_META namespace are
recognized as XMP metadata, all others are ignored. XARe OPTI ON_XAPMETA ONLY
option is disabled, all RDF elements in the input are recognized as XMP metadata.

Calling any other functions in MetaXAP duringar se will yield undefined results.

Example

const int bufMetaMax = 1024,

char buf Met a[buf Met aMax] ;

Met aXAP* meta = new Met aXAP();

ifstreant netaFs = newifstream("netadata.xm",
ios_base::in | ios_base::binary);

if ('metaFs || netaFs->fail()) exit(-1);

try {
while (!'metaFs->eof ()) {
nmet aFs->read (buf Meta, nbuf Met aMax
net a- >parse (buf Meta, netaFs->gcount());
}
neta->parse ("\n", 1, true); // all done
}

catch (xap_bad xm & x) {
cerr << x.what() << "(" << x.getContext() << "):"
<< x.getLine() << endl;
t hrow,

32 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Exceptions
bad_al l oc, xap_bad xm, xap_bad xap

Throwsxap_bad_xnl if the XML is not well-formed (lexical error). Throwsap_bad_xap
if the RDF is invalid (parsing error).

MetaXAP::purgeTimestamps

virtual void
pur geTi nest anps (const XAPChangeBits how = XAP_CHANGE REMOVED,
const XAPDat eTi me* dt = NULL);

Description

Purges all timestamp records for properties withX®8ChangeBi t s set inhow. By default,
purges all timestamp records for properties makdafel CHANGE REMOVED. If dt is not

NULL, all timestamps that were not purged are forced to the specified timestamp, and their
XAPChangeBi t s are set t&(AP_CHANGE_FORCED. Thus, to force all timestamps to a
specific time, pas¥AP_CHANGE_NONE as the first parameter and a non-null date and time as
the second parameter.

Example

XAPDat eTi me dt;
met a- >pur geTi mest anps (XAP_CHANGE REMOVED, &dt) ;

Exceptions

bad al | oc

MetaXAP::remove

virtual void
renove (const std::string& ns,
const std::string& subPath);

Description

Removes the specified property and all of its sub-properties, if any. When a child of a
container is removed, all siblings that follow that item are renumbered. Nothing is done if
there is no property for the specified path.

All properties related to the specified property by alias or actual value are removed as well (see
Met aXAP: : Set Al i as). For example, suppos&r is an alias o¥ehicle andAutois an alias
of Vehicle If any ofCar, Auto, or\ehicleis removed, all are removed.

The XMP Toolkit 14 Sept 01 33

34

MetaXAP

MetaXAP Member Functions

Examples
mrenove (XAP_NS DC "title/*[1]");
Throws an exception if the path is invalid, or the path matches none of the nodes.

Exceptions
xap_bad _path, xap_no_match, xap_bad_schena
Throws xap_bad_schemani$ is not registered or invalid.

MetaXAP::serialize

typedef enum {
xap_format _pretty,
xap_format _conpact
} XAPFor mat Type;

const int XAP_ESCAPE CR
const int XAP_ESCAPE LF

1<<0;
1<<1,;

virtual size_t
serialize (const XAPFormat Type f = xap_format_pretty,
const int escnl =0) = 0;

Description

Serializes the MetaXAP tree as XML. Caliri al i ze to perform serialization, optionally
specifying a format anescnl for filtering linebreaks. The optionxap_format _pretty

is pretty-printed for human readability, using whitespace and indentind. ®pgon

xap_f or mat _conpact minimizes whitespace and uses the most compact representation
possible. The serialized data is kept in a private string.

Theescnl bits indicate whether line ending characters should be escaped into character refs,
using the HTML character entity namé&#kD; " for CR, and ‘
 " for LF. This allows a

client to post-filter the XML to impose line-length limitations: the unescaped version of the
line-break character can be inserted into the XML, since the XML is guaranteed not to contain
that character unescaped, unless formatted pretty (see below). A processing instruction is
added at the beginning to indicate that the filtering was applied. The processing instruction is
omitted if escnl is 0. This instruction is detected byghese function of this class, and the
corresponding unescaped linebreak characters, if any, are removed before buffers are passed to
the XML parser. If fisxap_f or mat _pr et ty, lines are formatted with a linebreak character

as follows:CRif escnl isXAP_ESCAPE_LF only, LF if escnl is XAP_ESCAPE_CR only,

CRLFif both bits are set. Returns a value of 0 if there is no metadata, and a value greater than
zero (>0) otherwise.

14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

The serialized metadata does not include (does not begin with) the standard xml prolog <?xml
...?7>. This makes it easier to embed the serialized metadata in an existing XML document
entity, such as a WebDAV property. If you are writing this serialized XML as a document
entity (e.g., into a standalone file), you should prepend an appropriate prolog, such as:

<?xm version="1.0" encodi ng="UTF- 8" ?>

If the XAP_OPTI ON_XAPVMETA QOUTPUT option is enabled, the serialized output is contained
within the single tag “xapmeta” in thé\P_NS_META namespace. If the

XAP_OPTI ON_XAPMETA_OUTPUT option is disabled, the “xapmeta” tag is omitted. In either
case, all of the metadata is contained within a single RDF element.

The serialized metadata is in UTF-8 Unicode character encoding.

Exceptions
bad_al |l oc

MetaXAP::set

The XMP Toolkit

typedef |ong int XAPFeat ures;
virtual void
set (const std::string& ns,
const std::string& path,
const std::string& val ue,
XAPFeat ur es f = XAP_FEATURE_DEFAULT);

Description

Sets the specified value at the end of the speq#ied, with the optionally specified features.
Nodes are created as needed to ensure thpatheis complete, except for items of a
structured container (sé&t axXAP: : cr eat eFi r st | t emabove ancap_bad_nunber
below). Existing values are overwritten.

Examples

mset (XAP_NS XAP, "Author", "Your Name");
mset (XAP_NS XAP G IM3 "D nensions/stDmw', "480");

All properties related to the specified property by alias or actual value are set as well (see
Met aXAP: : Set Al i as). For example, suppos&r is an alias o¥ehicle andAutois an alias
of Vehicle If any ofCar, Auto, or\ehicleis set, all are set to the same value.

Exceptions
bad_al | oc, xap_bad _path, xap_bad type, xap_bad nunber, xap_bad_schena

Throws exceptions for syntactically invalid paths, and for attempting to change the type of the
property, e.g., if “title” is a structured container (an Alt of different languages), trying to set

14 Sept 01 35

MetaXAP
MetaXAP Member Functions

title to a simple value will generatexap_bad_t ype exception. Throws a
xap_bad_nunber exception if an attempt is made to set a structured item beyond

“l ast ()”. UseMet aXAP: : append to add items to a container. Thromesp_bad_schenn
if ns is not registered or invalid.

MetaXAP::setTimestamp

virtual void

set Ti mestanp (const std::string& ns,
const std::string& path,
const XAPDat eTi ne& dt);

Description

This should only be used when manual tracking is being done by the client. Sets the timestamp
to dt . The XAPChangeBits for this property are sexA®_CHANGE_FORCED.

Example
met a- >set Ti mestanp (XAP_NS XAP G IM5 "D nensions/stDmw', dt);

Exceptions
bad_al |l oc, xap_bad_path, xap_bad schema, xap_no_nmatch

The timestamp must be GMT (UTC) time (the timezone figldsurandtzMin must both be
zero). If there is non-zero timezone information,xhe_bad_nunber exception will be
thrown. Throwscap_bad_pat h for syntactically invalid paths. Throwsap_no_mat ch for
valid pat hs that have no defined property. Throvep _bad_schena if ns is not registered
or invalid.

MetaXAP::setup

virtual void
setup (const char *const key,
const std::string& val);

Description

Some properties require metadata that only the client of this Toolkit can provide, such as the
name of the software agent using the Toolkit. Use this function to provide values to this
instance of MetaXAP for automatic tracking.

36 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

Examples

m setup (XAP_SETUP_VENDCR "Adobe");
msetup (XAP_SETUP_APP, "Phot oshop");
msetup (XAP_SETUP_VERSION, "10.0");
msetup (XAP_SETUP_PLATFCRVM "W ndows");

These example calls would allow the Toolkit to creatégentNamef “Adobe Photoshop
10.0 for Windows”.

Exceptions
bad_al |l oc

MetaXAP::setResourceRef

virtual void
set ResourceRef (const std::string& ref);

Descripton
Sets the reference to the resource (URI) that this MetaXAP is about.

Example

et a- >set Resour ceRef ("test:/resource/' about' /");

Exceptions
bad_al |l oc

3.9 MetaXAP Static Functions (Class Methods)

MetaXAP::Clone

static MetaXAP*
Clone (MetaxXAP* orig);

Description

Makes a deep-copy of the MetaXAP object g and returns it. Copies timestamps without
changing them, if any.

NoTe: Multi-threaded clients must provide mutual exclusion.

The XMP Toolkit 14 Sept 01 37

MetaXAP
MetaXAP Static Functions (Class Methods)

Examples
Met aXAP* cl one = Met axXAP: : O one(mnet a) ;

MetaXAP::EnumerateAliases
stati c XAPPat hs*
EnunerateAli ases () throw();

Description

Returns a pointer to an object that enumerates all of the aliases defined for all MetaXAP
objects. It is the responsibility of the caller to destroy the XAPPaths object. Changes to aliases
(calls toMet aXAP: : Set Al i as) are not reflected in the XAPPaths object.

NoTe: Multi-threaded clients must provide mutual exclusion.

MetaXAP::GetAlias

static bool

GetAlias (const std::string& al i asNS,
const std::string& al i asPat h,
std::string& act ual NS,
std::string& act ual Pat h,

XAPSt r uct Cont ai ner Type& cType) throw();

Description

Gets the alias for the specified path, if any. The firstairasNS andal i asPr op, specifies

a namespace and path to the property whose actual value might be found elsewhere. If there is
an alias definedict ual NS andact ual Pr op are set to the namespace and path,

respectively, of the actual property afldUEis returned. Otherwis€ALSEis returned. The

cType is also set to the container type of the actual path: if the value form is not a container,
cType is set taxap_sct _unknown.

NoTe: Multi-threaded clients must provide mutual exclusion.

Example

string nsActual, pActual;

string pActual ;

XAPSt r uct Cont ai ner Type sct;

Met aXAP: : Get Alias (XAP_NS XAP, "TestCont", nsActual, pActual, sct);

38 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

MetaXAP::Merge

typedef enum {
xap_policy_a,
xap_policy_b,
xap_pol i cy_newest,
xap_pol i cy_ol dest,
xap_pol i cy_dont _ner ge,
xap_pol i cy_ask_user

} XAPMer gePol i cy;

stati c XAPPat hs*

Merge (Met axXAP* a,
Met aXAP* b,
Met aXAP* * mer ge,
const XAPMer gePol i cy policy,
const bool j ust Check = fal se,

XAPTi meRel Op* dont MergeResult = NULL);

Description

If j ust Check is FALSEandpol i cy is notxap_pol i cy_dont _ner ge nor

xap_pol i cy_ask_user, this function creates a new MetaXAP object and returns the

pointer innmer ge, after merging the metadata in instanoeith instanceb, and copying the

resulting metadata intoer ge. Any properties defined i@ but not inb, or inb but not ina,

are defined (copied) to merge. The corresponding timestamp record is also copied unchanged.
The policy specifies what the merge does when daiidb define a property, including cases

when one has theAP_CHANGE _REMOVED bit set. The policy descriptions follow:

TABLE 3.7 Merge Policy Descriptions

Policy Meaning

xap_pol i cy_dont _er ge Just compare, see below.

xap_policy a The value in a is copied to merge.

xap_policy b The value in b is copied to merge.

xap_pol i cy_newest The latest timestamped value is copied to merge.
xap_pol i cy_ol dest The earliest timestamped value is copied to merge.
xap_pol i cy_ask_user Same agap_pol i cy _dont _nerge.

Any property with aXxAP_CHANGE _SUSPECT bit set is ignored and no change is made to
merge for that property, regardless of whether the bit is sebil. Properties with no

The XMP Toolkit 14 Sept 01 39

40

MetaXAP

MetaXAP Static Functions (Class Methods)

timestamp are treated as if they had a timestamp equal to the valgeMétadataDate. If
xap:MetadataDate is not defined, no change is made to merge for that property for
xap_pol i cy_newest orxap_policy_ol dest only.

The returned paths represent those properties in merge that were changed as a result of the
policy, or ifj ust Check is TRUE the paths for the properties that would have been copied
into merge iff ust Check had beefrALSE Does not include properties copied to merge
because they were definedaibut not inb, or vice versa. ReturdsULL if nothing is copied

to merge (merge is unchanged by the call).

Forxap_pol i cy_dont _nerge andxap_pol i cy_ask_user, no new MetaXAP object is
created and merge is left unchangegl.ui$t Check is FALSE the paths returned represent
those properties that are defined in b#ndb, but that do not have identical timestamps. If
j ust Check isTRUE NULL is returned, and dlont Mer geResul t is nonNULL, it is set to
the result of comparing theap:MetadataDate of a andb (see

UtilityXAP:: ConpareTi nest anps).

Example
Met aXAP* mergedMeta = NULL;
/1 Merge letting newer val ues override ol der val ues.

XAPPat hs* newer = Met aXAP:: Merge(ol dMet a, newMet a, &mer gedMet a,
xap_pol i cy_newest);

Met aXAP* del taMeta = NULL;

/1 Merge letting ol der val ues override newer val ues.
XAPPat hs* ol der = Met aXAP: : Merge(ol dMeta, newMeta, &del t aMet a,
xap_pol i cy_ol dest);

Exceptions

Raises all the same exceptiondvasaXAP: : enuner at e, Met aXAP: : set,
Met aXAP: : renove, Met aXAP: : cr eat eFi rst 1t em andMet aXAP: : set Ti mest anp.

MetaXAP::RegisterNamespace

static void
Regi st er Nanespace (const std::string& nsNane,
const std::string& suggestedPrefix);

Description

For serialization to XML, clients must provide a suggested prefix for each namespace that they
use. The standard namespaces (those for which a constant string is defined in this API) already
have registered prefixes. Register a namespace name (which should be a URI), and a suggested

14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

prefix for composing qualified names. Omit the composition character (such as “:” for RDF)
from the prefix. Setting or creating a property in a namespace that has not been registered will
result in an exception.

NoTe: Multi-threaded clients must provide mutual exclusion.

Example
Met aXAP: : Regi st er Nanespace("http://purl.org/dc/qualifiers/1.0/", "dcq");

Exceptions

bad al | oc

MetaXAP::RemoveAlias

static void
RenmoveAl i as (const std::string& aliasNS,
const std::string& aliasPath);

Description

Removes the specified alias from the alias map for all metadata objects. This function does not
change any metadata values. See the impad¥iatein Met aXAP: : Set Al i as, which applies
to Met aXAP: : RenoveAl i as as well.

MetaXAP::SetAlias

static void

SetAlias (const std::string& al i asNS,
const std::string& al i asPat h,
const std::string& act ual NS,
const std::string& act ual Pat h,

const XAPStruct Cont ai ner Type cType = xap_sct_unknown);

Description

Adds to the alias map for all instances of MetaXAP. Matching aliases are overwritten, new
aliases are appended. The alias is specified as two pairs of strings. The faki paiNS and

al i asPr op, specifies a namespace and path to the property whose actual value is found
elsewhere. The second paict ual NS andact ual Pr op, specifies a namespace and path to
the property for the actual value. T¢i€y pe specifies the container type, if thet ual Pat h
represents a container or container member.

The XMP Toolkit 14 Sept 01 41

42

MetaXAP

MetaXAP Static Functions (Class Methods)

Examples

[* "Author" and "Title" in the XMP core schenma are ali ases of
"creator" and "title" in the Dublin Core schema. */

const char* XAP_NS XAP = "http://ns. adobe. com xap/ 1.0/ ";
const char* XAP NS DC = "http://purl.org/dc/elements/1.0/";

Met aXAP: : Set Alias (XAP_NS XAP, "Author",

XAP NS DC, "creator/*[1]", xap_bag);
Met axXAP: : Set Alias (XAP_NS XAP, "Title",

XAP NS DC "title", xap_alt);

To determine which of two properties should be the alias, and which the actual, consider

which will be used most frequently by the broadest cross-section of users. If one property
happens to be from a broadly supported schema, such as Dublin Core, or if one property
represents an important legacy metadata format, such as IPTC, use that property as the actual,
and use the new or XMP defined property as the alias.

NoTe: Changes to the alias map made by calBetibAl i as do not automatically take
effect on existing MetaXAP instances. For this reason, it is strongly recommended
that all aliases be set prior to any MetaXAP objects being created, and then once
they are created, no new alias settings are made until all MetaXAP objects have
been destroyed.

If this is not feasible, it is possible to force an existing MetaXAP object to recognize new alias
settings. For all MetaXAP objects which have X&®_OPTI ON_ALI AS_ON enabled, toggle
the option: that is, disable it, and then enable it again, as follows:

Met axXAP* net a;

if (meta->isEnabled (XAP_CPTICN ALIAS ON)) {
nmet a- >enabl e (XAP_CPTION ALIAS O\, false);
nmet a- >enabl e (XAP_CPTION ALIAS QN, true);

}

Exceptions
bad_al |l oc, xap_bad path

Throwsxap_bad_pat h if an alias loop is defined, or if an attempt is made to make an alias
of an alias, or if an attempt is made to use a property that has previously been defined as an
actual value as an alias, or if thlei asPat h is malformed. Only single level aliases are
supported.

14 Sept 01 The XMP Toolkit

MetaXAP
XAPPaths Class
3.10 XAPPaths Class

This is a pure virtual base class, used to represent an enumeration of the paths to nodes of
metadata.

NoTEe: Itis up to the caller to destroy this object with the public destructor.
Examples fohasMr ePat hs andnext Pat h are shown witivet aXAP: : enuner at e.

XAPPaths::hasMorePaths

virtual bool
hasMor ePat hs()
const throw () = 0;

Description

ReturnsTRUEIf there are more paths in the enumeration, otherwise rétAlrSE

XAPPaths::nextPath

virtual void

nextPath (std::string& ns,
std::string& path) = 0;

Description

Copies the next namespace and path into the parameters. Calling this method after
hasMor ePat hs has returne@#ALSEwill cause the parameters to be set to empty strings.

The XMP Toolkit 14 Sept 01 43

MetaXAP
XAPPaths Class

44 14 Sept 01 The XMP Toolkit

Utility XAP

4.1 UtilityXAP

UtilityXAP is a collection of static (class) functions that provide general purpose convenience
routines.

4.2 UtilityXAP Static Functions (Class Methods)

Utility XAP::cAnalyzeStep

static bool

Anal yzeStep (const std::string& fullPath,
std::string& par ent Pat h,
std::string& | ast St ep,
long int& ord,
std::string& sel ect or Nane,
std::string& selectorVal);

Description

Removed ast st ep from the path, and separates it into component pieces.

Fromf ul | Pat h, remove the last step and assign itdst St ep, and assign the front part of
the path tgar ent Pat h. If the last step contains a predicate expression with an ordinal
(which is always greater than 0), it is assignedrtd. If the ordinal predicate is the function
| ast (), ord is set to 0. Otherwiser d is set to —1. If the predicate is a selector, such as
“*T@m :lang="fr']", sel ect or Name would be assignedami : | ang” and

sel ect or Val would be assigned “fr”. Otherwiseel ect or Nane andsel ect or Val are
assigned the empty string.

Utility XAP::CompareTimestamps

static XAPTi neRel o

Conpar eTi nest anps (Met axAP* a,
Met aXAP* b,
const std::string& ns,
const std::string& path);

The XMP Toolkit 14 Sept 01 45

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Description

Compares the property with the specified namespaeadpat h in instancea with instance
b, and returns the relation as follows:

Condition Returns
a<b @ timestamp earlier thanm) xap_bef ore
a== @ timestamp same &9 xap_at
a>b @ timestamp later thalm) xap_af ter
a?b & orb does not have a xap_noTi ne
timestamp)
(a orb not defined) xap_not Def
Example

WilityXAP:: ConpareTinestanps (nmeta, clone, XAP_NS XAP, "Nunber");

Exceptions

Raises all the same exceptiondgvasaXAP: : enuner at e and
Met aXAP: : get Ti nest anp, except thakap_no_mat ch is converted into the return value
xap_not Def .

Utility XAP::CreateXMLPacket

static void
O eat eXM_Packet (const std::string& encoding,

const bool i NPl aceEdi t CK,
const size_t padByt es,
const std::string& nl,
std::string& header,
std::string& trailer,
std::string* xm = NULL);

Description

Use this routine to compute the header and trailer string for a packet, which you use to create a
XMP packet (for information on XMP Packets, 38dP — Extensible Metadata Platfoynor
if you specify nonNULL XML data, it will also create the entire packet.

If the encodi ng is empty (*”), it defaults to UTF-8. ifnPl aceEdi t Ck is TRUE it marks
the packet as okay to edit in-place, otherwise it marks the packet as read-only.

46 14 Sept 01 The XMP Toolkit

The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

If positive, thepadByt es parameter specifies the number of bytes of whitepsace padding to
add to the packet. The padding is placed after the XML data, and before the trailer.

If padByt es is negative, its absolute value specifies the length for the completed packet, and
thexm parameter must be ndiJLL. The absolute value pladByt es must be large

enough to contain the complete packet, otherwége bad_nunber is thrown. The

appropriate amount of whitespace padding is added to provide the specified total size. This is
convenient when formatting a packet to update existing metadata in a file of unknown format.

Thenl string is the character sequence to use as a newline between the header and the xml
data ifxm is nonNULL: it can be empty ("), or some combination of well-formed XML
whitespace. The header is assigned to the string representing the computed header for the
packet, and the trailer is assigned to the string representing the computed trailer of the packet.

The characters innl specify the XML data for the packet. The same NaH-L parameter

xm is assigned the complete packet, with header, trailer, and padding added. The value of
encodi ng must match the encoding of the XML data, but no checking is done to guarantee
that it does match.

Examples
(for UTF-8 encodings):

string header, trailer;
UtilityXAP:: CreateXM.Packet ("", true, val.size(), "\n", header,
trailer, &val);

There is a second form:

static void
O eat eXM_Packet (const std::wstring& encodi ng,

const bool i NPl aceHEdi t Ck,
const size_t padByt es,
const std::wstring& nl,
std::wstring& header,
std::wstring& trailer,
std::wstring* xm = NULL);

Same a£r eat eXM.Packet above, except that all of the string parameters are 16-bit
character strings.

NoTe: This function assumes that the XML data is in the native byte order of this machine.
It generates packet header text in UCS-2 encoding, with characters in the range
U+0000 to U+007F, plus U+FEFF. This refers only to the additional material for the
packet wrapper, NOT to the data contents, which are assumed to be XML
compatible UCS-2 and are copied unchanged.

14 Sept 01 47

48

UtilityXAP

UtilityXAP Static Functions (Class Methods)

Example
(for UTF-16 encodings)

wstring wxm = L"\nThis is sone \x03a3 16-bit
text. </ B>\ n</ A>\ n";
wstring wh;
wstring wt;
UtilityXAP:: CreateXM.Packet (L"UTF-16", false,
wxm . si ze()*si zeof (wchar _t), L"\n", wh, wt, &wml);

Utility XAP::FilterPropPath

static bool

FilterPropPath (const std::string& tx,
std::string& propPath);

Description

Filters Ul text into valid XPath.

Converts a UTF-8 stringx into a valid XPath, which is also a UTF-8 strimmgopPat h. For

example, any disallowed characters, like spaces or slashes, or any Unicode characters greater
than U+007A, are converted into a series of hexidecimal digits, where every two digits
represent a byte of UTF-8. Such sequences are introduced by the character pattern “-_" and
closed with “_". If the original text contains “-_", it is escaped with “-__". If the converted
character is the initial character, the escape is modified to be “QQ-_". If such a sequence exists
in the original text, it is escaped as “QQ-__".

For example, it x is the single Unicode character U+03A3 GREEK CAPITAL LETTER
SIGMA in UTF-8 encoding, it is filtered into “QQ-_cea3_", which represents the two bytes
CE andA3 of UTF-8, in hex.

Utility XAP::GetBoolean

static bool

Get Bool ean (Met axXAP* net a,
const std::string& ns,
const std::string& pat h,
bool &val);

Description

Gets a property value as a boolean as specified laypdpat h. CallsMet aXAP: : get . If the
property is not defined, returRALSE Otherwise, the string value provided by
Met aXAP: : get is converted into a boolean and copied irdd andTRUEIs returned.

14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Example

bool areYouHappy;
bool ok = UtilityXAP:: Get Bool ean (nmeta, XAP_NS XAP, "Happy",
ar eYouHappy);

Exceptions

Raises all the same exceptiondvasaXAP: : get , plusxap_bad_xap if the property value
cannot be converted to a boolean.

Utility XAP::GetDateTime

static bool
Get Dat eTi me (Met axXAP* net a,
const std::string& ns,
const std::string& path,
XAPDat eTi ne& dateTinme);
Description

Gets a property value as a date and time.

Gets the Date value specifiedfy andpat h. CallsMet aXAP: : get . If the property is not
defined, it returnEALSE Otherwise, the string value provided st aXAP: : get is

converted into values of thé\PDat eTi ne record as described below, and timezone offset
from GMT, andTRUEis returned. IfzHourandtzMin are both 0, the time returned is UTC
(GMT). Thesedfield is always set to 0, and thanofield is set to the subsecond time defined
in the value of the property, if any. This function implements the Date as specXbtPir
Extensible Metadata Platformlso see ISO 860hitp://www.w3.0rg/TR/NOTE-datetime.

TABLE 4.1 XAPDateTime Field Usage

XAPDateTime field Usage Range
sec seconds after the minute [0,59]
min minutes after the hour [0,59]
hour hours since midnight [0,23]
mday day of the month [1,31]
month month of the year [1,12]
year year A.D. (can be negative!)

The XMP Toolkit 14 Sept 01 49

http://www.w3.org/TR/NOTE-datetime

50

UtilityXAP

UtilityXAP Static Functions (Class Methods)

tzHour hours +ahead/-behind UTC [-12,11]
tzMin minutes offset of UTC [0,59]
nano nanoseconds after second (if
supported)
seq sequence number (if nano not
supported)
Examples

(using HTML format for shorthand):

1994-11-05T08:15:30-05:00 corresponds to November 5, 1994, 8:15:30 am, US Eastern
Standard Time.

1994-11-05T13:15:30Z corresponds to the same instant.
(C++ code example:)

XAPDat eTi me dt ;
bool ok = UtilityXAP:: GetDateTi ne(neta, XAP_NS XAP, "UTC', dt);

Exceptions

Raises all the same exceptiondvasaXAP: : get , plusxap_bad_xap if the property value
cannot be converted to a date and time.

Utility XAP::GetInteger

static bool

GetInteger (Met axAP* net a,
const std::string& ns,
const std::string& pat h,
long int &val);

Description

Gets a property value as an integer.

Gets the integer value specifiedriyandpat h. CallsMet aXAP: : get . If the property is not
defined, returnBALSE Otherwise, the string value providedit aXAP: : get is converted
into an integer and copied intal , andTRUE s returned.

Example

long int gNum = sizeof (int);
bool ok = UtilityXAP:: Getlnteger (meta, XAP_NS XAP, "Number",
gNum) ;

14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Exceptions

Raises all the same exceptiondvasaXAP: : get , plusxap_bad_xap if the property value
cannot be converted to an integer.

UtilityXAP::GetReal

static bool

Get Real (Met axAP* net a,
const std::string& ns,
const std::string& path,
doubl e &al);

Description
Gets a property value as a real number.

Gets the real (double) value specifiechsyandpat h. CallsMet aXAP: : get . If the property
is not definedFALSE is returnedOtherwise, the string value providedit aXAP: : get is
converted into a real and copied intal , andTRUEIs returned.

Example

doubl e gReal ;
bool ok = UtilityXAP:: GetReal (nmeta, XAP_NS XAP, "Real", gReal);

Exceptions

Raises all the same exceptiondvasaXAP: : get , plusxap_bad_xap if the property value
cannot be converted to a real.

Utility XAP::IsAltByLang

static bool

I sAl tByLang (const XAPPat hTree* tree,
const std::string& ns,
const std::string& path,
std::string* [angVal = NULL);

Description

ReturnsTRUEIf the specifiegbat h evaluates to a member of a structured container that is of
typexap_al t , and which is selected by the attributd : | ang. If a pointer to a string is
passed ih angVal , the string is assigned with the value of thé : | ang attribute.

The XMP Toolkit 14 Sept 01 51

UtilityXAP
UtilityXAP Static Functions (Class Methods)

This function is handy when you are doing an enumerate. If you are searching for a particular
language alternative, pass the paths returned by XAPPaths to this function to test for the
sought type, and then compare ltlngVal with the language you seek.

Exceptions
Raises all the same exceptiondvas aXAP: : get For m

Utility XAP::SetBoolean

static void

Set Bool ean (Met axXAP* net a,
const std::string& ns,
const std::string& pat h,
const bool val);

Description
Sets a property value as a boolean.

Sets the property specified by andpat h to the specified boolean value. Calls
Met aXAP: : set . Intermediate nodes on the path are created as needed.

Example
bool happy = true;

UtilityXAP:: SetBool ean (neta, XAP_NS XAP, "Happy", happy);
Exceptions
Raises all the same exceptiondvasaXAP: : set .

UtilityXAP::SetDateTime

static void
Set Dat eTi ne (Met aXAP* net a,
const std::string& ns,
const std::string& pat h,
const XAPDat eTi ne& dateTine);

Description
Sets the property value as a date and time.

Sets the property specified by andpat h to the specified boolean value. Calls
Met aXAP: : set . Intermediate nodes on the path are created as needed.

52 14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Seelti it yXAP: : Get Dat eTi me above for the details of usage fat eTi ne. Theseq
andnanofields are ignored.

Example

XAPDat eTi me dt ;
UilityXAP:: SetDateTine (neta, XAP_NS XAP, "UTC', dt);

Exceptions
Raises all the same exceptiondvasaXAP: : set .

Utility XAP::SetInteger

static void

Set I nteger (Met axAP* net a,
const std::string& ns,
const std::string& path,
const long int val);

Description
Sets property value as an integer.

Sets the property specified by andpat h to the specified integer value. Calls
Met aXAP: : set . Intermediate nodes on the path are created as needed.

Example

long int num = -123456789;
UilityXAP:: Setlnteger (nmeta, XAP_NS XAP, "Number", num);

Exceptions
Raises all the same exceptiondvasaXAP: : set .

UtilityXAP::SetLocalized Text

static void
Set Local i zedText (Met axXAP* et a,
const std::string& ns,
const std::string& path,
const std::string& |ang,
const std::string& val,
const XAPFeatures f = XAP_FEATURE DEFAULT);

The XMP Toolkit 14 Sept 01 53

54

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Description

Sets the structured container language alternation property specifiescabgpat h and

| ang to the text value specified mal andf . Creates the first item of the container if it does
not exist, otherwise sets or appends the value as needegaflthehould be the path to the
container itself, not to any member. See example below.

Example

If the desired language alternative 1§ t1 e/ *[@l : | ang="de'],” pass Ti t| e” as the
pat h, and ‘de” as the value off ang.

Exceptions
Raises all the same exceptiondvasaXAP: : cr eat eFi r st | t emandMet aXAP: : set .

Utility XAP::SetReal

static void

Set Real (Met axXAP* net a,
const std::string& ns,
const std::string& path,
const doubl e val);

Description

Sets a property value as a real.

Sets the property specified by andpat h to the specified real value. Callst aXAP: : set .
Intermediate nodes on the path are created as needed.

Example

doubl e real = 3.14159012345678;
UilityXAP:: SetReal (nmeta, XAP_NS XAP, "Real", real);

Exceptions
Raises all the same exceptiondvasaXAP: : set .

14 Sept 01 The XMP Toolkit

XMP Toolkit Exceptions

A.1 Overview

This appendix lists the collection of C++ classes used for exceptions throughout the Toolkit.

A.1.1 Exception Classes

Errors are indicated using exceptions. Member function prototypes use the conventions listed
in TableA.1, “XMP Toolkit Exceptions

TaBLEA.1 XMP Toolkit Exceptions

Potential Exceptions Convention
No exceptions possi bl e. Declared throw ().
dient violates a pre-condition, Default declaration (no throw cl ause).

or runtime exceptions possible.

The following are the exceptions for the XMP Toolkit:

/* Text messages for standard exceptions. */
extern const char *const XAP_BAD ALLCC
extern const char *const XAP_| NVALI D ARGUVENT;

/* Text messages for client faults. */

extern const char *const XAP FAULT BAD FEATURE;
extern const char *const XAP FAULT BAD SCHEMA
extern const char *const XAP_FAULT_BAD TYPE;
extern const char *const XAP_FAULT _BAD PATH
extern const char *const XAP FAULT BAD ACCESS;
extern const char *const XAP FAULT BAD NUMBER

[* Text messages for XWP errors. */

extern const char *const XAP ERR BAD XAP,
extern const char *const XAP ERR BAD XM
extern const char *const XAP_ERR NO NATCH

class XAP APl xap client fault : std::logic_error {

publ i c:
xap_client_fault() throw) : std::logic_error("") {}
explicit xap_client_fault(const char* w) throw() :

14 Sept 01 55

XMP Toolkit Exceptions

std::logic_error(w {}
virtual ~xap_client fault() throw() {}
h

class XAP APl xap_error : std::runtine_error {
public:
virtual ~xap_error() throw() {}
virtual const char* getContext() const throw() {
return(mcontext.c_str());
}
virtual const int getlLine() const throw) {
return(mline);
}
pr ot ect ed:
xap_error() throw) : std::runtine_error("") {}
explicit xap_error(const char *const w throw) :
std::runtime_error(w {}
virtual void setContext(const char* c) {
m context = c;

}
virtual void setLine(const int line) {
mline = line;
d
private:
std::string mcontext;
int mline;

}s

class XAP APl xap bad feature : public xap_client fault {
publi c:
xap_bad feature() throw() : xap_client_faul t(XAP_FAULT _BAD FEATURE)
{}
H

class XAP_APlI xap bad type : public xap_client _fault {
publi c:

xap_bad_type() throw() : xap_client_faul t (XAP_FAULT BAD TYPE) {}
H

class XAP_APlI xap _bad path : public xap_client _fault {
public:

xap_bad_path() throw() : xap_client_faul t (XAP_FAULT BAD PATH {}
H

class XAP_APlI xap_bad _access : public xap_client _fault {
public:

xap_bad_access() throw() : xap_client_faul t (XAP_FAULT _BAD ACCESS) {}
H

56 14 Sept 01

XMP Toolkit Exceptions
Overview

class XAP_APlI xap_bad nunber : public xap _client fault {
public:

xap_bad_nunber () throw() : xap_client_faul t (XAP_FAULT _BAD NBER) {}
h

class XAP_APlI xap_bad xap : public xap_error {
public:
xap_bad_xap() throw() : xap_error(XAP_ERR BAD XAP) {}
explicit xap_bad xap(const char *const c) :
xap_error (XAP_ERR BAD XAP) {
set Context (¢);
set Li ne(0);

}s

class XAP_APl xap_bad xm : public xap_error {
publi c:
xap_bad_xm () throw() : xap_error(XAP_ERR BAD XM.) {}
xap_bad_xm (const char *const c, const int |) :
xap_error (XAP_ERR BAD XM.) {
set Context (¢);
setLine(l);

}s

class XAP_APlI xap _no match : public xap_error {
publi c:
xap_no_match() throw() : xap_error(XAP_ERR NO MATCH {}
explicit xap_no_match(const char *const path) :
xap_error (XAP_ERR NO MATCH) {
set Cont ext (pat h) ;
set Li ne(0);

14 Sept 01 57

XMP Toolkit Exceptions

58 14 Sept 01

Runtime Flow of Control

This roadmap will follow the most important code paths through the code. Once you are
familiar with these paths, you should be able to find your way around the less important
highways and byways.

Met aXAP: : par se

Until the last buffer is encounteredAPTk _Dat a: : par se is used, which does some pre-
parsing to deal with end-of-line filtering. Once that is dealt with, the buffers are handed over to
XAPTk_Dat a: : i nner Par se, which does the actual filtering, and eventually calls

XAPTK: : DOMd ue_Par se (in DOM3 ue. cpp). This is where the real parsing occurs. It

passes through the DOM code to the underlying expat parser. A DOM tree gets built up as the
XML is parsed XAPTk_Dat a: : m donDoc). This DOM doc is an exact representation of the
XML syntax that was parsed (modulo comments, XML processing instructions, parsed
entities, etc., which are irrelevant for RDF).

After the last buffer is parsedAPTk_Dat a: : | oadFr onilr ee is called, which is where the
normalization is done. The objective is to convert the exact representation of the XML
serialization into a representation that is easier to manipulate. This normalized representation,
which folds the many-equivalent syntax representations into one model, is a forest of trees.
Each tree is represented by a clsmsnTr ee object. Each tree has a non-descript root, and
contains all the properties that are defined for a particular schema/namespace, or for a
particular ID. The ID form has many uses, one of which is to manage the timestamps for
properties. More on this later.

The clas$RDFToNor mTr ees normalizes the raw DOM tree inkir mlr ees. It is a gigantic
DOMWalker (a pure virtual base class which implements depth-first, preorder tree walks). As
the RDFToNor miTr ees walks the original DOM tree, it executes a finite state machine. This
state machine has 6 states:

1) state init
Looking for arr df : RDF element.
2) state_ignore
Ignore this elementr{ bei ngl gnor ed) and all of its children.
3) state rdf
Found am df : RDF element, looking for am df : Descri pti on element.
4) state_desc

Found am df : Descri pti on (or parseType='Resource’, or implicit description), looking
for properties.

5) state prop

14 Sept 01 59

n Runtime Flow of Control

60

Found a property, looking for a value, a structure container, a nested description, or a special
case (see code for details).

6) state_container
Found a container, looking for a list member.

A side-effect of certain state transitions is the construction of noddsoimar ee. When the
RDFToNor miIt ees object is finished walking the original tree, it deletes the original DOM
Document, and leaves behind tstad: : map data structure¥APTk_Dat a: : m bySchena, and
XAPTk_Dat a: : m byl D The former maps a schema/namespace namisaiond@r ee of RDF
properties and values, the latter maps a schema/namespace naenitr ae used to store
timestamps (a stylized RDF bag of properties).

XAPTk_Dat a: : | oadFr omlt ee continues by enumerating the schema/namespaces loaded in
XAPTk_Dat a: : m bySchema. The correspondintyor nTr ee in XAPTk_Dat a: : m byl Dis

looked up by this namespace. The encoded timestamp properties are loaded into a more
convenient data structurBAPTk _ChangelLog, XAPTk_PunchCar dByPat h, and class

PunchCar d, all defined inXAPTk_Dat a. h). SeeXAPTk_Dat a: : m changelog.

Finally, XAPTk_Dat a: : | oadFr omlTt ee returns. The last thing thikt aXAP: : par se does

is detects if aliasing is enabled. If so, it verifies that linked values that are defined are equal,
and populates any linked values that were not defined. This is a side-effect of flipping the
XAP_CPTI ON_ALI ASI NG ONflag, which callsver i f yAndPopul at e (static module function

in Met aXAP. cpp).

Met aXAP: : Set Al i as

After validating that the parameters are legal, an entry is added to the static

Met aXAP_al i asMap (defined inMet aXAP. cpp). This maps an alias property to an actual
property.

Aliases are treated as linked values. This is implemented by actually instantiating all
properties that share the same value, and setting/copying the value. This is done by

Ver i f yAndPopul at e (see above), and by each non-const function of MetaXAP that can alter
property values, utilizing a pre-computed list of linked values generated by

PreResol veAl i as, which is called at the end bBt aXAP: : Set Al i as.

The job ofPr eResol veAl i as is to resolve all alias lookups (and actual to alias reverse
lookups), and build this information into a sparse matrix, implemented with restecap
structuresMet axXAP_| nf oMap andMet aXAP_Resol vedAl i ases, both defined in

Met aXAP. cpp. The sparse matrix is stored in the static varikbt@XAP_r esol vedAl i ases
(in Met aXAP. cpp).

14 Sept 01

Runtime Flow of Control E

Both the alias and actual properties are entered intgetreeXAP_Resol vedAl i ases map as
keys. The values are maps which list all of the other properties that are linked by value. So if |
do this:

Met aXAP: : Set Alias("dc", "Foo", "xap", "Bar");
/!l Aias = <dc, Foo>
/1 Actual = <xap, Bar>

TheMet aXAP_Resol vedAl i ases structure will contain:

Met aXAP_Resol vedAl i ases: {
[<dc, Foo>] = MetaXAP_InfoMap : {
[<xap, Bar> = MetaXAP_Aliaslnfo: {
actual = true;
aliasSingle = true;

}

[<xap, Bar>] = MetaXAP_InfoMap : {
[<dc, Foo> = MetaXAP_Aliasinfo: {
actual = fal se;
aliasSingle = true;

The meaning ol i asSi ngl e, the four flavors of aliases, and the other fields of
Met aXAP_Al i asl nf o are described in the comment abBveResol veAl i as. Search for
COMMVENT _ALI AS_FLAVCRS

If another alias for <xap,Bar> is added, <xy,ZZY>, the structure will contain:

Met aXAP_Resol vedAl i ases: {
[<dc, Foo>] = MetaXAP_ I nfoMap : {
[<xap, Bar>] = MetaXAP_Aliaslinfo: {
actual = true;
aliasSingle = true;

}
}
[<xap, Bar>] = MetaXAP_InfoMap : {
[<dc, Foo>] = MetaXAP_Aiaslnfo: {

actual = fal se;
aliasSingle = true;

}

[<xy,ZZY>] = MetaXAP_Aiaslnfo: {
actual = fal se;
aliasSingle = true;

14 Sept 01 61

n Runtime Flow of Control

}

[<xy, ZZY>] = Met aXAP_I nfolNap : {
[<xap, Bar>] = MetaxXAP_Aiaslinfo: {
actual = true
aliasSingle = true;

}

Notice that thévet aXAP_I nf oMap for <xap,Bar> now has two entries, which are the two
properties whose values are linked to <xap,Bar>. This ensures that if the value for <xap,Bar>
is changed directly, the other two properties will also get changed. More about how this works
will be discussed ivet aXAP: : set .

Met aXAP: : get

Right awayXAPTk_Dat a: : get is called. First, XPath is evaluated against the appropriate
Nor mTr ee, looked up by schema/namespace name. If no node is found, it feAlBE

Next, the form is checked to make sure it is simple (you can’tgida an anything but

xap_si npl e).

If the node is an attribute, its value is returned.

If the node is an elemeXAPTk _Dat a: : ext r act PropVal is called, which in turn calls
Nor nTr ee: : get Text . The children of the element are examined; if it has no children, an

empty string is returned. If it has exactly one child that is a text node, its text value is returned.
Otherwise, a number of special cases involving XAPFeatures have to be dealt with.

Notice that there were no aliases to deal with. That's because the linked value implementation
has already accounted for aliases. The value returned has already been copied from the actual
by other code.

Met aXAP: : set

After validating input parameters, any possible aliases, associated with this property via
Met aXAP_Col | ect Al i ases, are collected.

BEG N Met aXAP_Col | ect Al i ases

Remember, all non-const functions that alter property values call
Met aXAP_Col | ect Al i ases, so this description also appliesappend, r enpve, etc.

If aliasing is not enabled, don’t do anything.

Otherwise, the first objective is to find a valid value for the
Met aXAP_Resol vedAl i ases: :iterator entry.CheckAl i ases is used to see if this

62 14 Sept 01

Runtime Flow of Control E

path is an actual (target of aliases). If GoeCkAl i ases returnsFALSH, lookup the path

in Met aXAP_r esol vedAl i ases, save if valid. Note that the conformed path is tried first
(from XAPTK: : Conf or nPat h, in xapt kf uncs. cpp), which is the longest path prefix

that contains no wildcards (*). Also, the structured container type (sct) is needed, which is
normally filled in byCheckAl i ases, but since it returneBALSE it must be figured out.

We get theMet aXAP_I nf oMap, and try to find a matching member. If not found, the full

path (without conformance) is tried, since flavor 3 and flavor 4 (described in

OOMWENT_ALI AS FLAVCRS) have wildcards in their canonical actual paths. If not found,
just use the first entry as a best guess. In any case, remember that the original path is an
actual.

If CheckAl i ases returned true, we just get the matching entry,sanidis already
assigned byheckAl i ases.

If the pointer to the output parametdiype is notNULL, we assigrsct to the variable it
points at.

Our next objective is to massage the canonical path stored in the alias entry into an actual
path that corresponds to the one passedMettaXAP_Col | ect Al i ases. The variable

savedPat h holds any variable part of the path that was detected ddneakAl i as or

Conf or nPat h earlier. If it is non-empty, we need to remember to tack it on any container
paths we collect as target linked values. If the original path was an alternate by language,
remember that too. We need to determine if the target is single (not a container).

xap_sct _unknown means single. Bct is some other value and the original path is not
actual,i sSi ngl e is TRUEonly if we are flavor 3 or 4.

If the savedPat h hasl ast () in the predicate, we convert it to the appropriate canonical
path.

Now that we have all of the information we need, we build a list of target paths for linked
values. We iterate over tivet aXAP_I nf oMap value of entry. The iterator is item. We do a
little extra work to guarantee that the first slot (0) in the list is always the target of the
actual, which is always in the second slot (1). This is easy when the original path was an
alias (just put the original path is slot 0, and the looked up actual in slot 1). It's harder when
the original path was an actual, we have to pick some alias path to put into slot O: that's
why there is a big block of code that staité “(i sActual)”. We arrange all this by

saving the corresponding pathsvt chQri g, ful | O'i g, mat chAct ual , and

full Actual .

We're building our list in the output paramepeiops, which is a vector. Normally, we just
want to puf ul | O'i g in the first slot, anflul | Act ual in the second. However, there is
one special case where the original path was an actual, and has targets, but none of the
targets qualify for one reason or another. For example, if the actual is member 2 of a

14 Sept 01 63

n Runtime Flow of Control

64

container, but all aliases are either targeted at member 1 or the whole container, nothing
actually matches. See the comment in the block that starts:

if (isActual &% !(foundActual &&% foundAlias)) {

The items invet aXAP_I nf oMap ar e sear ched, skipping matches for actual and its
alias, since they are already loaded in the list. If any fixup is needed, we append the
variable parts as needed. Finally, we refliRUE

END Met aXAP_Col | ect Al i ases

If there were no aliases collected, just aPTk_Dat a: set . Otherwise, loop through the
list of linked values, and calAPTk: : set on each, catching and ignoring errors for all
but the original path.

In XAPTk _Dat a: : set, we evaluate the path and convert character escapes to raw
characters. If we evaluate to a node, we replace its value with

XAPTK_Dat a: : r epl acePr op. Otherwise, if the container type is unknown (not a
container), we calkKAPTk_Dat a: : cr eat ePr op. If it is a container, we figure out what
type. If the container does not exist, we call the type-specific form of

XAPTk_Dat a: : creat eFi r st | t em otherwise XAPTk_Dat a: : append is called.

In XAPTk_Dat a: : repl aceProp, NornTree i s | ooked up and a determination is
made if this is an element or an attribute. The appropriate foNorafilr ee: : set Text
is called, and also update the timestamp by cakidfgTk_Dat a: : punchd ock.

In XAPTk_Dat a: : set Text , handle special cases and features, then set the text child to
the value passed in.

In XAPTk _Dat a: : cr eat ePr op, we lookup theNor miIt ee, creating one if needed. We
use the form oNor mIt ee: eval XPat h which creates a node if one is not found. The rest
of the code looks just likeepl acePr op.

In XAPTk _Dat a: : creat eFi r st | t em we create the container of the appropriate type,
and then create the first member item. The rest of the code is just¢fikacePr op,
except that we set the timestamp on the entire container, rather than individual members.

In XAPTk _Dat a: : append, we find the member item specified, climb the tree to get
information about the container (parent), and then create a new node and place it as
specified by the input parameters. We set the timestamp on the whole container.

Met aXAP: : enuner at e
All forms of enumerate directly calAPTk _Dat a: : enuner at e.

In XAPTk _Dat a: : enuner at e, figure out if everything is being enumerated, or just certain
schemas, subPaths, or depths in steps. For each scherar adlt ee: : enuner at e.

In Nor miTr ee: : enuner at e, we create a Paths objePat{ hs. cpp), and construct a
DW_enurrer at ePr opEl emDOMWalker, passing the Paths object as a parameter.
DW_enurrer at ePr opEl emis defined iNor nTr ee. cpp. It basically walks the tree, and for

14 Sept 01

Runtime Flow of Control E

each element that meets the input criteria (humber of steps, or leaf nodes only), it computes a
canonical path and appends it to the Paths object.

Met aXAP: : serialize

In XAPTk Dat a: : seri al i ze, we first deal with header information, then thié : RDF
boilerplate. Then we iterate through each of the normalized treedpyschena. We call
Nor mr ee: : seri al i ze for each one. Then we tack on the timestamp info, if any, with
XAPTk_Dat a: : seri al i zeTi nest anps, then more boilerplate and trailer stuff.

In Nor mTr ee: : seri al i ze, which is implemented iNor Mt ee_seri al i ze. cpp, we

arrange for the proper line ending, and then we add the boilerplatef fabescri pti on,

which is one top-level per schema. We loop through all the namespace definitions, and write
out any that we need. Finally, we construct a DOMWalker to serializdthdr ee: a

Serial i zePretty for pretty-printing, éeri al i zeConpact for compact notation.

Both DOMWalkers handle all the nasty details of writing out the syntax. There are many
special cases to handle. See comments in the code for details. There’s also a big block of
comments at the beginning ldr nTr ee. cpp, which explains the internal layout of

Nor nTr ees.

In XAPTk _Dat a: : seri al i zeTi nest anps, We iterate througm changelLog. Each entry

is aXAPTk_PunchCar dByPat h map, which contains a timestamp entry for each property that
changed. The body of the loop writes out df: Descri pti on with an ID that is set to the
namespace name for each schema that has properties that were changed. There is one property,
XAPTK_TAG TS _CHANGES, which is aBag Each member item of thiagis a timestamp entry,

written in a compact, comma separated value notation.

Nor mlr ee: : eval XPat h

This simple XPath evaluator uses a very restricted subset of the XPath notation (see Section
3.3.1, “XPath Syntdy. It takes the input expression and separates Sagh by parsing out

the slashes witKAPTk: : Expl odePat h (defined irxapt kf uncs. cpp). For each step, we

do a lexical analysis, and then an evaluation. The side-effects of the evaluation is a Node
pointer, stored in current. XPaths always evaluate to a single Node, rather than a node list.

The lexical analysis generateé&PTk _Token class objects (defined in here), which are
appended to ®ect OToken (defined here). Begin and end iterators to the original step string
are saved in the token for type tChars. All token types start with “t”.

In evaluation, we use a finite state machine, which may be described as follows:
1) slnit

On tDot, next state is SEmpty.

On tAt, next state is SAttr.

On tStar, next state is sList.

14 Sept 01 65

n Runtime Flow of Control

On tChars, next state is sName: if there are no more tokens, recover the element node name
and look it up witiNor mTr ee: : sel ect Chi | d. If not found but required, create a node.
Set current an continue to next step.

Otherwise, throwap_bad_pat h.

2) sEmpty
If there are no more tokens, set return value to current.
Otherwise, throwap_bad_pat h.

3) sAttr
On tStar, if there are no more tokens, set return value to current, elsexéprdvad_pat h.

On tChars, cast currentEbenent *. If NULL, or there are more tokens, throw
xap_bad_pat h. Otherwise, recover the attribute name from the token, get the attribute,
create it if required, and set current to it.

Otherwise, throwap_bad_pat h.

4)sList

On tLB, throwxap_bad_pat hs if boundary conditions not met, otherwise next state is
sPred and save some state.

Otherwise, if there are more tokens, thsap_bad_pat h,
else set return value ¢oirrent

5) sName
On tLB, next state is sPred.

On tParens, recover function name from token. If name is not supported, throw
xap_bad_pat h, else set return value MULL since functions are not yet supported.

Otherwise throwap_bad_pat h.

6) sPred
On tAt, next state is pAttr.

On tChars, if token is not a number, next state is pName, else it is pOrd. Remember the left
hand side (lhs) by assigning the current token index (tix) to it.

Otherwise throwap_bad_pat h.
7) pAttr

On tChars, next state is pAName, remember left hand side (lhs) by assigning current token
index (tix) to it.

Otherwise throwap_bad_pat h.

66 14 Sept 01

Runtime Flow of Control E

8) pAName
On tEquals, next state is pMatch.
Otherwise throwap_bad_pat h.

9) pName
On tEquals, next state is pMatch.
On tParens, next state is pFunc.
Otherwise throwap_bad_pat h.

10) pFunc

On tRB, recover function name from token; if it isi'ast ”, throw xap_bad_pat h. Set
current to the last child of former value of current.

Otherwise throwap_bad_pat h.

11) pMatch
On tChars, set the right hand side (rhs) to the current token index, and next state is pVal.
Otherwise throwap_bad_pat h.

12)pVval

On tRB AND this is the last token, perform the match, creating the node if required. Assign
it to current.

Otherwise throwap_bad_pat h.

If at any pointret != NULL, and we are at the last token or step, break out of the loop.

14 Sept 01 67

n Runtime Flow of Control

68 14 Sept 01

XMP Toolkit Function List

MetaXAP Static Functions (Class Methods)

Met aXAP

Met aXAP

Met aXAP:

Met aXAP: :

Met aXAP: :

Met aXAP: :

Met aXAP: :

Met aXAP:

.. Clone

. Enuner at eAl i ases

1 set

Cet Ali as

Mer ge

Regi st er Nanespace

RenoveAl i as

:Set Al'i as

MetaXAP Types

Met aXAP

Met aXAP

. XAPCl ock

. . XAPChangeBits

MetaXAP Constructors

public

public

defaul t constructor
Met aXAP ();

construct enpty with clock

Met aXAP (XAPd ock* cl ock);

Makes a deep-copy of the MetaXAP object and returns it.

Returns a pointer to an object that enumerates all of the
aliases defined for all MetaXAP objects.

Extracts an externally saved serialization and saves as a
string in a specified buffer.

Gets the alias for the specified path, if any.

creates a new MetaXAP object containing merged
metadata.

Register a namespace name (should be a URI), and a
suggested prefix for composing qualified names.

Removes the specified alias from the alias map for all
metadata objects.

Adds to the alias map for all instances of MetaXAP.

Clients provide the clock used for creating timestamps.

Each timestamp record includes an indication of how the
property was last changed.

Create an empty object with no clock.

Creates an empty object with a clock.

14 Sept 01 69

XMP Toolkit Function List

public construct from buffer
Met axXAP

70

Met aXAP destruct or
~Met aXAP ();

Constructs a populated MetaXAP from a single buffer of
raw XML.

Destroy this object and all internally allocated memory.

MetaXAP Public Member Functions

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP:

Met aXAP: :

Met aXAP:

Met aXAP: :

Met aXAP: :

: append

:count

createFirstltem

:enabl e

> enunerate

extractSerialization

: get

: get Cont ai ner Type
:get Form

: get Resour ceRef

:get Ti nest anp

i sEnabl ed

: par se

pur geTi nest anps

renove

Creates a new property with the specifiadl ue, and add
it after the property specified by namespase@ndpat h.

Returns the number of items in the structured container
specified byns andpat h.

Creates a structured container of the specified type.

Enables or disables the specified option(s), such as
XAP_OPTI ON_DEBUG.

Enumerates MetaXAP object properties

Exttracts an externally saved serialization and saves as a
string in a specified buffer.

Gets the value at the property specifieshbyandpat h as
a string.

Returns the type of the specified container.
Returns the type of property specifiedrisyandpat h

Returns the reference (URI) for the resource that this
MetaXAP is about.

ReturnsFALSEIf the property specified hys andpat h
is not defined. Otherwise, returfis

Returns whether the specified option is enabled, such as
XAP_OPTI ON_DEBUG.

Parses a buffer of XML and create the corresponding
XMP objects.

Purges all timestamp records for properties with any
XAPChangeBi t s set inhow.

Removes the specified property and all of its sub-
properties, if any.

14 Sept 01

XMP Toolkit Function List

Met aXAP: : seri alize Serializes the MetaXAP tree as XML.

Met aXAP: : set

Met aXAP: : set Ti mest anp

Met aXAP: : set up

Met aXAP: : set Resour ceRef

Sets the specified value at the end of the specified path,
with the optionally specified features.

Sets the timestamp.

Enables client application to provide metadata to this
instance of MetaXAP for automatic tracking.

Sets the reference to the resource (URI) that this
MetaXAP is about.

UtilityXAP Static Functions (Class Methods)

UtilityXAP::cAnal yzeStep Removes last step from path, break it into pieces.

UtilityXAP:: ConpareTi mest anps Compares the property with the specified namespace and
pat h in instancea with instanceb,

UtilityXAP:: Creat eXM-Packet Use this routine to compute the header and trailer string
for a packet, which you use yourself to create a XMP
packet

UtilityXAP::FilterPropPath Filters Ul text into valid XPath.

UtilityXAP:: Get Bool ean Gets a property value as a boolean as specified and
pat h.

UtilityXAP:: Get DateTi nme Gets a property value as a date and time.

UtilityXAP:: Getlnteger Gets a property value as an integer.

UtilityXAP:: Get Real Gets a property value as a real.

UtilityXAP::IsAl tByLang ReturnsTRUEIf the specified path evaluates to a member
of a structured container that is of typep_al t , and
which is selected by the attributed : | ang.

UtilityXAP:: Set Bool ean Sets a property value as a boolean.

UtilityXAP:: Set DateTi ne Sets the property value as a date and time.

UtilityXAP:: Setlnteger Sets property value as an integer.

UtilityXAP:: SetLocal i zedText Sets the structured container language alternation
property.

UtilityXAP:: Set Real Sets a property value as a real.

14 Sept 01 71

XMP Toolkit Function List

72 14 Sept 01

	Preface
	1.1 About This Document
	1.2 Audience
	1.3 Assumptions
	1.4 How This Document Is Organized
	1.5 Conventions used in this Document
	1.6 Where to Go for More Information

	The XMP Toolkit
	2.1 Overview
	2.2 The XMP Toolkit
	2.3 Implementation Notes
	2.3.1 Overview
	2.3.2 Construction and Destruction
	2.3.3 Memory Management
	2.3.4 Style and Conventions

	MetaXAP
	3.1 MetaXAP Overview
	3.2 Introduction
	3.3 Path Composition
	3.3.1 XPath Syntax

	3.4 Property Value Features
	3.5 Standard Attributes
	3.6 MetaXAP Class
	3.6.1 Storage Management

	3.7 Important Types Used In MetaXAP
	3.7.1 Namespace Constants

	3.8 MetaXAP Member Functions
	3.9 MetaXAP Static Functions (Class Methods)
	3.10 XAPPaths Class

	UtilityXAP
	4.1 UtilityXAP
	4.2 UtilityXAP Static Functions (Class Methods)

	XMP Toolkit Exceptions
	Runtime Flow of Control
	XMP Toolkit Function List

