

ADOBE SYSTEMS INCORPORATED

Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000
http://www.adobe.com

September 14, 2001

The XMP Toolkit

�

Version 2.8

Copyright © 2001 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No
part of this publication (whether in hardcopy or electronic form) may be reproduced or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, PostScript, the PostScript logo, and XMP are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. Windows and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Apple,
Macintosh, and QuickTime are trademarks of Apple Computer, Inc., registered in the United
States and other countries. UNIX is a trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of
their respective owners.

This publication and the information herein is furnished AS IS, is subject to change
without notice, and should not be construed as a commitment by Adobe Systems
Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for
any errors or inaccuracies, makes no warranty of any kind (express, implied, or
statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes, and noninfringement of
third party rights.

The XMP Toolkit 14 Sept 01

iii

Contents

Chapter 1 Preface . 1

1.1 About This Document . 1

1.2 Audience . 1

1.3 Assumptions . 1

1.4 How This Document Is Organized . 1

1.5 Conventions used in this Document . 2

1.6 Where to Go for More Information . 2

Chapter 2 The XMP Toolkit . 3

2.1 Overview . 3

2.2 The XMP Toolkit . 3

2.3 Implementation Notes . 4

2.3.1 Overview . 4
2.3.2 Construction and Destruction . 4
2.3.3 Memory Management . 5
2.3.4 Style and Conventions. . 5

Chapter 3 MetaXAP . 9

3.1 MetaXAP Overview . 9

3.2 Introduction. . 9

3.3 Path Composition . 10

3.3.1 XPath Syntax . 12

3.4 Property Value Features . 14

3.5 Standard Attributes. 15

3.6 MetaXAP Class . 15

3.6.1 Storage Management . 15

3.7 Important Types Used In MetaXAP . 16

3.7.1 Namespace Constants . 18

3.8 MetaXAP Member Functions . 19

3.9 MetaXAP Static Functions (Class Methods) . 37

3.10 XAPPaths Class . 43

iv

14 Sept 01 The XMP Toolkit

Contents

Chapter 4 UtilityXAP . 45

4.1 UtilityXAP . 45

4.2 UtilityXAP Static Functions (Class Methods). 45

Appendix A XMP Toolkit Exceptions 55

Appendix B Runtime Flow of Control. 59

Appendix C XMP Toolkit Function List 69

The XMP Toolkit 14 Sept 01

1

1

Preface

1.1 About This Document

This Preface contains information about this document, describes its organization and the
conventions used in the document, and where to go for additional information.

1.2 Audience

The audience for this document includes developers of applications who have licensed the
XMP Toolkit.

1.3 Assumptions

This document assumes that you are familiar with the XMP specification, and that you are
familiar with C++ and an appropriate development environment.

1.4 How This Document Is Organized

In addition to this preface, this document consists of the following chapters:

Chapter 2: The XMP Toolkit

Contains an overview of the XMP Toolkit, and a short section on implementation notes.

Chapter 3: MetaXAP

Describes the MetaXAP Class, which provides tools for reading, writing, and manipulating
XMP metadata. MetaXAP is the primary interface to the XMP Toolkit.

Chapter 4: UtilityXAP

Describes the UtilityXAP class, a variety of special purpose utilities to simplify common uses
of MetaXAP.

Appendix A: XMP Toolkit Exceptions

Lists the C++ exceptions that can be raised through the use of the XMP Toolkit member
functions.

Appendix B: Runtime Flow of Control

Provides a detailed roadmap that follows the most important paths through the code.

2

14 Sept 01 The XMP Toolkit

Preface

Conventions used in this Document

1

Appendix C: XMP Toolkit Function List

Lists the XMP Toolkit functions along with a brief description of what each one does.

1.5 Conventions used in this Document

The following type styles are used for specific types of text:

1.6 Where to Go for More Information

The main reference to be used in conjunction with this document is

XMP – Extensible
Metadata Platform

, which contains the specification of XMP schemas, properties, value types,
and the interchange format.

In addition, the following Internet standard may be of use (a longer list of standards used in
XMP is included in

XMP – Extensible Metadata Platform

):

IETF Standard for Language Element Values (RFC 1766):
http://www.ietf.org/rfc/rfc1766.txt?number=1766

Typeface Style Used for:

Serifed Roman Italic Caps

Values. For example,

TRUE

,

NULL

, etc.

Sans serif bold

XMP property names. (Always prefaced with “xap” and
a single colon. For example:

xap:MetadataDate

.

Monospaced Regular

All C++ Code, function parameters, file names, etc.

Monospaced Bold

Member function names in text

http://www.ietf.org/rfc/rfc1766.txt?number=1766

The XMP Toolkit 14 Sept 01

3

2

The XMP Toolkit

2.1 Overview

This document describes the XMP Toolkit which was designed to help applications with
handling XMP operations such as the creation and manipulation of metadata. The availability
of the Toolkit makes it easier for developers to support XMP metadata, and helps to
standardize how the data is represented and interchanged. The XMP Toolkit can be licensed,
royalty-free, from Adobe Systems.

This chapter includes a brief overview of the key features of the Tookit and provides some
basic implementation notes.

2.2 The XMP Toolkit

The XMP Toolkit features a C++ interface which uses some modern (ANSI) features, such as

exceptions

,

STL strings

, and

bool.

It uses conservative coding and interface design for
maximum portability and to make it easier for applications to adopt.

N

OTE

:

Many namespaces, keywords, and related names in this document are prefaced with the
string “

XAP

”, which was an early internal code name for XMP metadata. Because
Acrobat 5.0 used those names, they were retained for compatibility purposes.

The XMP Toolkit consists of two parts:

●

MetaXAP

 manages the metadata for a managed resource such as an application document
file. It defines the objects that act as containers for properties relating to a specific
document, and is the primary interface to the XMP Toolkit. MetaXAP provides the top
level abstraction for metadata about a document. Nodes are accessed via string pathnames
which use a simplified form of XPath strings (XML Path Language:
http://www.w3.org/Tr/xpath)

●

UtilityXAP

 provides a variety of special purpose utilities to simplify common uses of
MetaXAP. For example, MetaXAP reads and writes property values as strings. UtilityXAP
has services that include conversion to or from integers and other types.

XMP metadata properties are organized by schemas (see

The XMP Metadata Framework

 for
more information about XMP schemas). In RDF, the schema is defined by a namespace
attribute. Within each schema, properties are named via a

path string

. This path string has a
very simple syntax which is modelled on the XPath standard.

The full XMP data model is supported, including values that are simple literals, nested
descriptions, and structured containers. Applications should include only the

XAPToolkit.h

file, and optionally the

UtilityXAP.h

 file.

In addition, the following points apply to the XMP Toolkit:

http://www.w3.org/Tr/xpath
http://www.w3.org/Tr/xpath

4

14 Sept 01 The XMP Toolkit

The XMP Toolkit

Implementation Notes

2

●

It uses STL <string> and <stdexcept>.

●

Error conditions are handled with exceptions.

●

The release version of the Toolkit will not call

exit()

 or

abort()

 (Debug configuration
uses the

assert()

 macro).

●

All strings are UTF-8 encoded.

●

Passing

NULL

 as a parameter is a fatal error unless otherwise specified.

Also, the XMP Toolkit provides minimal thread safety, as follows: multiple threads accessing
distinct objects are thread-safe (no globals), and multiple threads accessing the same shared
object are thread-safe for read operations, including enumeration/iteration. If any thread
wishes to do a write while there may be other threads doing reads, the client is expected to
provide mutual exclusion. Also, certain globally static structures are not locked: the client is
expected to provide mutual exclusion, as indicated in the descriptive text.

2.3 Implementation Notes

The following sections give an overview of how the Toolkit is put together. You should read
this document in combination with the comments in various header files. Begin with the
implementation notes in this chapter, and then progress to the introductory sections of the
chapters on “MetaXAP” (sections 3.1 through 3.6), and finally, “UtilityXAP.” For a detailed
view of how the XMP Toolkit works, see Appendix B, “Runtime Flow of Control.”

2.3.1 Overview

The XMP Toolkit implements one main object,

MetaXAP

.

UtilityXAP

 is a collection of static
utility functions. Various smaller objects, such as

XAPClock

 and

XAPPaths

, are used to
support the main objects. They are described later in this document.

2.3.2 Construction and Destruction

Most clients start by constructing a MetaXAP object.

As explained in the MetaXAP.h header file, MetaXAP is a Handle class. The only member
variable is the opaque XAPTk_Data* m_data. At construction time, a new XAPTk_Data
object is created. See XAPTkData.h for its member variables, which are initialized on
construction.

The MetaXAP constructor that takes a XAPClock creates an object capable of tracking
changes to the metadata with timestamps.

The MetaXAP constructor that also takes a buffer of XML is a convenience. It is equivalent to
calling the default constructor, and immediately calling MetaXAP::parse.

The XMP Toolkit 14 Sept 01 5

The XMP Toolkit
Implementation Notes

2

A MetaXAP object can be used without parsing. You just create properties in it with
MetaXAP::set and MetaXAP::createFirstItem. However, most objects will be filled
up by parsing XML. This is done with the MetaXAP::parse function.

Copy construction for MetaXAP is prohibited. Instead, a Clone static function is provided.
These objects manage large and complex data structures; making unintentional copy
construction very expensive, which is why they are prohibited.

Destruction deletes the XAPTk_Data object, which in turn deletes all of the memory allocated
for its member variables.

2.3.3 Memory Management

Any non-const data structure returned to the client is a copy. It is up to the client to free it.
Const structures are owned by the XMP Toolkit.

When strings and other data structures are output parameters for functions, they are specified
as non-const reference variables. This guarantees that storage control remains with the client.
Direct return of objects is avoided in order to avoid unintended copy construction.

2.3.4 Style and Conventions

The following is an unordered list of items that will help you understand and navigate through
the code.

Naming Styles

Table 2.1, “Naming Styles used in the XMP Toolkit” lists the naming styles used for the XMP
Toolkit.

TABLE 2.1 Naming Styles used in the XMP Toolkit

Item Naming Style

Types TitleCase, sometimes with: Prefix_Underbar

Module Functions TitleCase

Class Static Functions TitleCase (ClassName::TitleCase)

Member Functions initialLowerMixedCase

Public Enum Members xap_all_lower_case_with_underbars

Private Enum Members initialLowerMixedCase

6 14 Sept 01 The XMP Toolkit

The XMP Toolkit
Implementation Notes

2

Names Of Constants And Types

Public types, particularly enums, begin with “XAP” with no underbar. Examples are
XAPFeatures and XAPStructContainerType. Most are defined in XAPDefs.h, though a
few are defined in the class header file that they are most closely associated with.

Public constants, such as namespace names, begin with “XAP”. For example, XAP_NS_XAP.
These are also defined in XAPDefs.h.

Public enum members begin with “xap_”. For example, xap_bag.

Package constants begin with “XAPTK_”. Most are defined in XAPTkdefs.h. For example:
XAPTK_ATTR_XML_LANG.

Names Of Exceptions

With the exception of xap_no_match, all exceptions begin “xap_bad” and are derived from
either xap_error (same sense as the Java Error class), or xap_client_fault (same sense as
the Java Exception class). See XAPExcept.h.

XAPTk_ Composite Types, Module Symbols

The header file XAPObjWrapper.h contains data-structure typedefs built up from STL
building blocks. The naming convention for these, are as follows:

TABLE 2.2 Typedef Naming Convention

Where {Foo} and {Bar} are one of the abbreviations (that is, either the “String” or “Pair”)
in the second column in the following table:

There are also some types in the XAPTk::namespace that are more implementation specific.
In these cases {Foo} or {Bar} describe the intended usage, rather than the base type, for
example:

STL Name Pattern Example

std::map XAPTk_{Foo}By{Bar} XAPTk_StringByString

std::vector XAPTk_VectorOf{Foo} XAPTk_VectorOfString

std::pair XAPTk_PairOf{Foo} XAPTk_PairOfString

std::stack XAPTk_StackOf{Foo} XAPTk_StackOfString

Expression Abbreviation

std::string String

std::pair Pair

The XMP Toolkit 14 Sept 01 7

The XMP Toolkit
Implementation Notes

2

 XAPTk::VectorOfProps

XAPTk::StackOfNSDefs

The name of a class is used as a prefix for package global functions. For example,
MetaXAP_CollectAliases is a global function defined in MetaXAP.cpp.

On the other hand, when {class}_ is used as a prefix for variables, it means they are module
static (private). For example, MetaXAP_nsMap is a static module function of MetaXAP.cpp.

As described above, XAPTk_ was used prior to the introduction of the XAPTk::namespace.

8 14 Sept 01 The XMP Toolkit

The XMP Toolkit
Implementation Notes

2

The XMP Toolkit 14 Sept 01 9

3 MetaXAP

3.1 MetaXAP Overview

This section describes the MetaXAP Class of the XMP Toolkit, which is used to read, write,
and manipulate XMP metadata embedded in, or associated with, managed resources.

3.2 Introduction

MetaXAP is a container class equivalent to the <RDF>...</RDF> element.

A single instance of the MetaXAP class represents the metadata about one resource
(application file). A MetaXAP object contains the internal tree representation of a parsed XML
stream of XMP metadata. The nodes of this tree are accessed through namespace and
pathname strings. Input and output is based on a very simple cross-platform buffer-stream
mechanism. Basically, you construct MetaXAP with a buffer of XML, you do read/writes on
the in-memory model, and then you get a buffer of potentially modified XML back.

MetaXAP enables clients to:

● define namespaces

● get and set property values and attributes

● parse existing RDF metadata

● serialize a MetaXAP object to RDF

● enumerate all of the properties, associated with a resource, by schema, or all properties at
and below a specified partial path

MetaXAP also provides a static set of known schema namespace names (see Table 3.4,
“Schema Namespace Constants”) which are provided as constants. When specifying a
property name, you can specify a namespace prefix only when a nested property is defined in a
namespace other than the parent property. This can happen when a property has a structured
value.

Figure 3.1 shows a diagram of a MetaXAP tree. Properties are organized by schema name.
Each property can be accessed with a path string, as described below.

10 14 Sept 01 The XMP Toolkit

MetaXAP
Path Composition

3

FIGURE 3.1 MetaXAP Tree Diagram

3.3 Path Composition

The MetaXAP object contains one or more trees that represent the metadata properties. Any
value (leaf node) can be directly accessed by composing a path to the value using a string

MetaXAP

Schema

Data structure

Namespace /
Schema name

Path element

Property

Legend:

Property Property

Schema
“http://ns.adobe.com/”

Schema
“http://ns.adobe.com/

xap/1.0/s/”

“Author” “Keywords”

“en-us”

“The XMP
Toolkit”

“La Specifica
Di XMP
Toolkit”

“it”

“title”

“http://purl.org/
dc/elements/1.0/”

Property

“os”

“UNIX”

Property

“path”

“http://atg/projects/
xmp/”

Property

“name”

“xmptk.html”

Property

1

“File Disposition”

Attribute
“xml:lang”

Attribute
“xml:lang”

1 2

“API"

“John Smith”

“metadata”

1 2

The XMP Toolkit 14 Sept 01 11

MetaXAP
Path Composition

3

notation. Containers and attributes may also be addressed with these path strings.

The path notation is modelled on the XPath standard, but uses a very narrow subset of the
standard. This means that paths that are valid for MetaXAP are also valid in a general XPath
implementation. The converse is not true: general XPath expressions are not necessarily valid
paths for MetaXAP.

The paths specified to the MetaXAP object are all relative to an implicit document root. The
path for the Name property is “Name”, not “/Name”.

The paths are not literal paths that match the RDF representation exactly. For one thing, there
are multiple RDF serializations which generate the same abstract tree. Paths are normalized to
the simplified representation exemplified by the diagram above. When in doubt, use paths that
are returned by the enumerate functions.

The most obvious consequence of this is that when referring to structured containers, the
actual element that represents each item, rdf:li, is elided. This means that all items of a
container are referred to with a wild card in place of the rdf:li item, e.g., “title/*[1]”,
is the first title alternative.

Here are some examples which are based on the diagram in Figure 3.1.

The paths to all of the values (leaf nodes) associated with the “http://ns.adobe.com/xap/1.0/”
namespace (XAP_NS_XAP), and the values as returned are:

The paths to all of the values (leaf nodes) associated with the
“http://purl.org/dc/elements/1.0/” namespace (XAP_NS_DC), and their values, are:

For containers, you may use the “last()” function to specify the last item in the container,
whatever it may be. So, for example, the Italian alternative of the title can be found at
“title[last()]”.

Also, you can use ordinal numbers to select items in a container. The first item is “1”. Thus,
the English version of the title can be accessed with the path “title/*[1]”.

Path Value

Author John Smith

Keywords/*[1] API

Keywords/*[2] metadata

Path Value

title/*[@xml:lang='en-us'] The XMP Toolkit Specification

title/*[@xml:lang='it'] La Specifica Di XMP Toolkit

12 14 Sept 01 The XMP Toolkit

MetaXAP
Path Composition

3

The paths to all of the values (leaf nodes) associated with the “http://ns.adobe.com/xap/1.0/s/”
namespace (XAP_NS_XAP_S), and their values, are:

In most cases, the path is specified all the way to a leaf node, but in some cases, it is useful to
specify an intermediate node, such as for the count method below. Simply compose the path to
the name of the node, and use the appropriate count terminator (‘*’ for element children). For
example, to count the number of items that the title container has, pass the “title/*” path.

3.3.1 XPath Syntax

A MetaXAP object contains an XML tree. Any node can be accessed by composing a path to
the node. These paths can be simply encoded in a string. You cannot use a fully general XPath
in the XMP Toolkit. You must use paths that conform to the very narrow subset specified
below.

The path notation is modelled on the XPath standard, but uses a very narrow subset of the
standard. This means that paths that are valid for MetaXAP are also valid in a general XPath
implementation. The converse is not true: general XPath expressions are not necessarily valid
paths for MetaXAP.

The following is a complete BNF of the path composition grammar:

path ::= QName | path '/' expr
Qname ::= name | name ':' name
expr ::= QName | '*[' pred ']'
pred ::= ordinal | 'last()' | QName '=' literal | '@xml:lang=' literal

No productions are given for ordinal, name, or literal. An ordinal is any positive, non-zero
decimal integer. A name is a non-qualified name (NCName) from the XML namespace
grammar. Basically, a name consists of a letter or underscore followed by zero or more letters,
digits, underscores, hyphens, or periods (for more details, see http://www.w3.org/TR/REC-
xml-names).

A literal is a normal XML quoted string; that is it is surrounded with quotes (") or apostrophes
(') and does not contain the quoting character. If it is necessary to use a quote or apostrophe in
a literal, use the HTML character entity names “"” or “'” , respectively (that is,
using character entities as escaped versions of those characters).

There are implied prefixes and functions to the path . The implied prefix is derived from the
context of the tree. Paths are always relative to that context, and begin with a child of the

Path Value

FileDisposition/*[1]/os URL

FileDisposition/*[1]/path http://atg/projects/xmp/

FileDisposition/*[1]/name xapi.html

http://www.w3.org/Tr/xpath
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names

The XMP Toolkit 14 Sept 01 13

MetaXAP
Path Composition

3

document node. The implied function for element and attribute leaf nodes is “text()”, which
matches all text node children of the current context node (as specified in the full XPath
grammar, but not in this subset). See the member function descriptions and derived classes for
additional context implications.

Here is an example of a simple RDF tree that we’ll use to illustrate the syntax:

<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
 <rdf:Description about='' xmlns:ex='http://ns.adobe.com/ex/0.0/'>
 <ex:simple>0</ex:simple>
 <ex:struct rdf:parseType='Resource'>
 <ex:a>1</ex:a>
 <ex:b>2</ex:b>
 </ex:struct>
 <ex:set>
 <rdf:Bag>
 <rdf:li rdf:parseType='Resource'>
 <ex:a>3</ex:a>
 <ex:b>4</ex:b>
 </rdf:li>
 <rdf:li rdf:parseType='Resource'>
 <ex:a>5</ex:a>
 <ex:b>6</ex:b>
 </rdf:li>
 </rdf:Bag>
 </ex:set>
 <ex:text xml:lang='en'>English text.</ex:text>
 <ex:one-of>
 <rdf:Alt>
 <rdf:li xml:lang='en-us'>trunk</rdf:li>
 <rdf:li xml:lang='en-gb'>boot</rdf:li>
 </rdf:Alt>
 </ex:one-of>
 </rdf:Description>
</rdf:RDF>

The paths to all of the leaf nodes in the RDF example given above, are shown in Table 3.1.

TABLE 3.1 Path Examples

Path Value

simple 0

struct/a 1

14 14 Sept 01 The XMP Toolkit

MetaXAP
Property Value Features

3

3.4 Property Value Features

Table 3.2 lists the features that modify the getting and setting of property values.

TABLE 3.2 Property Value Feature Bits.

All features bits are mutually exclusive except that XAP_RDF_RESOURCE can be combined
with XAP_RDF_VALUE.

struct/b 2

set/*[1]/a 3

set/*[1]/b 4

set/*[2]/a 5

set/*[2]/b 6

text/@xml:lang en

text English text

one-of/*[@xml:lang='en-us'] trunk

one-of/*[@xml:lang='en-gb'] boot

Feature Bit Meaning

XAP_FEATURE_NONE No features, value is literal text.

XAP_FEATURE_XML Value should be interpreted as XML. Example,
“<DOC>Text</DOC>”. When setting the property, your raw

XML is converted by MetaXAP into literal text, with appropriate
character entities for parsing characters. The property is stored
using an rdf:value, and qualified with iX:is, whose value is
“XML”.

XAP_FEATURE_RDF_RESOURCE Value is a URI stored as an rdf:resource.

XAP_FEATURE_RDF_VALUE Value is stored with an rdf:value. This bit is not set for
XAP_FEATURE_XML, even though it uses rdf:value.

Path Value

The XMP Toolkit 14 Sept 01 15

MetaXAP
Standard Attributes

3

3.5 Standard Attributes

Only one standard attribute is supported, the xml:lang attribute.

3.6 MetaXAP Class

XMP metadata is a document-ordered collection of RDF description objects. These
description objects are parsed and normalized. Properties in the description objects are
organized by their schema name.

3.6.1 Storage Management

MetaXAP uses standard <malloc.h> and <new> allocators. These allocators may be
overridden at XMP Toolkit compile time by defining the XAP_CUSTOM_ALLOC definitions,
and providing an implementation xap_custom_alloc.h file. See XAPTkAlloc.h for more details.

All data passed to MetaXAP is copied. All data returned from MetaXAP is a copy that the
client is responsible for freeing. When the MetaXAP class is destroyed, all of its internally
allocated memory is freed.

In order to allow for flexible implementation of internal storage management, clients should
know the following:

● MetaXAP to MetaXAP assignment is prohibited.

● The MetaXAP copy constructor is prohibited.

Attribute Usage

xml:lang Special “xml:” namespace. Specifies the language/locale of the
value. Uses RFC 1766 language codes.

16 14 Sept 01 The XMP Toolkit

MetaXAP
Important Types Used In MetaXAP

3

3.7 Important Types Used In MetaXAP

XAPDateTime

typedef struct {
 short sec; // seconds after the minute - [0,59]
 short min; // minutes after the hour - [0,59]
 short hour; // hours since midnight - [0,23]
 short mday; // day of the month - [1,31]
 short month; // month of the year - [1,12]
 short year; // years since 1900 (can be negative!)
 short tzHour; // hours +ahead/-behind UTC - [-12,12]
 short tzMin; // minutes offset of UTC - [0,59]
 long nano; // nanoseconds after second (if supported)
 long seq; // sequence number (if nano not supported)
} XAPDateTime;

This structure is used to represent dates and times from metadata, and timestamps for media
management and metadata merging. If the system clock used for time is capable of sub-second
resolution, the nano field can be used to represent the sub-second value. If the system clock is
not capable of sub-second resolution, the seq field should be used to guarantee unique
timestamps. If seq is zero, the nano field contains a valid sub-second value. See
MetaXAP::XAPClock below.

MetaXAP::XAPClock
class XAPClock {
public:

virtual void
timestamp (XAPDateTime& dt) = 0;

protected:
virtual ~XAPClock() {};

};

Description

Clients provide the clock used for creating timestamps. MetaXAP will never try to delete a
XAPClock object.

Even though the XAPDateTime data structure includes time zone information, XAPClock
should only generate GMT (UTC) timestamps. Code that uses MetaXAP::XAPClock will
check to make sure that the tzHour and tzMin fields are zero. If either is not, a
xap_bad_number exception will be thrown.

The seq field of XAPDateTime allows flexible implementation of the timestamp function.
Consider an implementation based on a system clock that only guarantees time resolution to
the second. Since it is likely that metadata changes will happen in far less than a second, an
implementation like the following could be used:

The XMP Toolkit 14 Sept 01 17

MetaXAP
Important Types Used In MetaXAP

3

class MyXAPClock : public XAPClock {
public:
 long m_seq; // Internal counter
 struct tm m_last; // Last timestamp
 ...
 virtual void
 timestamp (XAPDateTime& dt) {
 struct tm now = sysclock(); // 1-second resolution
 if (/* ... now == m_last ... */) {
 dt.seq = ++m_seq;
 } else {
 m_last = now;
 m_seq = 1;
 }
 /* ... convert now to XAPDateTime, and assign to dt ... */
 dt.seq = m_seq;
 dt.nano = 0; // We are using seq
 }
};

Note that the seq field is initialized to 1. The value 0 for seq is reserved to indicate that the
nano field should be used instead. If seq is non-zero, nano should be set to 0.

If the system clock has better than second resolution, to the extent that consecutive calls to
timestamp will never result in the same time, the nano field can be set to the sub-second value
instead, and seq should be set to 0.

MetaXAP::XAPChangeBits
typedef long int XAPChangeBits;

Description

Each timestamp record includes an indication of how the property was last changed. Only one
bit is set for any given record, except that XAP_CHANGE_SUSPECT may also be set for any
record. This means that only the most recent change is ever recorded. Each bit is described in
Table 3.3.

18 14 Sept 01 The XMP Toolkit

MetaXAP
Important Types Used In MetaXAP

3

TABLE 3.3 XAP Change Bits

3.7.1 Namespace Constants

Use these namespace constants for the specified schema descriptions.

TABLE 3.4 Schema Namespace Constants

Change Bit Meaning

XAP_CHANGE_NONE No change bits are set.

XAP_CHANGE_CREATED Property was created (defined).

XAP_CHANGE_SET Property value was set.

XAP_CHANGE_REMOVED Property was removed (undefined)

XAP_CHANGE_FORCED The timestamp for this property was forced to a specified value.

XAP_CHANGE_SUSPECT There is reason to believe that the timestamp record is invalid.

Constant Schema Description

XAP_NS_XAP XMP Core Schema

XAP_NS_XAP_G XMP Graphics

XAP_NS_XAP_G_IMG XMP Graphics: Image

XAP_NS_XAP_DYN XMP Dynamic Media

XAP_NS_XAP_DYN_A XMP Dynamic Media: Audio

XAP_NS_XAP_DYN_V XMP Dynamic Media: Video

XAP_NS_XAP_T XMP Text

XAP_NS_XAP_T_PG XMP Text: Paged Text

XAP_NS_XAP_RIGHTS XMP Rights Management

XAP_NS_XAP_MM XMP Media Management

XAP_NS_XAP_S XMP Support

XAP_NS_XAP_BJ XMP Basic Job Ticket

XAP_NS_PDF Adobe PDF

The XMP Toolkit 14 Sept 01 19

MetaXAP
MetaXAP Member Functions

3

3.8 MetaXAP Member Functions

public default constructor
MetaXAP ();

Description

Creates an empty object with no clock.

public construct empty with clock
MetaXAP (XAPClock* clock);

Description

Creates an empty object with a clock. If the XAP_OPTION_AUTO_TRACK option is enabled,
timestamps will be kept per-property for all changes, and the xap:MetadataDate will be set to
the last modified time of any change.

Exceptions

 bad_alloc, xap_bad_number

The clock must not be NULL. This constructor will test the clock implementation to make
sure it generates GMT (UTC) time (the timezone fields tzHour and tzMin must both be
zero). If this test fails, this constructor will throw a xap_bad_number exception.

XAP_NS_USER XMP User Defined

XAP_NS_DC Dublin Core

XAP_NS_RDF RDF

Constant Schema Description

20 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

public construct from buffer
MetaXAP (const char* xmlbuf,

const long int len,
const long int opt = XAP_OPTION_DEFAULT,
XAPClock* clock = NULL);

Description

Constructs a populated MetaXAP from a single buffer of raw XML. The buffer is fed into an
XML parser, and the MetaXAP is populated with sub-objects. If there are multiple buffers, use
the default constructor instead and call parse.

The specified options opt are enabled immediately after the empty MetaXAP instance is
created. This is particularly useful for enabling auto-tracking to capture creation dates for
properties as they are parsed (assuming they don’t already have timestamps).

If clock is NULL, no automatic tracking is done. Either the client does it manually with the
get/set timestamp functions (listed below), or no timestamps are generated for this metadata.

MetaXAP destructor
virtual ~MetaXAP ();

Description

Destroy this object and all internally allocated memory.

MetaXAP::append
typedef long int XAPFeatures;
virtual void
append (const std::string& ns,

const std::string& path,
const std::string& value,
const bool inFront = false,
const XAPFeatures f = XAP_FEATURE_DEFAULT);

Description

Creates a new property with the specified value, and adds it next to the property specified by
namespace ns and path. The path must specify a property in a structured container. The
inFront parameter says whether to place the new value before or after the named position.
To add a property to the end of a container, use the “last()” specifier, for example,
“title/*[last()].” To add a property or attribute to the beginning of a container or list of
attributes, use the pattern “*[1]” in the path and pass TRUE for inFront.

The XMP Toolkit 14 Sept 01 21

MetaXAP
MetaXAP Member Functions

3

The append function is not supported for attributes.

Examples

m.append (XAP_NS_XAP, "FileDisposition/*[last()]/os", "URL");
m.append (XAP_NS_XAP, "title/*[1]", "First Title", true);

All properties related to the specified property by alias or actual value that are also containers
are appended as well (see MetaXAP::SetAlias). For example, suppose Car is an alias of
Vehicle, and Auto is an alias of Vehicle. If any of Car, Auto, or Vehicle is appended, all that are
containers are appended as well.

Exceptions

bad_alloc, xap_bad_path, xap_bad_type, xap_bad_number,
xap_bad_schema

Throws exceptions for syntactically invalid paths, and for attempting to append to a property
that is not a structured container. Throws xap_bad_number if the specified ordinal is beyond
“last()”. Throws xap_bad_schema if ns is not registered or invalid.

MetaXAP::count
virtual size_t
count (const std::string& ns,

const std::string& path) const;

Description

Returns the number of items in the structured container specified by ns and path.

Example

size_t n = m.count (XAP_NS_DC, "title/*"); // number of language alts

Exceptions

bad_alloc, xap_bad_path, xap_bad_schema

Throws xap_bad_path for syntactically invalid paths, or if the path does not end with “*”.
Throws xap_bad_schema if ns is not registered or invalid.

22 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

MetaXAP::createFirstItem
There are two variations:

Variation #1:

typedef long int XAPFeatures;
virtual void
createFirstItem (const std::string& ns,

const std::string& path,
const std::string& value,
const XAPStructContainerType type = xap_bag,
const XAPFeatures f = XAP_FEATURE_DEFAULT);

Description

Creates a structured container of the specified type, and set the value of the first item at the
end of the specified path, with the optionally specified features. Nodes are created as needed
to ensure that the path is complete. See next variation for examples and exceptions.

Variation #2:

virtual void
createFirstItem (const std::string& ns,

const std::string& path,
const std::string& value,
const std::string& selectorName,
const std::string& selectorVal,
const bool isAttr = true,
const XAPFeatures f = XAP_FEATURE_DEFAULT);

Description

Creates a structured container of the type xap_alt, and set the value of the first item at the
end of the specified path, with the specified selectorName and selectorVal as the
selector of the alternation, and optional features. Expressed as an XPath predicate, the selector
would be [@selectorName='selectorVal'] if the isAttr is TRUE, otherwise it
would be “[selectorName='selectorVal']” and value is ignored (just pass
selectorValue or “”). Nodes are created as needed to ensure that the path is complete.

All properties related to the specified property by alias or actual value that are also containers
are created as well (see MetaXAP::SetAlias). For example, suppose Car is an alias of
Vehicle, and Auto is an alias of Vehicle. If any of Car, Auto, or Vehicle does not exist and is a
container type, each is created (nothing happens to any that do exist, or are not containers).

The XMP Toolkit 14 Sept 01 23

MetaXAP
MetaXAP Member Functions

3

Examples

//Create the first keyword
m.createFirstItem (XAP_NS_XAP, "Keywords", "big");

//Create the first Title, selected by xml:lang of en-us
//The path to get this item would be "Title/*[@xml:lang='en-us']"
m.createFirstItem (

XAP_NS_XAP, "Title", "Your Photo", "xml:lang", "en-us");

//Create the first FileDisposition, selected by sub-prop os of UNIX
//The path to get this item would be "FileDisposition/*[os='UNIX']"
m.createFirstItem (

XAP_NS_XAP_S, "FileDisposition", "", "os", "UNIX", false);

Exceptions

bad_alloc, xap_bad_path, xap_bad_type, xap_bad_schema

Throws xap_bad_path for syntactically invalid paths and for a path that leads to a property
that is already defined. Use MetaXAP::append to add additional items to the container.
Throws xap_bad_schema if ns is not registered or invalid. Throws xap_bad_type if not a
container.

MetaXAP::enable
typedef long int Options;
virtual void
enable (const Options opt,

const bool en) throw ();

Description

Enables or disables the specified option(s), such as XAP_OPTION_DEBUG. Unrecognized
options are ignored.

The options are defined in Table 3.5, “Option Enable Constants.”

24 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

TABLE 3.5 Option Enable Constants

Example

meta->enable (XAP_OPTION_TAG_ONLY, false);

Option When option is enabled

XAP_OPTION_NONE No options.

XAP_OPTION_DEFAULT Default options in force.

XAP_OPTION_ALIASING_ON Alias mapping occurs during property get, set, etc., (see
MetaXAP::SetAlias). If disabled, property get, set,
etc., occurs on the specified property only. Enabled by
default.

XAP_OPTION_ALIAS_OUTPUT If enabled, all forms of aliased properties are written
when serializing. Otherwise only the base form of each
alias set is written. Disabled by default.

XAP_OPTION_AUTO_TRACK When constructed with a XAPClock object,
automatically modify xap: metadata properties for
media management that pertain to this metadata
instance. For example, calls to set will cause the
xap:MetadataDate and per-property timestamps to be
updated. See setup below. Enabled by default.

XAP_OPTION_DEBUG Pre- and post-condition checking and other assertions
are activated for the debug version of the Toolkit only.
Disabled by default.

XAP_OPTION_XAPMETA_ONLY If enabled, the parser will only recognize RDF elements
that are descendents of the tag “xapmeta” in
XAP_NS_META namespace. If disabled, the parser will
recognize all RDF elements, regardless of their location
in the XML document. See parse for more details.
Enabled by default.

XAP_OPTION_XAPMETA_OUTPUT A xapmeta element in the XAP_NS_META namespace
is written as the outermost XML element when
serializing. Enabled by default.

The XMP Toolkit 14 Sept 01 25

MetaXAP
MetaXAP Member Functions

3

MetaXAP::enumerate
There are three variations:

Variation #1:

virtual XAPPaths*
enumerate (const int depth = 0);

Description

Returns a pointer to an object that enumerates properties in this MetaXAP object. Properties
are listed in document order, or the order in which they were specified. Attributes are always
listed before child properties. It is the responsibility of the caller to destroy the XAPPaths
object. Changes to MetaXAP (calls to non-const member functions) are not reflected in the
XAPPaths object.

The depth parameter limits the depth of the enumeration. If the value is 0 (default), paths to
all leaf nodes are enumerated, regardless of the number of steps to each leaf. If the value is 1,
only the paths with one step (no slash) are generated, which correspond to the top-level nodes
of the tree. If the value is 2, paths that only have two steps (one slash) or less, and generally
include the attributes of top-level nodes if any, and children of top-level nodes, if any. And so
on.

Example

string ns, prop, val;
XAPFeatures f;

XAPPaths* p = m->enumerate();
while (p->hasMorePaths()) {

 p->nextPath (ns, prop);
}
if (m->get (ns, prop, val, f)) {
 cout << prop << “=” << val << endl;
}
delete p;
delete m;

Exceptions

bad_alloc

Variation #2:

virtual XAPPaths*
enumerate (const std::string& ns,

const std::string& subPath,
const int steps = 0);

26 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

Description

Returns a pointer to an object that enumerates all of the properties in the specified subPath.
Children are listed in the order they are specified, and attributes are always listed before child
properties. It is the responsibility of the caller to destroy the XAPPaths object. Changes to
MetaXAP (calls to non-const member functions) are not reflected in the XAPPaths object. The
steps parameter is described above.

Example

string ns, path, val;
XAPFeatures f;

XAPPaths* p = m->enumerate(XAP_NS_XAP, "TestCont");
while (p->hasMorePaths()) {
 p->nextPath (ns, path);
 if (m->get (ns, prop, val, f)) {
 cout << prop << “=” << val << endl;
}
 delete p;
 delete m;

Exceptions

bad_alloc, xap_bad_path, xap_bad_schema

Throws xap_bad_schema if ns is invalid. Throws xap_bad_path if the path is invalid.

Variation #3:

typedef enum {
 xap_before,
 xap_at,
 xap_after,
 xap_noTime,
 xap_notDef
} XAPTimeRelOp;

virtual XAPPaths*
enumerate (const XAPTimeRelOp op,

const XAPDateTime& dt,
const XAPChangeBits how = XAP_CHANGE_MASK);

Description

Returns a pointer to an object that enumerates all of the properties whose last modified
timestamp has the relation to dt specified by op. For example, if dt has an earlier time than
the timestamp for “Foo” (i.e., “Foo” is newer than whatever dt specifies), “Foo” would be

The XMP Toolkit 14 Sept 01 27

MetaXAP
MetaXAP Member Functions

3

included in the enumeration if op is xap_after, and would not be included if the op is
xap_at or xap_before. Returns NULL if there are no matches.

The op xap_noTime matches any property that does not have a timestamp. The op
xap_notDef is ignored. The bits set in how act as a filter against which properties are
included in the comparison with op. For example, to enumerate only those properties that have
been removed since dt:

 ... = meta->enumerate (xap_after, dt, XAP_CHANGE_REMOVED);

Exceptions

bad_alloc

MetaXAP::extractSerialization
virtual size_t
extractSerialization (char* buf,

const size_t nmax);

Call extractSerialization to incrementally extract the contents of the string saved by a
preceding call to serialize. You specify the size of your buffer with parameter nmax. The
function returns the number of bytes (char) that were actually copied. When the function
returns 0, the extraction is complete and the private string is emptied. Subsequent calls to
extractSerialization will result in no copies and a return value of 0, until serialize
is called again.

Example

const int bufMetaMax = 1024;
char bufMeta[max];
(void) = meta->serialize (xap_format_pretty, 0);
while (true) {

if (size == 0) break;
szz = meta->extractSerialization (bufMeta, bufMetaMax - 1);
cout->write (bufMeta, szz);

}

28 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

MetaXAP::get
typedef long int XAPFeatures;
virtual bool
get (const std::string& ns,

const std::string& path,
std::string& val,
XAPFeatures& f) const;

Description

Gets the value at the property specified by ns and path as a string. If any node along the
path does not exist, get returns FALSE, otherwise it returns TRUE and the string value is
copied into val. The features of the string value, such as whether or not XML markup is
preserved, are copied into f.

Example

bool is;
XAPFeatures f;
std::string v;
is = m.get (XAP_NS_XAP, "Nickname", v, f);
is = m.get (XAP_NS_DC, "title/*[@xml:lang='it']", v, f);

Exceptions

bad_alloc, xap_bad_path, xap_no_match, xap_bad_schema

Throws exceptions for syntactically invalid paths, and paths that do not match any property
(such as trying to get item 5 from an existing simple value). Throws xap_bad_schema if ns
is not registered or invalid.

MetaXAP::getContainerType
typedef enum {

xap_alt,
xap_bag,
xap_seq,
xap_sct_unknown

} XAPStructContainerType;

virtual XAPStructContainerType
getContainerType (const std::string& ns,

const std::string& path) const;

The XMP Toolkit 14 Sept 01 29

MetaXAP
MetaXAP Member Functions

3

Description

Returns the type of the specified container. The path must specify a container type
(MetaXAP::getForm must return xap_container).

Examples

XAPStructContainerType t =
 m.getContainerType (XAP_NS_XAP, "FileDisposition");

Exceptions

 bad_alloc, xap_bad_path, xap_no_match, xap_bad_schema

Throws xap_bad_schema if ns is not registered or invalid. Throws xap_bad_path if the
path is invalid. Throws xap_no_match if the path is syntactically valid, but does not match
any defined property.

MetaXAP::getForm
typedef enum {
 xap_simple,
 xap_description,
 xap_container,
 xap_unknown
} XAPValForm;

virtual XAPValForm
getForm (const std::string& ns,

const std::string& path) const;

Description

Returns the type of property specified by ns and path, as shown below in Table 3.6.

30 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

TABLE 3.6 Property Type Values

Example

XAPValForm vt = m.getForm (XAP_NS_XAP, "FileDisposition");

Exceptions

bad_alloc, xap_bad_path, xap_no_match, xap_bad_schema

Throws xap_bad_schema if ns is not registered or invalid. Throws xap_bad_path if the
path is invalid. Throws xap_no_match if the path is syntactically valid, but does not
match any defined property.

MetaXAP::getResourceRef
virtual void
getResourceRef (std::string& resRef) const;

Description

Returns the reference (URI) for the resource that this MetaXAP is about. Returns the empty
string “” if the description is embedded in the resource itself.

Exceptions

bad_alloc

XAPValForm Meaning

xap_simple Path to a simple value.

xap_description Path to a nested description objects. Contains other
properties as children.

xap_container Path to a structured container. See
MetaXAP::getContainerType.

xap_unknown Unknown value type (treat as xap_simple with
parseType=“Literal”).

The XMP Toolkit 14 Sept 01 31

MetaXAP
MetaXAP Member Functions

3

MetaXAP::getTimestamp
virtual bool
getTimestamp (const std::string& ns,

const std::string& path,
XAPDateTime& dt,
XAPChangeBits& how) const;

Description

Returns FALSE if the property specified by ns and path is not defined. Otherwise, returns
TRUE, and copies the timestamp value into dt. The bits in how are set according to how the
property was changed. If there is no timestamp record for this property, how is set to
XAP_CHANGE_NONE.

Example

XAPDateTime dt;
XAPChangeBits how;
MetaXAP* meta = new MetaXAP();
bool Ok = meta->getTimestamp (

XAP_NS_XAP_G_IMG, "Dimensions/stDim:w",dt, how);

Exceptions

 bad_alloc, xap_bad_path, xap_bad_schema, xap_no_match

Throws exceptions for syntactically invalid paths. Throws xap_bad_schema if ns is not
registered or invalid. Throws xap_no_match if property is not defined.

MetaXAP::isEnabled
virtual bool
isEnabled (const Options opt) const throw ();

Description

Returns whether the specified option is enabled, such as XAP_OPTION_DEBUG. An
unrecognized option always returns FALSE. Pass a single option bit.

32 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

MetaXAP::parse
virtual void
parse (const char* xmlbuf,

const size_t n,
const bool last = false);

Description

Parses a buffer of XML and creates the corresponding XMP objects. This function expects to
be called in the order that buffers occur for a particular XML serialization. The last buffer is
indicated by passing TRUE for last. It is legal for tokens, or even multibyte characters, to
cross buffer boundaries.

Only one parsing cycle should be used per MetaXAP instance (a cycle is 0 or more calls to
parse with last==false, 1 call to parse with last==true). Calling parse with
last==false after calling it with last==true for the same MetaXAP instance will have
unspecified results.

The parse function will handle any well-formed XML, and will detect RDF elements
anywhere in the XML. If the XAP_OPTION_XAPMETA_ONLY option is enabled, only those
RDF elements that are children of the “xapmeta” tag in the XAP_NS_META namespace are
recognized as XMP metadata, all others are ignored. If the XAP_OPTION_XAPMETA_ONLY
option is disabled, all RDF elements in the input are recognized as XMP metadata.

Calling any other functions in MetaXAP during a parse will yield undefined results.

Example

const int bufMetaMax = 1024;
char bufMeta[bufMetaMax];
MetaXAP* meta = new MetaXAP();
ifstream* metaFs = new ifstream ("metadata.xml",
 ios_base::in | ios_base::binary);
if (!metaFs || metaFs->fail()) exit(-1);

try {
 while (!metaFs->eof()) {
 metaFs->read (bufMeta, nbufMetaMax
 meta->parse (bufMeta, metaFs->gcount());
 }
 meta->parse ("\n", 1, true); // all done
}
catch (xap_bad_xml& x) {
 cerr << x.what() << "(" << x.getContext() << "):"
 << x.getLine() << endl;
 throw;
}

The XMP Toolkit 14 Sept 01 33

MetaXAP
MetaXAP Member Functions

3

Exceptions

 bad_alloc, xap_bad_xml, xap_bad_xap

Throws xap_bad_xml if the XML is not well-formed (lexical error). Throws xap_bad_xap
if the RDF is invalid (parsing error).

MetaXAP::purgeTimestamps
virtual void
purgeTimestamps (const XAPChangeBits how = XAP_CHANGE_REMOVED,

const XAPDateTime* dt = NULL);

Description

Purges all timestamp records for properties with any XAPChangeBits set in how. By default,
purges all timestamp records for properties marked XAP_CHANGE_REMOVED. If dt is not
NULL, all timestamps that were not purged are forced to the specified timestamp, and their
XAPChangeBits are set to XAP_CHANGE_FORCED. Thus, to force all timestamps to a
specific time, pass XAP_CHANGE_NONE as the first parameter and a non-null date and time as
the second parameter.

Example

XAPDateTime dt;
meta->purgeTimestamps (XAP_CHANGE_REMOVED, &dt);

Exceptions

bad_alloc

MetaXAP::remove
virtual void
remove (const std::string& ns,

const std::string& subPath);

Description

Removes the specified property and all of its sub-properties, if any. When a child of a
container is removed, all siblings that follow that item are renumbered. Nothing is done if
there is no property for the specified path.

All properties related to the specified property by alias or actual value are removed as well (see
MetaXAP::SetAlias). For example, suppose Car is an alias of Vehicle, and Auto is an alias
of Vehicle. If any of Car, Auto, or Vehicle is removed, all are removed.

34 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

Examples

m.remove (XAP_NS_DC, "title/*[1]");

Throws an exception if the path is invalid, or the path matches none of the nodes.

Exceptions

xap_bad_path, xap_no_match, xap_bad_schema

Throws xap_bad_schema if ns is not registered or invalid.

MetaXAP::serialize
typedef enum {

xap_format_pretty,
xap_format_compact

} XAPFormatType;

const int XAP_ESCAPE_CR = 1<<0;
const int XAP_ESCAPE_LF = 1<<1;

virtual size_t
serialize (const XAPFormatType f = xap_format_pretty,

const int escnl = 0) = 0;

Description

Serializes the MetaXAP tree as XML. Call serialize to perform serialization, optionally
specifying a format and escnl for filtering linebreaks. The f option xap_format_pretty
is pretty-printed for human readability, using whitespace and indenting. The f option
xap_format_compact minimizes whitespace and uses the most compact representation
possible. The serialized data is kept in a private string.

The escnl bits indicate whether line ending characters should be escaped into character refs,
using the HTML character entity names“” for CR, and “
” for LF. This allows a
client to post-filter the XML to impose line-length limitations: the unescaped version of the
line-break character can be inserted into the XML, since the XML is guaranteed not to contain
that character unescaped, unless formatted pretty (see below). A processing instruction is
added at the beginning to indicate that the filtering was applied. The processing instruction is
omitted if escnl is 0. This instruction is detected by the parse function of this class, and the
corresponding unescaped linebreak characters, if any, are removed before buffers are passed to
the XML parser. If f is xap_format_pretty, lines are formatted with a linebreak character
as follows: CR if escnl is XAP_ESCAPE_LF only, LF if escnl is XAP_ESCAPE_CR only,
CRLF if both bits are set. Returns a value of 0 if there is no metadata, and a value greater than
zero (>0) otherwise.

The XMP Toolkit 14 Sept 01 35

MetaXAP
MetaXAP Member Functions

3

The serialized metadata does not include (does not begin with) the standard xml prolog <?xml
...?>. This makes it easier to embed the serialized metadata in an existing XML document
entity, such as a WebDAV property. If you are writing this serialized XML as a document
entity (e.g., into a standalone file), you should prepend an appropriate prolog, such as:

<?xml version="1.0" encoding="UTF-8"?>

If the XAP_OPTION_XAPMETA_OUTPUT option is enabled, the serialized output is contained
within the single tag “xapmeta” in the XAP_NS_META namespace. If the
XAP_OPTION_XAPMETA_OUTPUT option is disabled, the “xapmeta” tag is omitted. In either
case, all of the metadata is contained within a single RDF element.

The serialized metadata is in UTF-8 Unicode character encoding.

Exceptions

bad_alloc

MetaXAP::set
typedef long int XAPFeatures;
virtual void
set (const std::string& ns,

const std::string& path,
const std::string& value,
XAPFeatures f = XAP_FEATURE_DEFAULT);

Description

Sets the specified value at the end of the specified path, with the optionally specified features.
Nodes are created as needed to ensure that the path is complete, except for items of a
structured container (see MetaXAP::createFirstItem above and xap_bad_number
below). Existing values are overwritten.

Examples

m.set (XAP_NS_XAP, "Author", "Your Name");
m.set (XAP_NS_XAP_G_IMG, "Dimensions/stDim:w", "480");

All properties related to the specified property by alias or actual value are set as well (see
MetaXAP::SetAlias). For example, suppose Car is an alias of Vehicle, and Auto is an alias
of Vehicle. If any of Car, Auto, or Vehicle is set, all are set to the same value.

Exceptions

bad_alloc, xap_bad_path, xap_bad_type, xap_bad_number, xap_bad_schema

Throws exceptions for syntactically invalid paths, and for attempting to change the type of the
property, e.g., if “title” is a structured container (an Alt of different languages), trying to set

36 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

3

title to a simple value will generate a xap_bad_type exception. Throws a
xap_bad_number exception if an attempt is made to set a structured item beyond
“last()”. Use MetaXAP::append to add items to a container. Throws xap_bad_schema
if ns is not registered or invalid.

MetaXAP::setTimestamp
virtual void
setTimestamp (const std::string& ns,

const std::string& path,
const XAPDateTime& dt);

Description

This should only be used when manual tracking is being done by the client. Sets the timestamp
to dt. The XAPChangeBits for this property are set to XAP_CHANGE_FORCED.

Example

meta->setTimestamp (XAP_NS_XAP_G_IMG, "Dimensions/stDim:w", dt);

Exceptions

 bad_alloc, xap_bad_path, xap_bad_schema, xap_no_match

The timestamp must be GMT (UTC) time (the timezone fields tzHour and tzMin must both be
zero). If there is non-zero timezone information, the xap_bad_number exception will be
thrown. Throws xap_bad_path for syntactically invalid paths. Throws xap_no_match for
valid paths that have no defined property. Throws xap_bad_schema if ns is not registered
or invalid.

MetaXAP::setup
virtual void
setup (const char *const key,

const std::string& val);

Description

Some properties require metadata that only the client of this Toolkit can provide, such as the
name of the software agent using the Toolkit. Use this function to provide values to this
instance of MetaXAP for automatic tracking.

The XMP Toolkit 14 Sept 01 37

MetaXAP
MetaXAP Static Functions (Class Methods)

3

Examples

m.setup (XAP_SETUP_VENDOR, "Adobe");
m.setup (XAP_SETUP_APP, "Photoshop");
m.setup (XAP_SETUP_VERSION, "10.0");
m.setup (XAP_SETUP_PLATFORM, "Windows");

These example calls would allow the Toolkit to create an AgentName of “Adobe Photoshop
10.0 for Windows”.

Exceptions

bad_alloc

MetaXAP::setResourceRef
virtual void
setResourceRef (const std::string& ref);

Descripton

Sets the reference to the resource (URI) that this MetaXAP is about.

Example

meta->setResourceRef ("test:/resource/'about'/");

Exceptions

bad_alloc

3.9 MetaXAP Static Functions (Class Methods)

MetaXAP::Clone
static MetaXAP*
Clone (MetaXAP* orig);

Description

Makes a deep-copy of the MetaXAP object orig and returns it. Copies timestamps without
changing them, if any.

NOTE: Multi-threaded clients must provide mutual exclusion.

38 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

3

Examples

MetaXAP* clone = MetaXAP::Clone(meta);

MetaXAP::EnumerateAliases
static XAPPaths*
EnumerateAliases () throw();

Description

Returns a pointer to an object that enumerates all of the aliases defined for all MetaXAP
objects. It is the responsibility of the caller to destroy the XAPPaths object. Changes to aliases
(calls to MetaXAP::SetAlias) are not reflected in the XAPPaths object.

NOTE: Multi-threaded clients must provide mutual exclusion.

MetaXAP::GetAlias
static bool
GetAlias (const std::string& aliasNS,

const std::string& aliasPath,
std::string& actualNS,
std::string& actualPath,
XAPStructContainerType& cType) throw();

Description

Gets the alias for the specified path, if any. The first pair, aliasNS and aliasProp, specifies
a namespace and path to the property whose actual value might be found elsewhere. If there is
an alias defined, actualNS and actualProp are set to the namespace and path,
respectively, of the actual property and TRUE is returned. Otherwise, FALSE is returned. The
cType is also set to the container type of the actual path: if the value form is not a container,
cType is set to xap_sct_unknown.

NOTE: Multi-threaded clients must provide mutual exclusion.

Example

string nsActual, pActual;
string pActual;
XAPStructContainerType sct;
MetaXAP::GetAlias (XAP_NS_XAP, "TestCont", nsActual, pActual, sct);

The XMP Toolkit 14 Sept 01 39

MetaXAP
MetaXAP Static Functions (Class Methods)

3

MetaXAP::Merge
typedef enum {

xap_policy_a,
xap_policy_b,
xap_policy_newest,
xap_policy_oldest,
xap_policy_dont_merge,
xap_policy_ask_user

} XAPMergePolicy;

static XAPPaths*
Merge (MetaXAP* a,

MetaXAP* b,
MetaXAP** merge,
const XAPMergePolicy policy,
const bool justCheck = false,
XAPTimeRelOp* dontMergeResult = NULL);

Description

If justCheck is FALSE and policy is not xap_policy_dont_merge nor
xap_policy_ask_user, this function creates a new MetaXAP object and returns the
pointer in merge, after merging the metadata in instance a with instance b, and copying the
resulting metadata into merge. Any properties defined in a but not in b, or in b but not in a,
are defined (copied) to merge. The corresponding timestamp record is also copied unchanged.
The policy specifies what the merge does when both a and b define a property, including cases
when one has the XAP_CHANGE_REMOVED bit set. The policy descriptions follow:

TABLE 3.7 Merge Policy Descriptions

Any property with a XAP_CHANGE_SUSPECT bit set is ignored and no change is made to
merge for that property, regardless of whether the bit is set in a or b. Properties with no

Policy Meaning

xap_policy_dont_merge Just compare, see below.

xap_policy_a The value in a is copied to merge.

xap_policy_b The value in b is copied to merge.

xap_policy_newest The latest timestamped value is copied to merge.

xap_policy_oldest The earliest timestamped value is copied to merge.

xap_policy_ask_user Same as xap_policy_dont_merge.

40 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

3

timestamp are treated as if they had a timestamp equal to the value of xap:MetadataDate. If
xap:MetadataDate is not defined, no change is made to merge for that property for
xap_policy_newest or xap_policy_oldest only.

The returned paths represent those properties in merge that were changed as a result of the
policy, or if justCheck is TRUE, the paths for the properties that would have been copied
into merge if justCheck had been FALSE. Does not include properties copied to merge
because they were defined in a but not in b, or vice versa. Returns NULL if nothing is copied
to merge (merge is unchanged by the call).

For xap_policy_dont_merge and xap_policy_ask_user, no new MetaXAP object is
created and merge is left unchanged. If justCheck is FALSE, the paths returned represent
those properties that are defined in both a and b, but that do not have identical timestamps. If
justCheck is TRUE, NULL is returned, and if dontMergeResult is non-NULL, it is set to
the result of comparing the xap:MetadataDate of a and b (see
UtilityXAP::CompareTimestamps).

Example

 MetaXAP* mergedMeta = NULL;

 // Merge letting newer values override older values.
 XAPPaths* newer = MetaXAP::Merge(oldMeta, newMeta, &mergedMeta,
xap_policy_newest);

 MetaXAP* deltaMeta = NULL;

 // Merge letting older values override newer values.
 XAPPaths* older = MetaXAP::Merge(oldMeta, newMeta, &deltaMeta,
xap_policy_oldest);

Exceptions

Raises all the same exceptions as MetaXAP::enumerate, MetaXAP::set,
MetaXAP::remove, MetaXAP::createFirstItem, and MetaXAP::setTimestamp.

MetaXAP::RegisterNamespace
static void
RegisterNamespace (const std::string& nsName,

const std::string& suggestedPrefix);

Description

For serialization to XML, clients must provide a suggested prefix for each namespace that they
use. The standard namespaces (those for which a constant string is defined in this API) already
have registered prefixes. Register a namespace name (which should be a URI), and a suggested

The XMP Toolkit 14 Sept 01 41

MetaXAP
MetaXAP Static Functions (Class Methods)

3

prefix for composing qualified names. Omit the composition character (such as “:” for RDF)
from the prefix. Setting or creating a property in a namespace that has not been registered will
result in an exception.

NOTE: Multi-threaded clients must provide mutual exclusion.

Example

MetaXAP::RegisterNamespace("http://purl.org/dc/qualifiers/1.0/", "dcq");

Exceptions

bad_alloc

MetaXAP::RemoveAlias
static void
RemoveAlias (const std::string& aliasNS,

const std::string& aliasPath);

Description

Removes the specified alias from the alias map for all metadata objects. This function does not
change any metadata values. See the important Note in MetaXAP::SetAlias, which applies
to MetaXAP::RemoveAlias as well.

MetaXAP::SetAlias
static void
SetAlias (const std::string& aliasNS,

const std::string& aliasPath,
const std::string& actualNS,
const std::string& actualPath,
const XAPStructContainerType cType = xap_sct_unknown);

Description

Adds to the alias map for all instances of MetaXAP. Matching aliases are overwritten, new
aliases are appended. The alias is specified as two pairs of strings. The first pair, aliasNS and
aliasProp, specifies a namespace and path to the property whose actual value is found
elsewhere. The second pair, actualNS and actualProp, specifies a namespace and path to
the property for the actual value. The cType specifies the container type, if the actualPath
represents a container or container member.

42 14 Sept 01 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

3

Examples

/* "Author" and "Title" in the XMP core schema are aliases of
 "creator" and "title" in the Dublin Core schema. */

const char* XAP_NS_XAP = "http://ns.adobe.com/xap/1.0/";
const char* XAP_NS_DC = "http://purl.org/dc/elements/1.0/";

MetaXAP::SetAlias (XAP_NS_XAP, "Author",
 XAP_NS_DC, "creator/*[1]", xap_bag);
MetaXAP::SetAlias (XAP_NS_XAP, "Title",
 XAP_NS_DC, "title", xap_alt);

To determine which of two properties should be the alias, and which the actual, consider
which will be used most frequently by the broadest cross-section of users. If one property
happens to be from a broadly supported schema, such as Dublin Core, or if one property
represents an important legacy metadata format, such as IPTC, use that property as the actual,
and use the new or XMP defined property as the alias.

NOTE: Changes to the alias map made by calls to SetAlias do not automatically take
effect on existing MetaXAP instances. For this reason, it is strongly recommended
that all aliases be set prior to any MetaXAP objects being created, and then once
they are created, no new alias settings are made until all MetaXAP objects have
been destroyed.

If this is not feasible, it is possible to force an existing MetaXAP object to recognize new alias
settings. For all MetaXAP objects which have the XAP_OPTION_ALIAS_ON enabled, toggle
the option: that is, disable it, and then enable it again, as follows:

MetaXAP* meta;
if (meta->isEnabled (XAP_OPTION_ALIAS_ON)) {

meta->enable (XAP_OPTION_ALIAS_ON, false);
meta->enable (XAP_OPTION_ALIAS_ON, true);

}

Exceptions

bad_alloc, xap_bad_path

Throws xap_bad_path if an alias loop is defined, or if an attempt is made to make an alias
of an alias, or if an attempt is made to use a property that has previously been defined as an
actual value as an alias, or if the aliasPath is malformed. Only single level aliases are
supported.

The XMP Toolkit 14 Sept 01 43

MetaXAP
XAPPaths Class

3

3.10 XAPPaths Class

This is a pure virtual base class, used to represent an enumeration of the paths to nodes of
metadata.

NOTE: It is up to the caller to destroy this object with the public destructor.

Examples for hasMorePaths and nextPath are shown with MetaXAP::enumerate.

XAPPaths::hasMorePaths
virtual bool
hasMorePaths()
const throw () = 0;

Description

Returns TRUE if there are more paths in the enumeration, otherwise returns FALSE.

XAPPaths::nextPath
virtual void
nextPath (std::string& ns,

std::string& path) = 0;

Description

Copies the next namespace and path into the parameters. Calling this method after
hasMorePaths has returned FALSE will cause the parameters to be set to empty strings.

44 14 Sept 01 The XMP Toolkit

MetaXAP
XAPPaths Class

3

The XMP Toolkit 14 Sept 01 45

4 UtilityXAP

4.1 UtilityXAP

UtilityXAP is a collection of static (class) functions that provide general purpose convenience
routines.

4.2 UtilityXAP Static Functions (Class Methods)

UtilityXAP::cAnalyzeStep
static bool
AnalyzeStep (const std::string& fullPath,

std::string& parentPath,
std::string& lastStep,
long int& ord,
std::string& selectorName,
std::string& selectorVal);

Description

Removes laststep from the path, and separates it into component pieces.

From fullPath, remove the last step and assign it to lastStep, and assign the front part of
the path to parentPath. If the last step contains a predicate expression with an ordinal
(which is always greater than 0), it is assigned to ord. If the ordinal predicate is the function
last(), ord is set to 0. Otherwise, ord is set to –1. If the predicate is a selector, such as
“*[@xml:lang='fr']”, selectorName would be assigned “@xml:lang” and
selectorVal would be assigned “fr”. Otherwise, selectorName and selectorVal are
assigned the empty string.

UtilityXAP::CompareTimestamps
static XAPTimeRelOp
CompareTimestamps (MetaXAP* a,

MetaXAP* b,
const std::string& ns,
const std::string& path);

46 14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

Description

Compares the property with the specified namespace ns and path in instance a with instance
b, and returns the relation as follows:

Example

UtilityXAP::CompareTimestamps (meta, clone, XAP_NS_XAP, "Number");

Exceptions

Raises all the same exceptions as MetaXAP::enumerate and
MetaXAP::getTimestamp, except that xap_no_match is converted into the return value
xap_notDef.

UtilityXAP::CreateXMLPacket
static void
CreateXMLPacket (const std::string& encoding,

const bool inPlaceEditOk,
const size_t padBytes,
const std::string& nl,
std::string& header,
std::string& trailer,
std::string* xml = NULL);

Description

Use this routine to compute the header and trailer string for a packet, which you use to create a
XMP packet (for information on XMP Packets, see XMP – Extensible Metadata Platform), or
if you specify non-NULL XML data, it will also create the entire packet.

If the encoding is empty (“”), it defaults to UTF-8. If inPlaceEditOk is TRUE, it marks
the packet as okay to edit in-place, otherwise it marks the packet as read-only.

Condition Returns

a < b (a timestamp earlier than b) xap_before

a == b (a timestamp same as b) xap_at

a > b (a timestamp later than b) xap_after

a ? b (a or b does not have a
timestamp)

xap_noTime

(a or b not defined) xap_notDef

The XMP Toolkit 14 Sept 01 47

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

If positive, the padBytes parameter specifies the number of bytes of whitepsace padding to
add to the packet. The padding is placed after the XML data, and before the trailer.

If padBytes is negative, its absolute value specifies the length for the completed packet, and
the xml parameter must be non-NULL. The absolute value of padBytes must be large
enough to contain the complete packet, otherwise xap_bad_number is thrown. The
appropriate amount of whitespace padding is added to provide the specified total size. This is
convenient when formatting a packet to update existing metadata in a file of unknown format.

The nl string is the character sequence to use as a newline between the header and the xml
data if xml is non-NULL: it can be empty (“”), or some combination of well-formed XML
whitespace. The header is assigned to the string representing the computed header for the
packet, and the trailer is assigned to the string representing the computed trailer of the packet.

The characters in xml specify the XML data for the packet. The same non-NULL parameter
xml is assigned the complete packet, with header, trailer, and padding added. The value of
encoding must match the encoding of the XML data, but no checking is done to guarantee
that it does match.

Examples

(for UTF-8 encodings):

string header, trailer;
UtilityXAP::CreateXMLPacket ("", true, val.size(), "\n", header,
 trailer, &val);

There is a second form:

static void
CreateXMLPacket (const std::wstring& encoding,

const bool inPlaceEditOk,
const size_t padBytes,
const std::wstring& nl,
std::wstring& header,
std::wstring& trailer,
std::wstring* xml = NULL);

Same as CreateXMLPacket above, except that all of the string parameters are 16-bit
character strings.

NOTE: This function assumes that the XML data is in the native byte order of this machine.
It generates packet header text in UCS-2 encoding, with characters in the range
U+0000 to U+007F, plus U+FEFF. This refers only to the additional material for the
packet wrapper, NOT to the data contents, which are assumed to be XML
compatible UCS-2 and are copied unchanged.

48 14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

Example

(for UTF-16 encodings)

wstring wxml = L"\nThis is some \x03a3 16-bit
text.\n\n";
wstring wh;
wstring wt;
UtilityXAP::CreateXMLPacket (L"UTF-16", false,
 wxml.size()*sizeof(wchar_t), L"\n", wh, wt, &wxml);

UtilityXAP::FilterPropPath
static bool
FilterPropPath (const std::string& tx,

std::string& propPath);

Description

Filters UI text into valid XPath.

Converts a UTF-8 string tx into a valid XPath, which is also a UTF-8 string propPath. For
example, any disallowed characters, like spaces or slashes, or any Unicode characters greater
than U+007A, are converted into a series of hexidecimal digits, where every two digits
represent a byte of UTF-8. Such sequences are introduced by the character pattern “-_” and
closed with “_”. If the original text contains “-_”, it is escaped with “-__”. If the converted
character is the initial character, the escape is modified to be “QQ-_”. If such a sequence exists
in the original text, it is escaped as “QQ-__”.

For example, if tx is the single Unicode character U+03A3 GREEK CAPITAL LETTER
SIGMA in UTF-8 encoding, it is filtered into “QQ-_cea3_”, which represents the two bytes
CE and A3 of UTF-8, in hex.

UtilityXAP::GetBoolean
static bool
GetBoolean (MetaXAP* meta,

const std::string& ns,
const std::string& path,
bool &val);

Description

Gets a property value as a boolean as specified by ns and path. Calls MetaXAP::get. If the
property is not defined, returns FALSE. Otherwise, the string value provided by
MetaXAP::get is converted into a boolean and copied into val and TRUE is returned.

The XMP Toolkit 14 Sept 01 49

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

Example

bool areYouHappy;
bool ok = UtilityXAP::GetBoolean (meta, XAP_NS_XAP, "Happy",
 areYouHappy);

Exceptions

Raises all the same exceptions as MetaXAP::get, plus xap_bad_xap if the property value
cannot be converted to a boolean.

UtilityXAP::GetDateTime
static bool
GetDateTime (MetaXAP* meta,

const std::string& ns,
const std::string& path,
XAPDateTime& dateTime);

Description

Gets a property value as a date and time.

Gets the Date value specified by ns and path. Calls MetaXAP::get. If the property is not
defined, it returns FALSE. Otherwise, the string value provided by MetaXAP::get is
converted into values of the XAPDateTime record as described below, and timezone offset
from GMT, and TRUE is returned. If tzHour and tzMin are both 0, the time returned is UTC
(GMT). The seq field is always set to 0, and the nano field is set to the subsecond time defined
in the value of the property, if any. This function implements the Date as specified in XMP –
Extensible Metadata Platform; also see ISO 8601: http://www.w3.org/TR/NOTE-datetime.

TABLE 4.1 XAPDateTime Field Usage

XAPDateTime field Usage Range

sec seconds after the minute [0,59]

min minutes after the hour [0,59]

hour hours since midnight [0,23]

mday day of the month [1,31]

month month of the year [1,12]

year year A.D. (can be negative!)

http://www.w3.org/TR/NOTE-datetime

50 14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

Examples

(using HTML format for shorthand):

1994-11-05T08:15:30-05:00 corresponds to November 5, 1994, 8:15:30 am, US Eastern
Standard Time.

1994-11-05T13:15:30Z corresponds to the same instant.

(C++ code example:)

XAPDateTime dt;
bool ok = UtilityXAP::GetDateTime(meta, XAP_NS_XAP, "UTC", dt);

Exceptions

Raises all the same exceptions as MetaXAP::get, plus xap_bad_xap if the property value
cannot be converted to a date and time.

UtilityXAP::GetInteger
static bool
GetInteger (MetaXAP* meta,

const std::string& ns,
const std::string& path,
long int &val);

Description

Gets a property value as an integer.

Gets the integer value specified by ns and path. Calls MetaXAP::get. If the property is not
defined, returns FALSE. Otherwise, the string value provided by MetaXAP::get is converted
into an integer and copied into val, and TRUE is returned.

Example

long int gNum = sizeof(int);
bool ok = UtilityXAP::GetInteger (meta, XAP_NS_XAP, "Number",
 gNum);

tzHour hours +ahead/-behind UTC [–12,11]

tzMin minutes offset of UTC [0,59]

nano nanoseconds after second (if
supported)

seq sequence number (if nano not
supported)

The XMP Toolkit 14 Sept 01 51

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

Exceptions

Raises all the same exceptions as MetaXAP::get, plus xap_bad_xap if the property value
cannot be converted to an integer.

UtilityXAP::GetReal
static bool
GetReal (MetaXAP* meta,

const std::string& ns,
const std::string& path,
double &val);

Description

Gets a property value as a real number.

Gets the real (double) value specified by ns and path. Calls MetaXAP::get. If the property
is not defined, FALSE is returned. Otherwise, the string value provided by MetaXAP::get is
converted into a real and copied into val, and TRUE is returned.

Example

double gReal;
bool ok = UtilityXAP::GetReal (meta, XAP_NS_XAP, "Real", gReal);

Exceptions

Raises all the same exceptions as MetaXAP::get, plus xap_bad_xap if the property value
cannot be converted to a real.

UtilityXAP::IsAltByLang
static bool
IsAltByLang (const XAPPathTree* tree,

const std::string& ns,
const std::string& path,
std::string* langVal = NULL);

Description

Returns TRUE if the specified path evaluates to a member of a structured container that is of
type xap_alt, and which is selected by the attribute xml:lang. If a pointer to a string is
passed in langVal, the string is assigned with the value of the xml:lang attribute.

52 14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

This function is handy when you are doing an enumerate. If you are searching for a particular
language alternative, pass the paths returned by XAPPaths to this function to test for the
sought type, and then compare the langVal with the language you seek.

Exceptions

Raises all the same exceptions as MetaXAP::getForm.

UtilityXAP::SetBoolean
static void
SetBoolean (MetaXAP* meta,

const std::string& ns,
const std::string& path,
const bool val);

Description

Sets a property value as a boolean.

Sets the property specified by ns and path to the specified boolean value. Calls
MetaXAP::set. Intermediate nodes on the path are created as needed.

Example

bool happy = true;
UtilityXAP::SetBoolean (meta, XAP_NS_XAP, "Happy", happy);

Exceptions

Raises all the same exceptions as MetaXAP::set.

UtilityXAP::SetDateTime
static void
SetDateTime (MetaXAP* meta,

const std::string& ns,
const std::string& path,
const XAPDateTime& dateTime);

Description

Sets the property value as a date and time.

Sets the property specified by ns and path to the specified boolean value. Calls
MetaXAP::set. Intermediate nodes on the path are created as needed.

The XMP Toolkit 14 Sept 01 53

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

See UtilityXAP::GetDateTime above for the details of usage for dateTime. The seq
and nano fields are ignored.

Example

XAPDateTime dt;
UtilityXAP::SetDateTime (meta, XAP_NS_XAP, "UTC", dt);

Exceptions

Raises all the same exceptions as MetaXAP::set.

UtilityXAP::SetInteger
static void
SetInteger (MetaXAP* meta,

const std::string& ns,
const std::string& path,
const long int val);

Description

Sets property value as an integer.

Sets the property specified by ns and path to the specified integer value. Calls
MetaXAP::set. Intermediate nodes on the path are created as needed.

Example

long int num = -123456789;
UtilityXAP::SetInteger (meta, XAP_NS_XAP, "Number", num);

Exceptions

Raises all the same exceptions as MetaXAP::set.

UtilityXAP::SetLocalizedText
static void
SetLocalizedText (MetaXAP* meta,

const std::string& ns,
const std::string& path,
const std::string& lang,
const std::string& val,
const XAPFeatures f = XAP_FEATURE_DEFAULT);

54 14 Sept 01 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

4

Description

Sets the structured container language alternation property specified by ns and path and
lang to the text value specified by val and f. Creates the first item of the container if it does
not exist, otherwise sets or appends the value as needed. The path should be the path to the
container itself, not to any member. See example below.

Example

If the desired language alternative is “Title/*[@xml:lang='de'],” pass “Title” as the
path, and “de” as the value of lang.

Exceptions

Raises all the same exceptions as MetaXAP::createFirstItem and MetaXAP::set.

UtilityXAP::SetReal
static void
SetReal (MetaXAP* meta,

const std::string& ns,
const std::string& path,
const double val);

Description

Sets a property value as a real.

Sets the property specified by ns and path to the specified real value. Calls MetaXAP::set.
Intermediate nodes on the path are created as needed.

Example

double real = 3.14159012345678;
UtilityXAP::SetReal (meta, XAP_NS_XAP, "Real", real);

Exceptions

Raises all the same exceptions as MetaXAP::set.

14 Sept 01 55

A XMP Toolkit Exceptions

A.1 Overview

This appendix lists the collection of C++ classes used for exceptions throughout the Toolkit.

A.1.1 Exception Classes

Errors are indicated using exceptions. Member function prototypes use the conventions listed
in Table A.1, “XMP Toolkit Exceptions.”

TABLE A.1 XMP Toolkit Exceptions

The following are the exceptions for the XMP Toolkit:

/* Text messages for standard exceptions. */
extern const char *const XAP_BAD_ALLOC;
extern const char *const XAP_INVALID_ARGUMENT;

/* Text messages for client faults. */
extern const char *const XAP_FAULT_BAD_FEATURE;
extern const char *const XAP_FAULT_BAD_SCHEMA;
extern const char *const XAP_FAULT_BAD_TYPE;
extern const char *const XAP_FAULT_BAD_PATH;
extern const char *const XAP_FAULT_BAD_ACCESS;
extern const char *const XAP_FAULT_BAD_NUMBER;

/* Text messages for XMP errors. */
extern const char *const XAP_ERR_BAD_XAP;
extern const char *const XAP_ERR_BAD_XML;
extern const char *const XAP_ERR_NO_MATCH;

class XAP_API xap_client_fault : std::logic_error {
public:
 xap_client_fault() throw() : std::logic_error("") {}
 explicit xap_client_fault(const char* w) throw() :

Potential Exceptions Convention

No exceptions possible. Declared throw ().

Client violates a pre-condition,
or runtime exceptions possible.

Default declaration (no throw clause).

56 14 Sept 01

XMP Toolkit ExceptionsA

 std::logic_error(w) {}
 virtual ~xap_client_fault() throw() {}
};

class XAP_API xap_error : std::runtime_error {
public:
 virtual ~xap_error() throw() {}
 virtual const char* getContext() const throw() {
 return(m_context.c_str());
 }
 virtual const int getLine() const throw() {
 return(m_line);
 }
protected:
 xap_error() throw() : std::runtime_error("") {}
 explicit xap_error(const char *const w) throw() :
std::runtime_error(w) {}
 virtual void setContext(const char* c) {
 m_context = c;
 }
 virtual void setLine(const int line) {
 m_line = line;
 }
private:
 std::string m_context;
 int m_line;
};

class XAP_API xap_bad_feature : public xap_client_fault {
public:
 xap_bad_feature() throw() : xap_client_fault(XAP_FAULT_BAD_FEATURE)
{}
};

class XAP_API xap_bad_type : public xap_client_fault {
public:
 xap_bad_type() throw() : xap_client_fault(XAP_FAULT_BAD_TYPE) {}
};

class XAP_API xap_bad_path : public xap_client_fault {
public:
 xap_bad_path() throw() : xap_client_fault(XAP_FAULT_BAD_PATH) {}
};

class XAP_API xap_bad_access : public xap_client_fault {
public:
 xap_bad_access() throw() : xap_client_fault(XAP_FAULT_BAD_ACCESS) {}
};

14 Sept 01 57

XMP Toolkit Exceptions
Overview

A

class XAP_API xap_bad_number : public xap_client_fault {
public:
 xap_bad_number() throw() : xap_client_fault(XAP_FAULT_BAD_NUMBER) {}
};

class XAP_API xap_bad_xap : public xap_error {
public:
 xap_bad_xap() throw() : xap_error(XAP_ERR_BAD_XAP) {}
 explicit xap_bad_xap(const char *const c) :
xap_error(XAP_ERR_BAD_XAP) {
 setContext(c);
 setLine(0);
 }
};

class XAP_API xap_bad_xml : public xap_error {
public:
 xap_bad_xml() throw() : xap_error(XAP_ERR_BAD_XML) {}
 xap_bad_xml(const char *const c, const int l) :
xap_error(XAP_ERR_BAD_XML) {
 setContext(c);
 setLine(l);
 }
};

class XAP_API xap_no_match : public xap_error {
public:
 xap_no_match() throw() : xap_error(XAP_ERR_NO_MATCH) {}
 explicit xap_no_match(const char *const path) :
xap_error(XAP_ERR_NO_MATCH) {
 setContext(path);
 setLine(0);
 }
};

58 14 Sept 01

XMP Toolkit ExceptionsA

14 Sept 01 59

B Runtime Flow of Control

This roadmap will follow the most important code paths through the code. Once you are
familiar with these paths, you should be able to find your way around the less important
highways and byways.

MetaXAP::parse

Until the last buffer is encountered, XAPTk_Data::parse is used, which does some pre-
parsing to deal with end-of-line filtering. Once that is dealt with, the buffers are handed over to
XAPTk_Data::innerParse, which does the actual filtering, and eventually calls
XAPTk::DOMGlue_Parse (in DOMGlue.cpp). This is where the real parsing occurs. It
passes through the DOM code to the underlying expat parser. A DOM tree gets built up as the
XML is parsed (XAPTk_Data::m_domDoc). This DOM doc is an exact representation of the
XML syntax that was parsed (modulo comments, XML processing instructions, parsed
entities, etc., which are irrelevant for RDF).

After the last buffer is parsed, XAPTk_Data::loadFromTree is called, which is where the
normalization is done. The objective is to convert the exact representation of the XML
serialization into a representation that is easier to manipulate. This normalized representation,
which folds the many-equivalent syntax representations into one model, is a forest of trees.
Each tree is represented by a class NormTree object. Each tree has a non-descript root, and
contains all the properties that are defined for a particular schema/namespace, or for a
particular ID. The ID form has many uses, one of which is to manage the timestamps for
properties. More on this later.

The class RDFToNormTrees normalizes the raw DOM tree into NormTrees. It is a gigantic
DOMWalker (a pure virtual base class which implements depth-first, preorder tree walks). As
the RDFToNormTrees walks the original DOM tree, it executes a finite state machine. This
state machine has 6 states:

1) state_init

 Looking for an rdf:RDF element.

2) state_ignore

 Ignore this element (m_beingIgnored) and all of its children.

3) state_rdf

 Found an rdf:RDF element, looking for an rdf:Description element.

4) state_desc

 Found an rdf:Description (or parseType='Resource', or implicit description), looking
for properties.

5) state_prop

60 14 Sept 01

Runtime Flow of ControlB

 Found a property, looking for a value, a structure container, a nested description, or a special
case (see code for details).

6) state_container

 Found a container, looking for a list member.

A side-effect of certain state transitions is the construction of nodes in a NormTree. When the
RDFToNormTrees object is finished walking the original tree, it deletes the original DOM
Document, and leaves behind two std::map data structures XAPTk_Data::m_bySchema, and
XAPTk_Data::m_byID. The former maps a schema/namespace name to a NormTree of RDF
properties and values, the latter maps a schema/namespace name to a NormTree used to store
timestamps (a stylized RDF bag of properties).

XAPTk_Data::loadFromTree continues by enumerating the schema/namespaces loaded in
XAPTk_Data::m_bySchema. The corresponding NormTree in XAPTk_Data::m_byID is
looked up by this namespace. The encoded timestamp properties are loaded into a more
convenient data structure (XAPTk_ChangeLog, XAPTk_PunchCardByPath, and class
PunchCard, all defined in XAPTk_Data.h). See XAPTk_Data::m_changeLog.

Finally, XAPTk_Data::loadFromTree returns. The last thing that MetaXAP::parse does
is detects if aliasing is enabled. If so, it verifies that linked values that are defined are equal,
and populates any linked values that were not defined. This is a side-effect of flipping the
XAP_OPTION_ALIASING_ON flag, which calls VerifyAndPopulate (static module function
in MetaXAP.cpp).

MetaXAP::SetAlias

After validating that the parameters are legal, an entry is added to the static
MetaXAP_aliasMap (defined in MetaXAP.cpp). This maps an alias property to an actual
property.

Aliases are treated as linked values. This is implemented by actually instantiating all
properties that share the same value, and setting/copying the value. This is done by
VerifyAndPopulate (see above), and by each non-const function of MetaXAP that can alter
property values, utilizing a pre-computed list of linked values generated by
PreResolveAlias, which is called at the end of MetaXAP::SetAlias.

The job of PreResolveAlias is to resolve all alias lookups (and actual to alias reverse
lookups), and build this information into a sparse matrix, implemented with nested std:map
structures: MetaXAP_InfoMap and MetaXAP_ResolvedAliases, both defined in
MetaXAP.cpp. The sparse matrix is stored in the static variable MetaXAP_resolvedAliases
(in MetaXAP.cpp).

14 Sept 01 61

Runtime Flow of Control B

Both the alias and actual properties are entered into the MetaXAP_ResolvedAliases map as
keys. The values are maps which list all of the other properties that are linked by value. So if I
do this:

 MetaXAP::SetAlias("dc", "Foo", "xap", "Bar");
 // Alias = <dc,Foo>
 // Actual = <xap,Bar>

The MetaXAP_ResolvedAliases structure will contain:

MetaXAP_ResolvedAliases: {
 [<dc,Foo>] = MetaXAP_InfoMap : {
 [<xap,Bar> = MetaXAP_AliasInfo: {
 actual = true;
 aliasSingle = true;
 ...
 }
 }
 [<xap,Bar>] = MetaXAP_InfoMap : {
 [<dc,Foo> = MetaXAP_AliasInfo: {
 actual = false;
 aliasSingle = true;
 ...
 }
 }
}

The meaning of aliasSingle, the four flavors of aliases, and the other fields of
MetaXAP_AliasInfo are described in the comment above PreResolveAlias. Search for
COMMENT_ALIAS_FLAVORS.

If another alias for <xap,Bar> is added, <xy,ZZY>, the structure will contain:

MetaXAP_ResolvedAliases: {
 [<dc,Foo>] = MetaXAP_InfoMap : {
 [<xap,Bar>] = MetaXAP_AliasInfo: {
 actual = true;
 aliasSingle = true;
 ...
 }
 }
 [<xap,Bar>] = MetaXAP_InfoMap : {
 [<dc,Foo>] = MetaXAP_AliasInfo: {
 actual = false;
 aliasSingle = true;
 ...
 }
 [<xy,ZZY>] = MetaXAP_AliasInfo: {
 actual = false;
 aliasSingle = true;

62 14 Sept 01

Runtime Flow of ControlB

 ...
 }
 }
 [<xy,ZZY>] = MetaXAP_InfoMap : {
 [<xap,Bar>] = MetaXAP_AliasInfo: {
 actual = true;
 aliasSingle = true;
 ...
 }
 }
}

Notice that the MetaXAP_InfoMap for <xap,Bar> now has two entries, which are the two
properties whose values are linked to <xap,Bar>. This ensures that if the value for <xap,Bar>
is changed directly, the other two properties will also get changed. More about how this works
will be discussed in MetaXAP::set.

MetaXAP::get

Right away, XAPTk_Data::get is called. First, XPath is evaluated against the appropriate
NormTree, looked up by schema/namespace name. If no node is found, it returns FALSE.

Next, the form is checked to make sure it is simple (you can’t do a get on anything but
xap_simple).

If the node is an attribute, its value is returned.

If the node is an element, XAPTk_Data::extractPropVal is called, which in turn calls
NormTree::getText. The children of the element are examined; if it has no children, an
empty string is returned. If it has exactly one child that is a text node, its text value is returned.
Otherwise, a number of special cases involving XAPFeatures have to be dealt with.

Notice that there were no aliases to deal with. That’s because the linked value implementation
has already accounted for aliases. The value returned has already been copied from the actual
by other code.

MetaXAP::set

After validating input parameters, any possible aliases, associated with this property via
MetaXAP_CollectAliases, are collected.

BEGIN MetaXAP_CollectAliases

Remember, all non-const functions that alter property values call
MetaXAP_CollectAliases, so this description also applies to append, remove, etc.

If aliasing is not enabled, don’t do anything.

Otherwise, the first objective is to find a valid value for the
MetaXAP_ResolvedAliases::iterator entry. CheckAliases is used to see if this

14 Sept 01 63

Runtime Flow of Control B

path is an actual (target of aliases). If so (CheckAliases returns FALSE), lookup the path
in MetaXAP_resolvedAliases, save if valid. Note that the conformed path is tried first
(from XAPTk::ConformPath, in xaptkfuncs.cpp), which is the longest path prefix
that contains no wildcards (*). Also, the structured container type (sct) is needed, which is
normally filled in by CheckAliases, but since it returned FALSE, it must be figured out.
We get the MetaXAP_InfoMap, and try to find a matching member. If not found, the full
path (without conformance) is tried, since flavor 3 and flavor 4 (described in
COMMENT_ALIAS_FLAVORS) have wildcards in their canonical actual paths. If not found,
just use the first entry as a best guess. In any case, remember that the original path is an
actual.

If CheckAliases returned true, we just get the matching entry, and sct is already
assigned by CheckAliases.

If the pointer to the output parameter cType is not NULL, we assign sct to the variable it
points at.

Our next objective is to massage the canonical path stored in the alias entry into an actual
path that corresponds to the one passed into MetaXAP_CollectAliases. The variable
savedPath holds any variable part of the path that was detected during CheckAlias or
ConformPath earlier. If it is non-empty, we need to remember to tack it on any container
paths we collect as target linked values. If the original path was an alternate by language,
remember that too. We need to determine if the target is single (not a container).
xap_sct_unknown means single. If sct is some other value and the original path is not
actual, isSingle is TRUE only if we are flavor 3 or 4.

If the savedPath has last() in the predicate, we convert it to the appropriate canonical
path.

Now that we have all of the information we need, we build a list of target paths for linked
values. We iterate over the MetaXAP_InfoMap value of entry. The iterator is item. We do a
little extra work to guarantee that the first slot (0) in the list is always the target of the
actual, which is always in the second slot (1). This is easy when the original path was an
alias (just put the original path is slot 0, and the looked up actual in slot 1). It’s harder when
the original path was an actual, we have to pick some alias path to put into slot 0: that’s
why there is a big block of code that starts “if (isActual)”. We arrange all this by
saving the corresponding paths in matchOrig, fullOrig, matchActual, and
fullActual.

We’re building our list in the output parameter props, which is a vector. Normally, we just
want to put fullOrig in the first slot, and fullActual in the second. However, there is
one special case where the original path was an actual, and has targets, but none of the
targets qualify for one reason or another. For example, if the actual is member 2 of a

64 14 Sept 01

Runtime Flow of ControlB

container, but all aliases are either targeted at member 1 or the whole container, nothing
actually matches. See the comment in the block that starts:

 if (isActual && !(foundActual && foundAlias)) {

The items in MetaXAP_InfoMap are searched, skipping matches for actual and its
alias, since they are already loaded in the list. If any fixup is needed, we append the
variable parts as needed. Finally, we return TRUE.

END MetaXAP_CollectAliases

If there were no aliases collected, just call XAPTk_Data:set. Otherwise, loop through the
list of linked values, and call XAPTk::set on each, catching and ignoring errors for all
but the original path.

In XAPTk_Data::set, we evaluate the path and convert character escapes to raw
characters. If we evaluate to a node, we replace its value with
XAPTk_Data::replaceProp. Otherwise, if the container type is unknown (not a
container), we call XAPTk_Data::createProp. If it is a container, we figure out what
type. If the container does not exist, we call the type-specific form of
XAPTk_Data::createFirstItem, otherwise, XAPTk_Data::append is called.

In XAPTk_Data::replaceProp, NormTree is looked up and a determination is
made if this is an element or an attribute. The appropriate form of NormTree::setText
is called, and also update the timestamp by calling XAPTk_Data::punchClock.

In XAPTk_Data::setText, handle special cases and features, then set the text child to
the value passed in.

In XAPTk_Data::createProp, we lookup the NormTree, creating one if needed. We
use the form of NormTree:evalXPath which creates a node if one is not found. The rest
of the code looks just like replaceProp.

In XAPTk_Data::createFirstItem, we create the container of the appropriate type,
and then create the first member item. The rest of the code is just like replaceProp,
except that we set the timestamp on the entire container, rather than individual members.

In XAPTk_Data::append, we find the member item specified, climb the tree to get
information about the container (parent), and then create a new node and place it as
specified by the input parameters. We set the timestamp on the whole container.

MetaXAP::enumerate

All forms of enumerate directly call XAPTk_Data::enumerate.

In XAPTk_Data::enumerate, figure out if everything is being enumerated, or just certain
schemas, subPaths, or depths in steps. For each schema, call NormTree::enumerate.

In NormTree::enumerate, we create a Paths object (Paths.cpp), and construct a
DW4_enumeratePropElem DOMWalker, passing the Paths object as a parameter.
DW4_enumeratePropElem is defined in NormTree.cpp. It basically walks the tree, and for

14 Sept 01 65

Runtime Flow of Control B

each element that meets the input criteria (number of steps, or leaf nodes only), it computes a
canonical path and appends it to the Paths object.

MetaXAP::serialize

In XAPTk_Data::serialize, we first deal with header information, then the rdf:RDF
boilerplate. Then we iterate through each of the normalized trees in m_bySchema. We call
NormTree::serialize for each one. Then we tack on the timestamp info, if any, with
XAPTk_Data::serializeTimestamps, then more boilerplate and trailer stuff.

In NormTree::serialize, which is implemented in NormTree_serialize.cpp, we
arrange for the proper line ending, and then we add the boilerplate for rdf:Description,
which is one top-level per schema. We loop through all the namespace definitions, and write
out any that we need. Finally, we construct a DOMWalker to serialize the NormTree: a
SerializePretty for pretty-printing, a SerializeCompact for compact notation.

Both DOMWalkers handle all the nasty details of writing out the syntax. There are many
special cases to handle. See comments in the code for details. There’s also a big block of
comments at the beginning of NormTree.cpp, which explains the internal layout of
NormTrees.

In XAPTk_Data::serializeTimestamps, We iterate through m_changeLog. Each entry
is a XAPTk_PunchCardByPath map, which contains a timestamp entry for each property that
changed. The body of the loop writes out an rdf:Description with an ID that is set to the
namespace name for each schema that has properties that were changed. There is one property,
XAPTK_TAG_TS_CHANGES, which is a Bag. Each member item of the bag is a timestamp entry,
written in a compact, comma separated value notation.

NormTree::evalXPath

This simple XPath evaluator uses a very restricted subset of the XPath notation (see Section
3.3.1, “XPath Syntax”). It takes the input expression and separates each Step by parsing out
the slashes with XAPTk::ExplodePath (defined in xaptkfuncs.cpp). For each step, we
do a lexical analysis, and then an evaluation. The side-effects of the evaluation is a Node
pointer, stored in current. XPaths always evaluate to a single Node, rather than a node list.

The lexical analysis generates XAPTk_Token class objects (defined in here), which are
appended to a VectOToken (defined here). Begin and end iterators to the original step string
are saved in the token for type tChars. All token types start with “t”.

In evaluation, we use a finite state machine, which may be described as follows:

1) sInit

 On tDot, next state is sEmpty.

 On tAt, next state is sAttr.

 On tStar, next state is sList.

66 14 Sept 01

Runtime Flow of ControlB

 On tChars, next state is sName: if there are no more tokens, recover the element node name
and look it up with NormTree::selectChild. If not found but required, create a node.
Set current an continue to next step.

 Otherwise, throw xap_bad_path.

2) sEmpty

 If there are no more tokens, set return value to current.

 Otherwise, throw xap_bad_path.

3) sAttr

 On tStar, if there are no more tokens, set return value to current, else throw xap_bad_path.

 On tChars, cast current to Element*. If NULL, or there are more tokens, throw
xap_bad_path. Otherwise, recover the attribute name from the token, get the attribute,
create it if required, and set current to it.

 Otherwise, throw xap_bad_path.

4) sList

 On tLB, throw xap_bad_paths if boundary conditions not met, otherwise next state is
sPred and save some state.

 Otherwise, if there are more tokens, throw xap_bad_path,

 else set return value to current.

5) sName

 On tLB, next state is sPred.

 On tParens, recover function name from token. If name is not supported, throw
xap_bad_path, else set return value to NULL since functions are not yet supported.

 Otherwise throw xap_bad_path.

6) sPred

 On tAt, next state is pAttr.

 On tChars, if token is not a number, next state is pName, else it is pOrd. Remember the left
hand side (lhs) by assigning the current token index (tix) to it.

 Otherwise throw xap_bad_path.

7) pAttr

 On tChars, next state is pAName, remember left hand side (lhs) by assigning current token
index (tix) to it.

 Otherwise throw xap_bad_path.

14 Sept 01 67

Runtime Flow of Control B

8) pAName

 On tEquals, next state is pMatch.

 Otherwise throw xap_bad_path.

9) pName

 On tEquals, next state is pMatch.

 On tParens, next state is pFunc.

 Otherwise throw xap_bad_path.

10) pFunc

 On tRB, recover function name from token; if it isn’t “last”, throw xap_bad_path. Set
current to the last child of former value of current.

 Otherwise throw xap_bad_path.

11) pMatch

 On tChars, set the right hand side (rhs) to the current token index, and next state is pVal.

 Otherwise throw xap_bad_path.

12) pVal

 On tRB AND this is the last token, perform the match, creating the node if required. Assign
it to current.

 Otherwise throw xap_bad_path.

If at any point ret != NULL , and we are at the last token or step, break out of the loop.

68 14 Sept 01

Runtime Flow of ControlB

14 Sept 01 69

C XMP Toolkit Function List

MetaXAP Static Functions (Class Methods)
MetaXAP::Clone Makes a deep-copy of the MetaXAP object and returns it.

MetaXAP::EnumerateAliases Returns a pointer to an object that enumerates all of the
aliases defined for all MetaXAP objects.

MetaXAP::set Extracts an externally saved serialization and saves as a
string in a specified buffer.

MetaXAP::GetAlias Gets the alias for the specified path, if any.

MetaXAP::Merge creates a new MetaXAP object containing merged
metadata.

MetaXAP::RegisterNamespace Register a namespace name (should be a URI), and a
suggested prefix for composing qualified names.

MetaXAP::RemoveAlias Removes the specified alias from the alias map for all
metadata objects.

MetaXAP::SetAlias Adds to the alias map for all instances of MetaXAP.

MetaXAP Types
MetaXAP::XAPClock Clients provide the clock used for creating timestamps.

MetaXAP::XAPChangeBits Each timestamp record includes an indication of how the
property was last changed.

MetaXAP Constructors
public default constructor

MetaXAP ();
Create an empty object with no clock.

public construct empty with clock
 MetaXAP (XAPClock* clock);

Creates an empty object with a clock.

70 14 Sept 01

XMP Toolkit Function ListC

public construct from buffer
 MetaXAP

Constructs a populated MetaXAP from a single buffer of
raw XML.

MetaXAP destructor
 ~MetaXAP ();

Destroy this object and all internally allocated memory.

MetaXAP Public Member Functions
MetaXAP::append Creates a new property with the specified value, and add

it after the property specified by namespace ns and path.

MetaXAP::count Returns the number of items in the structured container
specified by ns and path.

MetaXAP::createFirstItem Creates a structured container of the specified type.

MetaXAP::enable

Enables or disables the specified option(s), such as
XAP_OPTION_DEBUG.

MetaXAP::enumerate Enumerates MetaXAP object properties

MetaXAP::extractSerialization Exttracts an externally saved serialization and saves as a
string in a specified buffer.

MetaXAP::get Gets the value at the property specified by ns and path as
a string.

MetaXAP::getContainerType Returns the type of the specified container.

MetaXAP::getForm Returns the type of property specified by ns and path

MetaXAP::getResourceRef Returns the reference (URI) for the resource that this
MetaXAP is about.

MetaXAP::getTimestamp Returns FALSE if the property specified by ns and path
is not defined. Otherwise, returns T

MetaXAP::isEnabled Returns whether the specified option is enabled, such as
XAP_OPTION_DEBUG.

MetaXAP::parse Parses a buffer of XML and create the corresponding
XMP objects.

MetaXAP::purgeTimestamps Purges all timestamp records for properties with any
XAPChangeBits set in how.

MetaXAP::remove Removes the specified property and all of its sub-
properties, if any.

14 Sept 01 71

XMP Toolkit Function List C

MetaXAP::serialize Serializes the MetaXAP tree as XML.

MetaXAP::set Sets the specified value at the end of the specified path,
with the optionally specified features.

MetaXAP::setTimestamp Sets the timestamp.

MetaXAP::setup Enables client application to provide metadata to this
instance of MetaXAP for automatic tracking.

MetaXAP::setResourceRef Sets the reference to the resource (URI) that this
MetaXAP is about.

UtilityXAP Static Functions (Class Methods)
UtilityXAP::cAnalyzeStep Removes last step from path, break it into pieces.

UtilityXAP::CompareTimestamps Compares the property with the specified namespace and
path in instance a with instance b,

UtilityXAP::CreateXMLPacket Use this routine to compute the header and trailer string
for a packet, which you use yourself to create a XMP
packet

UtilityXAP::FilterPropPath Filters UI text into valid XPath.

UtilityXAP::GetBoolean Gets a property value as a boolean as specified by ns and
path.

UtilityXAP::GetDateTime Gets a property value as a date and time.

UtilityXAP::GetInteger Gets a property value as an integer.

UtilityXAP::GetReal Gets a property value as a real.

UtilityXAP::IsAltByLang Returns TRUE if the specified path evaluates to a member
of a structured container that is of type xap_alt, and
which is selected by the attribute xml:lang.

UtilityXAP::SetBoolean Sets a property value as a boolean.

UtilityXAP::SetDateTime Sets the property value as a date and time.

UtilityXAP::SetInteger Sets property value as an integer.

UtilityXAP::SetLocalizedText Sets the structured container language alternation
property.

UtilityXAP::SetReal Sets a property value as a real.

72 14 Sept 01

XMP Toolkit Function ListC

	Preface
	1.1 About This Document
	1.2 Audience
	1.3 Assumptions
	1.4 How This Document Is Organized
	1.5 Conventions used in this Document
	1.6 Where to Go for More Information

	The XMP Toolkit
	2.1 Overview
	2.2 The XMP Toolkit
	2.3 Implementation Notes
	2.3.1 Overview
	2.3.2 Construction and Destruction
	2.3.3 Memory Management
	2.3.4 Style and Conventions

	MetaXAP
	3.1 MetaXAP Overview
	3.2 Introduction
	3.3 Path Composition
	3.3.1 XPath Syntax

	3.4 Property Value Features
	3.5 Standard Attributes
	3.6 MetaXAP Class
	3.6.1 Storage Management

	3.7 Important Types Used In MetaXAP
	3.7.1 Namespace Constants

	3.8 MetaXAP Member Functions
	3.9 MetaXAP Static Functions (Class Methods)
	3.10 XAPPaths Class

	UtilityXAP
	4.1 UtilityXAP
	4.2 UtilityXAP Static Functions (Class Methods)

	XMP Toolkit Exceptions
	Runtime Flow of Control
	XMP Toolkit Function List

