

ADOBE SYSTEMS INCORPORATED

Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000
http://www.adobe.com

September 14, 2001

XMP – Extensible
Metadata Platform

�

Version 1.5

Copyright © 2000–2001 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this
publication (whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, Acrobat Distiller, Framemaker, InDesign, Photoshop, PostScript, the
PostScript logo, and XMP are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. MS-DOS, Windows, and Windows NT are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Apple, Macintosh, and QuickTime are trademarks of Apple Computer, Inc., registered in the
United States and other countries. UNIX is a trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of their
respective owners.

This publication and the information herein is furnished AS IS, is subject to change without
notice, and should not be construed as a commitment by Adobe Systems Incorporated. Adobe
Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies,
makes no warranty of any kind (express, implied, or statutory) with respect to this publication,
and expressly disclaims any and all warranties of merchantability, fitness for particular
purposes, and noninfringement of third party rights.

XMP – Extensible Metadata Platform 14 Sept 01

iii

Contents

Chapter 1 Preface . 1

1.1 About This Document . 1

1.2 Audience . 1

1.3 Assumptions . 1

1.4 How This Document Is Organized . 1

1.5 Conventions used in this Document . 2

1.6 Where to Go for More Information . 2

Chapter 2 XMP – Extensible Metadata Platform 5

2.1 Introduction. . 5

2.2 Background . 6

2.3 Scope of XMP . 7

2.4 Model and Terminology . 8

2.5 Granularity of XMP Metadata Associations . 13

Chapter 3 XMP RDF Data
Interchange Format15

3.1 Introduction. 15

3.2 Background . 15

3.3 RDF Data Model . 15

3.4 How XMP Uses the RDF Data Model . 16

3.4.1 Description Object . 16
3.4.2 Repeated Properties . 17
3.4.3 Schemas and Namespaces . 17
3.4.4 Localized Property Values . 18
3.4.5 Extensibility . 19
3.4.6 Aliasing . 20
3.4.7 Resource Identification . 20
3.4.8 Normalization of Metadata . 21

3.5 Representation and Storage of Metadata . 22

3.5.1 XML Representation Examples . 23
3.5.1.1 XMP Examples in RDF . 23

iv

14 Sept 01 XMP – Extensible Metadata Platform

Contents

3.5.1.2 Simple Example of XMP Metadata in XML 23

3.5.2 Creation of Instance IDs. 24
3.5.3 Metadata in Compound Documents. 25
3.5.4 External Storage of Metadata . 26

3.6 RDF Features Not Supported in XMP . 26

3.7 Limitations of RDF . 27

3.8 XML Packets . 27

3.8.1 Usage Hints . 31

Chapter 4 XMP Schemas . 33

4.1 Introduction. 33

4.1.1 Property Value Type Representation . 33

4.2 XMP Schema Definitions. 34

4.2.1 XMP Core Schema . 34
4.2.2 XMP Media Management Schema . 35

4.2.2.1 Versions . 36
4.2.2.2 Renditions . 36

4.2.3 XMP Support Schema. 37
4.2.4 XMP Basic Job Ticket Schema . 38
4.2.5 XMP Rights Management Schema . 38

4.3 Property Value Types. 39

4.4 XMP Vocabularies . 43

Chapter 5 XMP Property Commentary 47

5.1 XMP Properties . 47

Chapter 6 XMP Extensibility . 55

6.1 Making Custom Schema . 55

6.2 New Versions of Existing Schemas . 56

Chapter 7 Application Integration Guidelines 59

7.1 Supporting XMP Metadata . 59

7.1.1 Requirements . 59
7.1.1.1 Aliasing . 60
7.1.1.2 Property Categories . 60
7.1.1.3 XAP:Advisory Example . 61

XMP – Extensible Metadata Platform 14 Sept 01

v

Contents

7.2 Metadata Actions For Specific Application Operations. 61

7.2.1 General Comment on Schemas . 61
7.2.1.1 New Document . 62
7.2.1.2 Save and Save-As . 62
7.2.1.3 Versions . 63
7.2.1.4 Renditions . 63
7.2.1.5 Document

Open

 Time . 63

7.2.2 Media Management System Actions . 64
7.2.3 Document Embedding and Metadata Preservation 64

7.2.3.1 Placed-Image Metadata . 65
7.2.3.2 Full Unaltered Copy Embedding. 65
7.2.3.3 Subset or New Rendition Embedding 66
7.2.3.4 Small Subset Embedding . 67
7.2.3.5 Embedding of a Document Which Had No Metadata 67

Appendix A PDF and Dublin Core Schema 69

A.1 Adobe PDF Schema . 69

A.2 Dublin Core Schema . 70

Appendix B Proposed Media-Type Schemas 71

B.1 XMP Media-Type Schemas . 71

B.2 Property Value Types. 74

B.3 Vocabulary for Media-Specific Schema . 76

vi

14 Sept 01 XMP – Extensible Metadata Platform

Contents

XMP – Extensible Metadata Platform 14 Sept 01

vii

List of Tables

Table 4.1 XMP Core Schema . 34

Table 4.2 XMP Media Management Schema . 35

Table 4.3 XMP Support Schema . 37

Table 4.4 XMP Basic Job Ticket Schema . 38

Table 4.5 XMP Rights Management Schema . 38

Table 4.6 Basic Value Types . 39

Table 4.7 Media Management Value Types . 40

Table 4.8 Adobe Support Metadata Value Types 43

Table 4.9 Basic Job/Workflow Value Types . 43

Table 4.10 XMP Vocabularies . 44

Table 5.1 XMP Core Schema Metadata Properties 47

Table 5.2 Adobe Media Management Metadata Properties 50

Table 5.3 Adobe Support Schema Metadata Properties 53

Table 5.4 XMP Basic Job Properties . 54

Table A.1 Adobe PDF Schema . 69

Table A.2 Dublin Core Schema . 70

Table B.1 XMP Graphics Schema . 71

Table B.2 XMP Graphics: Image Schema . 71

Table B.3 XMP Dynamic Media Schema . 72

Table B.4 XMP Dynamic Media: Video Schema 72

Table B.5 XMP Dynamic Media: Audio Schema 72

Table B.6 XMP Text Schema . 73

Table B.7 XMP Text: Paged-Text Schema . 73

Table B.8 Basic Value Types for Media-Specific Schemas 74

Table B.9 XMP Vocabularies . 76

viii

14 Sept 01 XMP – Extensible Metadata Platform

List of Tables

XMP – Extensible Metadata Platform 14 Sept 01

1

1

Preface

1.1 About This Document

This document describes XMP™ — the Extensible Metadata Platform.

This section contains information about this document, including how it is organized,
conventions used in the document, and where to go for additional information.

1.2 Audience

The primary audience for this document is developers of applications that will generate,
process, or manage files containing XMP metadata.

1.3 Assumptions

This document assumes that you are either familiar with XML and RDF, or that you will
reference those specifications and related standards while reading this document.

1.4 How This Document Is Organized

In addition to this preface, this document consists of the following chapters and appendices:

Chapter 2: XMP – Extensible Metadata Platform

Explains XMP metadata and the model for how it is used, and provides a conceptual model of
how metadata is created and managed. It explains the background and scope of the XMP
model, and defines basic terms and concepts. It also describes how new schema may be
defined to meet needs beyond what is supported by the existing model. A number of code
samples are shown to illustrate how XMP metadata is represented.

Chapter 3: XMP RDF Data Interchange Format

Describes how XMP uses the RDF format for data representation and how to embed metadata
using XML Packets to make it easy for applications to locate metadata in application files.

Chapter 4: XMP Schemas

Specifies all currently supported schema for XMP core metadata. It also specifies the value
types used for all properties, and contains the XMP Vocabularies, which specify the set of
allowed values for each property. The schema tables also specify the category of each
property, and list aliases to properties in other schema.

2

14 Sept 01 XMP – Extensible Metadata Platform

Preface

Conventions used in this Document

1

Chapter 5: XMP Property Commentary

Discusses the XMP properties and describes their nature and expected use. Also, suggestions
are provided for how certain properties should be handled when documents are embedded in
other documents.

Chapter 6: XMP Extensibility

Explains the extensibility features of XMP, including how to extend schemas, add new
schemas, and add private data.

Chapter 7: Application Integration Guidelines

Describes what applications must do to implement support for metadata, and what actions they
have to perform for common application operations. It explains what media management
systems need to do to support XMP metadata, and how to support the embedding of one
document in another.

Appendix A: PDF and Dublin Core Schema

Specifies the PDF and Dublin Core schemas, and specifies which properties are aliased to
properties in the core XMP schemas.

Appendix B: Proposed Media-Type Schemas

The schemas in this appendix are proposals for basic media-type (content specific) metadata.

1.5 Conventions used in this Document

The following type styles are used for specific types of text:

1.6 Where to Go for More Information

The following is a list of Internet standards on which XMP Metadata is based:

Dublin Core Metadata Initiative:

http://purl.org/DC/

Extensible Markup Language (XML):

http://www.w3.org/XML/

Typeface Style Used for:

Sans serif regular

XMP property names. For example:

xap:CreationDate

Monospaced Regular

All RDF (XML) code

http://www.w3.org/XML/

http://purl.org/DC/

XMP – Extensible Metadata Platform 14 Sept 01

3

Preface

Where to Go for More Information

1

IETF Standard for Language element values (RFC 1766):

http://www.ietf.org/rfc/rfc1766.txt?number=1766

Internet Engineering Task Force (IEFT):

http://www.ietf.org/

ISO 639 Standard for Language Codes:

http://www.loc.gov/standards/iso639-2/

ISO 3166 Standard for Country Codes:

http://www.din.de/gremien/nas/nabd/iso3166ma/

Naming and Addressing: URIs, URLs, etc.:

http://www.w3.org/Addressing/

Resource Description Framework (RDF):

http://www.w3.org/RDF/

Resource Description Framework (RDF) Model and Syntax Specification:

http://www.w3.org/TR/REC-rdf-syntax/

Unicode:

http://www.uncode.org

Web Distributed Authoring and Versioning (WebDAV):

http://www.webdav.org/

XML Namespaces:

http://www.w3.org/TR/REC-xml-names/

XML Path Language (XPath):

http://www.w3.org/Tr/xpath

http://www.w3.org/RDF/

http://www.w3.org/TR/REC-rdf-syntax/
http://www.webdav.org/
http://www.w3.org/Addressing/
http://www.w3.org/Addressing/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/Tr/xpath
http://www.w3.org/Tr/xpath
http://www.ietf.org/rfc/rfc1766.txt?number=1766
http://www.ietf.org/
http://www.ietf.org/
http://www.loc.gov/standards/iso639-2/

http://www.din.de/gremien/nas/nabd/iso3166ma/
http://www.uncode.org

4

14 Sept 01 XMP – Extensible Metadata Platform

Preface

Where to Go for More Information

1

XMP – Extensible Metadata Platform 14 Sept 01

5

2

XMP – Extensible Metadata
Platform

2.1 Introduction

This document describes XMP™ – the Extensible Metadata Platform, which provides a
standardized method for the creation, processing and interchange of metadata.

N

OTE

:

Many namespaces, keywords, and related names in this document are prefaced with the
string “

XAP

”, which was an early internal code name for XMP metadata. Because the
Acrobat 5.0 product shipped using those names and keywords, they were retained for
compatibility purposes.

Metadata is becoming increasingly important in the production, management, and publication
of multimedia documents. Documents containing metadata can greatly increase the utility of
managed assets in collaborative production workflows.

An example of metadata used in a workflow environment would be an image file that contains
metadata such as the image’s working title, image description, thumbnail image, and
intellectual property rights data. This metadata about the file contents would enable workflow
users, as well as asset management systems, to use resources much more effectively and to
streamline workflow processes. Without the metadata, it might be difficult to associate images
with their file names, to locate image captions, or to determine copyright clearance to use an
image. While these operations are sometimes handled by various applications using their own
metadata format, it is the interchange of the metadata, for use in multiple workflows, that is
not so easy.

XMP standardizes the definition and creation of metadata, and defines an extensible
representation that allows applications and tools to access and understand metadata about
documents that they manipulate. XMP metadata defines a core set of metadata properties that
are relevant for a wide range of applications including all of Adobe’s authoring and publishing
products, as well as for applications from a wide variety of vendors.

XMP also provides a file embedding mechanism, called a XML Packet, that allows
applications to easily locate metadata in files by simple scanning, rather than needing to parse
a specific application’s file format. This feature makes the metadata more easily accessible,
and aids document interchange and asset management.

XMP includes the following key features:

●

It provides a lightweight distributed implementation, thus avoiding a single monolithic
implementation that all applications must obey.

●

It accommodates a wide variety of workflows and tool environments.

●

It supports extension by addition of standard schemas, by addition of private or application-
specific schemas, and by updating schemas to new versions.

6

14 Sept 01 XMP – Extensible Metadata Platform

XMP – Extensible Metadata Platform
Background

2

● It supports aliasing between multiple schemas, so it is efficient in the storage of, and access
to, items that are logically equivalent (for example, PDF’s pdf:Author and Dublin Core’s
dc:creator properties).

● It is localizable and supports Unicode and other standard international text encodings.

XMP metadata can be encoded as an XML formatted string using the W3C standard Resource
Description Framework (RDF), which is described in Chapter 3, “XMP RDF Data Interchange
Format.” Ideally, the metadata string is embedded in an application data file and hence appears
as part of the resource data stream itself. This has the advantage that the metadata stays with
the application data file, even if the file is moved.

If embedding is not possible (typically because of file formats that do not accommodate
extensibility), the metadata stream can be stored in a separate file that is associated by
convention with the application data file. This works universally, but has the disadvantage that
the metadata can be lost in a processing step if the metadata file is not kept together with the
application data file.

In addition, a media management system, if present, can store the metadata in its own internal
database. Some environments may include database systems in which metadata is to be stored.

2.2 Background

The following is an excerpt from the introduction section in the RDF specification that
explains the value of metadata, and also the role played by the RDF format (which is described
in more detail in Chapter 3, “XMP RDF Data Interchange Format”). While it presents a very
Web-centric view of metadata, it also applies to other domains of usage as well, including
print publishing.

The World Wide Web was originally built for human consumption, and although everything on it
is machine-readable, this data is not machine-understandable. It is very hard to automate
anything on the Web, and because of the volume of information the Web contains, it is not
possible to manage it manually. The solution proposed here is to use metadata to describe the
data contained on the Web. Metadata is “data about data;” (for example, a library catalog is
metadata, since it describes publications) or specifically in the context of this specification “data
describing Web resources.” The distinction between “data” and “metadata;” is not an absolute
one; it is a distinction created primarily by a particular application, and many times the same
resource will be interpreted in both ways simultaneously.

Resource Description Framework (RDF) is a foundation for processing metadata; it provides
interoperability between applications that exchange machine-understandable information on the
Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF can be
used in a variety of application areas; for example: in resource discovery to provide better search
engine capabilities, in cataloging for describing the content and content relationships available at
a particular Web site, page, or digital library, by intelligent software agents to facilitate
knowledge sharing and exchange, in content rating, in describing collections of pages that

http://www.w3.org/RDF/

http://www.w3.org/RDF/

http://www.w3.org/RDF/

XMP – Extensible Metadata Platform 14 Sept 01 7

XMP – Extensible Metadata Platform
Scope of XMP

2

represent a single logical “document”, for describing intellectual property rights of Web pages,
and for expressing the privacy preferences of a user as well as the privacy policies of a Web site.

XMP was created by Adobe to support the needs of digital asset management as part of
Adobe’s Network Publishing initiative. XMP is concerned with describing any digital asset
(resource), with or without an explicit Internet presence. This contrasts with RDF’s Web-
centric view. As a framework for a specific application domain, XMP is less concerned than
RDF with absolute generality and expressiveness.

These differences are most visible in portions of RDF that are not supported by XMP and by
differing notions of resource identification. XMP does not support portions of RDF, such as
reification, that add significant complexity but not significant value to practical asset
management. Resource IDs in XMP are generally a form of GUID that can be generated
locally, as opposed to the bias towards URLs in RDF.

2.3 Scope of XMP

XMP consists of the following components:

● A XMP Metadata Model (Chapter 2.4, “Model and Terminology”)

● An XML-based interchange representation, based on the data model of the Internet
standard RDF, for metadata (Chapter 3, “XMP RDF Data Interchange Format”).

● A set of schemas for XMP metadata (Chapter 4, “XMP Schemas”).

● A set of conventions and rules for extending the metadata schema beyond what is defined
by the XMP schemas (Chapter 6, “XMP Extensibility”).

● A set of conventions and rules for using the XMP metadata. (See Chapter 5, “XMP
Property Commentary” and Chapter 7, “Application Integration Guidelines”).

● Guidelines and suggestions on how to integrate support for XMP metadata into your
application (Chapter 7, “Application Integration Guidelines”).

There are a number of areas, listed below, that are outside the scope of XMP, and should be
under the control of the applications and tools that support XMP metadata. In some of these
cases, even though the item is outside the scope, some recommendations are made in this
document. In those cases, a reference to the recommendations follows the bullet item in the list
below.

The following are outside the scope of XMP:

● What metadata each specific application sets (XMP recommendations: Chapter 2, “XMP –
Extensible Metadata Platform,” and Chapter 7, “Application Integration Guidelines”).

● The user interface to metadata, if any.

● The operation of any media management systems (XMP recommendations: see Chapter 7,
“Application Integration Guidelines”).

● Which schemas beyond those defined by XMP are defined and present.

http://www.w3.org/RDF/

8 14 Sept 01 XMP – Extensible Metadata Platform

XMP – Extensible Metadata Platform
Model and Terminology

2

● Validity and consistency checking on metadata properties.

● Requiring that users set or edit metadata.

XMP schemas define a set of possible metadata. Not all XMP metadata will be relevant to all
documents and it is expected that only the relevant subset of metadata properties would be
present in a particular document. Some XMP properties are defined to provide a standard
method to store certain kinds of metadata. If that metadata is defined and relevant, the XMP
property should be used to store it.

Following the XMP schema and guidelines presented in this document cannot guarantee the
integrity of metadata or metadata flow; that integrity must be accomplished and maintained by
a specific set of applications and tools. An application’s support for XMP refers to its ability to
preserve and generate XMP format metadata, to give the user access to the metadata, and to
support extension capabilities.

2.4 Model and Terminology

This section introduces the model and concepts that underlie XMP.

Metadata is information about the data that is contained in a file. The metadata may include
information that is redundant with the content, that is a direct function of the content, and that
is independent of the content. From a practical standpoint, defining metadata that is redundant
with document content is avoided unless that metadata is of general interest to a variety of
users and it is constant in size (that is, it doesn’t grow in size with the document size).
Metadata that is redundant with, or a function of document content, is called internal
metadata. Metadata that supplements document content is called external metadata.

A document is any media object that a user might consider such as an image, text document,
compound document (containing multiple text and image components), audio, video, etc. A
document can be thought of as an abstraction. The title may change; the file in which it is
stored may be renamed; one version of it may be in a database, another stored online; it may
be rendered at various resolution to screen or various printers; a copy may be sent to someone
by e-mail; and so on, but it remains the same document.

A compound document or aggregate document is one that has been constructed by
incorporating other documents into a single document, generally with additional local content.
This may be done by physical inclusion, which is often the case for publishing applications.
Or it may be done by reference, which is often the case for multimedia applications such as
video editors. The other documents are contained documents in the compound document. An
aggregating application is one that creates compound documents.

Document-level metadata is information about a document as a whole. Fine-grained metadata
is information about individual small elements of a document such as a paragraph or short
sequence of words. XMP is concerned primarily with document-level metadata. Some of the
properties defined by XMP can be used for fine-grained metadata, but the overall structure
defined by XMP is not really appropriate for fine-gained metadata.

XMP – Extensible Metadata Platform 14 Sept 01 9

XMP – Extensible Metadata Platform
Model and Terminology

2

A metadata schema is a set of specific metadata property definitions.

A version of a document is analogous to an edition of a book, one of a series of revised forms
of the document. Versions are explicitly identified by being written to a filestore and being
flagged as a new version of some previous version of a document. Each version is
distinguished by having a version identifier. Change history information is associated with a
version that indicates changes from its predecessor version.

A rendition of a document is a variation of the document derived from a particular version by
changing the format or content in some well defined way. Common examples include the
creation of a thumbnail or the generation of the same image in a different format or resolution.
Each rendition is distinguished by having a name that is called the rendition class name. There
may be many different renditions. Each kind of rendition has a different rendition class name,
for example, thumbnail, low-res, or French.

An instance of a document is a snapshot of a version and rendition, a particular value of the
document written to a filestore. Correcting a misspelled word would generally not create a new
version, it would create a new instance. The XMP model supports multiple versions of a
document, multiple renditions of each version, and multiple instances of each rendition.

A resource is the object that stores a particular instance of a document and with which a set of
metadata is associated. You can think of resources as the storage container (usually a file) for
versions and renditions of documents. Resources could also store other kinds of objects.

The XMP schema defines metadata that is about a resource. The metadata consists of a
number of properties; each property is associated with a resource and makes some statement
about it. The statement has a property name and a value and has the form “the <property
name> of <resource> is <value>.” For example, the “author” of a book titled The
Programmer’s New Age Cookbook might be “John Doe.”

A value can be a simple value:

● a boolean value (TRUE or FALSE)

● a text string

● date

● integer

● a real number (with an optional binary representation specified)

● a value chosen from a vocabulary of possible values (a choice)

● a value chosen from one of several vocabularies (an extensible choice or xchoice)

or it can be a structured value:

● an ordered sequence (seq) of values

● an unordered sequence (bag) of values

● a set of alternative values (alt)

● a nested structure with named fields each of which is itself a property.

10 14 Sept 01 XMP – Extensible Metadata Platform

XMP – Extensible Metadata Platform
Model and Terminology

2

Most simple values end up being text. There may be conventions or restrictions on what values
are legal for a particular property.

Text strings and choice values can include a vocabulary qualifier that names a vocabulary from
which the string is chosen.

A vocabulary is a set of possible values with some (informal) information about their
semantics. A property value can be restricted to have values only from a vocabulary (or set of
vocabularies). This is called a closed vocabulary. The property may also allow other values in
addition to those listed in a vocabulary. This is called an open vocabulary. (See Section 4.4 for
more information on XMP vocabularies.)

A sequence of values (seq) is simply a list of zero or more values. The order of the list has
significance. A bag of values is similar to a sequence but the order does not have significance.
A set of tagged alternative values (alt) is a list of one or more alternative values where one can
be chosen based on some criterion. The most common criterion is language, used to provide
localization of textual properties.

The properties are grouped into schemas, each of which consists of a set of properties, a
schema name, and a schema namespace prefix. The schema name serves to uniquely identify
the schema, and, although it looks like a URL, it is simply a unique string. The schema
namespace prefix is a short abbreviation for the full schema name. The schema namespace
prefixes used here are not formal. Following the rules of XML namespaces, the schema
namespace prefix is simply shorthand for the schema name and is local to the scope of the
xmlns attribute that declares it.

Properties in the same or different schemas can be aliased, which means that they represent
the same value. Aliased properties imply that they should always have the same value. The
types of the two aliased properties must be the same, and changing one value means that all
aliased values should be changed. The alias relationship is transitive. The reference to the
aliased property uses XPath syntax. (see http://www.w3.org/TR/xpath)

Schema properties are categorized to help ensure that processing gives predictable results.
These categories tell the authoring application what to do when opening and closing files, and
how to changes to property values made by other applications.

• Internal: metadata which is a reflection of the information contained within the resource.
External modifications to internal properties should be ignored by the authoring application.
The appropriate value for internal properties is written on output. An example would be
xap:ModifyDate.

• External: metadata consisting largely of annotation information. External modifications
should be displayed by the authoring application but are not acted upon. Unless changed by
the user, external properties are preserved on output. An example would be xap:Author.

• Relational: a subset of internal metadata that pertains to the relationship of this resource with
outside systems. Examples might include management markers or print resolution. External

http://www.w3.org/TR/xpath

XMP – Extensible Metadata Platform 14 Sept 01 11

XMP – Extensible Metadata Platform
Model and Terminology

2

modifications to these properties should be resolved against the internal information in the
document.

Properties from a schema typically have values, or they may instead be absent in the metadata
of a given resource. Properties are absent until they are given a value for the first time.
Properties may also be deleted. The presence or absence of a property is visible to application
programs. Every present RDF property has a value, even if it is just the empty string. Note that
a present property with an empty string value is different from an absent property.

XMP metadata can be stored within a resource, in a separate resource related by convention to
a resource, and/or in a media management system.

Figure 2.1 shows the relationship between a document and the components of the metadata. It
reflects the model that a document is an abstraction, and the implementation of it may consist
of multiple renditions, versions, and renderings, represented by a number of resources or files,
each containing metadata. It does not attempt to illustrate how the metadata or versions are
managed (see Chapter 7, “Application Integration Guidelines, for more information on that
topic).

12 14 Sept 01 XMP – Extensible Metadata Platform

XMP – Extensible Metadata Platform
Model and Terminology

2

FIGURE 2.1 Documents and Metadata Component Relationships

In summary:

● XMP metadata is associated with a resource, which stores a particular version and
rendition of a document.

● XMP metadata is organized into schemas each of which has a schema name, a schema
namespace prefix and a set of properties.

● Each property has a property name and value and says something about the resource with
which it is associated.

Resource
version 1

Resource
version 2

Resource
version 3

Resource
version 4

Metadata

Schema

Resource

Resource

Resource

Resource

Resource

Resource

Rendition
“jpeg” of
version 4

Rendition
“jpeg” of
version 3

Metadata

Metadata

Property

Property

Property

Property

Property

Schema

Property

Property

Property

Property

Property

Schema

Property

Property

Property

Property

Property

Document

Property name: value

Property name: sequence:
value, value, value, . . .

Property name: alt
 tag: value

tag: value
tag: value
. . .

Property name: bag; value,
value, value, . . .

Property name: structure
 name: value

name: value
name: value
. . .

XMP – Extensible Metadata Platform 14 Sept 01 13

XMP – Extensible Metadata Platform
Granularity of XMP Metadata Associations

2

● Property values can be text, dates, booleans, integer or real numbers, values chosen from
one or more vocabularies, sequences of values, bags of values, a set of alternative values, or
nested structure containing more properties.

2.5 Granularity of XMP Metadata Associations

XMP metadata can be associated with any structure or substructure from servers and file
systems, to files and database entries, to pages, lines, characters, styles and other finer grained
structures stored within a file. Keep in mind the practical issues which will argue against using
XMP for very find-grained metadata:

● XMP works best if the document containing the metadata has an identity. Assigning and
tracking identities for individual words and characters is largely impractical.

● XMP includes a certain amount of overhead given its XML representation (tag names,
angle brackets, timestamps, etc.). Thus, storage overhead can be considerable if XMP is
associated with very small structures.

14 14 Sept 01 XMP – Extensible Metadata Platform

XMP – Extensible Metadata Platform
Granularity of XMP Metadata Associations

2

XMP – Extensible Metadata Platform 14 Sept 01 15

3 XMP RDF Data
Interchange Format

3.1 Introduction

This chapter describes the Web-standard technology Resource Description Framework
(RDFMS 1.0) which is used as the data interchange format. This chapter also includes a
specification of XML Packets, which is a method for embedding metadata packets in
application files so that they can be easily located by simple scanning software.

XMP uses a profile (subset) of the RDF specification developed by W3C. Use of unsupported
features of RDF may result in incorrect operation of XMP-enabled applications. See
Section 3.6, “RDF Features Not Supported in XMP” for more details.

NOTE: This chapter assumes that you are familiar with basic RDF concepts. For more
information, see http://www.w3.org/TR/REC-rdf-syntax/.

3.2 Background

XMP was designed with the goal of establishing a standard for the representation and
interchange of metadata between applications. Rather than invent a new standard, it made
sense to adopt the RDF standard, and benefit from the documentation, tools, and shared
implementation experience that come with an open Internet standard. The RDF syntax is based
on XML .

Most documentation about RDF uses the term resource as the thing that is being described by
the metadata. Resource is used here in the same sense as it is used on the Web: it is the
abstraction that contains information; it may or may not be a file.

3.3 RDF Data Model

The following sections explain the RDF data model, and how XMP uses the RDF model to
support its goals.

There are three basic object types: Resources, such as documents and media files or literal
values, Properties, such as Title and Author, and Statements, which relate Properties to
Resources. All Statements in RDF can be expressed as triples: {Subject, Predicate, Object}.
For simple name/value pairs, the Predicate is the name, the Object is the value, and the Subject
is the document or media file that the name/value pair describes. RDF represents these
relationships as directed graphs, where the Subject and Object are nodes, and the Predicate is a
named directed arc from the Subject to the Object.

http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/XML/
http://www.w3.org/TR/REC-rdf-syntax/

16 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
How XMP Uses the RDF Data Model

3

Consider as a simple example the sentence:

Jane Doe is the creator of the resource http://www.thedoefamily.org/home/jane.

This sentence has the following parts:

Subject (Resource): http://www.thedoefamily.org/home/jane

Predicate (Property): Creator

Object (literal): Jane Doe

In RDF diagrams, the nodes (drawn as ovals) represent resources and arcs represent named
properties. Nodes that represent string literals will be drawn as rectangles. The sentence above
would thus be diagrammed as shown in Figure 3.1.

FIGURE 3.1 Simple node and arc diagram

3.4 How XMP Uses the RDF Data Model

This section describes how XMP uses the RDF data model. It explains the basic model,
discusses how schemas are named, shows how to provide localized values for textual
properties, and illustrates various features with sample code. The issues of extensibility and
aliasing are also explained.

3.4.1 Description Object

A Description object is an RDF element that contains statements about a resource. Properties
from various schemas are attached to the Description object. In other words, if you took all the
statements in a model, and factored them by common subjects (all about the same resource),
you would have a set of top-level Description objects, one for each unique subject resource.

Metadata can be associated with resources either internally or externally. Internal association
usually means that the actual Description object is embedded in the data of the resource
somewhere. External association usually means that the Description object refers to the
resource with some kind of pointer, such as a URL. External associations can also be managed
by a database application, which can maintain statement triples directly. All of these methods
are supported by this data model.

http://www.thedoefamily.org/home/jane Jane Doe
Creator

XMP – Extensible Metadata Platform 14 Sept 01 17

XMP RDF Data Interchange Format
How XMP Uses the RDF Data Model

3

NOTE: Internal and external associations are RDF model concepts, not to be confused with the
internal and external categories for properties defined in section 2.4, “Model and
Terminology.”

3.4.2 Repeated Properties

The XMP subset of the RDF data model includes the container mechanism (described in
section 3 of the RDF specification) for modeling properties with multiple values. The syntax
also allows properties to be repeated, but this practice is discouraged for XMP in order to
avoid ambiguity between the two cases of a single property with multiple values, and multiple
instances of the same property with single values. Avoiding repeated values also makes it
easier to implement XMP for protocols like WebDAV (an IETF Proposed Standard, published
as RFC 2518) which forbid repeating properties. Repeated properties in serialized XMP
metadata are mapped into an equivalent structured container type, which is described by the
schema. When no schema description is available, the default is a sequence type.

3.4.3 Schemas and Namespaces

Metadata can usually be organized into related groups of properties. These groups are relevant
only for particular types of documents, or perhaps only for certain stages of a workflow. These
groups are implemented by defining schemas for them. Each schema defines a new
namespace.

A schema is a set of specific metadata property definitions; it includes, but is not limited to:

● A vocabulary of elements (property names)

● The legal values for elements (constraints on property values)

● The relationship between properties, if any (there’s none if they are simple and flat)

The vocabulary of properties is defined within a namespace. A namespace helps to
differentiate between property names that are the same, but which have different meanings
depending on the schema. For example, in one schema, Creator may mean the person who
created a resource. In another schema, Creator may mean the application used to create a
resource. The schemas may have been defined independently, and each has a legitimate claim
on Creator as a property name. Confusion is avoided by qualifying the property names with a
schema-specific namespace.

In XMP metadata, each schema is named. The URI of the schema is considered to be the name
of the namespace.

Some properties have values that contain more than one component (structured values). The
names of the components use tags from an XML namespace associated with the structure. An
example of such a property would be the xapG:NaturalDimensions property. Each property
requiring specification of dimensions needs a width, a height, and an indication of the units
used for the numeric values of width and height. Each property describes a different

http://www.w3.org/TR/REC-rdf-syntax/#containers

18 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
How XMP Uses the RDF Data Model

3

interpretation of dimension: physical dimensions, pixel sample dimensions, desired rendering
dimensions, etc., and all use tags from their own namespace. This namespace is just a simple
factoring of the vocabulary into useful, independent modules. This is more for the convenience
of programmers and human readers of metadata specifications than for any other reason.

Let’s suppose we have an image resource “myPhoto.gif.” We want to describe the dimensions
in pixels, as well as the natural presentation dimensions (desired size in inches when displayed
at 100% scale). These are two different properties which share the same value type.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="myPhoto.gif"
 xmlns:xapG="http://ns.adobe.com/xap/1.0/g/"
 xmlns:stDims="http://ns.adobe.com/xap/1.0/sType/Dimensions#">
 <xapG:NaturalDimensions rdf:parseType=’Resource’>
 <stDims:w>4</stDims:w>
 <stDims:h>3</stDims:h>
 <stDims:unit>inches</stDims:unit>
 </xapG:NaturalDimensions>
 </rdf:Description>

 <rdf:Description about="myPhoto.gif"
 xmlns:xapGImg="http://ns.adobe.com/xap/1.0/g/img/"
 xmlns:stDims="http://ns.adobe.com/xap/1.0/sType/Dimensions#">
 <xapGImg:Dimensions rdf:parseType=’Resource’>
 <stDims:w>640</stDims:w>
 <stDims:h>480</stDims:h>
 <stDims:unit>pixels</stDims:unit>
 </xapGImg:Dimensions>
 </rdf:Description>
</rdf:RDF>

The first description uses the schema for XMP Graphics (http://ns.adobe.com/xap/1.0/g/). The
property is called xapG:NaturalDimensions, and its value is a nested description (which is what
rdf:parseType=’Resource’ means). The nested description uses the namespace
“http://ns.adobe.com/xap/1.0/sType/Dimensions#.”

The second description uses the schema for XMP Graphics: Image Schema:

 (http://ns.adobe.com/xap/1.0/g/img/)

The property is called xapGImg:Dimensions, and its value is also a nested description. The
nested description also uses the namespace http://ns.adobe.com/xap/1.0/sType/Dimensions#.

3.4.4 Localized Property Values

Support for multiple languages in text is relatively straightforward in XMP. Because it is based
on RDF and XML, the default encoding for text is UTF-8 with support for all Unicode
characters. Multibyte Unicode encodings may also be used.

XMP – Extensible Metadata Platform 14 Sept 01 19

XMP RDF Data Interchange Format
How XMP Uses the RDF Data Model

3

In addition, individual properties may have multiple localized values through use of the RDF
alternative container. This allows the metadata to contain multiple values for a property, with
one value being selected for use at a time. In the case of localized text values, this selection
uses an xml:lang attribute given with each value.

The example below shows the dc:title property (in isolation) with English, French, and
Italian values:

<dc:title>
 <rdf:Alt>
 <rdf:li xml:lang="en">XMP – Extensible Metadata Platform</rdf:li>
 <rdf:li xml:lang="fr">XMP – Une Platforme Extensible pour les Métadonnées</rdf:li>
 <rdf:li xml:lang="it">XMP – Piattaforma Estendible di Metadata</rdf:li>
 </rdf:Alt>
</dc:title>

The RDF defines the first element in the alternative container as the default. For example, on
a German system, the English title would be displayed because there is no German title. XMP
defines the ‘x-default’ language code as a means to explicitly denote a default value. The
x-default item should be the first one so that general RDF processors unaware of XMP
will also use it. Having an x-default item also considerably simplifies changing the
default. With it you only have to change that item’s value, you do not have to reorder the
entire container.

The recommended practice in XMP is to define the default explicitly, in addition to the other
localized values. Adding a French default to the above example:

<dc:title>
 <rdf:Alt>
 <rdf:li xml:lang="x-default">XMP – Une Platforme Extensible pour les Métadonnées</rdf:li>
 <rdf:li xml:lang="en">XMP – Extensible Metadata Platform</rdf:li>
 <rdf:li xml:lang="fr">XMP – Une Platforme Extensible pour les Métadonnées</rdf:li>
 <rdf:li xml:lang="it">XMP – Piattaforma Estendible di Metadata</rdf:li> Metadaten</rdf:li>
 </rdf:Alt>
</dc:title>

3.4.5 Extensibility

XMP Metadata schemas may be added by the procedure described in Chapter 6, “XMP
Extensibility,” which also shows examples of extensions.

The data model makes no distinction between standard and non-standard schemas. All
properties are associated with a namespace URI, and that URI is the name of the schema.

The version of a schema is considered to be a part of the schema name. Therefore,
foo:/schema/1.0/ and foo:/schema/2.0/ are considered to be two completely different schemas
with no relationship between them. This leaves applications free to define the semantics for
schema versions.

20 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
How XMP Uses the RDF Data Model

3

The data model does not require the presence of a schema in order to instantiate and explore
statements.

3.4.6 Aliasing

One of the goals of XMP is to efficiently handle properties from different schemas which have
the same logical meaning. This goal is achieved through the aliasing of properties.

Two properties should be aliased if and only if they can truly be considered identical
substitutes. They must have the same value type and meaning. Aliasing literally creates
multiple names for one logical value.

Aliases are typically defined by pairs with an alias property pointing to an actual property. For
example, the alias property A is said to be aliased to the actual property B, or B is said to be
aliased by A. Aliasing is transitive, if B is aliased to C, then A is also aliased to C. Collections
of aliases should have a base member, which is the preferred form for serialized output.

Properties may be aliased across namespaces, for example xap:Authors is aliased to dc:creator.
Aliases may only be created for top level properties, not between general components of
structured properties. One exception is that the base of a collection of aliases may be the first
or default item in a bag, sequence, or alternative. This allows simple schema to interoperate
with more sophisticated schema. For example, pdf:Author is aliased to dc:creator/*[1], the first
item in the dc:creator container.

3.4.7 Resource Identification

One way in which the web-centricity of RDF shows is in the way resources are
identified. About attributes in the outermost rdf:Description elements identify the
resource being described, the RDF examples use URLs almost exclusively. This is natural and
appropriate given RDF’s mission “to describe the data contained on the Web.” RDF also
allows about or ID attributes on inner rdf:Description elements to define inline
resources. We are not concerned with that here, in fact XMP does not support that aspect of
RDF.

The use of URLs is not appropriate for XMP, which is oriented towards general digital asset
management. The assets in many environments may not have URLs. Perhaps more serious, the
URL/web-page model does not address the document/version/rendition model presented in
Chapter 2 of this document. Web pages do not have versions or renditions expressed in their
URLs. The actual location of a resource may be constantly changing as it moves from one
person to another in an office workflow. It may well change throughout the day as one person
works in different locations.

Two important aspects of a resource ID are persistence and specificity. A persistent ID is one
which is stable over time, allowing references to a resource to be resolved even though that
resource may have changed in some regard. The URL for a web page has some aspects of
persistence, the URL does not change if the content changes. The URL lacks persistence as an

XMP – Extensible Metadata Platform 14 Sept 01 21

XMP RDF Data Interchange Format
How XMP Uses the RDF Data Model

3

abstract ID though, as evidenced by the number of broken links on the web due to file
movement. A specific ID is one that differentiates between two different instances of a
resource. For example between two renditions of the same version of a document, say high
and low quality JPEG renditions of the latest company logo.

These two aspects are often at odds, gaining persistence often means losing specificity.
Different queries about the same resource may prefer one aspect over another. Continuing the
above example, preparing marketing materials may require location of the appropriate
rendition of the company logo while changing the logo may require locating all uses of any
version or rendition of the logo. Other uses of the metadata, such as in compound documents,
may require very precise and unambiguous reference to an exact instance of a resource.

The recommended approach in XMP is to have multiple parts to the abstract identification of a
resource, ranging from very persistent to very specific. Applications should generate a unique
instance ID whenever saving a document to disk and use this ID in the about attributes of the
rdf:Description elements. Details for the instance ID are given in Section 3.5.2. In addition,
the DocumentID, VersionID, and RenditionClass properties in the XMP Media Management
schema should be set to provide more persistent identification. Other properties may also be
used. For example the ResourceID property in the XMP Support schema would be used by an
asset management system to record its own internal ID for a resource that is “checked out”
from the system.

3.4.8 Normalization of Metadata

One of the primary advantages of publishing the XMP specification and basing XMP on RDF
is to encourage and facilitate interchange and broader use of metadata. Given the relative
immaturity of RDF usage overall and of emerging schema standards such as Dublin Core,
different implementations will almost certainly create different RDF. Some of these
differences may endure as legitimate differences in expression or locally constrained usage.

For example, the proposed guide for expressing Dublin Core in RDF:

 http://www.ukoln.ac.uk/metadata/resources/dc/datamodel/WD-dc-rdf/

does not specify how to represent multiple authors. Should they be specified as repeated
simple dc:creator properties, or as a bag or sequence container? Should localizable properties
such as dc:title always be represented as alternative containers?

It would be a tremendous burden if each application dealing with metadata had to specifically
allow for all reasonable variations of metadata that it encounters. A better approach is to
normalize the metadata on input, so that the application can be written to deal with one
canonical representation. Where possible, the metadata should be returned to its original
representation when saved again. In addition, some special case simplification of the serialized
RDF may help interchange.

Ideally this normalization is defined by the schema. The following normalizations are
recommended:

http://www.ukoln.ac.uk/metadata/resources/dc/datamodel/WD-dc-rdf/

22 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
Representation and Storage of Metadata

3

● When a property is represented by start and end tags, e.g. “<prop>value</prop>”,
whitespace at the start and end of the value should be removed. If the value consists of
nothing but whitespace, it should be reduced to a single blank (U+0020) character.

● When a property is represented as an attribute, the value is the entire quoted attribute value
including all whitespace.

● Properties defined as sequences or bags may be input as repeated simple properties and
normalized to a sequence or bag according to the schema. The degenerate case of a single
simple property where a bag or sequence is expected should, of course, be accepted and
normalized.

● Repeated properties in the input should be normalized to a sequence container if there is no
schema.

● Bags and sequences with just one element may be output as a single simple property if the
schema does not specify otherwise.

● Localizable properties with only one localization (value) should be accepted as a simple
property. This should be normalized to an alternative container with one item having the
‘x-default’ language.

● Localizable properties with just an x-default value may be output as a simple property if
the schema does not say otherwise.

3.5 Representation and Storage of Metadata

XMP metadata uses the XML serialization of RDF as the standard for metadata interchange.
In addition, the XML data can be embedded into any kind of document using the XML Packet
format described in Section 3.8, “XML Packets.”

The use of XML packets is encouraged for all document formats, even native XML. This
allows software such as generic workflow systems to locate and extract metadata without
knowing the specific document format.

Use of an x:xapmeta element is suggested as a means to simplify locating XMP metadata in
general XML streams. It has no meaning other than to focus attention. It should be the
outermost XML element in the serialized XMP data. Any additional non-XMP XML should
be placed outside of the x:xapmeta element. The format is:

 <x:xapmeta xmlns:x='adobe:ns:meta/'>
...the serialized XMP metadata

 </x:xapmeta>

The xapmeta element may have any number of attributes, in any order. All unrecognized
attributes should be ignored, and there are no required attributes. The only defined attribute at
present is x:xaptk. This is written by the XMP toolkit, the value is the version of the toolkit.

Remember that the rdf:RDF element, and by inference the x:xapmeta element, can appear
anywhere in an XML tree. They need not be at the outermost levels.

XMP – Extensible Metadata Platform 14 Sept 01 23

XMP RDF Data Interchange Format
Representation and Storage of Metadata

3

3.5.1 XML Representation Examples

The following examples of XMP representation are written in XML, which should be familiar
to anyone who has done any hand-coding of HTML.

3.5.1.1 XMP Examples in RDF

Familiarity with XML and RDF would be helpful, but even if you are not familiar with those
standards, you can get the flavor for how XMP would use RDF through these examples. It is
also helpful to know about XML namespaces.

One hint that might help: the XML namespace mechanism is invoked by defining an attribute
called “xmlns”. The format is:

xmlns:foo="bar"

This means that any element or attribute that begins with the prefix “foo:” is part of the “bar”
namespace. So, for example:

foo:Author="Bubba"

means the element or attribute Author is in the namespace called bar. The foo part can be any
legal XML name (without colons), and we usually pick a short prefix since it could be used a
lot. If two elements have the same name, but different namespaces, they are considered to be
different elements in XML:

<EXAMPLE xmlns:foo="bar" xmlns:oof=”rab” xmlns:boo="bar">
 <DIFFERENT foo:Author="Bubba" oof:Author="Not Bubba"/>

<SAME foo:Author="Bubba" boo:Author="Bubba"/>
</EXAMPLE>

3.5.1.2 Simple Example of XMP Metadata in XML

A first example shows some metadata for this document. The author is John Doe, and the title
is “XMP – Extensible Metadata Platform” An RDF Description element groups the properties
together. Here is the complete RDF:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="" xmlns:pdf="http://ns.adobe.com/pdf/1.3/">
 <pdf:Author>John Doe</pdf:Author>
 <pdf:Title>XMP – Extensible MetadataPlatform</pdf:Title>
 </rdf:Description>
</rdf:RDF>

The basic RDF syntax is used above, which is needed when you have complex metadata to
express. However, in the simple case above, which is just two flat name/value pairs, there is an
alternative syntax which is more concise:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description about="" xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
 pdf:Author="John Doe"
 pdf:Title="XMP – Extensible Metadata Platform"/>
</rdf:RDF>

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/RDF/
http://www.w3.org/TR/1999/REC-xml-names-19990114/

24 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
Representation and Storage of Metadata

3

Each property belongs to a schema, represented using the XML namespace notation. The
formal URI for the namespace and the local shorthand prefix are given in the attributes
beginning with “xmlns:”. For the PDF schema, the formal URI is
“http://ns.adobe.com/pdf/1.3/” and the shorthand prefix is pdf.

NOTE: The formal part of the namespace is a URI, not a URL. There may or may not be an
actual web page at the URI. In the case of Adobe namespaces, currently there is no
corresponding web page.

Let’s say we wanted to add some XMP core metadata, such as the MIME type of this
document (xap:Format), and the language it is in (xap:Locale).

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="" xmlns:pdf="http://ns.adobe.com/pdf/1.3/"
 pdf:Author="John Doe"
 pdf:Title="XMP – Extensible Metadata Platform"/>
 <rdf:Description about="" xmlns:xap="http://ns.adobe.com/xap/1.0/"
 xap:Format="application/pdf" xap:Locale="en"/>
</rdf:RDF>

By convention, XMP places the properties from each schema in separate rdf:Description
elements. This is not a requirement, just a means to improve readability.

If the document has multiple authors we could use the dc:creator property with an RDF
sequence container for its value:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:creator>
 <rdf:Bag>
 <rdf:li>John Doe</rdf:li>
 <rdf:li>Jane Smith</rdf:li>
 </rdf:Bag>
 </dc:creator>
 </rdf:Description>
</rdf:RDF>

The rdf:li elements are meant to remind you of HTML list items. An rdf:Seq is the
name of the ordered collection container type. The important point here is that multiple values
can be specified for a property, and we can say something about how those values are
structured.

3.5.2 Creation of Instance IDs

The instance ID used in the rdf:Description element’s about attribute should be a
GUID/UUID style ID. The basis of the ID is a 128-bit number that is guaranteed to be globally
unique. This guarantee may not be absolute; it is sufficient that the probability of a collision is
so enormously remote as to be effectively impossible. Although there are various common
schemes for generating the unique 128-bit number, XMP does not require any specific

XMP – Extensible Metadata Platform 14 Sept 01 25

XMP RDF Data Interchange Format
Representation and Storage of Metadata

3

scheme. One approach is to use physical information such as a local ethernet address and a
high resolution clock. Another would be to use a variety of locally unique and random data,
then compute an MD5 hash value, which avoids privacy concerns about the use of ethernet
addresses. It also allows for regeneration of the ID in some cases, for example if the MD5 hash
is computed using the image contents for a resource that is a digital photograph.

 Because the rdf:Description element's about attribute is the only identification of the
resource from the RDF point of view it is useful if its value is formatted in a standard
manner. This lets other RDF-aware software realize what kind of URI is used, in particular
that it is not a URL. Unfortunately there is no formal W3C recomendation for URIs that are
based on an abstract UUID. One proposal specifically addressing this was made several years
ago, but it seems to have not progressed since then. It may be found at:

http://www.globecom.net/ietf/draft/draft-kindel-uuid-uri-00.html

Another proposal for “vendor-specific” URL schemes may become a standard. It may be
found at:

http://www.ietf.org/internet-drafts/draft-king-vnd-urlscheme-02.txt.

Other IDs in XMP, notably the xapMM:DocumentID property, should be based on a
GUID/UUID number. Since these IDs are meaningful only to software that is aware of XMP
metadata, they may be formatted with more information – for example, a signature for the
authoring application.

3.5.3 Metadata in Compound Documents

A number of common applications have a notion of compound document, created by
incorporating other documents into a single document, generally with additional local content.
This may be done by physical inclusion, which is often the case for publishing applications.
Or it may be done by reference, which is often the case for multimedia applications such as
video editors. Defining and understanding the metadata for compound documents presents a
number of challenges for the applications themselves and other software such as asset
management systems.

The essential difficulty is that the metadata should describe the compound document structure.
It should be possible to determine the document containment hierarchy from just the metadata.
Resource tracking or usage queries should be able to locate physically embedded instances.
This should be robust, and degrade gracefully in the face of incomplete metadata for included
documents.

The references from the compound document to the contributing documents should use the
xapMM:ContainedResources and ContributingResources properties. These are quadruples
consisting of the xapMM:DocumentID, VersionID, RenditionClass, and instance ID (about
attribute) from the contributing document. No reference should be created if none of this
information is available.

http://www.globecom.net/ietf/draft/draft-kindel-uuid-uri-00.html
http://www.globecom.net/ietf/draft/draft-kindel-uuid-uri-00.html
http://www.ietf.org/internet-drafts/draft-king-vnd-urlscheme-02.txt

26 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
RDF Features Not Supported in XMP

3

The metadata from each contributing document and for the compound document itself should
be in separate XML packets, with of course a single rdf:RDF element in the packet
surrounding the rdf:Description elements for that component. This makes it easy to avoid
confusion if one or more of the contributing documents lacks a unique instance ID. (For
example, by having a null string as the value of the about attribute!) The authoring
application should place the packet for the compound document itself last in the stored
document. This also aids in disambiguation where some of the metadata does not have an
instance ID, or at least a locally unique “about” string.

NOTE: The heuristic of considering the last packet in a file to be the primary packet is also
useful for some non-compound documents. For example, the PDF format allows edits
to be stored through sequential appends to the file. The primary dictionary is always at
the end of the file. In this case, a PDF document that has been modified and saved
multiple times may have multiple XML packets, with the last being the most recent.

3.5.4 External Storage of Metadata

While there is no overt bias in XMP, it is suggested that metadata should generally be
embedded with the primary content as XML packets. There are cases where this is not
appropriate or possible, such as database storage models, extremes of primary content size, or
due to format and access issues. Small content intended to be frequently transmitted over the
Internet may not tolerate the overhead of embedded metadata. Archival systems for video and
audio may not have any means to represent the metadata.

When the metadata is stored separately, the question arises of how to associate the metadata
with the primary content. Applications should:

● Write external metadata as though it were embedded and then have the XML packets
extracted and catenated by a post processor.

● Place the ResourceRef within the primary content so that format-savvy applications can
make sure they have the right metadata.

● Place the string used in the rdf:Description “about” attributes within the primary
content. This allows software that understands the file format to verify that they have the
right metadata. Use of a unique instance ID for the about attribute value can improve the
reliability.

3.6 RDF Features Not Supported in XMP

The following features of the RDFMS 1.0 specification are not supported by XMP:

● The optional rdf:RDF element (rdf:RDF is required)

● Top-level containers (top-level must be rdf:Description or typedNode elements)

● The rdf:ID attribute (ignored on all rdf:Description or propertyElt elements)

http://www.w3.org/TR/REC-rdf-syntax/

XMP – Extensible Metadata Platform 14 Sept 01 27

XMP RDF Data Interchange Format
Limitations of RDF

3

● The rdf:bagID attribute (ignored)

● The rdf:aboutEach or rdf:aboutEachPrefix attributes (entire rdf:Description
ignored)

● The rdf:parseType='Literal' attribute

● Reified statements (they are not generated in the model).

Furthermore, all rdf:about attributes must appear on top-level rdf:Description or top
level typed Node elements only. In general the value of the rdf:about attribute should be a
meaningful URI, the document ID, or the instance ID. This allows the metadata to remain
meaningful when separated from the document or when this document is included within a
compound document. The rdf:about value may be the empty string ("" or ''), indicating that
the metadata is about the current document. The rdf:about values must all be consistent
within a single rdf:RDF element. All non-empty rdf:about values must be the same URI.

NOTE: The restriction to consistent about values in a single rdf:RDF element is a current
implementation restriction of XMP. The intent is to relax this restriction eventually.

Otherwise, all other features of RDFMS 1.0 are supported in XMP.

3.7 Limitations of RDF

RDF is not well suited for, or was not designed to handle, the following features:

● Inline binary objects (primarily due to XML syntax).

● Optimal (minimal) size of the representation.

● Knowledge representation, in the most general artificial intelligence sense.

● Validation against a DTD.

3.8 XML Packets

The XML Packet format was developed to enable simple scanners to find XML data
embedded in files with formats that a simple scanner may not understand, such as Photoshop®
or PDF files. The format uses a syntax that is as close to XML as possible to minimize the
filtering burden on the simple scanner.

The XML Packet format was designed to accomplish the following:

● Support embedding in binary and text formats, including the various Unicode encodings.

● Deal with arbitrary positioning within a byte stream (so as not to rely on machine word
boundaries, etc.).

● Enable multiple XML packets to be embedded in a single data file.

28 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
XML Packets

3

● Provide easy-to-scan markers for delimiting the XML packet. Such markers should be
XML syntax-compatible to allow transmission to an XML parser without additional
filtering.

● Enable in-place editing, including expansion, of metadata embedded in XML packets.

The procedure for creating a XML Packet is described in this section. The packet includes a
header and trailer (see Figure 3.3). The header provides byte ordering information, and
optional encoding information.

NOTE: Be aware that an XML packet might contain valid XML that is not necessarily XMP-
compliant RDF. It is desirable to preserve such non-XMP XML if possible.

Here is a sketch of an XML packet showing the text of the header and trailer:

<?xpacket begin='■ ' id='W5M0MpCehiHzreSzNTczkc9d'?>
 ... 700 bytes of XML data text ...
 ... 500 bytes of XML whitespace as padding ...
<?xpacket end='w'?>

Where ‘■ ’ represents the Unicode “zero width non-breaking space character” (U+FEFF) used
as a byte-order marker.

Figure 3.3 shows a schematic of an XML Packet.

FIGURE 3.3 XML Packet Schematic

The entire packet must conform to the Well-Formedness requirements of the XML
specification, except for the lack of an XML declaration at its start. Also, there are additional
constraints:

● Different packets may be in different character encodings.

● Packets must not nest.

● Data attributes in the header and trailer processing instructions are separated by exactly one
blank (U+0020) character.

The following sections describe the parts of the packet illustrated in Figure 3.3.

Header

The Header is an XML processing instruction:

Header

XML Data

Trailer

Padding

XMP – Extensible Metadata Platform 14 Sept 01 29

XMP RDF Data Interchange Format
XML Packets

3

<?xpacket ... ?>

The remainder of the processing instruction contains information about the packet. The syntax
observes XML attribute syntax, which is production [41] Attribute, which is roughly:

Attribute ::= Name '=' AttValue
 AttValue ::= '"' ([^<&"] | Reference)* '"' | ''' ([^<&'] | Reference)* '''

Note the use of either matching single or double quotes. Otherwise, a common error would be
the use of the wrong quote character.

The header processing instruction must have two or more attributes. The first attribute must be
the begin attribute, the second must be the id attribute. Other attributes may appear in any
order, and unrecognized attributes should be ignored.

The description of each attribute follows.

Attribute: begin

This mandatory attribute is present only in the initial processing instruction, and indicates that
it is the beginning of a new packet. The value of this attribute is the Unicode zero width non-
breaking space character U+FEFF in the appropriate encoding (UTF-8, UTF-16, or UTF-32).
This serves as a byte order marker, where the character is written in the natural order of the
authoring/generating application (consistent with the byte order of the XML data encoding).

For backwards compatibility with earlier versions of the XML packet specification the value
of this attribute may be the empty string, indicating an 8-bit encoding.

As described in the Usage Hints below, an XML Packet processor should be reading a single
byte at a time until it has successfully interpreted a valid packet header. While processing the
value of the begin attribute, if the processor detects the byte value ‘0xFE’ followed by
‘0xFF,’ it knows that the packet is big-endian order. If the processor detects the byte value
‘0xFF’ followed by ‘0xFE,’ it knows that the packet is little-endian order. If the processor
detects the byte value ‘0xEF,’ followed by ‘0xBB,’ followed by ‘0xBF,’ it knows this is UTF-8.
If the attribute has no value (quote or double quote followed immediate by another quote or
double quote), the byte order is irrelevant and the overall character encoding must not be any
16- or 32-bit Unicode encoding (that is, it must be UTF-8, US-ASCII, etc.).

Attribute: id

Next, there is a mandatory id. For all packets defined by this version of the syntax, the value
of the id is the following string of 7-bit ASCII characters:

W5M0MpCehiHzreSzNTczkc9d

The value of the attribute must be encoded in the character encoding of the overall packet (see
below). Thus, if the overall encoding is big-endian UTF-16, the id value should be converted
from 7-bit ASCII to UTF-16 by inserting nulls.

30 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
XML Packets

3

Attribute: bytes

An optional bytes attribute may be present, specifying the total length of the packet in bytes.
If the length extends beyond the end of the trailer processing instruction, the additional bytes
must be properly encoded Unicode whitespace and are considered padding.

NOTE: Earlier versions of this specification recommended placement of the padding after the
trailer processing instruction. This is now discouraged, the padding should come
before the trailer. Placing the padding before the trailer and omitting the bytes
attribute has always been valid, it is now the only recommended practice. Use of the
bytes attribute is dangerous for XML packets embedded in text files. For example,
moving a text file from a Macintosh or UNIX system to Windows typically causes all
single byte line endings (CR or LF) to become 2 bytes (CRLF). This would invalidate
the length given by the bytes attribute.

Attribute: encoding

The id attribute may be followed by an optional encoding attribute. It is identical to the
encoding attribute in the XML declaration (see productions [23] and [80] in the XML
specification). It specifies the character encoding of the entire packet. If this attribute is
omitted, the encoding of the packet must be UTF-8.

The following is a simplified BNF syntax for the encoding attribute:

[A–Z a–z] ([A–Z a–z 0–9._] | -)*

XML Data

The bytes of the XML data are placed here. If the encoding is specified in the Header, the
encoding of the XML data must match. If the encoding was omitted from the Header, the
encoding of the XML data must be UTF-8.

You should omit the XML declaration for the XML data when using this packet syntax for
embedding. The XML specification requires that the XML declaration be “the first thing in the
entity.” This will never be the case for an embedded XML Packet, the somewhat ambiguous
definition of “entity” with respect to embedding notwithstanding. You may preserve the
information contained in your XML declaration by translating it into a comment or a
processing instruction, such as:

<?was-xml version="1.0" standalone="yes"?>

Padding

In order to enable in-place edits and expansion of the embedded XML, padding should be
added to the packet so that additions and edits may be easily made to the packet without
overwriting existing application data. It is recommended that applications allocate 50% of the
XML data size as padding, with a minimum of 4 KB. This padding must be XML compatible

http://www.w3.org/XML/

XMP – Extensible Metadata Platform 14 Sept 01 31

XMP RDF Data Interchange Format
XML Packets

3

whitespace. The recommended practice is to use the blank character (U+0020) for padding, in
the appropriate encoding, with a newline about every 100 characters.

Trailer

This mandatory processing instruction indicates the end of the XML packet.

<?xpacket ... ?>

This processing instruction has one mandatory attribute, described below. The end attribute
must be the first attribute. Other unrecognized attributes may follow and should be ignored.

Attribute: end

This mandatory attribute indicates that this is the trailer. The value of the attribute is either “r”
or “w”. If “r”, the packet is “read-only” and should not be updated in-place. If “w”, the packet
may be updated in-place if and only if there is available space through the padding. If the size
of the Header+XML data+Trailer is less than it was before the update, the padding should be
increased accordingly so that the overall packet size remains constant. Use the value “r” for
file formats which compute invariants over all of their contents, such as checksums. If in
doubt, use “r”.

3.8.1 Usage Hints

A file should be scanned byte-by-byte until a valid header is found.

A simple scanner should begin its scanning state machine by looking for one of the following
byte patterns (which represents “<?xpacket begin=”):

16-bit encoding (UCS-2, UTF-16): (either big- or little-endian order)

0x3C 0x00 0x3F 0x00 0x78 0x00 0x70
 0x00 0x61 0x00 0x63 0x00 0x6B 0x00 0x65 0x00 0x74 0x00 0x20 0x00

 0x62 0x00 0x65 0x00 0x67 0x00 0x69 0x00 0x6E 0x00 0x3D [0x00]

8-bit or multibyte encoding (UTF-8, ASCII 7-bit, ISOLatin-1):

0x3C 0x3F 0x78 0x70 0x61 0x63 0x6B
 0x65 0x74 0x20 0x62 0x65 0x67 0x69 0x6E 0x3D

The 32-bit UCS-4 pattern is similar to the UCS-2 pattern above, only with three 0x00 bytes for
every one in the UCS-2 version.

For 16-bit encodings, a simple scanner cannot be sure whether the 0x00 values are in the high
or low order half of the character until you read the byte order mark (the value of the begin
attribute). As you can see from the pattern, it starts with the first non-zero value, regardless of
byte order, which means that there may or may not be a terminal 0x00 value.

A simple scanner may choose to simply skip 0x00 values and search for the 8-bit pattern.
Once the byte order is established, the scanner should switch to consuming characters rather

32 14 Sept 01 XMP – Extensible Metadata Platform

XMP RDF Data Interchange Format
XML Packets

3

than bytes. After finding a matching byte pattern, the scanner must consume a quote or double-
quote character. The scanner is now ready to read the value of the begin attribute.

16-bit encoding, big-endian: 0xFE 0xFF

16-bit encoding, little-endian: 0xFF 0xFE

UTF-8: 0xEF 0xBB 0xBF

Then the scanner consumes the closing quote or double-quote character. The scanner now has
enough information to process the rest of the header in the appropriate character encoding.
This is a potential packet.

Single or Double quote

Remember that the attribute values in the processing instruction may have either single or
double quotes. The following header is well-formed:

<?xpacket begin="■ " id='W5M0MpCehiHzreSzNTczkc9d' encoding="UTF-8"?>

XMP – Extensible Metadata Platform 14 Sept 01 33

4 XMP Schemas

4.1 Introduction

This chapter defines the XMP Schemas, and specifies the property value types for each
schema, and the associated schema vocabularies which list the allowed values. The sections
include:

● Section 4.2, “XMP Schema Definitions”

● Section 4.3, “Property Value Types”

● Section 4.4, “XMP Vocabularies”

Chapter 5, “XMP Property Commentary” describes the use of, and rationale for XMP
metadata properties. In addition, Appendix A specifies the PDF and Dublin Core Schemas,
and Appendix B contains a proposal for schemas for media-type metadata such as for images,
audio, video, etc.

4.1.1 Property Value Type Representation

In the Value Type column of each schema table, a specific notation is used. A type preceded by
a modifier, which is derived from RDF nomenclature, is defined as follows:

Most of the Value Types are self-explanatory, but some need additional explanation, or are in
fact references to structures. All value types are defined in Section 4.3, “Property Value
Types.” For an explanation of the Category column, see “Property Categories” on page 60.

For properties whose values are strings, for which the language is unknown, the following
notation is used to indicate the default value to be used (for example, see the entry for pdf:Title
in the PDF Schema in the appendix):

alt An alternation. The first value in the sequence is the preferred
value; all subsequent values are alternatives.

bag An unordered collection of values of the specified type.

seq An ordered sequence of values of the specified type.

Property Reference: Interpretation:

xap:title/*[@xml:lang=‘x-default’] alternation by language; selects ‘x-default’

34 14 Sept 01 XMP – Extensible Metadata Platform

XMP Schemas
XMP Schema Definitions

4

4.2 XMP Schema Definitions

Each XMP schema described in this chapter is shown in table form, along with the namespace
string that identifies the schema. Each table lists all properties defined for that schema as well
as the value type, category, and whether the property is aliased to any other XMP property.
Additional information and commentary is given for most properties in Chapter 5, “XMP
Property Commentary.”

NOTE: If you are viewing this document online, Property column entries in the following
tables are linked to the corresponding entries in the Metadata Property Commentary
table in the next chapter. Also, entries in the Value Type column are linked to the
corresponding table entries in Section 4.3, “Property Value Types.”

4.2.1 XMP Core Schema

The XMP Core Schema contains metadata properties that are common to all applications.

TABLE 4.1 XMP Core Schema

The namespace prefix is xap. The schema name is http://ns.adobe.com/xap/1.0/.

Property Value Type Description Category

xap:Advisory bag XPath List of properties edited outside of the
authoring application.

External

xap:Author ProperName Primary author of the document. Aliased to
xap:Authors/*[1].

External

xap:Authors seq
ProperName

Authors of the document, in order of
precedence.

External

xap:BaseURL URL base URL for relative URLs. Relational

xap:CreateDate Date Document creation time. Internal

xap:CreatorTool AgentName Tool that created the resource. Internal

xap:Description alt Text A textual description of the content. External

xap:Format MIMEType Distinguish various resource formats. Internal

xap:Keywords bag Text List of descriptive phrases. External

xap:Locale bag Locale Languages used in the content of the
document.

Internal

xap:MetadataDate Date Last metadata modification time. Internal

xap:ModifyDate Date Last resource modify time. Internal

XMP – Extensible Metadata Platform 14 Sept 01 35

XMP Schemas
XMP Schema Definitions

4

4.2.2 XMP Media Management Schema

Resources are identified by a document identifier, a version identifier, and a rendition class
name. All versions and renditions of a document share the same document identifier. The triple
(document identifier, version identifier, rendition class name) forms a key which can be used to
uniquely identify each media resource. A media management tool (or simple convention for
that matter) can map the triple to a filename or URL.

The creating application should assign the DocumentID. Other tools and applications that
operate on the document should preserve the assigned DocumentID. If an application has media
management plug-in interfaces, it may operate in conjunction with the media management
system to assign the DocumentID. The DocumentID should be based on a locally generated
GUID/UUID style number (see Section 3.5.2, “Creation of Instance IDs” for more
information).

TABLE 4.2 XMP Media Management Schema

The namespace prefix is xapMM. The namespace is http://ns.adobe.com/xap/1.0/mm/.

xap:Nickname Text Short informal name for resource. External

xap:Title alt Text Document Title. External

Property Value Type Description Category

xapMM:ContainedResources bag ResourceRef A bag referencing all
resources known to be
contained in this one.

Internal

xapMM:ContributorResources bag ResourceRef Resource that in some way
contributed to this one,
implying a dependency.

Internal

xapMM:DocumentID URI The common identifier for all
versions and renditions of a
document.

Internal

xapMM:History seq
ResourceEvent

A sequence of high-level user
actions that resulted in this
resource.

Internal

xapMM:LastURL URL Last place this resource was
written.

Relational

xapMM:Manager AgentName Name of the software agent
that manages this resource.

Relational

Property Value Type Description Category

36 14 Sept 01 XMP – Extensible Metadata Platform

XMP Schemas
XMP Schema Definitions

4

Authoring applications should maintain all of the xapMM properties except Manager and
Versions which are primarily for use by a media management system. By setting these
properties, an audit trail, embedded in the document itself, is maintained that allows a follow-
on media manager to reconstruct the relationships among documents found on a user’s
unmanaged storage system.

A media management system should preserve media management metadata unchanged and
update the xapMM metadata to be consistent with the results of operations performed in the
media management system.

4.2.2.1 Versions

Creation of a new version usually requires some explicit action on the part of the user and
there consequently should be some user interface that tells the application to create a new
version. This might commonly be the check-in operation for a media management system.

From the point of view of XMP metadata, all that is required to change the version number is
to assign a new value for xapMM:VersionID, typically by incrementing it.

The media management system is responsible for storage of any old versions of the document.
XMP is not involved in mapping resources to storage pathnames or in retention of old
versions.

4.2.2.2 Renditions

Renditions of a version of a document are created directly by some explicit user action or
indirectly by some tool that is carrying out some user action. Renditions may be stored as
normal resources or files, or may be embedded inside another resource by an application
producing a compound document.

xapMM:ManageTo URL Location of managed
rendition of asset.

Relational

xapMM:RenditionClass RenditionClass Rendition class name of this
resource.

Internal

xapMM:RenditionOf ResourceRef Resource that this resource is
a rendition of.

Internal

xapMM:SaveID Integer Incremented on each write to
LastURL.

Relational

xapMM:VersionID Text The document version
identifier for this resource.

Internal

xapMM:Versions seq Version Part of the version history of
this document.

Internal

Property Value Type Description Category

XMP – Extensible Metadata Platform 14 Sept 01 37

XMP Schemas
XMP Schema Definitions

4

Creation of a rendition involves changing the xapMM:RenditionClass to a value that identifies
the kind of rendition being created, and changing the xapMM:RenditionOf property to indicate
the resource from which the new rendition is derived.

If an application creates a new rendition of a resource as part of embedding it in a compound
document, the metadata for the modified resource should be changed as indicated in the
previous paragraph and the xapMM:ContainedResources property of the compound document
should be modified to include the new, embedded rendition.

4.2.3 XMP Support Schema

The following properties support cataloging and media management features. These properties
do not describe a resource directly, as Author and Title do. Rather, they describe information
that is related to the resource, such as the way it is identified in a storage management system.

These properties should never be embedded in the resource they describe. They are strictly for
metadata managers that control metadata external to the resource file. It is expected that
specific media management systems will define additional properties to support their
individual features.

TABLE 4.3 XMP Support Schema

The namespace prefix is xapS. The namespace is http://ns.adobe.com/xap/1.0/s/.

Property Value Type Description Category

xapS:EntityTag Text Supports cache validation when comparing
the “content value” of two blocks of
metadata. Follows a convention based on
the “entity” concept defined in HTTP/1.1.
See http://www.ietf.org/rfc/rfc2616.txt

Relational

xapS:FileDisposition alt
FileDisposition

Preferred file name to save on disk, or
preferred URL for publishing on a Web
server, by OS.

Relational

xapS:ResourceID URI The unique identifier for this particular
resource. Used for storage systems which
provide a unique identifier for a stored
resource which is incompatible with the
format defined in xapMM.

Relational

xapS:Size Integer File size in bytes Relational

http://www.ietf.org/rfc/rfc2616.txt

38 14 Sept 01 XMP – Extensible Metadata Platform

XMP Schemas
XMP Schema Definitions

4

4.2.4 XMP Basic Job Ticket Schema

The following schema describes very simple workflow or job information.

TABLE 4.4 XMP Basic Job Ticket Schema

The namespace prefix is xapBJ. The namespace is http://ns.adobe.com/xap/1.0/bj/.

4.2.5 XMP Rights Management Schema

This schema deals with rights management. All properties are optional. All alternations are for
multiple languages.

TABLE 4.5 XMP Rights Management Schema

The namespace prefix is xapRights. The namespace is http://ns.adobe.com/xap/1.0/rights/.

Property Value Type Description Category

xapBJ:JobRef bag Job Job(s) with which this document is
associated.

External

Property Value Type Description Category

xapRights:Certificate URL Online rights management certificate. External

xapRights:Copyright alt Text Legal copyright notice. The alternation
is for different languages.

External

xapRights:Marked Boolean Indicates that this is a rights managed
resource.

External

xapRights:Owner bag
ProperName

Legal owner of a resource External

xapRights:UsageTerms alt Text Text instructions on how a resource can
be legally used.

External

xapRights:WebStatement URL Location of web page describing the
owner and/or rights statement for this
resource. (Photoshop “Image URL”).

External

XMP – Extensible Metadata Platform 14 Sept 01 39

XMP Schemas
Property Value Types

4

4.3 Property Value Types

The following tables list the value types used in the XMP schemas. Some value types are
represented by structures; where that occurs, a sub-heading of: Name, Type, and Comments is
given to list each element of the structure.

TABLE 4.6 Basic Value Types

Type Representation Notes

Boolean True or False The strings should be spelled as shown.

Choice A value chosen from a single list, and represented by a string. There may also be a vocabulary
qualifier indicating the vocabulary from which the value was chosen. Note that the added
vocabulary values apply to the property, not to the base vocabulary. Thus, the set of values for the
property is extended; the vocabularies are not. The vocabulary qualifiers for Choice are:

● Open: Single list of preferred values, but new values may be added to the list

● Closed: Single fixed list of values for the vocabulary.

Name Type Comments

vQual:vocabulary URI Optional. The vocabulary name. The vocabulary implies a set
of values, conventions, and semantics for values. The list of
legal vocabulary items may be present in the schema.

Field namespace xmlns:vQual=http://ns.adobe.com/xap/1.0/ValueQualifier#.

Date YYYY-MM-
DDThh:mm:ss.sT
ZD

A date (ISO 8601) http://www.w3.org/TR/NOTE-datetime

Integer Signed or unsigned
numeric string

Integer number representation. The string consists of an arbitrary length
decimal numeric string with an option leading “+” or “–” sign.

Locale Choice (closed) Identifies a language.

Values from http://www.ietf.org/rfc/rfc1766.txt

MIMEType XChoice (closed) image/gif, image/jpeg, etc. See:

http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

ProperName Text A name of a person or organization.

Text Unicode A string that can contain characters from most locales. Can be marked up
with additional XML tags.

URL URI RFC 1630, RFC 1738, and RFC 2396 (see: http://www.w3.org/Addressing/).

http://www.w3.org/TR/NOTE-datetime
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types
http://www.w3.org/Addressing/
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types
http://www.ietf.org/rfc/rfc1766.txt

40 14 Sept 01 XMP – Extensible Metadata Platform

XMP Schemas
Property Value Types

4

TABLE 4.7 Media Management Value Types

XChoice A value chosen from one of several possible lists, and represented by a string. XChoice indicates
that the list of choices may be extended in the schema by listing additional vocabularies. If the
value is not from a core XMP schema, it’s name should be specified using the vQual qualifier.
Note that the added vocabulary values apply to the property, not to the base vocabulary. Thus, the
set of values for the property is extended; the vocabularies are not. The vocabulary qualifiers for
XChoice are:

● Open: Several lists of preferred values, any value can be used.

● Closed: Fixed list of values, but new lists can be added.

Name Type Comments

vQual:vocabulary URI Optional. The vocabulary name. The vocabulary implies a set
of values, conventions, and semantics for values. The list of
legal vocabulary items may be present in the schema.

Field namespace xmlns:vQual=http://ns.adobe.com/xap/1.0/ValueQualifier#.

XPath XPath XML Path Language (XPath), for addressing parts of an XML document;
see http://www.w3.org/Tr/xpath. XPath is a bag of lists; each list item must
contain a single namespace and XPath element. See the example of how to
set xap:Advisory values in Section 7.1.1.2, “Property Categories.”

Type Representation Notes

AgentName Text Name of a program. Format convention: “Vendor App Version for
Platform,” for example: “Adobe Acrobat Distiller 5.0 for Windows.”

RenditionClass XChoice (open) The type of rendition, from a controlled vocabulary of standard
names. The convention used is to have a series of “:” separated tokens
and parameters, the first of which names the basic concept of the
rendition. Additional tokens are optional and provide additional
characteristics of the rendition. See Section 4.4, “XMP Vocabularies”
for defined values.

ResourceEvent Name Type Comments

action XChoice

(open)

Conventions to use: See Section 4.4, “XMP
Vocabularies” for defined values, and to see if they
apply. If new strings are used, they should be verbs
in past tense.

Type Representation Notes

http://www.w3.org/Tr/xpath
http://www.w3.org/Tr/xpath

XMP – Extensible Metadata Platform 14 Sept 01 41

XMP Schemas
Property Value Types

4

ResourceEvent
(cont’d) Name Type Comments

instanceID URI The value of the rdf:Description element about
attributes in the referenced resource’s metadata.

parameters Text Additional information.

softwareAgent AgentName Name of the software agent that was used. For
example, this resource could be Edited by
“Microsoft Word 7.0 for Windows,” and Produced
by “Adobe Acrobat Distiller 3.01 for UNIX.”

when Date Optional timestamp for when this event occurred.

Field namespace: xmlns:stEvt=http://ns.adobe.com/xap/1.0/sType/ResourceEvent#

ResourceRef An identifier for a resource; used to uniquely identify a resource.

Name Type Comments

documentID URI See comments in xapMM Media Management
schema

versionID Text

instanceID URI The value of the rdf:Description element’s
about attribute, in the referenced resource’s
metadata.

RenditionClass Text

Field namespace: xmlns:stRef=http://ns.adobe.com/xap/1.0/sType/ResourceRef#

Type Representation Notes

42 14 Sept 01 XMP – Extensible Metadata Platform

XMP Schemas
Property Value Types

4

URI Text The purpose of this URI is to provide a unique identifier in the widest
possible scope (like all time and space). Any valid URI can be used.

For DocumentID URIs we recommend the following convention:

 vendor:docid:{manager}:{uri_safe_text}

where:

vendor is replaced by a short representation of the company name
implementing the tool that is assigning the name. For example,
“adobe.”

{manager} is replaced by a short and unique application identifier
(most Adobe applications have three-letter codes through Adobe
Online, or you can use Apple Creator codes), and {uri_safe_text}
is replaced by additional id information, as long as it is encoded in
URI safe text. For example, it may contain a 128-bit UUID
encoded as hex.

Example (Adobe Acrobat):

 adobe:docid:acro:9705C6F1-81BD-11d3-9CCC-006097CEC6D4

(See http://www.w3.org/Addressing/ for information on URIs)

Version Name Type Comments

comments Text Comments concerning what was changed

event ResourceEvent High level, formal description of what operation
the user performed

modifyDate Date Date this version checked in

modifier ProperName Person who modified this version

version Text Version name, such as “1.2”

Field namespace: xmlns:stVer=http://ns.adobe.com/xap/1.0/sType/Version#

Type Representation Notes

http://www.w3.org/RDF/
http://www.w3.org/Addressing/
http://www.w3.org/Addressing/

XMP – Extensible Metadata Platform 14 Sept 01 43

XMP Schemas
XMP Vocabularies

4

TABLE 4.8 Adobe Support Metadata Value Types

TABLE 4.9 Basic Job/Workflow Value Types

4.4 XMP Vocabularies

Vocabularies provide a means of specifying a limited but extensible set of values for a
property. The metadata schema can indicate whether the set of legal values is fixed or can be
extended. The flexibility can be limited in the following ways:

● Fixed list of values (closed vocabulary, choice type)

● Fixed list of values, but new lists can be added (closed vocabulary, xchoice type)

● List of preferred values, but any value can be used (open vocabulary, choice type)

● Several lists of preferred values, but any value can be used (open vocabulary, xchoice type)

If a property value is to have a very definite meaning and all users of that property must know
the exact meaning, the first, most restrictive form should be used. If there are well defined sets

Type Representation Notes

FileDisposition Name Type Comments

filename Text Simple local filename in local os form

OS Text Examples: UNIX, MacOS, Windows

directoryPath Text Fully qualified pathname to directory

Field namespace: xmlns:stDsp=http://ns.adobe.com/xap/1.0/sType/FileDisposition#

Type Representation

Job Name Type Comments

name Text Informal name of job. This name is for user
display and informal systems.

id Text Unique Id for the job. This field is a reference
into some external job management system.

Field namespace xmlns:stJob=http://ns.adobe.com/xap/1.0/sType/Job#

44 14 Sept 01 XMP – Extensible Metadata Platform

XMP Schemas
XMP Vocabularies

4

of values whose meanings are known, but additional value might be used without causing
problems, then the less restrictive forms may should be used.

Unless otherwise specified, the default namespace for all vocabulary elements is:

http://ns.adobe.com/xap/1.0/corevocabulary

Table 4.10 lists the XMP vocabulary elements.

TABLE 4.10 XMP Vocabularies

Vocabulary for Vocabulary elements

xap:Locale
dc:language

Values used in this vocabulary are from Locale:
 http://www.ietf.org/rfc/rfc1766.txt

xap:Format
dc:Format

Values used in this vocabulary are those from MIME Type. See the
relevant standard for the current values.
 http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

xapMM:RenditionClass Value Comments

default Indicates the master document; no additional tokens
allowed

thumbnail For a simplified and/or reduced preview of a version.
Additional tokens, if any, provide more
characteristics of the thumbnail. The colon character
“:” is used as a delimiter. The recommended order
is: thumbnail:format:size:colorspace.

Examples:

thumbnail:jpeg

thumbnail:16x16

thumbnail:gif:8x8:bw

screen For a screen resolution/Web rendition

proof For a review proof

xapMM:RenditionClass (cont’d) Value Comments

draft For a review rendition

low-res For a low resolution, full size stand-in

http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

XMP – Extensible Metadata Platform 14 Sept 01 45

XMP Schemas
XMP Vocabularies

4

xapMM:History/*/stEvt:action Value Comments

converted Format changed in some way

copied

created

cropped

edited Covers all kinds of editing, generally of the content

filtered Content filtering algorithm applied

formatted

version_updated

printed

published

managed Placed under media management

produced

resized

Vocabulary for Vocabulary elements

46 14 Sept 01 XMP – Extensible Metadata Platform

XMP Schemas
XMP Vocabularies

4

XMP – Extensible Metadata Platform 14 Sept 01 47

5 XMP Property Commentary

5.1 XMP Properties

Table 5.1 through Table 5.4 list the properties of the XMP metadata schemas, and explain the
use of, and rationale for, each property.

TABLE 5.1 XMP Core Schema Metadata Properties

Property Description, Notes, Rationale

xap:Advisory If the value of any external or relational properties were changed outside the authoring
application, the value of xap:Advisory is a bag that points to those properties. Each item
in the bag should contain a single namespace and XPath. See the example of how to set
xap:Advisory values in Section 7.1.1.3, “XAP:Advisory Example.”

xap:Author Aliased to the first item of xap:Authors.

xap:Authors People for whom the credit of authoring this resource is attributed. The authors are listed
in order of precedence, should that be significant.

Each Authors item is a string representing an author. Although recommended
conventions exist for the structure of the name, programs should not make any
assumptions about the structure or format of the ProperName.

Searches should do unanchored matches against the name strings. The string can include
XML/HTML formatting and other information.

Authoring applications should set the value of the xap:Author property as directed by the
user or other conventions used to establish authorship. The user should be allowed to
edit this property.

Aggregating applications: Insertion or deletion of a document should not affect author
information for either the inserted or containing document.

xap:BaseURL If this document contains Internet links, and those links are relative, they are relative to
this base URL.

The purpose of this property is to provide a standard way for embedded relative URLs to
be interpreted by tools. Web authoring tools will want to set the value based on their
notion of where URLs will be interpreted.

Should be the same as the value of the path property of the FileDisposition if the value of
the OS attribute tag is “URL.”

48 14 Sept 01 XMP – Extensible Metadata Platform

XMP Property Commentary
XMP Properties

5

xap:CreateDate The date and time the document was originally created.

One meaning of the date is when the first Save or New was executed for a new
document. Another meaning is the date that the content was created (for example, an
illustration that has been scanned). The user would need to set the CreateDate explicitly
in that case.

Once set, tools should not change the value, unless explicitly directed to do so by the
user.

xap:CreatorTool Original tool that was used to create the resource (at least the first known tool).

If history is present in the metadata, this value should be equivalent to that of
xapMM:History’s softwareAgent property.

xap:Description An account of the content of the resource.

A textual description of the resource content. The alternation is for different languages.

Description may include but is not limited to: an abstract, table of contents, reference to
a graphical representation of content or a free-text account of the content.

The description text is entirely under user control. Tools can set the default to some
summary if they wish but should not overwrite user-entered information. The XML
strings may contain HTML formatting tags and other information.

The xml:lang attribute on the property alternative, if present, is used to identify the
language on each alternative.

xap:Format Defines the resource format (e.g. video, audio, etc.)

Tools and Application should set this resource to the save format of the data.

Recommended practice is to select a value from a controlled vocabulary (specifically,
the list of Internet Media Types [MIME] defining computer media formats).

xap:Keywords Can consist of an unordered list of descriptive phrases, or specify the topic of the content
of the resource.

Recommended practice is to select a value from a controlled vocabulary or formal
classification scheme.

This property is user editable. It is unlikely that the applications would change the value
of Keywords without explicit user direction.

Keywords are not merged when another document is embedded by an aggregating
application.

xap:Locale The set of languages used in the document content. This property is set and managed by
applications. This property should be updated whenever a document is saved with
content in a language not yet in the set.

Recommended practice for the values of the Locale property is defined by RFC 1766
which includes a two-letter Language Code (taken from the ISO 639 standard), followed
optionally, by a two-letter Country Code (taken from the ISO 3166 standard).

The following are examples of language codes: ‘en’ for English, ‘fr’ for French, or ‘en-
uk’ for English used in the United Kingdom.

Property Description, Notes, Rationale

http://www.ietf.org/rfc/rfc1766.txt?number=1766
http://www.loc.gov/standards/iso639-2/

http://www.din.de/gremien/nas/nabd/iso3166ma/
http://www.ietf.org/rfc/rfc1766.txt?number=1766

XMP – Extensible Metadata Platform 14 Sept 01 49

XMP Property Commentary
XMP Properties

5

xap:MetadataDate Date and time that any metadata for this resource was last changed.

This property may be used to optimize searches by excluding resources that might be
out-of-date with respect to externally stored metadata. When a reconciliation is executed
between an external metadata store and the XMP metadata, the modify time on the XMP
metadata can be compared with the modify time bounds on the external metadata, and, if
the external metadata is clearly newer, its value can be merged into the XMP metadata.
If the external metadata has been updated but it cannot be established that it is newer
then the MetadataDate, the property-by-property timestamp comparisons may be
necessary.

xap:ModifyDate The date and time the resource was last modified.

Media management systems receiving resources via check-in that have no value for
ModifyDate may set the value to the check-in timestamp.

It is not necessary for applications to update this property each time an opened resource
is modified (that is, for individual edits). An acceptable interpretation of this property
would be to update it at the last resource write (or save) time.

xap:Nickname Short informal name for resource, e.g. “Adobe logo,” or “Feb issue,” – for UI purposes.

A user specified value should not be overwritten by an application wishing to set the
value. The value can be used for window/pane naming or other similar purposes.

Applications may set the value if there is some convention for this type of information in
place and no user-supplied value is present.

xap:Title A name given to the resource. The alternation is for different languages.

Typically, a Title will be a name by which the resource is formally known.

The Title values are arbitrarily formatted strings. Programs should not make any
assumptions about the structure or format of the Title value. The strings can include
XML/HTML formatting and other information. The language can be determined by
looking at an xml:lang property in the string, if present. For example:

 <rdf:li xml:lang="fr">
 XMP – Une Platforme Extensible pour les Métadonnées

 </rdf:li>

Authoring applications: should set the value of the xap:Title resource as directed by the
user or other conventions used to establish the title. The user should be allowed to edit
this property.

Property Description, Notes, Rationale

50 14 Sept 01 XMP – Extensible Metadata Platform

XMP Property Commentary
XMP Properties

5

TABLE 5.2 Adobe Media Management Metadata Properties

Property Description

xapMM:ContainedResources References to resources that are directly or indirectly contained in this
compound document. Contained resources that do not have any of the
information needed to compose a ResourceRef value are not included.

The resources are likely contained in this document but may have been deleted.
Thus, this list is a likely to be a superset. The intent is to make it easy to locate
references to documents that are embedded in other documents without placing
a large management burden on applications and tools.

Since ResourceRefs are provided, it should be possible to locate the inserted
documents if they exist by using a media management system or module.

xapMM:ContributorResources References to resources that in some way contributed to this document, other
than being contained as part of a compound document. Contributor resources
that do not have any of the information needed to compose a ResourceRef value
are not included.

The resources listed in ContributorResources are intended to be dependencies for
the listing resource. Although the resources are not embedded in their entirety,
some component of them may be embedded or there may be some dependence
such that changing one of the resources listed in ContributorResources would
imply a possible change to this resource.

Since ResourceRefs are provided, it should be possible to locate the referenced
documents if they exist by using a media management system or module.

Tools or users would need to have some way of indicating such a dependency.
Applications may be able to set this resource depending on specific cases of
user actions.

xapMM:DocumentID The common identifier for all versions and renditions of a document. The
DocumentID should be assigned when a new document is created, typically
when File:New (or equivalent) is executed. Subsequent edits should not affect
this value. See Section 3.5.2, “Creation of Instance IDs” for more information.

Media management systems and tools must not change the DocumentID. The
only exception is that media management systems, tools, and aggregating
applications may assign a document ID if there is none.

Do not copy the xapMM:DocumentID value of an imported document into current
document.

XMP – Extensible Metadata Platform 14 Sept 01 51

XMP Property Commentary
XMP Properties

5

xapMM:History A chronological sequence of high-level user actions which resulted in this
resource.

This is intended to give human readers a general indication of the steps taken to
make the changes from the previous version to this one. The list should be at an
abstract level. It is not intended to be an exhaustive keystroke or other detailed
history.

Example:

Action: Created Parameters: SoftwareAgent: Adobe Photoshop 5.5 for Windows
When: …

Action: Cropped Parameters: old size 640x480 SoftwareAgent: Adobe Photoshop
5.5 for Windows When: …

Action: Resized Parameters: SoftwareAgent: Adobe Photoshop 5.5 for Windows
When: …

Action: Edited Parameters: SoftwareAgent: Adobe Photoshop 5.5 for Windows
When: …

xapMM:LastURL Last place this resource was written.

Each time the resource is written to a file or web server, the name of the file or
server location should be stored in this property. The URL syntax handles both
file and web locations.

The purpose of this property is to enable some amount of tracing of the history
of where the document has been. Copies of the document retain the LastURL
value from when the tool wrote it. If the file is moved, there is some means to
trace back to where it was last written.

xapMM:Manager Name of the software agent that manages this resource.

Although AgentName has a defined format, this property is intended for human
use. It tells the user where to go look to find things, but does not really enable
automated retrieval or check-in of documents.

This property is set by media management tools and may be set at check-out
time or earlier.

xapMM:ManageTo Specifies the location of managed rendition of asset.

xapMM:RenditionClass Rendition class name for this resource. This property should be absent or equal
to “default” for a document version that is not a derived rendition.

Each version of a document may have several renditions. Each rendition is
distinguished by a rendition class name. This property lists the rendition class
name for a particular rendition.

If the application UI is capable of determining that a rendition is being created,
then the type of rendition should be set by setting a value for
xapMM:RenditionClass in the new file.

Property Description

52 14 Sept 01 XMP – Extensible Metadata Platform

XMP Property Commentary
XMP Properties

5

xapMM:RenditionOf For a rendition of something, indicates the resource that this resource is a
rendition of.

This property indicates what resource is the source of this rendition.

When a rendition is created, the creating application should set RenditionOf to
indicate the resource from which this rendition is derived. The ResourceRef
type allows any resource to be specified as the source for this rendition,
although the DocumentID and VersionID would normally be the same in the
source and the rendition.

xapMM:SaveID An id number which is incremented each time the resource is written to a
particular URL.

This number is used to help track the movement of a resource through media
management and file systems. Each time an application (or other tool) writes the
resource out to the same location, this property value should be incremented.

If it is being written to a different location than the LastURL property indicates,
the SaveID should be reset to 1 and the LastURL property updated to reflect the
new location. A History entry should also be added indicating this. (See
XapMM:History)

xapMM:VersionID The document version identifier for this resource.

Each version of a document gets a new identifier. Usually these values are
simply incrementing integers 1, 2, 3 . . . etc. Media management systems may
have other conventions or support branching which requires a more complex
scheme. The Version identifier should be kept short.

This property should be used primarily by a media management system.
Applications with sufficient interfaces to detect user intent of creating new
versions (for example, Microsoft Word®), can assign new version identifiers at
appropriate times, but should be careful to avoid conflicts with media
management systems.

xapMM:Versions The version history associated with this resource. Entry [1] is the oldest known
version for this document, entry [LAST] is the current version.

Typically, a media management system would fill in the version information in
the metadata on check-in. Individual applications can also place version
information into metadata, but need to be careful to avoid conflicts with media
management systems. An application should avoid adding version information
if a media management system is in use.

It is not guaranteed that complete history of version from the first to this one
will be present in the xapMM:Versions property. Interior version information may
be compressed or eliminated and the version history may be truncated at some
point.

Property Description

XMP – Extensible Metadata Platform 14 Sept 01 53

XMP Property Commentary
XMP Properties

5

TABLE 5.3 Adobe Support Schema Metadata Properties

Property Description

xapS:EntityTag Supports cache validation when comparing the content value of two blocks of
metadata. Follows a convention based on the entity tag concept defined in
HTTP/1.1. See http://www.ietf.org/rfc/rfc2616.txt

xapS:FileDisposition Preferred file name to save on disk, or preferred URL for publishing on a web
server, by OS.

If absent, this property can be set to the Save As filename. If already set, it should
be left alone. The user can explicitly edit it if desired. It can be used, at a tool’s
discretion, as a default for Save As, Export, or check-in operations.

Attribute tags can be used to specify different values for different systems and
environments. The following conventions should be used: Windows, MacOS,
Unix, or URL

New tags can be used if the above are not adequate.

xapS:ResourceID The unique identifier for this particular resource. Used for storage systems
which provide a unique identifier for a stored resource which is incompatible
with the format defined in xapMM.

This property is for use by media management systems. When used, the values
should meet the following requirements:

This identifier needs to be unique in time and space. It can be a random number
or can include some information uniquely associated with the document (such as
creation timestamp).

ResourceID should be set when a new resource is being created. This would
typically be done by a media management system on check-in.

In absence of a media management system this property should not be used.
Authoring application should not set or use it.

A media management system is allowed to change the ResourceID value for a
document when the document is checked-in. Thus, a media management system
may implement its own notion of unique identifiers for resources and override
the value that was placed by a different media management system.

xapS:Size File size in bytes.

This value should be the actual file size and include any embedded metadata.

This property would typically only be set by media management systems and
used by clients of media management systems. It should be deleted by
applications when a file is open to avoid confusion of the “current size” versus
the last saved size.

http://www.ietf.org/rfc/rfc2616.txt

54 14 Sept 01 XMP – Extensible Metadata Platform

XMP Property Commentary
XMP Properties

5

TABLE 5.4 XMP Basic Job Properties

Property Description

xapBJ:JobRef Name of the job(s) that this document is part of. Use of job names is under user
control. Typical use would be to identify all documents that are part of a
particular job or contract.

There are multiple values since there may be more than one job using a
particular document at any time and it may be desired to keep historical
information about what jobs a document was part of.

XMP – Extensible Metadata Platform 14 Sept 01 55

6 XMP Extensibility

6.1 Making Custom Schema

The schemas defined by this document are core schemas that all implementations of XMP
must support. If your metadata needs are not already covered by the core schemas, you may
add your own schemas as extensions.

XMP was designed to be easily extensible, particularly for the addition of custom schemas. All
software systems that support XMP must handle extension metadata. A conforming software
system must be able to parse extension metadata, read/modify/write extension metadata, and
serialize extension metadata back into XMP format.

To define a new schema, you must write a human-readable schema specification document
Make this specification document available to any developers who need to write code that
understands your metadata.

NOTE: Future versions of XMP may include support for machine-readable schema
specifications, but such support will always be in addition to the requirement for
human readable schema specification documents.

Your specification document must include at least two items: 1) a unique name for your
schema, in the form of a URI, and 2) a table which represents the name of each property, the
value type, the description of the property, and its usage type.

NOTE: The XMP 1.0 implementation does not support aliasing for custom schemas. Usage of
aliasing for custom schemas has the potential to result in data loss or software failure.

If you define properties that have structured value types, you may also need additional URI
names to identify the components of a structured property value (for a core schema example,
see xapG:NaturalDimensions in Table B.1, “XMP Graphics Schema” on page 71). This is only
necessary if the value type is used in more than one property definition. If not, the URI you
choose for the schema will be used for all component property values as well.

For example, if you are working on the JAKES project for Billingsgate.net, you might select
for your schema name the URI http://ns.billingsgate.net/JAKES/. This does not have to be an
actual URL that people can connect to on the Internet.

Once you have selected a unique name, you should also pick a short prefix. This will be used
to qualify your property names (see XML namespace specification). Remember that XML
implementations are free to replace your prefix name with another, but when there is no other
choice, you should have a default name selected. For example, again referring to the JAKES
project, you might pick “jks:” as the prefix.

Now define all desired properties, using this reference document as a guideline for the types of
structures and values you can define. For example, if JAKES needs a Quay property, which has
a simple text value, you would define:

56 14 Sept 01 XMP – Extensible Metadata Platform

XMP Extensibility
New Versions of Existing Schemas

6

Table X.X JAKES Schema (example of schema extension)

The namespace prefix is jks. The namespace is http://ns.billingsgate.net/JAKES/.

You can then add more properties as needed, following the RDF and XMP syntax
requirements described in this document to create compatible RDF metadata.

6.2 New Versions of Existing Schemas

We have already seen how versions of schemas are introduced; they are part of the URL which
defines a namespace. The following convention for schema versions is recommended for
conforming applications.

Convention: If and only if a client application implements schema versions as fully backward
compatible, we recommend that Properties be set once in the group associated with the earliest
schema version in which they are defined. Full backwards compatibility means that schema
N+1 contains all of schema N, with no changes other than new additional Properties. This case
is exemplified by the example above: our hypothetical Dublin Core 9.0 contains all of the
previous version of the Dublin Core schema, without change, except that we add the new
element CRYPTOKEY. A conforming application may also define a new Property which is
intended to supersede an old one. For example, suppose schema N defines a PageNumber
property, whose value is a number. Later, we discover that page numbers can be arbitrary
strings, like “xix” or “A-3”. For schema N+1, we define a new property ExtendedPageNumber,
whose value can be a String. We continue to set the old property when appropriate, but when
the page number needs to be a string, we omit the old one and only set the
ExtendedPageNumber.

To add elements in a later version of a schema, just do the same thing as you would for adding
elements in a different schema. Consider the hypothetical Dublin Core version 9.0, which
contains the element CRYPTOKEY:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/"

dc:creator="John Doe"
dc:title="XMP – Extensible Metadata Platform"/>

 <rdf:Description about="" xmlns:xap="http://ns.adobe.com/xap/1.0/"
 xap:Format="text/html" xap:Locale="en"/>

 <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/9.0/"
 dc:CRYPTOKEY="29J39LJKS9JL388X,39872KD987KJ3O987SO8NV83LU784"/>

</rdf:RDF>

Property Value Type Description Category

jks:Quay Text Place to dock External

XMP – Extensible Metadata Platform 14 Sept 01 57

XMP Extensibility
New Versions of Existing Schemas

6

Note that we are allowed to reuse the dc: prefix if we want, since we are in a different
rdf:Description, and thus a different xmlns scope.

58 14 Sept 01 XMP – Extensible Metadata Platform

XMP Extensibility
New Versions of Existing Schemas

6

XMP – Extensible Metadata Platform 14 Sept 01 59

7 Application Integration
Guidelines

7.1 Supporting XMP Metadata

This section describes what applications must do to properly support XMP Metadata. It
explains what information should be considered metadata; what is needed for a User Interface;
and how to store data. It also describes what metadata actions need to be performed for
specific application operations like Open, Save As, and embedding an image in a document.

7.1.1 Requirements

To properly support XMP metadata, the following three rules must be followed.

Preserve Metadata

Any metadata that is read as part of loading application data should by default be preserved
and written back out when the application data is rewritten. This behavior may be overridden
by explicit user action. The metadata must be preserved regardless of whether the application
understands its semantics.

When application data is loaded from one format and written out as a different format,
metadata should be preserved by including it in the file in the saved format, or writing it to a
separate, parallel file if the new format does not accommodate metadata.

Set Meaningful and Useful Information in Metadata

Each application will have a set of metadata properties that are relevant to that application and
useful to customers who use metadata. The application should set metadata values for those
properties. This would be done at least at save-time and, if the application provides an
interface to access or edit metadata, at points where those interfaces could be used. This might
mean that the metadata would need to be updated each time the underlying application data, to
which the metadata is related, is changed.

One important rule is that you should not define a property in the metadata if you can’t find a
value for it that makes sense. An example of this would be the properties for the XMP Rights
Management Schema; if you don’t have valid values for those properties, those properties
should not be included.

There is a fine line between metadata and application data. Ultimately, it is a judgment call as
to what to include in metadata. Here are some useful guidelines for making this judgment:

60 14 Sept 01 XMP – Extensible Metadata Platform

Application Integration Guidelines
Supporting XMP Metadata

7

● Information that is only useful to the internals of the application is not a good candidate for
public metadata.

● Information that can only be used by a tool that is deeply involved with application
internals is not a good candidate for metadata.

● Information whose size or structure has a linear relationship with the size of the application
data is not a good candidate for metadata. It will be too large and impractical to maintain.

● Information that is only useful in conjunction with other application data that is not
available in metadata is not a good candidate for metadata.

● Information that users or tools may want to browse, select, or otherwise use to characterize
an asset is a good candidate.

● Explicit user information that the application currently supports is a good candidate for
metadata.

● Information that the application happens to have that is present in some industry metadata
standard is a good candidate.

Allow display/edit

If the application has metadata or it is a user expectation to be able to look at or edit or enter
metadata, then the application should provide a metadata display and editing interface.

A key requirement for such an interface is that it accommodate the extensibility model of
XMP, namely that metadata defined and introduced after the product ships receive the same
status as metadata defined by Adobe or before the product has shipped. Metadata properties
defined later may be as or more important to the customer than metadata defined prior to
shipment.

Fully general display and editing of metadata is complicated by the existence of sequence and
structured values, and, particularly, sequences of structured values. The user interface may
have to support more than simple (name, value) pairs.

7.1.1.1 Aliasing

The definition of aliases should specify which of the alias forms are normally written in the
serialized RDF. Multiple forms may be written; by default, only the base form should be
written. This primarily applies to the creation of new metadata.

When existing XMP metadata is parsed and normalized, multiple forms of aliased properties
should be allowed. The values should be compared for equality, with any differences reported
as errors. The same forms should be output when re-serializing the metadata.

7.1.1.2 Property Categories

XMP metadata may be read by an application when it opens a resource. For the results of
modifying metadata associated with a resource to give predictable behavior, it is important that
authoring applications follow some simple guidelines. These are usage guidelines and are not
enforced by software; in situations where they do not make sense, they may be ignored. The

XMP – Extensible Metadata Platform 14 Sept 01 61

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

three categories of XMP properties are defined on page 10, in Section 2.4, “Model and
Terminology.”

7.1.1.3 XAP:Advisory Example

If External or Relational properties are modified outside of the authoring application, they
should mentioned in the xap:Advisory property. The value of that property is a bag, and each
item contains a single namespace and XPath element.

For example, let’s assume that a resource has had its dc:format, xapG:NumberOfColors, and
xapGImg:Resolution/stRes:unit properties modified externally, so those properties need to be
marked as Advisory: The following example illustrates how that would be done in RDF:

<xap:Advisory>
<rdf:Bag>

 <rdf:li>
 http://purl.org/dc/elements/1.1/ format
 </rdf:li>
 <rdf:li>
 http://ns.adobe.com/xap/1.0/xap/g/ NumberOfColors
 </rdf:li>
 <rdf:li>
 http://ns.adobe.com/xap/1.0/xap/g/img/ Resolution/stRes:units
 </rdf:li>
 </rdf:Bag>
 </xap:Advisory>

Notice that the two parts, the namespace and the property’s XPath, must be separated by at
least one character of whitespace.

7.2 Metadata Actions For Specific Application Operations

The following sections describe which metadata actions should be performed for specific
application operations such as Open, Save and Save-As, creating new versions and renditions,
placing images, and embedding unaltered copy.

7.2.1 General Comment on Schemas

Applications should not assume that the only properties that they will encounter in a XMP
metadata object are those defined in the current schema or that all properties defined in the
schema are present.

If schema information for a specific property is not available (not in the schema, or there is no
schema), then primitive values are considered simple text. Structures and containers such as
sequences and bags still function without any problems because their representation is self-
describing.

62 14 Sept 01 XMP – Extensible Metadata Platform

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

7.2.1.1 New Document

When a new document is created, the following metadata properties should be set by the
creating application:

● xap:CreateDate

● xap:Locale

● xapMM:DocumentID

● xapMM:VersionID (value = 1)

● xapMM:RenditionClass (value set to “default”)

● xapMM:History (add first entry)

7.2.1.2 Save and Save-As

When a new document is first saved, the following additional metadata properties should be
set by the creating application:

● xap:Author (to default, if available and not already set)
● xap:ModifyDate

● xap:MetadataDate

● xap:Format

● xap:Title (to default, if available and not already set)

● media-specific metadata properties as applicable
● xapMM:LastURL

● xapMM:SaveID

● xapMM:Manager

● xapBJ:JobName

● xap:Locale

If there are other pieces of metadata redundant with XMP in the application data (typically for
legacy reasons), it must be made consistent with XMP at save time.

Individual applications should set the following metadata properties:

● xap:CreateDate

● xap:Format

● xap:Locale

● any media-specific properties

● general metadata such as xap:Author, xap:Description, and xap:Title

● xapMM:ContainedResources to track embedded documents

● xapMM:History (for major impact changes in the document)

XMP – Extensible Metadata Platform 14 Sept 01 63

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

7.2.1.3 Versions

Creation of a new version usually requires some explicit action on the part of the user and
consequently there must be some user interface that allows the application to deduce that a
new version is to be created. This might commonly be the check-in operation for an authoring
application or a media management system.

From the point of view of XMP metadata, all that is required is to assign a new
xapMM:VersionID typically by incrementing it. The application creating the new version is
responsible for assigning the new VersionID.

7.2.1.4 Renditions

Renditions of a version of a document are created directly by some explicit user action or
indirectly by some tool that is carrying out some user action. Renditions may be stored as
normal resource or files, or may be embedded inside another resource by an aggregating
application.

Creation of a rendition involves changing the xapMM:RenditionClass to a value that identifies
the kind of rendition being created, and changing the xapMM:RenditionOf property to indicate
the resource from which the new rendition is derived.

If an aggregating application creates a new rendition of a resource as part of embedding a
resource, the metadata for the modified resource should be changed as indicated in the
previous paragraph and the xapMM:ContainedResources property of the aggregate resource
should be modified to include the new, embedded rendition.

7.2.1.5 Document Open Time

When documents are opened, there is some processing that is required to reconcile metadata
values that may have been edited in various locations. At open time, applications need to
analyze and merge metadata as detailed below.

Metadata sources include the following:

● XMP metadata stored with the application document representation

● XMP metadata stored in a separate metadata repository

● non-XMP metadata stored with the application document representation

● non-XMP metadata stored in a separate metadata repository

At open time, any internal metadata that has been edited outside the application should be
reset to values consistent with the application data. This is effectively recovering from the
editing of what should have been read-only metadata.

Metadata conflicts should be resolved using timestamps to pick the latest updates which may
have been made from different sources.

64 14 Sept 01 XMP – Extensible Metadata Platform

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

Thus, the following steps should occur when the document is opened:

1. XMP metadata is extracted from the file and processed.

2. Metadata is obtained from the media management system, if available.

3. Media management system metadata is merged into the application file metadata using
property timestamps to identify metadata items that have been modified, and if
necessary, choosing the latest value according to an application-defined algorithm when
conflicting changes have been made.

When and if the file is re-saved by the user, the merged metadata is written out.

7.2.2 Media Management System Actions

The media management system should set the following metadata properties:

● xapMM:Manager

● xapMM:Versions (the media management system may truncate the length of the version
history that is embedded in the document metadata to keep it from growing without
bounds)

● xapMM:VersionID

● xapS(all) (as needed)
● xapMM:ManageTo

Media management systems likely have their own database for storing metadata about
managed documents. It is the responsibility of the media management system to extract XMP
metadata and merge it with its internal database to maintain data integrity. Similarly, it is the
media management system’s responsibility to supply updated XMP metadata to applications
so that embedded metadata can be properly maintained and reflect changes made to metadata
by other applications and tools while the document is not being actively edited.

7.2.3 Document Embedding and Metadata Preservation

This section contains guidelines on how applications should handle the embedding of one
document, or image, in another document.

NOTE: The guidelines given here about how to handle different kinds of embedding are based
on a model that reflects the conceptual document model on which XMP is based.
Implementors who follow these guidelines must consider how the specific operational
embedding model, inherent in their application, aligns with the guidelines described
here to determine which embedding procedures to utilize. In general, the preference
should always be to preserve as much of the original metadata as practical;
implementors are encouraged to consider whether they can enhance their
implementation’s embedding model so as to make this possible.

XMP – Extensible Metadata Platform 14 Sept 01 65

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

7.2.3.1 Placed-Image Metadata

A placed image refers to the embedding of all or a part of one document (the contributor
document) into another document (the compound document). The term placed image is used
because the contributor document often contributes an image, but the concept can apply to any
content that is contributed from one document and embedded in another. The application that
does this is called the aggregating application. Examples of placed images include placement
of a page or image into a PDF file by Acrobat®, or placement of an article, page, or image on a
page by Adobe InDesign™ or Framemaker®.

When a placement of content from a contributor document into an compound document
occurs, one of four things should happen with metadata, according to the guidelines in the
following sections. This does not apply when a reference to another document is placed into an
compound document. When just a reference is added:

● The contributor document’s metadata is not brought into the compound document.

● The xapMM:ContributorResources property in the compound document should have a
ResourceRef to the contributor document appended to it. If there is xapMM:DocumentID
metadata present in the contributor document, it should be used to form the ResourceRef. If
not, a ResourceRef should be constructed using a URL to the file containing the contributor
document.

7.2.3.2 Full Unaltered Copy Embedding

When the contributor document is embedded in the compound document unaltered and in its
entirety, all metadata should be copied with the contributor document. Examples of this form
would include placement of an image from a contributor document that contains only that
image into an compound document without alteration. A more subtle example would be the
placement of an image that is part of an compound document but was at some point in the past
a complete document into another compound document.

The underlying principle at work in this case is that the content and metadata of the placed
document are not being altered; only the storage location changes and this does not affect
either content or metadata.

Typically, an application would not need to take any action to implement this case because the
contributor file contents that are embedded in the compound document already include the
metadata.

In addition, in the document level metadata for the compound document,
xapMM:ContainedResources should include a reference to each embedded resource.
Specifically, the xapMM:ContainedResources property in the compound document should have
a ResourceRef to the contributor document appended to it. If there is xapMM:DocumentID
metadata present in the contributor document, it should be used to form the ResourceRef. If
not, a ResourceRef should be constructed using a URL to the file containing the contributor
document.

66 14 Sept 01 XMP – Extensible Metadata Platform

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

7.2.3.3 Subset or New Rendition Embedding

When a subset of the content of the contributor document is embedded structurally in an
compound document or when the form or rendition of the content from the contributor
document is changed from the original, some metadata should be included with the placed
content. Examples of this would include placement of a page from a multi-page contributor
document into an compound document or the alteration of the form of an image (such as the
size, colorspace, or resolution) as it is embedded into an compound document.

When a component (or possibly all) of one document is embedded in another document, the
following metadata properties should be set. This list represents a minimum. Ideally, all of the
metadata should be preserved, but this will not always be practical because of size and
granularity constraints.

When a component of a document is placed into another document, the component maintains
its own metadata. The compound document also maintains its own metadata. The philosophy
is that there should be at least minimal identifying information on the placed component so
that its origin and characteristics could be traced, if necessary. It is not required that all of the
metadata be maintained in this instance because of the possible size and management
implications.

The metadata associated with the embedded contributor document content should include at a
minimum:

● xapMM:DocumentID: set to the value of xapMM:DocumentID from the contributor document
if one was present, otherwise set to a value based on the URL of the contributor document
filename.

● xapMM:VersionID if there was a xapMM:VersionID present in the original.

● xapMM:RenditionClass should be set to a new value by the aggregating application. The
value should be consistent with either the component’s previous location or the
component’s new context. Examples:
– “Figure 15” for the placement of Figure 15 of a document into the new one (Placed

component was “Figure 15” of the source document).
– “Image from page 15” for the placement of an image that was on page 15 into a new

document (assuming the image didn’t have its own document id)

● xapMM:History: The value from the contributor document, if any, can be ignored and the
value set to a new single entry of the form: (action = “RenditionCreated,” softwareAgent =
“the aggregating app,” when = “current date/time,” parameters = “additional information
the aggregating app chooses to include”).

● xapMM:LastURL should be set to the value of xapMM:LastURL from the contributor
document if one was present, or else set to the contributor document filename.

● xapMM:RenditionOf should be set to reference the contributor document. The reference
should be to the document, version, and rendition class of the contributor. If those
properties are not set in the contributor document, a URL for the contributor filename
should be used as the document id in the reference.

XMP – Extensible Metadata Platform 14 Sept 01 67

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

In addition, in the metadata for the compound document, xapMM:ContainedResources should
include a reference to each embedded resource.

If possible, the following additional metadata should be set in the metadata associated with the

embedded content from the contributor document:

● xap:Author

● Applicable properties from the xapRights schema: set values for properties for which
you have appropriate data

7.2.3.4 Small Subset Embedding

When a small subset of the contributor document content is embedded in an undistinguished
stream in the compound document, then no metadata is associated with the placed content.

Examples of this form would include embedding a copy of a few words or paragraphs of text
or a few frames of video content from a contributor document into an compound document.

7.2.3.5 Embedding of a Document Which Had No Metadata

When a contributor document has no metadata the application may include no metadata with
the embedded placed content in the compound document. The application may set some
metadata consistent with the previous sections if it determines that this would be in the user’s
best interest.

68 14 Sept 01 XMP – Extensible Metadata Platform

Application Integration Guidelines
Metadata Actions For Specific Application Operations

7

XMP – Extensible Metadata Platform 14 Sept 01 69

A PDF and Dublin Core Schema

This appendix contains the schemas for the PDF and Dublin Core schemas. Aliases to XMP
core metadata properties are specified where they apply.

A.1 Adobe PDF Schema

TABLE A.1 Adobe PDF Schema

The namespace prefix is pdf. The namespace is http://ns.adobe.com/pdf/1.3/.

Property Value Type Description Alias Of Category

pdf:Author ProperName Document author dc:creator/*[1] External

pdf:BaseURL URL base URL for relative
URLs

xap:BaseURL Relational

pdf:CreationDate Date Document creation time xap:CreateDate Internal

pdf:Creator AgentName Tool that created the
resource

xap:CreatorTool Internal

pdf:Keywords Text Keywords External

pdf:ModDate Date Last modify date xap:ModifyDate Internal

pdf:PDFVersion Text PDF file version (for
example: 1.0, 1.3, etc.)

Internal

pdf:Producer AgentName Name of tool that created
PDF document

Internal

pdf:Subject Text Document subject text dc:description/*[@xml:lang=
‘x-default’]

External

pdf:Title Text Document title text dc:title/*[@xml:lang=
‘x-default’]

External

70 14 Sept 01 XMP – Extensible Metadata Platform

PDF and Dublin Core Schema
Dublin Core Schema

A

A.2 Dublin Core Schema

TABLE A.2 Dublin Core Schema

The namespace prefix is dc . The namespace is http://purl.org/dc/elements/1.1/.

Property Value Type Description Aliased by Category

dc:contributor bag ProperName Other contributors to document External

dc:coverage Text The extent or scope of the
resource

 External

dc:creator seq ProperName Authors who created document xap:Authors1

1. xap:Author aliases dc:creator/*[1]

External

dc:date seq Date Date(s) that something interesting
happened to the resource

 External

dc:description alt Text A textual description of the
resource, selected by language

xap:Description External

dc:format MIMEType Data format xap:Format Internal

dc:identifier Text Unique identifier of the resource External

dc:language bag Locale Languages used in the content of
the document

 xap:Locale Internal

dc:publisher bag ProperName Publishers External

dc:relation bag Text Relationships to other documents

dc:rights alt Text Informal rights statement,
selected by language

xapRights:Copyright External

dc:source Text Unique identifier of the work
from which this resource was
derived

 External

dc:subject bag Text The topic of the resource xap:Keywords External

dc:title alt Text Document title xap:Title External

dc:type bag XChoice
(open)

novel, poem, working paper, etc. External

XMP – Extensible Metadata Platform 14 Sept 01 71

B Proposed Media-Type Schemas

The schemas in this appendix are proposed for basic media-type (content-specific) metadata.
They are not intended to be thorough or all encompassing schemas. They are presented for
review, especially by subject matter experts.

This section also contains the Value Types for the Media-Type Schemas – in section B.2,
“Property Value Types,” and the associated Vocabulary elements are in section B.3,
“Vocabulary for Media-Specific Schema.”

B.1 XMP Media-Type Schemas

TABLE B.1 XMP Graphics Schema

The namespace prefix is xapG. The namespace is http://ns.adobe.com/xap/1.0/g/.

TABLE B.2 XMP Graphics: Image Schema

The namespace prefix is xapGImg. The namespace is http://ns.adobe.com/xap/1.0/g/img/.

Property Value Type Description Category

xapG:ColorSpace ColorMode The name of the group of colors from
which colors in the document are taken

Internal

xapG:Compression XChoice
(open)

The name of the compression
algorithm used to compress all or part
of the document.

Internal

xapG:GraphicsType XChoice
(closed)

Raster, Vector, Dynamic Internal

xapG:NaturalDimensions Dimensions Presentation dimensions Relational

xapG:NumberOfColors Integer Number of colors in color space (256,
65536, etc.)

Internal

xapG:NumberOfInks Integer Number of process and spot colors
needed to print entire document
including any contained documents

Internal

Property Value Type Description Category

xapGImg:Dimensions Dimensions Image dimensions in sampling unit Internal

72 14 Sept 01 XMP – Extensible Metadata Platform

Proposed Media-Type Schemas
XMP Media-Type Schemas

B

TABLE B.3 XMP Dynamic Media Schema

The namespace prefix is xapDyn. The namespace is http://ns.adobe.com/xap/1.0/dyn/.

TABLE B.4 XMP Dynamic Media: Video Schema

The namespace prefix is xapDynV. The namespace is http://ns.adobe.com/xap/1.0/dyn/v/.

TABLE B.5 XMP Dynamic Media: Audio Schema

The namespace prefix is xapDynA. The namespace is http://ns.adobe.com/xap/1.0/dyn/a/.

xapGImg:Resolution Resolution Number of pixels per unit measure Relational

Property Value Type Description Category

xapDyn:Duration Duration Total duration of resource Relational

xapDyn:NTracks Integer Number of tracks or channels Internal

xapDyn:Tracks seq
TrackDesc

Array of track descriptions External

Property Value Type Description Category

xapDynV:BitRate Integer Bits per second Relational

xapDynV:Dimensions Dimensions Of playback view rectangle Relational

xapDynV:Interleaved Boolean If true, NTSC fields, otherwise
frames

Internal

xapDynV:NaturalRate Real Fields/Frames per second Relational

xapDynV:Compression XChoice
(open)

Video compression technique Internal

xapDynV:Encoding XChoice
(open)

Video encoding (for example:
NTSC, PAL, SECAM, etc.)

Internal

Property Value Type Description Category

xapDynA:ChannelCount Integer Number of audio channels Internal

Property Value Type Description Category

XMP – Extensible Metadata Platform 14 Sept 01 73

Proposed Media-Type Schemas
XMP Media-Type Schemas

B

TABLE B.6 XMP Text Schema

The namespace prefix is xapT. The namespace is http://ns.adobe.com/xap/1.0/t/.

TABLE B.7 XMP Text: Paged-Text Schema

The namespace prefix is xapTPg. The namespace is http://ns.adobe.com/xap/1.0/t/pg/.

xapDynA:Compression XChoice
(open)

Audio compression technique Internal

xapDynA:Rate Real Samples per second Relational

xapDynA:SampleSize Integer Number of bits per sample Internal

xapDynA:Volume Real 0.0 = silence, 1.0 = maximum
volume

Relational

Property Value Type Description Category

xapT:Encoding TextEncoding Specifies the name of the character
encoding standard used for text in the
document. For example, ISO-8859-1

Internal

xapT:FontList bag Font Lists the names of all fonts used in the
document.

Internal

Property Value Type Description Category

xapTPg:MaxPageSize Dimensions Size of the largest page in the
document (including any in contained
documents)

Internal

xapTPg:NPages Integer Number of pages in the document
(including any in contained
documents)

Internal

Property Value Type Description Category

74 14 Sept 01 XMP – Extensible Metadata Platform

Proposed Media-Type Schemas
Property Value Types

B

B.2 Property Value Types

The following tables list the value types used in the proposed XMP media-type schemas.

TABLE B.8 Basic Value Types for Media-Specific Schemas

Type Representation Notes

ColorMode XChoice
(open)

A string representing the color space in a document. An open choice that
includes the following:

RGB, CMYK, Indexed, Monotone, Duotone, Tritone, or Quadtone

Dimensions Name Type Comments

w Real Width

h Real Height

unit XChoice
(Open)

Examples: inch, mm, pixel, pica, point

Field namespace: xmlns:stDim=http:ns.adobe.com/xap/1.0/sType/Dimensions#

Duration Name Type Comments

length Real Number of frames, or seconds

unit XChoice
(Open)

Examples: frame-count; elapsed-seconds

Field namespace: xmlns:stDuration = http:ns.adobe.com/xap/1.0/sType/Duration#

Font Name Type Comments

name Text Specifies the PostScript font name of the font. For TrueType
fonts, the PostScript font name is obtained in the name table in
a well-formed TrueType font.

embedded Boolean Specifies whether the font is embedded in the document.

Field namespace: xmlns:stFnt=http://ns.adobe.com/xap/1.0/sType/Font#

Real A numeric value, integer or real. Integer or decimal number of arbitrary precision. Consists of a
decimal numeric string with an optional single decimal point and an optional leading “+” or “–”
sign. The following qualifier can optionally appear:

XMP – Extensible Metadata Platform 14 Sept 01 75

Proposed Media-Type Schemas
Property Value Types

B

Qualifier Name Type Comments

vQual:binRep Text Optional binary representation qualifier. This qualifier provides
an alternate, binary representation for the number when an
exact value is needed. The text is interpreted as:

 <std size> , <endian> , <hexadecimal value>

where:
● std is the standard name. Only IEEE754 is currently

supported.
● size is S for 32-bit and D for 64-bit
● endian is L for little-endian order, B for big-endian order
● hexadecimal value is the value represented in

hexadecimal.

For example, the value might be:

 IEEE754D,L,3A4901F387D31108
RDF Note: vQual:binRep is stored as a qualifier on the property node. A Real
does not actually contain nested properties.

Field namespace: xmlns:vQual=http://ns.adobe.com/xap/1.0/ValueQualifier#.

Resolution Name Type Comments

x Real Resolution in the x direction

y Real Resolution in the y direction

unit XChoice
(open)

dpi, etc.

Field namespace: xmlns:stRes=http:ns.adobe.com/xap/1.0/sType/Resolution

TextEncoding XChoice
(open)

Specifies the encoding of text in the document. A string from a controlled
vocabulary of charset encodings. See vocabulary for xapT:Encoding.

NOTE: If multiple encodings are used in a document, the primary
encoding should be specified.

TrackDesc Name Type Comments

start Duration Start time relative to doc start

length Duration Run time at normal speed

bits Integer Bits per sample

codec Text Name of codec

description Text Human readable description

name Text

rate Real samples or fields/frames per second

Type Representation Notes

76 14 Sept 01 XMP – Extensible Metadata Platform

Proposed Media-Type Schemas
Vocabulary for Media-Specific Schema

B

B.3 Vocabulary for Media-Specific Schema

TABLE B.9 XMP Vocabularies

TrackDesc
(cont’d) Name Type Comments

type XChoice
(open)

Media type (for example, audio, video, caption, etc.)

blending XChoice
(open)

Name for blending algorithm

Field namespace: xmlns:stTrk=http://ns.adobe.com/xap/1.0/sType/TrackDesc#

Vocabulary for Vocabulary elements

xapDyn:Tracks/*/stTrk:blending Value Comments

copy

alpha_blend

transparent

dither

xapG:ColorSpace Value Comments

RGB

CMYK

indexed

monotone

duotone

tritone

quadtone

Type Representation Notes

XMP – Extensible Metadata Platform 14 Sept 01 77

Proposed Media-Type Schemas
Vocabulary for Media-Specific Schema

B

xapG:Compression
xapDynA:Compression

Value Comments

LZW

JPEG

Huffman

xapG:GraphicsType Value Comments

raster

vector

dynamic

xapT:Encoding Specifies the encoding of text in the document.

Value Comments

ASCII

ISO-8859-n Specifies the ISO encoding for Latin fonts,
according to ISO 8859; n specifies the part of ISO
8859. (ISO 8859 has 12 parts; for example, ISO
8859-1 is one of several encodings for Latin
character fonts, and ISO 8859-5 is for Cyrillic fonts)

Mac Encoding for Macintosh Roman character set

WinAnsi Encoding for Windows Roman character set

UTF-8 Unicode one-byte

UTF-16 Unicode two-byte encoding. Document text includes
a BOM (Byte-Order Marker) to indicate byte order

UTF-16BE Unicode two-byte encoding; big-endian byte order;
(BOM not in document text)

UTF-16LE Unicode two-byte encoding; little-endian byte order;
(BOM not in document text)

UCS-2 see ISO10646

UCS-4 see ISO10646

EUC-CN Simplified Chinese

GBK Simplified Chinese

Vocabulary for Vocabulary elements

78 14 Sept 01 XMP – Extensible Metadata Platform

Proposed Media-Type Schemas
Vocabulary for Media-Specific Schema

B

xapT:Encoding (cont’d) Big_Five Traditional Chinese

EUC-TW Traditional Chinese

Shift-JIS Japanese

EUC-JP Japanese

EUC-KR Korean

Unified_Hangul
_Code

Korean

custom Font has a custom encoding that does not conform to
standard encodings

xapG:NaturalDimensions/stDim:unit
xapGImg:Dimensions/stDim:unit
xapDynV:Dimensions /stDim:unit
xapTPg:MaxPageSize /stDim:unit
xapGImg:Resolution

Value Comments

inch

mm

pixel

pica

point

xapDyn:Tracks.type Value Comments

audio

video

image

caption

sprite

text

href

Vocabulary for Vocabulary elements

XMP – Extensible Metadata Platform 14 Sept 01 79

Proposed Media-Type Schemas
Vocabulary for Media-Specific Schema

B

xapMM:RenditionClass Value Comments

default Indicates the master document. No additional tokens
allowed.

thumbnail For a simplified and/or reduced preview of a version.
Additional tokens, if any, provide more
characteristics of the thumbnail. The colon character
“:” is used as a delimiter. The recommended order
is: thumbnail:format:size:colorspace.

Examples:

thumbnail:jpeg

thumbnail:16x16

thumbnail:gif:8x8:bw

screen For a screen resolution/Web rendition

proof For a review proof

draft For a review rendition

low-res For a low resolution, full size stand-in

Vocabulary for Vocabulary elements

80 14 Sept 01 XMP – Extensible Metadata Platform

Proposed Media-Type Schemas
Vocabulary for Media-Specific Schema

B

	Contents
	List of Tables
	Preface
	1.1 About This Document
	1.2 Audience
	1.3 Assumptions
	1.4 How This Document Is Organized
	1.5 Conventions used in this Document
	1.6 Where to Go for More Information

	XMP – Extensible Metadata Platform
	2.1 Introduction
	2.2 Background
	2.3 Scope of XMP
	2.4 Model and Terminology
	2.5 Granularity of XMP Metadata Associations

	XMP RDF Data Interchange Format
	3.1 Introduction
	3.2 Background
	3.3 RDF Data Model
	3.4 How XMP Uses the RDF Data Model
	3.4.1 Description Object
	3.4.2 Repeated Properties
	3.4.3 Schemas and Namespaces
	3.4.4 Localized Property Values
	3.4.5 Extensibility
	3.4.6 Aliasing
	3.4.7 Resource Identification
	3.4.8 Normalization of Metadata

	3.5 Representation and Storage of Metadata
	3.5.1 XML Representation Examples
	3.5.2 Creation of Instance IDs
	3.5.3 Metadata in Compound Documents
	3.5.4 External Storage of Metadata

	3.6 RDF Features Not Supported in XMP
	3.7 Limitations of RDF
	3.8 XML Packets
	3.8.1 Usage Hints

	XMP Schemas
	4.1 Introduction
	4.1.1 Property Value Type Representation

	4.2 XMP Schema Definitions
	4.2.1 XMP Core Schema
	4.2.2 XMP Media Management Schema
	4.2.3 XMP Support Schema
	4.2.4 XMP Basic Job Ticket Schema
	4.2.5 XMP Rights Management Schema

	4.3 Property Value Types
	4.4 XMP Vocabularies

	XMP Property Commentary
	5.1 XMP Properties

	XMP Extensibility
	6.1 Making Custom Schema
	6.2 New Versions of Existing Schemas

	Application Integration Guidelines
	7.1 Supporting XMP Metadata
	7.1.1 Requirements

	7.2 Metadata Actions For Specific Application Operations
	7.2.1 General Comment on Schemas
	7.2.2 Media Management System Actions
	7.2.3 Document Embedding and Metadata Preservation

	PDF and Dublin Core Schema
	A.1 Adobe PDF Schema
	A.2 Dublin Core Schema

	Proposed Media-Type Schemas
	B.1 XMP Media-Type Schemas
	B.2 Property Value Types
	B.3 Vocabulary for Media-Specific Schema

