Introduction
Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:
Chapter 10:
Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Appendix A:
Appendix B:
Appendix C:

Index

Summary of Contents

Evolution Of Web Services

Internet Transport Protocols: An HTTP and SMTP Primer
SOAP Basics

WSDL: the Web Services Definition Language
SOAP Bindings

Universal Description, Discovery and Integration
UDDI Implementations

Microsoft SOAP Toolkit 2.0

Other SOAP Implementations

Java Web Service Implementations

.NET Web Services

Developing Web Services With Python

Web Services Security

Case Study: A Java Filesystem Web Service
Case Study: Wrox Online Auction Domain
Simple Object Access Protocol (SOAP) 1.1

Web Services Description Language WSDL) 1.1

UDDI 2.0 Data Types

11

59

77
109
149
181
227
295
343
411
467
521
559
613
643
677
713
759
779

o

\/

SOAP Basics

With Web Services, we are on the verge of a new programming model. A set of standards has been
developed that gives us programmatic access to the application logic of the web. This application logic
is accessible to clients on every platform, and in every programming language. Using this model, we can
build applications that integrate components using standard Internet protocols. As has already been
touched upon in Chapter 1, at the core of the Web Services model is SOAP (Simple Object Access
Protocol), the protocol that allows messages to be transmitted as XML documents and invokes the
capabilities of Web Services. The SOAP standard is the key to Web Services.

This chapter delves into SOAP 1.1, and the concepts needed to start using SOAP in applications. We
will cover the fundamentals of SOAP and its design, and then we will drill down into the details of
SOAP messages, transports, and conventions.

Note that this chapter, and the majority of the rest of the book will focus on SOAP
version 1.1, because this is the newest final version, which has support available for it,
so is currently the relevant version to learn about.

This chapter will not cover SOAP 1.2, because at the time of writing, it is currently a
Working Draft on the W3C, and therefore prone to significant change. SOAP 1.2 is
briefly discussed in Chapter 1.

To track the progress of SOAP 1.2, go to the W3C SOAP 1.2 Working Draft document
at http://www.w3.org/TR/soap12/, and visit the XML Protocol working group main
page at http://www.w3.0rg/2000/xp/.

Chapter 3

SOAP Fundamentals

SOAP is a specification for using XML documents as messages. The SOAP Specification contains:

A syntax for defining messages as XML documents, which we refer to as SOAP messages
A model for exchanging SOAP messages

A set of rules for representing data within SOAP messages, known as SOAP encoding (or
section 5 encoding due to the section of the specification it appears in)

A guideline for transporting SOAP messages over HTTP

A convention for performing remote procedure calls (RPC) using SOAP messages

SOAP and Web Services

With all the buzz and acronyms surrounding the topic of Web Services, it can get a little confusing. The
list of protocols and technologies related to Web Services grows everyday. Of all the Web Services
acronyms, SOAP is probably the most important. It is rapidly becoming the standard protocol for
accessing a Web Service, and accessing the service is key. For Web Services to work as a technology,
there must be well-defined approaches for discovering a service (UDDI - Universal Description
Discovery and Integration) and determining its capabilities (WSDL - Web Service Definition
Language). For any individual Web Service to succeed, however, these technologies are optional:
written documentation or even a conversation over coffee can define the location of a service and its
methods. However, without a protocol to access the methods, the service is useless. SOAP is the best
choice today for that protocol.

Although SOAP is a great choice for a Web Services messaging protocol, it is not the only choice. Web
Services can simply operate on HTTP GET, or only expose functionality through XML-RPC. This does
not make these components any less of a Web Service than a component that works with SOAP.
Generally, however, SOAP is the messaging protocol of choice for Web Services. There is widespread
acceptance of SOAP both by vendors and independent developers, and the tools and implementations
that work with SOAP are improving all the time.

The first version of the SOAP Specification that was available to the public was released in 1999, and it
was a result of collaboration between developers at Microsoft, DevelopMentor, and UserLand Software.
The current version, SOAP 1.1, was released on May 8th 2000 as a Note by the W3C with additional
contributions from IBM and Lotus. Since then more than twenty different implementations have been
started covering a wide variety of languages and platforms.

For a complete list of SOAP implementations, go to
http://www.soapware.org/directory/4/implementations. Here you will be able to find a
SOAP implementation that fits your needs, or if there isn't one yet, you will find the resources to
help you build it.

The SOAP Message Exchange Model

78

The SOAP specification defines a model for exchanging messages. It relies on three basic concepts:
messages are XML documents, they travel from a sender to a receiver, and receivers can be chained
together. Working with just these three concepts, it is possible to build sophisticated systems that rely on
SOAP.

SOAP Basics

XML Documents As Messages

The most fundamental concept of the SOAP model is the use of XML documents as messages. SOAP
messages are XML. This provides several advantages over other messaging protocols. XML messages
can be composed and read by a developer with a text editor, so it makes the debugging process much
more simple than that of a complex binary protocol. As XML has achieved such widespread
acceptance, there are tools to help us work with XML on most platforms.

We won't examine a SOAP message in detail until later in the chapter, but here is an example of one:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/">
<soap:Body>
<w:Greeting xmlns:w="http://www.wrox.com/helloworld/">
<w:message>Hello world!</w:message>
</w:Greeting>
</soap:Body>
</soap:Envelope>

Senders and Receivers

When SOAP messages are exchanged, there are two parties involved: a sender, and a receiver. The
message moves from the sender to the receiver. This operation is the basic building block of SOAP
message exchanges, the smallest unit of work. The figure below illustrates this simple operation:

Sender Receiver

Transport

In many cases, however, this type of operation is not enough. A more common requirement would be
for messages to be exchanged in request-response pairs. As we will see later in the chapter, this is the
method SOAP uses with the HTTP transport and/or the RPC convention. Requiring that model,
however, would make it difficult to design one-way message exchanges. By starting with the most basic
operation, a one-way message exchange from sender to receiver, more complicated exchanges can be
composed without preventing the simplest exchanges from occurring. This gives us the ability to
construct message chains.

Message Chains

SOAP messages do not have to follow a traditional client-server model. Messages might be exchanged
in this manner, as in the case of HTTP, or a chain of logical entities might process the messages. This
concept of a logical entity that performs some processing of a SOAP message is referred to as an
endpoint. Endpoints are receivers of SOAP messages. It is the responsibility of an endpoint to examine
a message and remove the part that was addressed to that endpoint for processing.

1t is worth mentioning here that despite the "0" in SOAP, there is nothing object-oriented about the
SOAP model. Endpoints, as well as clients, can be written in any language, and there is no
presumption of "objects" existing on either end of the wire.

79

Chapter 3

As the model allows us to combine one-way messages into more complex operations, endpoints can
function as both receiver and sender. This capability allows for a processing chain to be created, with
messages being routed through the chain with some potential processing occurring at each step.
Endpoints that function as both sender and receiver, passing messages that they receive on to another
endpoint, are referred to as intermediaries. Intermediaries and the message chain concept allow
developers the opportunity to construct sophisticated systems based on SOAP. The figures below show
some examples of message patterns that can be achieved through chaining endpoints together:

Sender i’ Endpoint

A

Request-
Response

Endpoint C

Endpoint A

Sender

Endpoint B

Workflow

Endpoint C

Endpoint A

v

Endpoint B

Broadcast

Endpoint Behavior
Thinking of SOAP in terms of endpoints helps to understand the flexibility of SOAP messaging. No

matter what route a message takes, or how many endpoints may process it, all endpoints must
handle messages in a certain way. Here are the three steps that an endpoint must take to conform
to the specification:

Examine the SOAP message to see if it contains any information addressed to this endpoint

Determine which of the parts addressed to this endpoint are mandatory, if any. If the endpoint
can handle those mandatory parts, process the message. If not, reject it

Q If this endpoint is an intermediary, then remove all the parts identified in the first step before
sending the message to the next endpoint

We will revisit these steps later in the chapter. By conforming to these three requirements, endpoints
can be chained together to form complex systems.

Modular Design

SOAP is open and extensible. That means that all of the following scenarios are acceptable and allowed
by the SOAP specification:

80

SOAP Basics

A desktop application composes a SOAP message that requests stock quotes and sends it as
the body of an HTTP POST. A web server receives the POST, processes the message, and
returns a SOAP message in the HTTP response

A server process composes a SOAP message that describes a system event and broadcasts the
message over named pipes to other servers on the network

A software developer with limited social skills decides to compose a SOAP message
declaring his love for a co-worker and sends it as an e-mail attachment (this is likely to be a
one-way message)

How is it that SOAP can support such different scenarios with the same model? The answer is in
SOAP's modular design. Throughout the specification, there are placeholders left open for future
extensibility of the protocol. SOAP is designed to be extensible in all of the following areas:

Q

Message Syntax — the SOAP message format does have an area set aside for extensions to be
added (we will examine this area, the Header element, in the next section)

Data — the SOAP payload can contain any type of data. SOAP provides one method for
serializing data, but applications can define their own rules as well

Transport - SOAP does not dictate how messages will be transported during the exchange.
SOAP defines how messages should be exchanged over HTTP, but any communications
protocol or method can be substituted for HTTP

Purpose - SOAP does not define what you want to put into a message. Although this may
sound like we are counting data twice, there is a difference between data and purpose, as we
will see later in the chapter

Extensibility is important, but without some concrete implementations of these concepts, SOAP would
be just a lot of interesting concepts. Luckily, the authors of SOAP provided a description of one
implementation each of: data, transport, and purpose. For data, the Specification provides the SOAP
encoding rules (section 5 encoding). For Transport, a transport binding for HTTP is defined. Finally, for
purpose, the specification defines a convention for using SOAP messages for RPC.

We will cover each of these topics in more detail in this chapter. It is important to remember these four
concepts, because the fact that they are separate from the protocol and therefore extensible is one of the
biggest advantages of SOAP.

SOAP Messages

Now that we have covered SOAP at a high level, let's examine the most important detail of SOAP: the
structure of a message. First and foremost, SOAP uses XML syntax for messages. The structure of a
SOAP message is shown overleaf:

81

Chapter 3

Envelope

Header

Header Entry
Header Entry

Message extensions go here

A

Body

Message payload goes here

A

SOAP Message Syntax

The diagram shows how a SOAP message can be broken down into components, and we will cover each
of these in detail. A SOAP message contains a payload, the application-specific information. Here is an
example of a SOAP message as an actual XML document:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
<soap:Header>
<h:from xmlns:h="http://www.wrox.com/Header">SoapGuy@wrox.com</h: from>
</soap:Header>
<soap:Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<w:codename>XSLT-Man</w:codename>
</w:GetSecretIdentity>
</soap:Body>
</soap:Envelope>

Before we go into the contents of the SOAP message, let's take a quick glance at the XML of the
message. As can be seen, SOAP messages rely heavily on XML Namespaces. All of the elements in this
document are prefixed with a namespace, and there is a good reason why the SOAP specification uses
namespaces so extensively. In order for a SOAP message to carry any arbitrary XML payload, all the
elements of the message must be scoped in some fashion to avoid conflicts in the names of elements.

The Namespaces in XML Recommendation can be found at http:.//www.w3.org/TR/REC-xmi-
names/.

The namespace prefix soap is used on most of the elements in the above message. In this example, the
prefix is associated with the namespace URI http://schemas.xmlsoap.org/soap/envelope/,
and it identifies the elements that are part of a standard SOAP message. Like all namespace prefixes,
the choice of soap is irrelevant. The namespace prefix could have been something else entirely, as in
this message:

<blah:Envelope xmlns:blah ="http://schemas.xmlsoap.org/soap/envelope/"
blah:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/">
<blah:Header>
<h:from xmlns:h="http://www.wrox.com/Header">SoapGuy@wrox.com</h: from>
</blah:Header>
<blah:Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">

82

SOAP Basics

<w:codename>XSLT-Man</w: codename>
</w:GetSecretIdentity>
</blah:Body>
</blah:Envelope>

The namespace prefix could also be eliminated completely if the namespace is the default namespace
for the document. The default namespace is assigned using just the xmlns attribute, as shown here:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<Header>
<h:from xmlns:h="http://www.wrox.com/Header">SoapGuy@wrox.com</h: from>
</Header>
<Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<w:codename>XSLT-Man</w:codename>
</w:GetSecretIdentity>
</Body>
</Envelope>

All three of these messages are acceptable and equivalent. For the sake of readability, it is better to use
the soap namespace prefix for elements.

All of the elements in the message that are associated with the soap namespace are standard elements
of a SOAP message, as are the attributes. Any other elements are either related to message extensions or
the message payload. There are three standard SOAP elements that appear in this sample message: the
Envelope, the Body, and the Header. There is also one other standard element that does not appear in
this example message, the Fault element, which we will discuss later in this chapter.

Envelope

The Envelope element, as its name would suggest, serves as a container for the other elements of the
SOAP message. As it is the top element, the Envelope is the message. The example below shows the

same message we saw earlier, but this time, the Envelope element has been highlighted to stress its
position in the message.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
<gsoap:Header>
<h:from xmlns:h="http://www.wrox.com/Header">SoapGuy@wrox.com</h: from>
</soap:Header>
<soap:Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<w:codename>XSLT-Man</w: codename>
</w:GetSecretIdentity>
</soap:Body>
</soap:Envelope>

83

Chapter 3

Envelope Namespace

SOAP messages indicate their version by the namespace of the Envelope element. The only version
recognized by the 1.1 Note is the URI "http://schemas.xmlsoap.org/soap/envelope/".
Messages that do not use this namespace are invalid, and endpoints that receive messages with another
namespace must return a "fault". We will discuss Fault elements later in this section.

The use of the Envelope namespace to indicate message versions is a good example of how much the
SOAP specification relies on XML Namespaces. Without XML Namespaces, it would be extremely
difficult to define an open XML format for messages that did not result in name conflicts with the

payload XML of the message.

encodingStyle attribute

The specification defines an attribute called encodingStyle that can be used to describe how data will
be represented in the message. Encoding is the method used to represent data. The encodingStyle
attribute can appear on any element in the message, but in the case of SOAP encoding, it often appears
on the Envelope element. We will discuss the encodingStyle attribute and encoding in general in
more detail later in the chapter.

Body

84

The Body element of a SOAP message is the location for application-specific data. It contains the
payload of the message, carrying the data that represents the purpose of the message. It could be a
remote procedure call, a purchase order, a stylesheet, or any XML that needs to be exchanged using a
message. The Body element is highlighted in the message below:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
<soap:Header>
<h:from xmlns:h="http://www.wrox.com/Header">SoapGuy@wrox.com</h: from>
</soap:Header>
<soap:Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<w:codename>XSLT-Man</w:codename>
</w:GetSecretIdentity>
</soap:Body>
</soap:Envelope>

The Body element must appear as an immediate child of the Envelope element. If there is no Header
element, then the Body element is the first child; if a Header element does appear in the message, then
the Body element immediately follows it. The payload of the message is represented as child elements
of Body, and is serialized according to the chosen convention and encoding. Most of this chapter deals
with the contents of the Body and how to build payloads.

SOAP Basics

Header

The SOAP message structure of Envelope and Body elements is an open one that maps well to many
messaging scenarios. The Body element encapsulates the payload for the message, but in some instances, the
payload data is not enough. Perhaps a message is part of a set of messages that must be treated as a single
logical transaction, or the message should be executed on a persistent object that resides at the server. Issues
like transactions and object references are vital to the message, but are separate from the payload.

It is unrealistic to think that we can predict every type of extension that will be needed by a SOAP
message. So, in a wise design choice, the authors created the Header element. The purpose of the
Header element is to encapsulate extensions to the message format without having to couple them to
the payload or to modify the fundamental structure of SOAP. This allows extensions like transactions,
encryption, object references, billing, and countless others to be added over time without breaking the
specification. The text below illustrates our original example message with an additional Header entry.
The entire Header element is highlighted in the example below.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/">
<soap:Header>
<h:from xmlns:h="http://www.wrox.com/Header">SoapGuy@wrox.com</h: from>
<h:report xmlns:h="http://www.wrox.com/Header">1</h:report>
</soap:Header>
<soap:Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<w:codename>XSLT-Man</w:codename>
</w:GetSecretIdentity>
</soap:Body>
</soap:Envelope>

In this example, the header entry h: from could be used to send a report via e-mail to the address that
is indicated. By agreeing upon a set of extensions, a sender and receiver can build additional capabilities
into a message exchange without requiring additional features from SOAP.

As this chapter is being written, there is still little detail out about SOAP 1.2, the very likely successor to
SOAP 1.1. However, what information is available suggests that the XMLP working group will be
leveraging the extensibility of the Header element to build additional capabilities on top of SOAP 1.1.
If SOAP 1.2 develops in this manner, it should help early adopters of SOAP significantly.

Just like the Body element, the Header element must appear as an immediate child of the Envelope
element. It is optional, but if it does appear, it must appear as the first child. The Header element
contains one or more child elements known as entries. Header entries can be used to add any type of
extension to a message, and by default, an endpoint will ignore the extension unless it can understand it.
This allows the extensions to be developed over time without breaking existing endpoints. Some
extensions have additional requirements, however, that are dealt with using the mustUnderstand and
actor attributes.

actor attribute

As the SOAP model allows for endpoints to be chained together, it is necessary to identify what parts of
a message are meant for what endpoint on the chain. In the case of the payload, it is not necessary to do
this: the final endpoint on the chain is the target of the payload. However, in the case of Header
elements, the issue of addressing becomes important.

85

Ch

apter 3

The actor attribute can be used to address a Header element to a particular endpoint. The value of the
actor attribute is a URI that identifies the endpoint the Header element entry is targeted for. SOAP
attaches special significance to two values of the actor attribute to address issues of message chaining.
If the value is "http://schemas.xmlsoap.org/soap/actor/next", then the entry is targeted for
the first endpoint that finds it. Omitting the actor attribute indicates that the entry is intended for the
final endpoint, the same endpoint that will process the payload.

The issue of the actor attribute becomes important when it comes to intermediaries and the Header
element. There has been quite a bit of debate on the behavior of intermediaries towards Header
elements. In the end, the consensus is that well-behaved intermediaries know whether or not they are
the last endpoint in the chain, and if they are not, they should not modify Header elements that have
no actor attribute. In addition, intermediaries must remove the Header elements they process.

mustUnderstand attribute

In the example of a Header element that represents a transaction, developers will not be able to accept
the endpoint ignoring the extension. If a message is part of a transaction, it must be part of a
transaction, and endpoints that cannot support transactions should not try to process a message. This is
where the mustUnderstand attribute is useful.

The mustUnderstand attribute can be used anywhere in a SOAP message, but it commonly appears
on a Header element. The value of the attribute is either a 1, indicating that the element is mandatory,
or a 0, indicating that it is optional. The absence of the attribute is equivalent to the 0 value.

Let's take another look at the example message, this time with a mandatory Header element that is
addressed to the final endpoint.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/">
<soap:Header>
<h:from xmlns:h="http://www.wrox.com/Header" soap:mustUnderstand="1">
SoapGuy@wrox.com
</h:from>
</soap:Header>
<soap:Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<w:codename>XSLT-Man</w:codename>
</w:GetSecretIdentity>
</soap:Body>
</soap:Envelope>

Fault

86

Everything we have discussed about the SOAP message format so far covers how to build good clean
messages that are successfully sent to and processed by the receiver every time. Of course, that is not a
realistic view of how a real application will behave. Just as SOAP messages have a specified location
and format for versioning, encoding style, payload, and extensions, they also have a location and format
for errors. The element in a SOAP message that represents an error is the Fault element. You can
think of the Fault element as exceptions for Web Services, a standard way to throw back a report on
unexpected behavior to the originator of the message.

SOAP Basics

Faults are typically associated with a response message. Although the specification does not rule out
Fault elements in requests, do not expect existing server implementations to behave well in the face
of such requests!

If the Fault element appears, it must be in the payload of the SOAP message, which means that it must
appear as a child element of the Body.

The example message below is a response that contains a Fault element.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
<soap:Body>
<soap:Fault>
<faultcode>soap:MustUnderstand</faultcode>
<faultstring>Mandatory Header error.</faultstring>
<faultactor>http://www.wrox.com/heroes/endpoint.asp</faultactor>
<detail>
<w:source xmlns:w="http://www.wrox.com/">
<module>endpoint.asp</module>
<line>203</line>
</w:source>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

faultcode element

The faultcode element contains a value that identifies the error condition to the application. This
means this value is for machine use and is not intended for display to potential users. The faultcode
element value must be a qualified name, as if it were an element in the message itself. In the above
example, the faultcode element's value is soap:MustUnderstand, indicating that the
MustUnderstand fault is a SOAP standard fault. This allows us to define our own values for the
faultcode element and identify them by their namespace.

The following standard faultcode element values are defined in the SOAP 1.1 specification:

Q VersionMismatch - this value indicates that the namespace of the SOAP Envelope element
was not http://schemas.xmlsoap.org/soap/envelope/. Currently that value is the
only acceptable version of a SOAP message, and it indicates that the message conforms to the
1.1 Note.

O MustUnderstand - this value is returned in a faultcode element when the endpoint
encounters a mandatory Header element entry (one with a mustUnderstand attribute set to
1) that it does not recognize.

O Client - this value should be used in the faultcode element when a problem is found in the
message that was received. This could be anything from a missing element to an incorrect
namespace in the body, but this faultcode element value states that the message that was
received was to blame for the error.

87

Chapter 3

Q Server —in contrast to the C1ient fault code, Server indicates that a problem occurred during
processing that was not directly related to the content of the message. An example of this type of
fault would be that the database used by the endpoint to return information is down.

The standard faultcode element values listed here represent classes of faults rather than a single error.
They are extensible in that more specific codes that fit into these classes can be defined. This is done by
appending a period to the code and adding an additional name to the code. For example, if the machine
the endpoint is running on were to run out of memory, the endpoint could potentially return a
Server.OutOfMemory fault code.

faultstring element

If the faultcode element contains the fault information that is meant for the machine, then the
faultstring element value is what is meant for the user. The faultstring element contains a string
value that briefly describes the fault that occurred in a way that would make sense if it were displayed to
the user in an error dialog. That is not to suggest that it could not be technical in nature.

faultactor element

It is often just as important to know where the error occurred as it is to know what error occurred. This
is especially true in systems that involve SOAP intermediaries. If a message must pass through a dozen
endpoints before it can reach its final destination for payload processing, the developer needs to know
at what point on the message routing chain an error occurred. The faultactor element is a
placeholder for that type of information. The faultactor element contains a URI that identifies the
endpoint where the fault originated.

The faultactor element is only mandatory for intermediaries. If a fault occurs at an intermediary,
then that fault must have a faultactor element. If the fault occurs at the final destination, then the
endpoint is not required to populate that value (although it may choose to do so, and it would probably
be the nice thing to do for developers who are using our endpoints). This means that a fault with no
faultactor element can be assumed to have originated from the final endpoint.

detail element

It is possible to provide descriptive error information with just the three elements above, but additional
information would be helpful, if not necessary. For instance, we might want to include in the Fault element
the module and source code line of the error while still debugging the application. In this case, the additional
error information can be included as detail element entries, as seen in the example below.

The specification allows us to define any detail element entries we choose to, but it does define one
case in which the endpoint returning the Fault element must return information in the detail entries:
when an error occurs because the server could not process the message correctly. This is an important
requirement, especially in the development of SOAP, because it helps to debug problems that arise
from poorly formed messages. This example shows a SOAP message that might have resulted from such
a message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/">
<soap:Body>
<soap:Fault>
<faultcode>soap:Client.MissingParameter</faultcode>
<faultstring>A parameter was missing</faultstring>

88

SOAP Basics

<faultactor>http://www.wrox.com/heroes/endpoint.asp</faultactor>

<detail>
<w:error xmlns:w="http://www.wrox.com/">
<code>178</code>

<desc>The codename parameter was missing.</desc>
</w:error>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

Endpoint Behavior Revisited

Now that we know more about the structure of a SOAP message, let's consider what is really involved in
the three steps of message processing:

O Examine the SOAP message to see if it contains any information addressed to this endpoint.
Examine the header for entries addressed to this endpoint, either by position (next or last
endpoint) or by URL. If this endpoint is the last, look for the body as well.

O Examine the header entries targeted at this endpoint. If any are marked with
mustUnderstand="1" and are not recognized by the endpoint, a fault code of
MustUnderstand must be returned.

Q If this endpoint is an intermediary, then remove the processed header entries before sending
the message to the next endpoint. This does not apply to the body, since only the last
endpoint can process that.

These steps, and other requirements of SOAP, will be transparent to most developers. The various
SOAP tools and implementations will take into account these requirements when generating endpoints.
Part of the beauty of SOAP, however, is the minimal requirements for endpoints. If our application
meets these three, it is a valid SOAP endpoint.

Body-Conscious

The elements that make up the SOAP message structure provide a framework for a message. Working with
those elements, we know where to put our data, where to extend the message, and how to report errors,
among other things. Using the Envelope, Header, Body, and Fault elements, we can assemble a SOAP
message to accomplish what we need. Other than the Fault element, which appears inside the body, we
have not discussed the actual payload of the message. The rest of the chapter deals with specific uses for the
body, how we can represent data in the body, and what XML we can place in the body.

Data

In order to build SOAP messages from our language of choice, we need to know how to serialize data. We
need to know the rules for representing an integer, string, or floating point number in a SOAP message so
that we can exchange messages freely between languages and platforms. The serialization of data inside a

SOAP message is referred to as encoding. As this section focuses on the payload of the message, the XML
in the examples represents only a SOAP message payload and not a complete message.

89

Chapter 3

Encoding Style

The ability to decide on a set of rules for representing data in a message is very important to the open
nature of SOAP. It doesn't do much good of course to define a set of rules if we cannot tell what
encoding rules were used to serialize a particular SOAP message. The encodingStyle attribute
defined by the SOAP specification is used to identify the encoding rules used in a particular message.

The encodingStyle attribute is commonly located on the Envelope element. It is possible, however,
to use the encodingStyle attribute on any element in a SOAP message. Although the SOAP
specification defines a set of encoding rules that map well to programming constructs, there is no default
encoding. This means that if the encodingStyle attribute does not appear in the message, the receiver
cannot make any assumptions about how data will be represented within the message. By the same
token, the zero length encodingStyle="", is equivalent to a missing encodingStyle attribute. In
either case, no encodingStyle means that the implementation will have to try to figure out how to
deserialize data without any help.

What About XML Schemas?

Those familiar with XML Schemas may be wondering what relationship exists between encoding and
XML Schemas. Encoding can make use of XML Schemas. In the case of SOAP encoding, the URI used
in the encodingStyle attribute points to a schema. As we will see in the next section, the SOAP
encoding rules use XML Schemas heavily, relying on the XML Schema datatypes namespace and the
type attribute. The key difference is that encoding does not mandate XML Schemas. Encoding rules
are simply identified by a URI. The rules implied by that URI could be backed up by nothing more
than a verbal agreement, or possibly some written documentation. This allows developers who do not
necessarily need the capabilities of XML Schemas to forego their use and start sending messages with
encoding rules based on an accepted URL

Although we can have encoding without a corresponding schema, it's not recommended. Most XML
parsers will soon be schema-aware (in fact, some like Xerces already are), and we can save ourselves a
lot of trouble when parsing messages if we rely on the parser and schema to validate and convert data
instead of doing it manually.

SOAP Encoding

The SOAP Specification defines a single set of encoding rules that are referred to as SOAP encoding.
SOAP encoding is based on XML Schemas and as such it closely models many of the standard types
and constructs that developers would be familiar with. The value of the encodingStyle attribute for
SOAP encoding is http://schemas.xmlsoap.org/soap/encoding/, which points to the XML
Schema that defines the encoding rules.

Simple Data Types

In SOAP encoding, simple types are always represented as single elements in the body. SOAP encoding
exposes all the simple types that are built into the XML Schemas Specification. If we are using a simple
type with SOAP encoding, then it must come from XML Schemas, or be derived from a type that does.
The namespace associated with the XML Schemas data types is
http://www.w3.org/1999/XMLSchema. This provides the common types that many programmers
will expect, like: string, integer, float, date, and so on. If we assume the xsd prefix is associated
with the XML Schemas URI, and the soapENC prefix is associated with the SOAP encoding URI, then
both of these payload values work with strings. This refers to XML Schemas:

920

SOAP Basics

<codename xsi:type="xsd:string">Hulk</codename>
while this refers to SOAP encoding:

<codename xsi:type="soapENC:string">Hulk</codename>

For a XML Schemas tutorial, including a list of the types available in XML Schemas (and
therefore, SOAP encoding), go to http://www.w3.0rg/TR/xmlschema-0/.

xsi:type attribute

SOAP tries to make it possible for a wide variety of languages to communicate, and not all languages
are created equal. In many scripting languages, type is a loose concept. To help level the playing field,
SOAP borrows from XML Schemas once again and uses the xsi : type attribute.

The xsi:type attribute is a way for elements in the payload to indicate their type. It is associated with
XML Schemas, and the xsi prefix in this case is associated with the URI
http://www.w3.0rg/1999/XMLSchema-instance. It can appear on any payload element.

Developers not familiar with namespaces and schemas in XML need to be aware that the xsi
prefix of the xsi : type is insignificant. The attribute could easily appear in the message as
foo:type, provided that the foo prefix is associated with the namespace URI
http://www.w3.0rg/1999/XMLSchema-instance. Likewise, the xsd prefix commonly
used on the values of the type attribute is assumed here to be associated with
http://www.w3.org/1999/XMLSchema. Be aware of this and other namespace issues as you
work with SOAP messages.

If the application knows what type is being sent and retrieved from some outside source (for example, a
schema, a WSDL document, or other metadata), then the xsi: type attribute is not required. The fact
remains that not all languages will be supporting WSDL in the near future, if ever, and so the good
neighbor approach suggests that including xs1i: type will help make our SOAP messages more
interoperable with "type-challenged" languages like XSLT.

So what does this mean for the SOAP message as a whole? In order to use the xsi: type attribute and
the xsd prefix for data types, we must define what these prefixes mean inside the message. Let's
consider another example message with encoding in mind.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/">
<soap:Body>
<m:MixedMessage xmlns:m="http://www.wrox.com/mix/">
<paraml>0U812</paraml>
<param2>2001</param2>
<param3>3.14159</param3>
</m:MixedMessage>
</soap:Body>
</soap:Envelope>

91

Chapter 3

That message meets all the requirements of SOAP, but many implementations would not be able to
process it because they would not be able to map the values in the payload to types in the target
language. We don't want to require a language to use a union type like the variant in COM, or to try
to map the type by trial and error. Therefore, we add a little information to our message to make it
more readable:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<soap:Body>
<m:MixedMessage xmlns:m="http://www.wrox.com/mix/">
<paraml xsi:type="xsd:string">0U812</paraml>
<param?2 xsi:type="xsd:integer">2001</param2>
<param3 xsi:type="xsd:double">3.14159</param3>
</m:MixedMessage>
</soap:Body>
</soap:Envelope>

Now all the data in the payload is identified by type, and it becomes much easier for a SOAP
implementation to process.

Enumerations

SOAP encoding allows us to define enumerated types. It borrows once again from XML Schemas,
which also has the concept of an enumeration. An enumeration is a named set of values, based on a
basic type. For example, we could define an enumeration that represented geographical locations
("North, "South", etc). To define an enumeration, we must use XML Schemas.

Here is an example of an enumeration that defines a set of geographical regions.

<simpleType name="Region" base="xsd:string">
<enumeration value="North"/>
<enumeration value="South"/>
<enumeration value="East"/>
<enumeration value="West"/>
</simpleType>

If this enumeration appeared in a referenced schema, we could then use this type in a SOAP message
just as we would any other type.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance">
<soap:Body>
<m:GetSalesTotals xmlns:m="http://www.wrox.com/sales/">
<m:reg xsi:type="m:Region">East</m:reg>
</m:GetSalesTotals>
</soap:Body>
</soap:Envelope>

92

SOAP Basics

Binary Data

As part of the simple types it supports, SOAP and XML Schemas provide a type for representing
binary data. One approach for working with binary data is to use the base64 type. We can represent
binary data, such as an image file, as an array of bytes in the message. The base64 type converts binary
data to text using the base64-encoding algorithm of XML Schemas. There is no relationship between
SOAP and base64-encoding; if we use it, our application (or implementation of SOAP for your
platform) must be able to understand and work with base64-encoding.

Catch All

In addition to the simple types, many languages have a "universal" data type or placeholder, something
that can represent a variety of types within that language. In COM, the variant serves this purpose, as
does the any type in CORBA. SOAP accounts for this possibility with the polymorphic accessor. If we
are serializing a value in the form of a polymorphic accessor, we must provide the type attribute.

The polymorphic accessor is more difficult to pronounce than to use! Let's assume we are passing in a
value representing a person's age, and that type could vary depending on how the information was to be
used. If the value of our data is a float, it would appear like this:

<age xsi:type="xsd:float">3.5</age>
If is a string, it would appear like this:
<age xsi:type="xsd:string">3 and a half years old</age>

Both examples are legal if the age element has been defined as being a polymorphic accessor, meaning
that its data type will vary.

What About XML?

Those frequenting the SOAP discussion lists and newsgroups will notice the recurring question: "How
do I send XML in a SOAP payload?" or something to that effect. This is a general problem related to
XML, but there are a couple of approaches we can use to transmit XML inside SOAP. We can:

Q Rely on our toolkit or XML parser to properly encode the XML when we pass it in as a string
parameter. If our implementation is based on RPC and does not encode the XML we pass in
as a string properly, that is a bug. Let the implementation's author know.

O Consider why we are passing XML. If we are using SOAP RPC to pass XML as a string
parameter, check to see if the implementation supports passing arbitrary XML in the payload.
A good implementation should. As we will discuss later, SOAP does not have to be RPC, and
if we are passing XML in string parameters, our application probably doesn't need RPC.

Compound Data Types

Sometimes, simple types are not enough. Just like the programming languages it must support, SOAP
encoding provides structures for representing compound types. SOAP encoding handles two compound
types: structs (records), and arrays. Complex types are serialized as payload elements, just like simple
types, but they have child elements. The child elements are the fields or elements of the type. SOAP
had to invent its own rules for structs and arrays because, as of this writing, XML Schemas does not pay
special attention to these compound types.

93

Ch

apter 3

Structs

Let's start with a struct (or structure, or record, whichever you prefer). Structs are easy to represent as
XML because they have unique named members. Consider this C++ struct definition of a super-hero:

struct SuperHero

{
string sCodename;
string sFirstName;
string sLastName;
int nAge;

¥

SuperHero hero = { "Hulk", "Bruce", "Banner", 32 };

We've chosen a simple struct to illustrate the basics of compound types. If we serialize the variable
"hero" into a SOAP message payload using SOAP encoding, it would look like this:

<hero xsi:type="x:SuperHero">
<sCodeName xsi:type="xsd:string">Hulk</sCodeName>
<sFirstName xsi:type="xsd:string">Bruce</sFirstName>
<sLastName xsi:type="xsd:string">Banner</sLastName>
<nAge xsi:type="xsd:integer">32</nAge>

</hero>

As can be seen in this example, the xsi: type attribute is used on compound data types as well as
simple types. In this case, the type is x: SuperHero, and the x namespace would point to a schema that
represents our SuperHero struct.

Arrays

94

Arrays are compound types as well, and they are represented in much the same way that structs are. As
we might expect, the difference between arrays and structs is in how we refer to their members. Structs
have data that is identifiable by name, and array members are identified by position. The names of
array elements are insignificant, so they cannot be used to look up a value.

In SOAP encoding, arrays are considered a special type. This type is indicated by their xsi:type
attribute, which is SOAP-ENC: Array. As with all SOAP encoding, the namespace associated with the
Array type is http://schemas.xmlsoap.org/soap/encoding. Elements with this xsi: type are
declared as SOAP encoding arrays. The type of the array members is declared using another attribute,
SOAP-ENC: arrayType. This attribute indicates the type and size of the array. Arrays in SOAP
encoding can be confusing, so let's take a look at a simple array of five integers to see how these
attributes are used to define an array:

<numbers xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:integer[5]">
<item>10</item>
<item>20</item>
<item>30</item>
<item>40</item>
<item>50</item>
</numbers>

SOAP Basics

The numbers element is declared as a SOAP array, and the arrayType attribute states that it contains
five elements of the integer type. This is accomplished by combining the values we used earlier in the
type attribute (values from XML Schemas) and the square brackets [] with a size value. As can be
seen, each of the array elements has the name item. This could have been any name as the member
values are determined solely by the order of the elements.

Before we look at the more complex features of arrays, let's see another simple array. This array
contains four names, each as a string. The differences occur in the arrayType attribute, and in the
names of the members (which are irrelevant).

<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[4]">
<e>John Doe</e>
<e>John Q. Public</e>
<e>John Smith</e>
<e>John Elway</e>
</names>

By setting the arrayType attribute on a SOAP array, we are able to define the type of members that
will appear. The arrayType attribute is the only restriction on member types; SOAP arrays do not
place restrictions on member types by default, so we can mix types inside of an array. We can
accomplish this by using an arrayType attribute value of SOAP-ENC:ur-typel[]. The ur-typel] is
a universal data type for the SOAP encoding data types, so arrays that use this can have mixed
members. The only catch to using ur-type[] is that like the polymorphic accessor for simple types, we
must use the xs1i: type attribute on the accessors to indicate each element's type. Below is an example
of a SOAP array that contains a mixed set of types as members. Notice that each member uses the
xsi:type attribute to specify its type.

<mix xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="SOAP-ENC:ur-typel[4]">
<e xsi:type="xsd:string">John Elway</e>
<e xsi:type="xsd:integer">7</e>
<e xsi:type="xsd:string">Denver Broncos</e>
<e xsi:type="xsd:date">1999</e>
</names>

Besides using mixed types, arrays have some other sophisticated features that we can take advantage of
if our application needs them. Because arrays can be costly as parameters in remote procedure calls,
SOAP defines two attributes that give us the flexibility to pass the portion of the array that we need to
work with in our application. These attributes are the of£set and position attributes.

The SOAP-ENC:offset attribute lets us specify where in the array we are beginning, so transmitting
only part of the array. All elements before the offset are assumed to contain the default value, or NULL,
depending on the application's behavior. The of £set attribute appears on the array element, as shown
below. In that case, the elements are the third and fourth of the array.

<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[4]"
SOAP-ENC:offset="[2]" >
<e>John Smith</e>
<e>John Elway</e>

</names>

95

Chapter 3

The SOAP-ENC:position attribute specifies the position in the array of a particular member (like
offset, the position attribute is zero based). As might be expected, that means that the position
attribute must appear on the member itself rather than the array element. If the position attribute
appears on one member, it must appear on all the members. This example shows how the position
attribute can be used to pass a large array that is almost empty (this is referred to in the Specification as
sparse arrays):

<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[100]">
<e SOAP-ENC:position="[11]">John Smith</e>
<e SOAP-ENC:position="[45]">John Elway</e>

</names>

These two attributes (of £set and position) are to some extent interchangeable in that the offset
attribute implies position for all the elements that appear. That means that it is possible to describe an
array in minimal fashion using either technique.

Custom Encoding

SOAP encoding is just one example of a set of encoding rules. This is a topic that deserves a level of
detail beyond the slope of this chapter. Suffice it to say that we can define our own encoding, and there
are many reasons that we might want to. SOAP encoding will probably handle most needs because the
rules for data representation match up well with the customary programming types.

Multi-reference Values

Whether a value is represented as a simple or compound type, it is not uncommon for the same value to
appear multiple times in a single payload. Because XML is a verbose representation of data, there is an
opportunity to write more efficient XML documents by eliminating redundant data. SOAP follows the
lead of XML Schemas by allowing values to be referenced multiple times inside a document. SOAP
uses the id and href attributes to allow values to be referenced inside of a message. This allows for
redundant data to be eliminated, and for the payload to more accurately reflect the language models it
represents (if we are serializing a reference, why not serialize it as a reference?).

Let's look at an example of multi-reference values in use. In this example, we have a struct that
represents an employee. The employee struct contains the employee's name, identification number, and
address. The address is also represented as a struct.

<m:Employee>
<idno>12345</idno>
<fname>Billy</fname>
<lname>Batson</lname>
<address>
<street>1000 Sharon Drive</street>
<city>Charlotte</city>
<state>North Carolina</state>
<zip>28211</zip>
</address>
</m:Employee>

When we introduce a second employee record, it turns out that these two employees live at the same address.
There is redundant data in the address member if both these employees appear in the message payload.

96

SOAP Basics

<m:Employee>
<idno>12345</idno>
<fname>Billy</fname>
<lname>Batson</lname>
<address>
<street>1000 Sharon Drive</street>
<city>Charlotte</city>
<state>North Carolina</state>
<zip>28211</zip>
</address>
</m:Employee>
<m:Employee>
<idno>23456</idno>
<fname>Wally</fname>
<lname>West</lname>
<address>
<street>1000 Sharon Drive</street>
<city>Charlotte</city>
<state>North Carolina</state>
<zip>28211</zip>
</address>
</m:Employee>

By using the id and href attributes, we can make the address field of these two structs a multi-
reference value. The example below shows what the resulting payload would look like:

<m:Employee>
<idno>12345</idno>
<fname>Billy</fname>
<lname>Batson</lname>
<address href="#addressl"/>

</m:Employee>

<m:Employee>
<idno>23456</idno>
<fname>Wally</fname>
<lname>West</lname>
<address href="#addressl"/>

</m:Employee>

<m:address id="addressl">
<street>1000 Sharon Drive</street>
<city>Charlotte</city>
<state>North Carolina</state>
<zip>28211</zip>

</m:address>

If we are working with a SOAP message with only two structs in the payload, multi-reference values
might seem like overkill. The real advantage to using multi-reference values becomes obvious when we
are working with large amounts of data, such as an array of structs. Let's assume our redundant address
in this example is a high-rise apartment building one block away from our company. If we were passing
an array of 100 structs in a payload, perhaps 50 or more employees might all have the same address.
The reduction in message size by using multi-reference values would be significant.

For many SOAP implementations, supporting multi-reference values has come late, and some still
do not support this capability. On the other hand, implementations like Microsoft's NET
Framework took the approach of using multi-reference values to represent every element of an array,
whether the values appear more than once or not. Interoperability tests between SOAP
implementations have made great progress in identifying these types of issues.

97

Chapter 3

What's Simple About It?

At this point, many developers ask, "Whatever happened to 'Simple'?" It's fair to say that with advanced
topics like multiref accessors and sparse arrays, the "Simple" part of SOAP seems like a distant memory,
and it is tempting to use XML-RPC or even a home-grown solution. For SOAP to be able to function as
a generic messaging protocol, it must be extensible, and this extensibility does not come without a price.
This is an advantage of SOAP, not a handicap. SOAP is simple when the needs of the application allow
it to be, and yet its open nature allows it to handle the complexities of more sophisticated systems. As
yet, not all SOAP implementations handle the more advanced aspects of the specification. As SOAP
implementations mature, complex topics like multirefs will be handled transparently for most users.
Until then, be extra nice to those developers working on SOAP implementations.

For any developers out there who are working on an implementation of SOAP for their platform, we
highly recommend checking out both the SOAPBuilders group at Yahoo
(http://groups.yahoo.com/group/soapbuilders) and the DevelopMentor SOAP discussion list
(http://discuss.develop.com). They are both great sources of information on interoperability,
advanced topics, and what the specification really means, as the best of the SOAP community and
many of the authors of SOAP frequent them.

Now that we have covered the details of what goes into a SOAP message, let's turn our attention to how
we move a message from point A to point B. This mechanism for moving messages is called the transport.

Transports

Once we have a SOAP message, we will probably want to send it to someone. After all, what good is a
message if it never goes anywhere? The transport is the method by which a SOAP message is moved
from sender to receiver. One example of a transport is HTTP, the Hypertext Transfer Protocol.

Separation of Message and Transport

One of the best design decisions made by the authors of SOAP was to separate the message definition
from the message transport. It may sound ridiculous, but there is nothing in the specification that
requires computers be involved in the transport of a SOAP message. Given that, here is a list of possible
transports for SOAP messages (some more likely than others):

HTTP
SMTP
MQSeries
Raw sockets
Files

Named Pipes

0o 0 U 00 o o

Carrier Pigeon

98

SOAP Basics

Granted, not many developers will be exercising stock options after developing SOAP-enabled carrier
pigeons, but this helps to illustrate the modular nature of the specification. Most developers are going to
focus on HTTP as the standard transport for their SOAP messages, and that is the transport that we will
focus on in this chapter. As SOAP support continues to grow, there will be SOAP transport bindings
defined and implemented for any number of protocols.

HTTP

When many developers think of SOAP, they think of XML over HTTP. HTTP is an excellent transport
for SOAP because of its wide acceptance. HTTP is the ubiquitous protocol for the Web, a constant
reminder that standards can actually work. Combining HTTP, the standard transport protocol for the
Web, and SOAP, the leading candidate for the standard messaging format, gives us a powerful tool.
HTTP makes such a great transport for SOAP that the authors made sure that the rules for using HTTP
as a transport are part of the SOAP specification.

There are only a couple of basic rules for using HTTP as a SOAP transport. The mechanism for sending
a SOAP message over HTTP is the standard HTTP POST method. An HTTP POST sends a block of
data to a particular URI on the web server. In the case of SOAP messages, this block of data is the
SOAP message itself. Because the SOAP message is XML, the Content-Type header of the HTTP POST
must be text/xml. If there is a response to the message, it is returned in the HTTP response.

Let's take another look at the example SOAP message we used earlier, this time transporting the
message over HTTP.

POST /endpoint.asp HTTP/1.1
Content-Type: text/xml
Content-Length: ###
SOAPAction: "urn:wroxheroes"

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/">
<gsoap:Header>
<h:from xmlns:h="http://www.wrox.com/Header">
SoapGuy@wrox.com
</h:from>
</soap:Header>
<soap:Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<codename>XSLT-Man</codename>
</w:GetSecretIdentity>
</soap:Body>
</soap:Envelope>

The first four lines of this example are related to the HTTP transport. The first line contains the HTTP
method, POST, and the URI indicating the location of the endpoint. This example might represent a
SOAP message request sent to the URL http://www.wrox.com/endpoint.asp. The first line also indicates
that version 1.1 of HTTP is being used in this request.

929

Chapter 3

The next three lines are the HTTP headers. The first two are standard HTTP. Content-Type indicates
the MIME type of the POST content. All SOAP messages must use text/xml. Content-Length tells
the size in bytes of the content. The last header, SOAPAction, is SOAP specific. We will examine that
next, but before that, notice the remainder of the HTTP request. There is an additional carriage-
return/line feed that separates headers from the body, and the body content itself is a SOAP message.
The message itself does not change because it is being transported by HTTP, and other than the
SoaPAction header, HTTP does not change just because it is sending a SOAP message.

SOAPAction Header

The SOAP specification does define a single additional HTTP header to be used when SOAP messages
are transported over HTTP, and that header is the SOAPAction header. The SOAPAction header
provides a hint to servers that a particular HTTP POST contains a SOAP message, and the value of the
header is a URI that indicates the intent of the SOAP message. This allows firewalls and other servers to
perform conditional processing based on the presence of the SOAPAction header.

Version 1.1 stated that the SOAPAction header must be present in HTTP transports, although it may be
blank. Since then, that requirement has been removed. A blank SOAPAction on an HTTP POST means
that the intent of the message can be inferred from the target of the POST, the URI. Although this may
sound confusing, it is actually pretty straightforward. There are some messages whose purpose is
obvious by where they are going (what URL they are posted to). If our methods are implemented at one
URL, we may need to use the SOAPAction header to make the intent of an incoming message clearer.
The need for SOAPAction largely depends on how the endpoint is implemented.

Status Codes

You will recall that HTTP returns status information in the form of status codes. These codes are
integers, and they are sectioned into classes of 100. For example, anything in the range 200-299
indicates success. SOAP places a requirement on the HTTP transport when it is used to exchange SOAP
messages. If the response message contains a fault, then the status code of the HTTP response must be
500, which indicates an Internal Server Error. We will see examples of both success and failure status
codes later in the chapter.

Let's take a look at the response to our GetSecretIdentity call (below) to see the relationship
between request and response, as well as message and fault.

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: ###

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<soap:Body>
<m:GetSecretIdentityResponse xmlns:m="http://www.wrox.com/heroes/">
<return xsi:type="xsd:string">Michael Kay</return>
</m:GetSecretIdentityResponse>
</soap:Body>
</soap:Envelope>

100

SOAP Basics

The above response is successful, returning the identity of Wrox's resident XSLT super-hero. Notice the
first line of the example response, which contains the status code 200. Now, let's call the
GetSecretIdentity method again, but this time we will send a different request, one with problems:

POST /endpoint.asp HTTP/1.1
Content-Type: text/xml
Content-Length: ###
SOAPAction: "urn:wroxheroes"

<Envelope>
<Body>
<w:GetSecretIdentity xmlns:w="http://www.wrox.com/heroes/">
<codename>XSLT-Man</codename>
</w:GetSecretIdentity>
</Body>
</Envelope>

In this case, the SOAP namespace is missing completely, so the endpoint must return a fault, which
means it must use a status code of 500 on the response. The response message is shown below, and it
contains a VersionMismatch fault as well as the appropriate status code:

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml
Content-Length: ###

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<soap:Body>
<soap:Fault>
<faultcode>soap:VersionMismatch</faultcode>
<faultstring>The SOAP namespace is incorrect.</faultstring>
<faultactor>http://www.wrox.com/endpoint.asp</faultactor>
<detail>
<w:errorinfo xmlns:w="http://www.wrox.com/">
<desc>The SOAP namespace was blank.</desc>
</w:errorinfo>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

These examples show how to use HTTP as the transport binding for SOAP. It is not difficult to use
HTTP, which is one of the reasons for its popularity. For more information on HTTP, including the

status codes, consult Chapter 2.

If we think of transport as "how" the message is sent, then the purpose of the message is the "why".
HTTP is SOAP's "how" of choice for the time being, and our next topic, RPC, is the "why".

101

Chapter 3

SOAP and RPC

We have spent much of this chapter trying to show that SOAP does not necessarily have to be used for
remote procedure calls. The truth is that RPC is what gets most developers excited about SOAP, and
with good reason. The idea that the complexities of CORBA and DCOM can be forgotten with a little
XML is an attractive concept. The SOAP specification clearly describes how remote procedure calls
should be represented in SOAP messages.

Saying that SOAP replaces CORBA or DCOM is an oversimplification, however. SOAP is missing most
of the features that developers expect from a robust distributed object protocol, such as garbage
collection or object pooling. Despite the letter "O" in SOAP, as the Specification stands today, there are
no "objects" in the DCOM or CORBA sense. The SOAP Specification makes it clear that this was not a
design goal of the authors. On the other hand, it is clear that SOAP was designed with RPC in mind.

SOAP RPC Convention

We already discussed the open nature of the SOAP specification as it relates to message transport. SOAP
defines a message syntax and exchange model, but it does not try to define the "how" of message
exchange. The convention is the set of rules applied to a particular use of SOAP messages. The
Specification defines rules for a single convention: remote procedure calls, or RPC. The RPC convention
can be defined as a way of serializing remote procedure calls and responses as SOAP messages. At the end
of this chapter we will discuss the implications of using some alternative conventions.

Like its partner HTTP, SOAP RPC uses a request-response model for message exchanges. Making a
remote procedure call with SOAP just involves building a SOAP message. The request SOAP message
that is sent to the endpoint represents the call, and the response SOAP message represents the results of
that call. Let's take a look at the rules for building method calls and returns in SOAP messages.

The Call

Making a remote procedure call with SOAP just involves building a SOAP message. The message that is
sent to the endpoint represents the call. The payload of that request message contains a struct that is the
serialized method call. The child elements of that struct are the inbound parameters of the method. The
end result is an XML representation of a call that looks the way we would expect.

When RPC calls are serialized in a SOAP message, the name of the element must match the name of
the method, as do the parameters. Consider this method signature:

// Return the current stock price, given the company symbol
double GetStockQuote ([in] string sSymbol);

If our method namespace is http: //www.wroxstox.com/, then the serialized method call that
requests the stock quote using symbol 0U812 would look like this:

<g:GetStockQuote xmlns:g="http://www.wroxstox.com/">
<g:sSymbol xsi:type="xsd:string">0U812</g:sSymbol>
</q:GetStockQuote>

102

SOAP Basics

The method name matches the element, as does the parameter. While the parameter names match the
child elements, only inbound parameters appear in the serialized call. To illustrate this, let's look at
three very similar methods signatures:

// Reverse the string, s, and return the new string.
string ReverseString ([in] string s);

// Reverse the string, s, and return the new string.
void ReverseString ([in] string s, [out] string sRev);

// Reverse the string, s, passed in by reference.
void ReverseString ([in, out] string s);

All three methods would be represented by the same serialized call. If we called the ReverseString ()
method with the parameter s containing a value of ROHT, the call would be represented as shown (below):

<x:ReverseString xmlns:x="http://www.wrox.com/">
<s xsi:type="xsd:string">ROHT</s>
</x:ReverseString>

Now we'll take a look at how the return from a remote procedure call is serialized, and also how the
returns from the different forms of the ReverseString () method shown here, would look.

The Return

As we mentioned earlier, the RPC convention uses a request-response model. Just as the call is
represented in the request SOAP message, the results of the call are returned in the response SOAP
message. The payload in the response also contains a struct, and the child elements are the outbound
parameters and/or the return value of the method.

The name of the method response struct can be anything, but it is a convention to append the word
"Response" to the name of the method call struct. For example, ReverseString would result in
ReverseStringResponse. Just as in the call, the names of parameter elements are significant and
should match the parameters. If the method returns a value, the name is irrelevant, but it must be the
first child of the method struct.

So how do we know the difference between a single out parameter and a return value? In one sense,
there is no difference. Both are returning a single value as part of the method return. The real answer
lies in the name of the parameter. If the name of the parameter matches a parameter of the method,
then it is an out parameter. Return values cannot be identified by name, only position, but the name
should not conflict with the parameters of the method.

Now that we know how a serialized return should look, let's continue to use our ReverseString
example. As we saw before, all three method signatures for Reversestring result in the same
serialized call. However, how do the serialized returns differ? The first version reverses the string and
returns the result as the return value of the method:

<x:ReverseStringResponse xmlns:x="http://www.wrox.com/">
<x:ret xsi:type="xsd:string">THOR</x:ret>
</x:ReverseString>

103

Chapter 3

The second version has no return value, but instead uses an out parameter called sRev:

<x:ReverseStringResponse xmlns:x="http://www.wrox.com/">
<x:sRev xsi:type="xsd:string">THOR</x:sSRev>
</x:ReverseString>

The final version reverses the string after passing it by reference, so the parameter s is both an in and
out parameter:

<x:ReverseStringResponse xmlns:x="http://www.wrox.com/">
<x:s xsi:type="xsd:string">THOR</x:s>
</x:ReverseString>

As can be seen, the difference between values returned in parameters and the value of the method itself
is all in the name. In the first case, the element was named ret, and in the second case, it was named s.
We can access parameters by name or position as elements of the RPC struct, but the return value can
only be accessed by position.

What if there are no out parameters or return values? In that case, we still have a response that
represents a method return, but with no data:

<m:GetNothing xmlns:m="http://tempuri.org/"/>

Now that we know how to work with remote procedure calls, let's look at a more complete example that
uses full messages and a transport.

RPC and HTTP

We have been looking at RPC in isolation, but in order to perform a remote procedure call, we need a
way to move our message to the "remote" location. Here is where SOAP really shines: when we
combine RPC and HTTP to make calls against Web Services.

Assume we need to call a remote procedure on a web server to validate a city and state combination
and return a zip code. Our hypothetical Web Service will exist at www.livezipcodes.com (this is not a
real endpoint, don't bother trying!). We do not know how the method is implemented; all we know is
how to access it. The method can be invoked at the URL http://www.livezipcodes.com/call.asp, the
method is associated with the namespace URI http://www.livezipcodes.com/methods/, and the
SOAPAction for this method is urn:livezipcodes. The signature for the method is shown below:

string GetZipCode (string city, string state);

In building the request message, we do not need any extensions, so the Header element can be left out.
The payload will be a struct representing the method call. The method parameters are passed as child
elements. Here is the HTTP request, including the request SOAP message, sent to
www.livezipcodes.com.

POST /call.asp HTTP/1.1
Content-Type: text/xml
Content-Length: ###
SOAPAction: "urn:livezipcodes"

104

SOAP Basics

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<soap:Body>
<m:GetZipCode xmlns:m="http://www.livezipcodes.com/methods/">
<city xsi:type="xsd:string">Modest Town</city>
<state xsi:type="xsd:string">Virginia</state>
</m:GetzipCode>
</soap:Body>
</soap:Envelope>

Since there is actually a place named Modest Town, Virginia, the response from the endpoint would
look like this.

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: ###

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<soap:Body>
<m:GetZipCodeResponse xmlns:m="http://www.livezipcodes.com/methods/">
<zip xsi:type="xsd:string">23412</zip>
</m:GetZipCodeResponse>
</soap:Body>
</soap:Envelope>

If we were to execute this same method, but the endpoint is unable to access its database of
geographical information, the response would be more like this.

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml
Content-Length: ###

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<soap:Body>
<soap:Fault>
<faultcode>soap:Server.DatabaseDown</faultcode>
<faultstring>The database is unavailable.</faultstring>
<faultactor>http://www.livezipcodes.com/call.asp</faultactor>
</soap:Fault>
</soap:Body>
</soap:Envelope>

105

Chapter 3

Beyond RPC - Working with XML Documents

Although RPC has certainly received the most attention, SOAP messages can be used to transfer
arbitrary XML documents. For a given document type, we can define a new convention that describes
the purpose of the message transfer.

Here's something we don't see everyday: a SOAP message that has nothing to do with RPC.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap
/encoding/"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<soap:Body>
<xsl:stylesheet version="1.0">
<xsl:template match="/">
<html>
<body>
<p><xsl:value-of select="Envelope"/></p>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
</soap:Body>
</soap:Envelope>

This message contains a payload that is an XSLT stylesheet (one that happens to be written to
manipulate a SOAP message). Consider the implications of having the SOAP Body element be an
arbitrary XML document (in this case, an XSLT stylesheet) instead of RPC. In that sense, SOAP is a
general-purpose mechanism for transporting an XML document. This is how SOAP is being applied in
both Microsoft's BizTalk Server and in the ebXML protocol, but the potential uses do not stop there.

For more information on BizTalk, go to the BizTalk Home Page at
http://www.biztalk.org/home/default.asp. Additional information about ebXML is provided in
Chapter 1 of this book, and http.//www.ebxml.org/

For every potential application of XML, SOAP provides the mechanism for extending that use via
messaging. This is an area of development that is still largely untapped because of the excitement
surrounding RPC. Web Services can be composed with SOAP but without RPC. As more developers
realize this, the excitement surrounding SOAP will continue to grow. Inserting an XSLT transform into
a SOAP message gives us a mechanism to trigger an XML transformation on a remote machine, and
that's a Web Service. A SOAP message that carries a Vector Markup Language (VML) document could
be used to insert new graphical elements into a diagram that exists on another machine, and that's a
Web Service too. The possibilities are endless!

106

SOAP Basics

Summary

In this chapter we have taken a look at SOAP and how it relates to Web Services. SOAP is a messaging
protocol based on XML. The SOAP specification defines a modular architecture for messaging that
allows any combinations of message routing, transports, and conventions to be used to build systems.
SOAP can be used as a messaging protocol for Web Services, and it is the protocol of choice for most
vendors because of its growing acceptance as a standard.

We examined the syntax of the SOAP message itself. SOAP messages have an Envelope element as
the document element, which provides version information. The Envelope element contains a Body
element that holds the payload of the message, and it may also contain a Header element. The Header
element contains one or more entries that represent extensions to the message syntax. SOAP defines
another standard element, Fault, which is used to carry error information inside the Body element.

SOAP messages contain data, and there are rules for how data types are represented in a message.
SOAP defines one set of rules, called SOAP encoding, but new encoding rules can be defined. SOAP
encoding relies on XML Schemas for most of its data types, and it adds structs and arrays as well.

Messages in SOAP can be transported by any mechanism, whether by socket or by hand. The
specification defines a transport binding for HTTP, which does not stray far from the general
mechanisms for XML transfer over HTTP. SOAP adds one twist, the SOAPAction header, to help
servers route SOAP messages without needing to examine their contents.

The last area of SOAP we focused on is remote procedure calls, or RPC. SOAP messages can be used to
perform remote procedure calls, and the Specification defines how calls and returns should be serialized
in messages. RPC is just one convention for SOAP messages, and we saw how the future of SOAP might
be in other XML document conventions.

107

Chapter 3

108

