
.

.

X-KASS: XML Key Agreement Service
Specification

Phillip Hallam-Baker VeriSign

Draft Version 0.4: May 10th 2001

Send comments to:
Phillip Hallam-Baker, Senior Author
401 Edgewater Place, Suite 280
Wakefield MA 01880
Tel 781 245 6996 x227
Email: pbaker@verisign.com

Printed on Wednesday, August 15, 2001

 2

X-KASS: XML Key Agreement Service Specification
Version 0.4
Table Of Contents
Table Of Contents 2
Table of Figures 3
Executive Summary 4
1 Introduction 4
1.1 Introduction to this Document 5
1.2 Structure of this document 5
2 Architecture 5
2.1 Data Flow 5
2.2 Key Exchange Mechanisms 8
2.2.1 Key Exchange Using Encryption Credentials 9
2.2.2 Key Exchange Using Signature Credentials 11
2.3 Asset/Risk/Threat (ART) Analysis 13
2.3.1 Assets 13
2.3.2 Risks 14
2.3.3 Threats 15
2.4 Context Binding 16
2.4.1 Label 17
2.4.2 Validity Interval 17
2.4.3 Acceptable Key Usage 17
2.4.4 Acceptable Algorithm 17
2.4.5 Data Limit 17
3 Message Set in XML Syntax 17
3.1 Element <Context> 18
3.1.1 Element <Label> URI 18
3.1.2 Element <ValidityInterval> 19
3.1.3 Element <KeyUsage> String [] 19
3.1.4 Element <PermittedAlgorithms> URI [] 19
3.1.5 Element <PermittedProtocols> URI [] 20
3.1.6 </element>Element <DataLimit> Integer 20
3.1.7 Elements <Requestor>, <Respondent> <ds:KeyInfo> 20
3.2 Cryptographic Data Elements 20
3.2.1 Element <EncryptedSecret> 20
3.2.2 Element <ResponderAuthentication> 20
3.3 Key Agreement With Encryption Credentials 21
3.3.1 Element <EncryptedNonce> 21
3.3.2 Element <EncryptedKeyAgreement> 21

Printed on Wednesday, August 15, 2001

 3

3.3.3 Element <EncryptedKeyAgreementResponse> 21
3.4 Key Agreement With Signature Credentials 22
3.4.1 Element <DiffieHellemanPublic> 22
3.4.2 Element <SignedKeyAgreementData> 22
3.4.3 Element <SignedKeyAgreement> 22
3.4.4 Element <SignedKeyAgreementResponse> 22

Table of Figures
Figure 1 Data Flow of a Typical Trusted XML Transaction 6
Figure 2: X-KASS Key Agreement Outline 7
Figure 3: Key Agreement Using Encryption Credentials 10
Figure 4: Key Exchange Using Signature Credentials 12

Printed on Wednesday, August 15, 2001

 4

 Executive Summary

A key exchange protocol is presented in XML syntax. The protocol comprises a single
request followed by a single response and results in a shared secret being established
between the two parties.

The key exchange protocol does not provide authentication in the conventional sense that
both initiator and responder have determined that the other is authentic at the completion
of the protocol. Only if both parties are authentic however, is the shared secret
established.

The protocol is designed for use in combination with other XML protocols, including
XKMS [XKMS] and SOAP/XML Protocol [SOAP][WSDL].

1 Introduction

Public Key Infrastructure provides a secure and adaptable means of establishing a
security context between two parties allowing the confidentiality and integrity of
communications between them to be protected.

Public key cryptography provides greater flexibility than traditional symmetric key
cryptography but requires computationally intensive calculations to be performed. For
this reason public key cryptography is typically combined with symmetric key
cryptography via a session key Error! Reference source not found..

The XML Key Agreement Service Specification (XKASS) describes an efficient means
of key agreement in which an initiator and responder establish a shared secret if and only
if they hold the keying information specified in their credentials by means of a single
request and a single response.

The high computational overhead of public key cryptography has been considered by
some to be a prohibitive burden for many applications involving a high volume of queries
against a central server. The computational overhead of executing a digital signature per
transaction typically reduces throughput on a server by at least two orders of magnitude.

Use of cryptographic acceleration hardware reduces but does not eliminate the impact of
using public key cryptography. Such hardware tends to be expensive, especially if it is
designed to provide a high degree of protection against disclosure of the private key.

XKASS permits the key agreement operation to be separated from processing operations.
This has both security advantages and operational advantages. Separating key agreement
from operations allows cryptographic operations to be performed in a high security
physical environment dedicated to cryptographic operations, thus eliminating the need for
access by processing operations staff. Offloading cryptographic operations to separate
hardware allows independent management of resources to adjust for demand. While

Printed on Wednesday, August 15, 2001

 5

processing requirements grow with the number of transactions, the requirement for key
agreement scales with the number of active accounts.

1.1 Introduction to this Document

This document describes two Key Agreement protocols and an implementation of the
protocol in XML syntax.

1.2 Structure of this document

The remainder of this document describes the Key Agreement Service Specification.

Section 2: Architecture
The Key Exchange Architecture is described

Section 3: Message Set.
The semantics of the protocol messages are defined.

2 Architecture

The XKASS protocol allows an initiator to establish a shared secret with a responder that
is cryptographically bound to a context that includes; a label identifying the shared secret,
the credentials of both parties and additional information such as the time period in which
the secret is to be used etc.

XKASS does not provide authentication of the initiator or responder, however the shared
secret is only established if both parties have provided authentic credentials and an
attacker cannot gain any information that would compromise either party by attempting
to engage in a false exchange.

A particular feature of the XKASS architecture is that both the label and the shared secret
itself are under the control of the responder. This allows the responder to encode
information into the label that would allow a third party to decode it to obtain the shared
secret in the manner of a Kerberos ticket [Kerberos]. This feature allows key agreement
operations to be separated from data processing operations.

2.1 Data Flow

XKASS is designed for use as a single component in an XML transaction dataflow that
will typically involve multiple services supported by different servers that MAY be
administered by different enterprises. A typical dataflow is shown in Figure 1.

Printed on Wednesday, August 15, 2001

 6

Client
(Alice)

 Service XKMS
Service

WSDL
Directory

X-KASS
Service

�

�

�, �, �

�

Figure 1 Data Flow of a Typical Trusted XML Transaction

The sequence of events is:

� The client (Alice) obtains the Web Service Description Language description
of the XML service from a directory. This description specifies:

o The XML Schema of the interface protocol.

o The location of the service.

o A credential CB consisting of an XML Signature <KeyInfo> element
specifying the public key of the XKASS service.

o The cryptographic enhancements (signature, encryption) required.

o The location of the XKASS key exchange service.

� The client validates the <KeyInfo> element specifying the public key of the
XKASS service against a trusted XKMS service.

� The client performs a Key Agreement with the XKASS service authenticating
itself via a credential CA consisting of an XML Signature <KeyInfo>
element specifying the public key of the client to establish a shared secret ss,
identified by label L.

�� The client uses the shared secret to authenticate and/or encrypt the exchange
with the service itself:

o The client identifies the shared secret used by specifying the label L.

o The Service authenticates L by means of a shared secret previously
exchanged with the XKASS server.

o The Service obtains ss by decryption fields in L by means of a shared
secret previously exchanged with the XKASS server.

�, � Once established, the shared secret may be used to authenticate multiple
transactions with the same service.

Printed on Wednesday, August 15, 2001

 7

The X-KASS exchange itself consists of a single request-response exchange. This
exchange is shown in Figure 2.

��The Initiator A first validates the credentials CB of the responder B.

� A sends the request message to B containing a challenge to the credentials CB.

� B generates the response to the challenge made by A, the shared secret ss, the
context O and label L.

� B sends the response message to A containing a challenge to the credentials CA
and the shared secret ss encrypted under a key that is cryptographically bound to
the credentials CA and CB, the context O, the label L and the response to both
challenges.

� A generates the response to the challenge made by B and uses it to recover the
shared secret ss.

 A B

� Request

� Response

� Authenticate B
Validate CA
Create ss, O, L

� Authenticate A
Recover ss

� Validate CB

Figure 2: X-KASS Key Agreement Outline

The X-KASS protocol is designed to meet the following condition:

The initiating party A obtains the shared secret ss from the responding party B if and
only if:

• A has access to the private key identified by the credential CA.
• B has access to the private key identified by the credential CB.
• The credential CA is considered to be valid and trustworthy by B.
• The credential CB is considered to be valid and trustworthy by A.
• The context information O and label L generated by B has been transmitted

unmodified to A.

Printed on Wednesday, August 15, 2001

 8

In addition the protocol MAY provide evidence to A that demonstrates that the shared
secret ss is genuine.

Thus X-KASS does not provide mutual authentication in the traditional sense. A MAY
authenticate the X-KASS service, however at the end of the protocol B does not know if
the challenge was issued by the authentic party A.

The initiator is only authenticated when attempting to use the shared secret. Only the
authentic party A can recover the correct shared secret ss.

2.2 Key Exchange Mechanisms

XKASS currently supports two exchange mechanisms:

• Key Agreement using Encryption Credentials

• Key Agreement using Signature Credentials

The first mechanism using encryption credentials requires fewer public key operations (2
per party) than the second using signature credentials (3 per party). However the second
mechanism provides perfect forward secrecy such that compromise of the credentials of
either or both parties does not compromise the confidentiality of any messages previously
exchanged.

The basic mechanism could be modified to support cases in which one party used an
encryption credential and the other used a signature credential. Also the encryption
mechanism could be modified to support perfect forward secrecy. Support for both
features was rejected in favor of simplifying implementation. It is assumed that the
credentials issued for use with the key agreement service would typically be issued for
that purpose alone. It is therefore assumed that the issuer of the credentials will bear the
limitations of the protocol in mind when issuing credentials.

For similar reasons the protocol implementing the exchange mechanism does not support
a negotiation protocol to allow the parties to arrive at a mutually agreed set of
cryptographic algorithms. Such frameworks add significantly to the cost of
implementation but in practice provide little of identifiable benefit.

It is assumed that the client will obtain all necessary information concerning acceptable
cryptographic algorithms and the service credentials as part of the service discovery
process. It is expected that a future version of the Web Services Description Language
[WSDL] would allow such parameters to be expressed.

The following table specifies the symbols used in the specification of the key exchange
mechanism.

Symbol Description

Printed on Wednesday, August 15, 2001

 9

nX Nonce value sent by party X.

KX, kX Public and private key values of party X.

sT, sL Temporary and long term shared secret key values

IX Purported identity of party X

CX Credential of party X, CX = {IX, KX}

L Label which uniquely identifies the value sX

O Other context data, including the validity date, key usage,
acceptable algorithms, etc.

H(d) One way digest function on data d

E(d, k) Encryption of message d with key k

D(d, k) Decryption of message d with key k

S(d, k) Signature of message d with key k

M(d, k) Message Authentication Code of message d with key k

2.2.1 Key Exchange Using Encryption Credentials

The key exchange using encryption credentials mechanism requires one public key
encryption operation and one public key decryption operation by each of the requestor
and responder.

The mechanism does not provide forward secrecy. However the private encryption key of
both the requestor and the responder must be compromise to compromise the established
shared secret.

The mechanism is shown in diagrammatic form in Figure 3. It is assumed that the
initiator of the protocol (A) begins with knowledge of the public key of the key exchange
server.

Printed on Wednesday, August 15, 2001

 10

 A B

E (nA, KB), CA, O�

E (nB, KA), E (sL, ss),
 O, L, CA, CB

Validate CA,
Create nB, O, L, sL
nA = D (E (nA, KB), kB)
ss = M ({O, CA , CB, L},
 H(nA + nB))

nB = D (E (nB, KA), kA)
ss = M ({O, CA , CB, L}, H(nA + nB))
sL = D (E (sL, ss), ss)

kA, CA, CB kB, CB

Figure 3: Key Agreement Using Encryption Credentials

The protocol parameters are defined as follows:

Message Parameter Description

E (nA, KB) Nonce generated by A, encrypted under the public key of
B

CA = {KA, IA} KeyInfo element specifying Public Key, Identity of A

A���� B

O� Proposed use context

nA Calculate nA = D (E (nA, KB), kB)

KA Validate as trustworthy

B

ss Calculate ss = M ({O, CA , CB, L}, H(nA + nB))

E (nB, KA) Nonce generated by B, encrypted under the public key of
A

O Actual use context

CA = {KA, IA} KeyInfo element specifying Public Key, Identity of A

B ���� A

CB = {KB, IB} KeyInfo element specifying Public Key, Identity of B

Printed on Wednesday, August 15, 2001

 11

Message Parameter Description

L Label

E (sL, ss) Encrypted shared secret

nB Calculate nB = D (E (nB, KA), kA)

ss Calculate ss = M ({O, CA , CB, L}, H(nA + nB))

A

sL Calculate sL = D (E (sL, ss), ss)

In addition B may return the following data to authenticate B to A. Note that the protocol
does not provide for A to authenticate to B. Only the authentic A can recover the correct
value of sL from E (sL, ss) however, hence only A can generate authenticated messages
after the key agreement has completed.

Message Parameter Description

B ���� A M(E (sL, ss), sL) Proof of knowledge of sL, and hence nA, and hence kB

A M(E (sL, ss), sL) Verify

2.2.2 Key Exchange Using Signature Credentials

The key exchange using signature credentials mechanism requires one public key
signature operation and one public key verification operation by each of the requestor and
responder.

The mechanism provides perfect forward secrecy. After the secret Diffie-Helleman key
agreement parameters have been erased by both parties it is not possible to recover the
established secret even if the private keys of both parties are compromised.

The mechanism is shown in diagrammatic form in Figure 4. It is assumed that the
initiator of the protocol (A) begins with knowledge of the public key of the key exchange
server.

Printed on Wednesday, August 15, 2001

 12

 A B

S ((DA, CA, O�), kA)

S ((DB, ,O, L, CA, CB), kB)
E (sL, ss)

Validate CA,
Create DB, O, L, sL
ss = M ({O, CA , CB, L},
 H(DAB))

nB = D (E (nB, KA), kA)
ss = M ({O, CA , CB, L}, H(DAB))
sL = D (E (sL, ss), ss)

kA, CA, CB kB, CB

Figure 4: Key Exchange Using Signature Credentials

The protocol parameters are defined as follows:

Message Parameter Description

DA Diffie-Helleman Key Agreement Parameters of A

CA = {PA, IA} KeyInfo element specifying Public Key, Identity of A

O� Proposed use context

A���� B

S(m, kA) Message Signature m = {DA, CA, O�}

DB, DAB Calculate remaining Diffie-Helleman Parameters

CA = {PA, IA} Validate as trustworthy

B

ss Calculate ss = M ({O, CA , CB, L}, H(DAB))

DB Diffie-Helleman Key Agreement Parameters of B

O Actual use context

CA = {PA, IA} KeyInfo element specifying Public Key, Identity of A

B ���� A

CB = {PB, IB} KeyInfo element specifying Public Key, Identity of B

Printed on Wednesday, August 15, 2001

 13

Message Parameter Description

L Label

S(m, kB) Message Signature m = {DB, CA, CB, L, O}

E (sL, ss) Encrypted shared secret

DAB Calculate remaining Diffie-Helleman Parameters

ss Calculate ss = M ({O, CA , CB, L}, H(DAB))

A

sL Calculate sL = D (E (sL, ss), ss)

In addition B may return the following data to authenticate B to A. Note that the protocol
does not provide for A to authenticate to B. Only the authentic A can recover the correct
value of sL from E (sL, ss) however, hence only A can generate authenticated messages
after the key agreement has completed.

Message Parameter Description

B ���� A M(E (sL, ss), sL) Proof of knowledge of sL, and hence nA, and hence kB

A M(E (sL, ss), sL) Verify

2.3 Asset/Risk/Threat (ART) Analysis

We consider the vulnerability of the protocol using an Asset/Risk/Threat analysis. In this
methodology the vulnerabilities of a system are systematically examined by identifying
the assets that might be subject to attack, then for each asset enumerating the risks that
are intrinsic to that type of asset and the architecture specific threats that might realize
that risk.

2.3.1 Assets

The following assets are identified:

[A-PRIV] Private Key

[A-SS] Exchanged Shared Secret

[A-UC] Use context

[A-SSL] Shared Secret Label

[A-SRV] Service
Availability of the XKASS service.

Printed on Wednesday, August 15, 2001

 14

2.3.2 Risks

Having identified the assets we consider the range of potential harm that an attacker
might attempt to cause against each asset in turn. To do this we apply a standard
taxonomy of information security risks that comprises Disclosure, Integrity and Denial of
Service.

A key feature of the XKASS design philosophy is to focus on the control of risks rather
than piecemeal responses to specific threats. For this reason we outline the specific
design features used to control each risk.

[R-DPK] Disclosure of Private Key
The private key of either party is revealed.
The protocol relies upon the security of the underlying encryption algorithms to
control this risk.

[R-DPKO] Disclosure of Private Key Oracle
A weaker form of [R-DPK] in which the private key itself is not revealed but the
protocol allows an attacker to gain information that requires access to the public
key that could be used in another context.
The protocol uses one-way functions and masking values to ensure that no party
ever applies a private key to any value that can be controlled by an external party.

 Threats: [T-IMP] [T-SUB]

[R-DSS] Disclosure of Shared Secret
The shared secret is revealed.
The protocol relies upon the security of the encryption function and on the
security of the one-way function to control this risk. The shared secret is an
unpredictable function of secret values that are known only through the
possession of the specified credential of one of the parties and the interaction
through the protocol of the other party.

 Threats: [T-IMP]

[R-DSSO] Disclosure of Shared Secret Oracle
A weaker form of [R-DSS] in which the shared secret itself is not revealed but the
protocol allows an attacker to gain information that requires access to the shared
secret that could be used in another context.
The protocol returns only one value that is a function of the shared secret, the
value M(E (sL, ss), sL) which is used to authenticate the responder. Depending on
the protocol the value E (sL, ss) is an unpredictable function of either, nB or DB
which are both randomly chosen by the responder. Thus an attacker cannot use
the protocol as an oracle for the shared secret.

[R-IUC] Integrity of Use Context
A modified use context is accepted.
The shared secret is an unpredictable function of the use context and label. Thus a

Printed on Wednesday, August 15, 2001

 15

modification of the use context or label causes an unpredictable change to the
shared secret and vice versa

Threats: [T-MIM][T-REP].

[R-ISS] Integrity of Shared Secret.
A modified shared secret is accepted.
See [R-IUC]

[R-ISSL] Integrity of Shared Secret Label
A modified shared secret label is accepted.
See [R-IUC]

[R-DOS] Denial of Service
Access to the service is denied.
The protocol does not provide specific defenses against denial of service attacks.

 Threats: [T-DOS]

2.3.3 Threats

2.3.3.1 [T-IMP] Impersonation

We consider the case in which an attacker attempts to impersonate each party in the
protocol separately.

Impersonation of A Attack

Any party can cause the XKASS server to respond to a properly formatted request
presenting credentials KA of a different party. Such a party cannot discover S however
since:

Such a party does not (by definition) know SA and cannot recover nB from E (nB, PA).

It is not possible to recover k from E (S, k) by trial and error since every possible value of
S is equally valid.

Nor does the protocol provide a useful oracle for SB or nA since the value nA is not
returned. It is used exclusively as a keying value for a MAC.

Impersonation of B Attack

Any party may attempt to impersonate B. Such a party does not (by definition) know SB
and cannot recover nA from E (nA, PB).

Printed on Wednesday, August 15, 2001

 16

2.3.3.2 [T-MIM] Man in the Middle

A man in the middle might attempt to discover the value of the established secret or to
cause a particular value to be chosen as the shared secret by modification of messages
between A and B.

Modification of any value identified as an asset that is returned by the B causes A to
calculate a different value of sL in a manner that cannot be predicted. This modification
will then be detected either by inspection of the responder authentication value (if
present) or when attempting to use the shared secret.

2.3.3.3 [T-REP] Replay Attack

Replaying a previous message generated by A causes B to respond with a new set of key
agreement parameters. The set of parameters returned are independent of any previous
key agreement and recovery of the shared secret still requires the private key held by A.

Replaying a previous response message generated by B causes A to calculate an
erroneous value for the shared secret. This will then be detected either by inspection of
the responder authentication value (if present) or when attempting to use the shared
secret.

2.3.3.4 [T-DOS] Denial of Service

An attacker can use the protocol to request that B perform a public key operation. There
is therefore a potential denial of service attack in which the attacker causes B to perform
a large number of computationally intensive tasks.

This form of attack may be mitigated by giving processing priority to requests that are
authenticated by a MAC keyed by a previously exchanged key. This limits the damage
caused by a denial of service attack to preventing new parties performing a key
agreement for the first time.

2.3.3.5 [T-SUB] Protocol Substitution

An attacker could use a message generated using the XKASS protocol as a component in
another protocol. This threat is impossible to eliminate since it depends in part upon the
ability of other protocols to discriminate against protocol substitution. An authentication
protocol that accepted any signed message as a means of authenticating a principal would
be vulnerable to a protocol substitution attack using messages intended for use with
XKASS.

2.4 Context Binding

The shared secret is securely bound to the use context. This prevents cut and paste attacks
in which the attacker modifies the label or other data that governs use of the shared
secret.

Printed on Wednesday, August 15, 2001

 17

2.4.1 Label

The label is a string that identifies the shared secret to another party. In many cases it is
convenient to use a URI as a label although a binary string may be preferred in some
applications.

The label MAY contain one or more encrypted data fields containing information such
as:

• The authenticated identity of A and/or B

• The established shared secret

• The validity interval

2.4.2 Validity Interval

The validity interval specifies the time period for which the established shared secret is
valid. When the time period expires the established shared secret MUST not be used.

2.4.3 Acceptable Key Usage

The established shared secret MAY be limited to specific cryptographic purposes for
example; encryption, authentication and key exchange.

2.4.4 Acceptable Algorithm

The established shared secret MAY be limited to use with specific cryptographic
algorithms for example 3DES or AES. Use of the same cryptographic key with multiple
algorithms introduces the risk that an attacker might discover the key by breaking the
weakest algorithm, allowing the data encrypted using the strongest and otherwise
unbreakable algorithm to be recovered.

2.4.5 Data Limit

The established shared secret MAY be limited to encryption or authentication of a certain
quantity of data, thus limiting the amount of source data available to a cryptanalyst.

3 Message Set in XML Syntax

All XKASS protocol elements are defined using XML schema [XML-Schema1][XML-
Schema2]. For clarity unqualified elements in schema definitions are in the XML schema
namespace:

 xmlns="http://www.w3.org/2000/10/XMLSchema."

References to the XKASS schema defined herein use the prefix �s0� and are in the
namespace:

Printed on Wednesday, August 15, 2001

 18

xmlns:s0="http://www.xmltrustcenter.org/tbs/1066-12-25/"

This namespace is also used for unqualified elements in message protocol examples.

The XKASS schema specification uses some elements already defined in the XML
Signature namespace. The �XML Signature namespace� is represented by the prefix ds
and is declared as:

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

The �XML Signature schema� is defined in [XML-SIG-XSD] and the <ds:KeyInfo>
element (and all of its contents) are defined in [XML-SIG]§4.4.

3.1 Element <Context>

The <Context> element contains all data elements that are combined using a MAC to
create the value ss other than the MAC key. These elements are {CA , CB, L, O}, the
credentials of both parties, the label and other context information.

Bringing together these data items into one element facilitates calculation of the MAC
value that is generated using the XML Signature standard.

The following schema defines the <Context> element:
<complexType name="Context">
 <sequence>
 <element name="Label" type="uriReference"
 minOccurs="1" maxOccurs="1"/>
 <element name="ValidityInterval" type="s0:ValidityInterval"/>
 minOccurs="1" maxOccurs="1"/>
 <element name="KeyUsage" type="s0:KeyUsage"
 minOccurs="1" maxOccurs="1"/>
 <element name="PermittedAlgorithms" type="s0:PermittedAlgorithms"
 minOccurs="1" maxOccurs="1"/>
 <element name="PermittedProtocols" type="s0:PermittedProtocols"
 minOccurs="1" maxOccurs="1"/>
 <element name="Requestor" type="ds:KeyInfo"
 minOccurs="1" maxOccurs="1"/>
 <element name="Respondent" type="ds:KeyInfo"
 minOccurs="1" maxOccurs="1"/>
 </sequence>
</complexType>

3.1.1 Element <Label> URI

The <Label> element contains the label assigned to the shared secret by the responder.

The following schema defines the <Label> element:
<element name="Label" type="uriReference"
 minOccurs="1" maxOccurs="1"/>

Printed on Wednesday, August 15, 2001

 19

3.1.2 Element <ValidityInterval>

The <ValidityInterval> element contains the validity interval in which the shared
secret is to be used.

The following schema defines the <ValidityInterval> element:
<complexType name="ValidityInterval">
 <sequence>
 <element name="NotBefore" type="timeInstant"/>
 <element name="NotAfter" type="timeInstant"/>
 </sequence>
</complexType>

3.1.3 Element <KeyUsage> String []

The <KeyUsage> element specifies the range of permitted key usages. The following
usages are defined:

The following schema defines the <KeyUsage> element:
<simpleType name="KeyUsageValue" base="string">
 <enumeration value="Encryption"/>
 <enumeration value="Signature"/>
 <enumeration value="Exchange"/>
</simpleType>

<element name="KeyUsage">
 <complexType>
 <all>
 <element name="string" type="s0:KeyUsageValue"
 minOccurs="0" maxOccurs="unbounded"/>
 </all>
 </complexType>
</element>

3.1.4 Element <PermittedAlgorithms> URI []

The <PermittedAlgorithms> element if present specifies the cryptographic
algorithms that are permitted for use with the established secret. If the element is not
present all algorithms are permitted.

The following schema defines the <PermittedAlgorithms> element:
<element name="PermittedAlgorithms" >
 <complexType >
 <sequence>
 <element name="string" type=“uriReference"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
</element>

Printed on Wednesday, August 15, 2001

 20

3.1.5 Element <PermittedProtocols> URI []

The <PermittedProtocols> element if present specifies the cryptographic
protocols that are permitted for use with the established secret. If the element is not
present all protocols are permitted.

The following schema defines the <PermittedProtocols> element:
<element name="PermittedProtocols" >
 <complexType >
 <sequence>
 <element name="string" type=“uriReference"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

3.1.6 </element>Element <DataLimit> Integer

The <DataLimit> element if present specifies the maximum amount of data in bytes
that is to be either encrypted or authenticated using the established secret.

The following schema defines the <DataLimit> element:
<element name="DataLimit" type="integer"
 minOccurs="1" maxOccurs="1"/>

3.1.7 Elements <Requestor>, <Respondent> <ds:KeyInfo>

The <Requestor> and <Respondent> elements contain the credentials CA , CB of
the requestor and responder respectively.

The following schema defines the <Requestor> and <Respondent> elements:
<element name="Requestor" type="ds:KeyInfo"
 minOccurs="1" maxOccurs="1"/>
<element name="Respondent" type="ds:KeyInfo"
 minOccurs="1" maxOccurs="1"/>

3.2 Cryptographic Data Elements

3.2.1 Element <EncryptedSecret>

The <EncryptedSecret> element contains the value E (sL, ss) in a response in
base64 encoding.

The following schema defines the <EncryptedSecret> element:
<element name="EncryptedSecret" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>

3.2.2 Element <ResponderAuthentication>

The <ResponderAuthentication> element contains the value M(E (sL, ss), sL) in a
response in base64 encoding.

Printed on Wednesday, August 15, 2001

 21

The following schema defines the <ResponderAuthentication> element:
<element name="ResponderAuthentication" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>

3.3 Key Agreement With Encryption Credentials

3.3.1 Element <EncryptedNonce>

The <EncryptedNonce> element contains the value E (nA, KB) in a request and E (nB,
KA) in a response in base64 encoding.

The following schema defines the <EncryptedNonce> element:
<element name="EncryptedNonce" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>

3.3.2 Element <EncryptedKeyAgreement>

The <EncryptedKeyAgreement> element contains the values E (nA, KB), CA, O�
sent in a the key agreement using encryption credentials request.

The following schema defines the <EncryptedKeyAgreement> element:
<complexType name="EncryptedKeyAgreement">
 <sequence>
 <element name="Context" type="s0:Context"/>
 <element name="EncryptedNonce" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>
 </sequence>
</complexType>

3.3.3 Element <EncryptedKeyAgreementResponse>

The <EncryptedKeyAgreementResponse> element contains the values E (nB,
KA), E (sL, ss), O, L, CA, CB sent in a the key agreement using encryption credentials
request

The following schema defines the <EncryptedKeyAgreementResponse>
element:
<complexType name="EncryptedKeyAgreementResponse">
 <sequence>
 <element name="Context" type="s0:Context"/>
 <element name="EncryptedNonce" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>
 <element name="EncryptedSecret" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>
 </sequence>
</complexType>

Printed on Wednesday, August 15, 2001

 22

3.4 Key Agreement With Signature Credentials

3.4.1 Element <DiffieHellemanPublic>

The <DiffieHellemanPublic> element specifies the public Diffie-Helleman
parameters.

The following schema defines the <DiffieHellemanPublic> element:
<complexType name="DiffieHellemanPublic">
 <sequence>
 <element name="Modulus" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>
 <element name="Public" type=“cryptoBinary"
 minOccurs="1" maxOccurs="1"/>
 </sequence>
</complexType>

3.4.2 Element <SignedKeyAgreementData>

The <SignedKeyAgreementData> specifies the data that is signed to create the
value S ((DA, CA, O�), kA) in a request and S ((DB, ,O, L, CA, CB), kB) in a response.

The following schema defines the <SignedKeyAgreementData> element:
<complexType name="SignedKeyAgreementData">
 <sequence>
 <element name="Context" type="s0:Context"/>
 <element name="Context" type="s0:DiffieHellemanPublic"/>
 </sequence>
</complexType>

3.4.3 Element <SignedKeyAgreement>

The <SignedKeyAgreement> element contains the value S ((DA, CA, O�), kA) sent in
a the key agreement using signature credentials request.

The following schema defines the <SignedKeyAgreement> element:
<complexType name="SignedKeyAgreement">
 <sequence>
 <element name="Context" type="s0:SignedKeyAgreementData"/>
 <element name="Context" type="ds:Signature"/>
 </sequence>
</complexType>

3.4.4 Element <SignedKeyAgreementResponse>

The <SignedKeyAgreementResponse> element contains the values S ((DB, ,O, L, CA,
CB), kB), E (sL, ss) sent in a the key agreement using signature credentials request

The following schema defines the <SignedKeyAgreementResponse> element:
<complexType name="SignedKeyAgreement">
 <sequence>
 <element name="SignedKeyAgreementData"

Printed on Wednesday, August 15, 2001

 23

 type="s0:SignedKeyAgreementData"/>
 <element name="Signature" type="ds:Signature"/>
 <element name="EncryptedSecret" type="s0:EncryptedSecret"/>
 </sequence>
</complexType>

Printed on Wednesday, August 15, 2001

 24

Appendix A Algorithm and Protocol Identifiers

A.1 Message Digest

[These values as defined in XML Signature]

SHA-1

A.2 Message Authentication Code

[These values as defined in XML Signature]

HMAC-SHA1

A.3 Symmetric Encryption

[These values as defined in XML Encryption]

AES

3DES

A.4 Public Key Signature

[These values as defined in XML Signature]

RSA

DSA

A.5 Public Key Encryption

[These values as defined in XML Encryption]

RSA

A.6 XML Canonicalization

[These values as defined in XML Signature]

Canonical-XML

A.7 Cryptographic Protocols

At present there is no standard identifier for IETF cryptographic protocols other than the
RFC number. Many protocols are specified in multiple documents. We use the http

Printed on Wednesday, August 15, 2001

 25

retrieval locator for the principal RFC specifying the protocol in the IETF repository as
the identifier for the corresponding cryptographic protocol.

The following identifiers are defined

IPSEC
http://www.ietf.org/rfc/rfc2401.txt (v1.0)

DNSSEC
http://www.ietf.org/rfc/rfc2535.txt (tsig)
http://www.ietf.org/rfc/rfc2931.txt (sig(0))

S/MIME
http://www.ietf.org/rfc/rfc2630.txt (CMS)
http://www.ietf.org/rfc/rfc2311.txt (v2.0)
http://www.ietf.org/rfc/rfc2633.txt (v3.0)

SSL 3.0 / TLS
http://www.ietf.org/rfc/rfc2246.txt (TLS)

Kerberos
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-revisions-08.txt
(v5.0)

http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2535.txt
http://www.ietf.org/rfc/rfc2931.txt
http://www.ietf.org/rfc/rfc2630.txt
http://www.ietf.org/rfc/rfc2311.txt
http://www.ietf.org/rfc/rfc2633.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-revisions-08.txt

Printed on Wednesday, August 15, 2001

 26

Appendix B Examples

B.1 Key Exchange Using RSA Encryption Credentials

Request

Response

B.2 Key Exchange Using RSA Signature Credentials

Request

Response

B.3 Key Exchange Using DSA Signature Credentials

Request

Response

Printed on Wednesday, August 15, 2001

 27

Appendix C References

[Schneier] B. Schneier, Applied Cryptography 2nd Edition
[SOAP] D. Box, D Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,

H. Frystyk Nielsen, S Thatte, D. Winer. Simple Object Access
Protocol (SOAP) 1.1, W3C Note 08 May 2000,
http://www.w3.org/TR/SOAP

[WSDL] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web
Services Description Language (WSDL) 1.0 September 25, 2000,
http://msdn.microsoft.com/xml/general/wsdl.asp

[XKMS] et al. XML Key Management Specification 1.1, W3C Note XX
XXX 2001

[XML-SIG] D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon.
XML-Signature Syntax and Processing, World Wide Web
Consortium. http://www.w3.org/TR/xmldsig-core/

[XML-SIG-XSD] XML Signature Schema available from
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-
core-schema.xsd.

[XML-Enc] XML Encryption Specification, In development.
[XML-Schema1] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn. XML

Schema Part 1: Structures, W3C Working Draft 22 September
2000, http://www.w3.org/TR/2000/WD-xmlschema-1-20000922/,
latest draft at http://www.w3.org/TR/xmlschema-1/

[XML-Schema2] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes; W3C
Working Draft 22 September 2000,
http://www.w3.org/TR/2000/WD-xmlschema-2-20000922/, latest
draft at http://www.w3.org/TR/xmlschema-2/

http://www.w3.org/TR/SOAP
http://msdn.microsoft.com/xml/general/wsdl.asp
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-schema.xsd
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-schema.xsd
http://www.w3.org/TR/2000/WD-xmlschema-1-20000922/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2000/WD-xmlschema-2-20000922/
http://www.w3.org/TR/xmlschema-2/

Printed on Wednesday, August 15, 2001

 28

Appendix D Legal Notices

Copyright

© VeriSign Inc (2001). All Rights Reserved.

Intellectual Property Statement

Neither the authors of this document, nor their companies take any position regarding the
validity or scope of any intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither do
they represent that they have made any effort to identify any such rights.

Disclaimer

This document and the information contained herein is provided on an "AS IS" basis and
THE AUTHORS AND THEIR COMPANIES DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

	Introduction to this Document
	Structure of this document
	Architecture
	Data Flow
	Key Exchange Mechanisms
	Key Exchange Using Encryption Credentials
	Key Exchange Using Signature Credentials

	Asset/Risk/Threat (ART) Analysis
	Assets
	Risks
	Threats
	[T-IMP] Impersonation
	Impersonation of A Attack
	Impersonation of B Attack

	[T-MIM] Man in the Middle
	[T-REP] Replay Attack
	[T-DOS] Denial of Service
	[T-SUB] Protocol Substitution

	Context Binding
	Label
	Validity Interval
	Acceptable Key Usage
	Acceptable Algorithm
	Data Limit

	Message Set in XML Syntax
	Element <Context>
	Element <Label> URI
	Element <ValidityInterval>
	Element <KeyUsage> String []
	Element <PermittedAlgorithms> URI []
	Element <PermittedProtocols> URI []
	</element>Element <DataLimit> Integer
	Elements <Requestor>, <Respondent> <ds:KeyInfo>

	Cryptographic Data Elements
	Element <EncryptedSecret>
	Element <ResponderAuthentication>

	Key Agreement With Encryption Credentials
	Element <EncryptedNonce>
	Element <EncryptedKeyAgreement>
	Element <EncryptedKeyAgreementResponse>

	Key Agreement With Signature Credentials
	Element <DiffieHellemanPublic>
	Element <SignedKeyAgreementData>
	Element <SignedKeyAgreement>
	Element <SignedKeyAgreementResponse>

