
Requirements for XML Document Database Systems
Airi Salminen

Dept. of Computer Science and Information Systems
University of Jyväskylä

Jyväskylä, Finland
+358-14-2603031

airi@cs.jyu.fi

Frank Wm. Tompa
Department of Computer Science

University of Waterloo
Waterloo, ON, Canada

+1-519-888-4567 ext. 4675

fwtompa@db.uwaterloo.ca

ABSTRACT
The shift from SGML to XML has created new demands for
managing structured documents. Many XML documents will be
transient representations for the purpose of data exchange
between different types of applications, but there will also be a
need for effective means to manage persistent XML data as a
database. In this paper we explore requirements for an XML
database management system. The purpose of the paper is not to
suggest a single type of system covering all necessary features.
Instead the purpose is to initiate discussion of the requirements
arising from document collections, to offer a context in which to
evaluate current and future solutions, and to encourage the
development of proper models and systems for XML database
management. Our discussion addresses issues arising from data
modelli ng, data definition, and data manipulation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – textual databases;
I.7.1 [Document and Text Processing]: Document and Text
Editing – document management.

General Terms
Management, Design.

Keywords
XML, structured documents, XML database systems, data
modelli ng, data definition, data manipulation.

1. INTRODUCTION
SGML has been a widely used markup language for defining and
representing structured documents since its publication in 1986
[30]. The ongoing shift from SGML to XML is creating new
demands for the management of structured documents. Compared
to SGML, the variety of applications expected to use XML is
much wider. On the one hand, XML will have an extended use in
the application areas where SGML and HTML have already been
commonly used, for example, in technical documentation of
manufacturing companies, book publishing, and Web publishing.

On the other hand, XML will also be used in ways SGML and
HTML were not, most notably as the data exchange format
between different applications. As was the situation with
dynamically created HTML documents, in the new areas there is
not necessarily a need for persistent storage of XML documents.
Often, however, document storage and the capabilit y to present
documents to a human reader as they are or were transmitted is
important to preserve the communications among different parties
in the form understood and agreed to by them.

Effective means for the management of persistent XML data as a
database are needed. We define an XML document database (or
more generally an XML database, since every XML database
must manage documents) to be a collection of XML documents
and their parts, maintained by a system having capabiliti es to
manage and control the collection itself and the information
represented by that collection. It is more than merely a repository
of structured documents or of semistructured data. As is true for
managing other forms of data, management of persistent XML
data requires capabiliti es to deal with data independence,
integration, access rights, versions, views, integrity, redundancy,
consistency, recovery, and enforcement of standards.

A problem in applying traditional database technologies to the
management of persistent XML documents lies in the special
characteristics of the data, not typically found in traditional
databases. Structured documents are often complex units of
information, consisting of formal and natural languages, and
possibly including multimedia entities. The units as a whole may
be important legal or historical records. The production and
processing of structured documents in an organization may create
a complicated set of documents and their components, versions
and variants, covering both basic data and metadata. Thus, to
accommodate structured documents and support typical
applications’ needs, Arnold-Moore, Fuller, and Sacks-Davis have
described a structured document management system as an
“authoritative document repository” that includes the following
features [5]:

• on-the-fly creation of renditions
• automatic transformations
• access control at the element level
• access to elements (component versioning)
• intensional versioning
• human-readable description of changes
• extended search capabiliti es
• document-based workflow

However, XML imposes yet further demands:

• Closely related W3C specifications that extend the
capabilities specified in XML 1.0 [12], such as XML
Namespaces [11], XML Schema [8, 27, 48], and XLink [24],
should be accommodated when developing XML database
solutions. The accommodation should adapt to the
continuing development and re-development of the
specifications.

• XML is intended especially for use on the Internet.
References in XML documents refer to Internet resources,
and thus XML database systems should include Internet
resource management. In the Internet environments
integration of the management of structured documents with
the management of other kinds of documents and data is also
important.

• An SGML document was always associated with a DTD1,
and the DTD could be used in many different ways to
support the data management. XML documents do not
always have an associated DTD.

The database research community has been actively investigating
XML (see, for example, [1] and [49]). Much of the effort has been
directed at using XML as a database wrapper and mediation
medium, using XML to describe Web resources, storing and
indexing XML in traditional database systems, understanding the
interaction of DTDs with constraint and typing mechanisms, and
designing query languages for XML. In an influential paper,
Maier examined XML query language proposals from the
database perspective [38], but broader management issues
peculiar to XML databases have not yet received much attention.

2. THE DATA MODEL
A well-defined database system is based on a well-defined data
model. The complexity of XML-related data repositories and the
need to integrate the management of structured documents with
the management of other types of data creates a special challenge
for the underlying data model. In research papers the XML data
model is often simplified to a labeled tree, or a directed graph,
including elements with their character data, and attributes with
their values. Sometimes the elements are ordered (e.g. [28]), and
other times they are not (e.g. [3]). This kind of simplified model
may be sufficient for developing capabilities dealing with the
hierarchic structure of elements. To be able to manage XML
documents as a database, however, requires a richer data model.
We present three data model features that we regard as important
for the underlying data model.

2.1 Modelling Document Collections As Well
As Enterprises
Unlike conventional databases, the data in a document database
does not represent an enterprise directly. Instead it represents a
collection of documents, which, in turn, captures the information
embodying the enterprise. The data model should support the
description of the documents as they are built from multimedia

1 A DTD was required in the original specification of the SGML

standard [30]. Annex K published in 1997 [33] distinguishes
two kinds of SGML documents: type-valid and fully-tagged. A
fully-tagged SGML document does not require an associated
document type declaration.

storage units and symbols, as well as the description of the
enterprise reflected by the information in the documents’ contents.
This has always been a major challenge for text data modelli ng
[42].

The XML 1.0 specification defines the components of individual
XML documents, partitioning them into logical structures
(“declarations, elements, comments, character references, and
processing instructions, all of which are indicated in the document
by explicit markup”) and physical structures (entities, which may
include entity references). The text stored within these structures
may represent character data, markup, white space, or end-of-line
markers. These two structures are described by grammar rules in
the XML 1.0 specification, and these rules define what is an XML
document. The specification is the basis for standardized data
exchange between different types of applications, and therefore
XML database systems must preserve and present the standard
format.

Abstract structures for XML documents have been developed in
four different specifications proposed through W3C: the Infoset
model [21], the XPath data model [18], the DOM model [6, 37],
and the XQuery 1.0 and XPath 2.0 Data Model [29]. These
models do not describe explicit text markup, but they do describe
document structure, which is often used to encode enterprise data.
Markup languages like XML can be used in various ways, but
typically markup is intended for computers to process documents,
and the character data is intended to be represented to human
readers. Following this convention the character data, in other
words the content of XML elements without markup, often
represents enterprise data. Thus the element declarations of the
document type declaration typically define the structure of an
enterprise, and comments and processing instructions are not part
of the enterprise data. Attributes, however, are sometimes used for
metadata and sometimes used to encode enterprise data
components (either to avoid imposing an order or to refer to
externally stored components).

Table 1 summarizes the features of the four W3C data model
specifications. Each of the models describes an XML document as
a tree, but there are differences in the trees. Although these
variations may not impact the models’ abilit y to represent
enterprise data for most applications, they do impact the abilit y to
provide consistent and uniform management of documents across
diverse applications.

It is important to note that among the four models only the
XQuery 1.0 and XPath 2.0 Data Model acknowledges that the
data universe includes more than just a single document.
Furthermore, it is also the only model that includes interdocument
and intradocument links in a distinct node type (i.e., Reference).
An XML database system should be built on a model that
supports collections of inter-related documents, only some of
which are validated against document type declarations, together
with document fragments and other related forms of data.

2.2 Conceptual Model for Documents
It is well accepted by the database community that data should be
managed through a three-level architecture that separates the
conceptual model from an internal model and a set of external
models. Furthermore, it is understood that data independence
relies on the principle that the conceptual model is shielded from
the physical arrangement of the data on storage devices and

embodies the “universe of discourse” for all applications, which
must access the data through the external models [34].

Applying these principles to an XML database necessitates that
the conceptual model incorporates not only all the objects and
relationships that are to be modeled in the enterprise, but also all
the document components that are to be made available to any
XML application. With such a universal conceptual model at its
core, an XML database can then include external models that
view the database as having only document features or only
enterprise features, or any combination of document and
enterprise features that are required for various classes of
applications. The production rules of the XML 1.0 specification
offer a basis for such a universal model, since they define all of
the information encoded in an XML document. Unfortunately, in
contrast to the relational model, a model covering the physical and

logical structure of the XML specification is intricate and very
detailed. Nevertheless, the details are needed if the model is to
serve as a basis both for views describing the document and for
views describing the enterprise. Both views are also important to
describe collections digitized legacy paper documents, often
having a requirement to capture both the enterprise features and
the original rendition features.

2.3 Well-defined Equivalence
Electronic documents are often legal, historic, or business
transaction records, and queries against such documents typically
involve entities and relationships that represent features of the text
itself as well as features of the businesses involved in the
contractual agreements. For an XML database one fundamental
semantic issue is document equivalence [40]: when are two

Table 1. Characteristics of the four XML data models

XML Information Set [21] XPath 1.0 data model [18] DOM 1.0 Level 2 [37] XQuery 1.0 and XPath 2.0
data model [29]

Purpose To provide a set of definitions
for use in other specifications
that need to refer to the
information in an XML
document.

To provide the basis for the
XPath language
specification, which in turn
is intended to be a
component that can be used
by other specifications,
primarily by XPointer and
XSLT.

To provide the basis for a
platform- and language-
neutral interface that allows
programs and scripts to
access and update the
content and structure of
documents dynamically.

To define precisely the
information contained in the
input to an XSLT or XQuery
processor, and to define all
permissible values of
expressions in the XSLT,
XQuery, and XPath
languages.

Development phase Proposed Recommendation Recommendation Recommendation Working Draft
What is modelled? XML document XML document XML (or HTML) document Sequences of XML

documents or parts
of node types in
the tree structure

11 7 12 8

Node types Document
Document Type Declaration
Unparsed Entity
Notation
Element
Attribute
Namespace
Processing Instruction
Comment
Unexpanded Entity Reference
Character

Root
Element
Attribute
Namespace
Processing instruction
Comment
Text

Document
DocumentFragment
DocumentType
Entity
Notation
Element
Attr
ProcessingInstruction
Comment
EntityReference
CDATASection
Text

Document
Element
Attribute
Namespace
Processing instruction
Comment
Reference
Text

DTD or XML
Schema validity
required?

no no no validity required if there is
an associated XML Schema
or DTD; otherwise no

Examples of
information omitted

- the order of declarations
within the DTD

- content models of elements
- document type name
- difference between two
forms of empty elements

- comments in the DTD
- the boundaries of CDATA
marked sections

- the order of attributes within
a start tag

- the location of declarations
(whether in internal or
external subset or parameter
entities)

- all what is listed missing in
the Infoset model

- all information about
entities

- distinction between default
attribute values and
specified attribute values

- information about the type
of an attribute (e.g. ID,
IDREF, ENTITY)

- all information about
parameter entities

- information about the
external subset

- declarations as such and
their location

- types of attributes

- all information that is
missing from the Infoset
model

- all information about
entities

- distinction between default
attribute values and
specified attribute values

documents or document parts or document DTDs the same? For
example, before inserting a document into the database, we might
want to find out if the same document is already in the database.
The question of equivalence is important in satisfying
requirements for evidence and archiving, for version management,
for metadata management, and (as is true of all forms of data) for
query optimization.

The XML 1.0 specification does not define equality of documents
or equality of entities, nor do the Infoset, XPath, or DOM models.
The XQuery 1.0 and XPath 2.0 Data Model includes one equality
operator to test node identity and another to test equality of
values. However semantics for the equality of node values does
not encompass all data from XML documents. W3C has proposed
that Canonical XML [10] be used to compare the equivalence of
two documents. The canonical form is created by a process called
canonicalization either from an XPath node set or an octet stream
containing a well -formed XML document. In both cases
canonicalization omits some of the information in the original
XML document. Since such a canonical form does not contain all
information from an XML document, this definition of
equivalence may not satisfy all applications’ needs. One solution
is to define document equivalence in terms of a model that
includes all document features, after which application-dependent
definitions of equivalence can be specified by applying document
equivalence to application-specific transformations of the
documents to be compared.

3. DATA DEFINITION
3.1 Data Types
The XML specification offers the capabilit y to define document
types, element types, and the type of an attribute (e.g., CDATA,
ID, IDREF, ENTITY, NMTOKEN), but the content of atomic
elements always consists of text. Maier and others have
highlighted the need for broader data typing mechanisms to allow
more powerful constraining mechanisms than is available in
XML. These require the development of a suitable Data
Definition Language (DDL) together with a corresponding Data
Manipulation Language (DML) with appropriate operations for
each kind of data [38].

The XQuery 1.0 and XPath 2.0 Data Model describes an XML
document as one that may be associated with an XML Schema
after schema validation. The value of an attribute and an atomic
element can be one of nineteen primitive data types defined in the
XML Schema specification.

3.2 Document Types
As well as supporting a variety of base types, an XML database
system should support collections that include multiple document
types. The language for describing the types should include all the
functionality of DTDs, since they are fundamental to XML
definitions and will li kely be central in data interchange. Each of
the several schema languages developed or under development for
XML provides a mechanism to constrain the structure and content
of a class of XML documents [20]. The primary purpose of these
languages has been to allow the validation of a given well -formed
XML document against a schema. However, in the context of
XML databases, it is expected that these languages will also serve
as the means to specify which operations on the data are valid.

3.3 Data Collections
The DDL should allow the definition of collections of XML
documents and document parts, together with collections of
values of various data types that are not required to be (even
logically) a part of any document. Towards this end, the W3C
proposal for the XQuery 1.0 and XPath 2.0 Data Model supports
a “flat” sequence collection, not allowing sequences inside
sequences. To be able to apply a query language to collections,
the DDL should offer the capabilit y to define such collections. In
addition, the capabilit y to declare collection hierarchies is
important, for example, to support flexible definition of access
rights and views.

3.4 Document Type Collections
Structured document management often requires a versatile
collection of document types, even for the same material. Case
studies confirm that production and publication of structured
documents often requires multiple document type definitions that
represent various versions developed over time as well as several
variants covering different phases of document production [26,
35, 43]. Furthermore, these studies confirm that the data content
should be preserved in its variant forms corresponding to different
document type definitions.

The DDL of an XML database system should support the
definition of multiple document type definitions, their
organization into manageable collections, their presentation as
data (typically in XML format), and their role as metadata
constraining other data in the database instance. Furthermore, the
DDL should provide capabiliti es to manage different document
type definition versions and variants and do so as new document
type definitions are created and existing ones are updated.

The need for several document type definitions for the same
material and for different document type definition versions has
partly evolved from the immaturity of software and from the
experimental nature of SGML and XML solutions for document
creation. In light of the growing use of XML for various types of
data and the simultaneous increase in the diversity of presentation
media, it is clear that the need for managing rich collections of
document type definitions in a single environment will i ncrease.
Since XML involves many forms of data manipulation, many
forms of media, and many persons having diverse quali fications
and application needs, all i n the presence of continually changing
international and industry-level standards, document type
definitions will be “alive,” and the database system should
support the management of their evolution.

3.5 Multiple Levels of Validity
A database should support multiple levels of validity for XML
data. For example, we may wish to define a database
subcollection or a view consisting of

• non-XML data values from a set of types (e.g., numbers,
dates, strings, images, tables),

• well -formed XML documents,
• valid XML documents, each associated with some document

type definition provided by a user or application,
• valid XML documents, each associated with a document type

definition from a closed set known to the database system

(either predetermined by the database administrator or pre-
registered by some application), or

• parts of well -formed or valid XML documents.

In this context, therefore, the DDL should support not only the
declaration of XML data and its level of validity but also the
declaration of the type of XML schema definition against which
validity is to be judged and the schema declaration itself.

We note that the adoption of XML Schema will have a major
impact on content authoring, which will i ncrease the need for
multiple levels of validity in XML databases. The inclusion of a
rich data type mechanism in XML schema languages has been
motivated primarily by the needs of electronic commerce, where
much data is numeric and produced by software. However, this
will make document creation by humans still more challenging
than earlier, when constraint checking was restricted to
conformance with an XML 1.0 DTD. In the future, authors must
also understand the variety of data types used in the schema and
ensure that the documents they create conform to the richer
constraint mechanisms. Thus, the extent to which rich data types
are adopted in document authoring by humans and in which
phases of content production they are introduced will i nfluence in
how many different stages of validation documents will be stored
in the database.

3.6 Entities and URIs
Entities are used in XML document repositories to avoid
redundancy. For example, a technical documentation suite may
involve thousands of images, and a specific image may be used in
several places. Each image is stored once as an image file, and the
documents or elements containing the image refer to the file by an
entity reference. Similarly, pieces of text defined as entities can be
reused in different places of documents of a document collection
via entity references. In XML, references to entities internal to a
document are shorthand notations that are replaced by their values
in the abstract structure of the document, as if they were
parameterless macros. External entities, however, are referenced
by URIs, and in the abstract structure their contents remain
outside the entities from which they are referenced.

The central idea in the specification of XML and the URI
addressing mechanism has been to create a human readable
notation for information management on the Internet, where
readabilit y encompasses the physical structure as well as the
logical structure of documents. The URIs of accessible entities
must be available to applications, and they will also be stored
beyond a single enterprise’s control in extranet environments,
where several organizations share database resources. In the
absence of careful attention, therefore, entities, files, and URIs
will violate data independence by exposing to application
programs some storage decisions made at the internal level of an
XML database.

In conclusion, it is tempting to relegate entities to the internal
schema as a means to reduce storage redundancy. However,
because XML applications may well rely on resources that are
external to the database, they will depend on the entity-URI
mechanism. Thus, an XML database system should support
entities at the conceptual schema level and use a complementary
mechanism internally.

3.7 Support for Namespaces
XML namespaces provide a method for quali fying element and
attribute names in XML documents by associating them with
namespaces identified by URI references. To be able to use
particular namespaces for a specific database, the DDL should
include a capabilit y to define the names included in a namespace
and optionally the data types that are to be associated with those
names (for situations in which applications are dependent on the
types). As Maier has already noted, the database system should
also provide views of XML documents in which the presence of
document-specific namespace identifiers are replaced by
document-independent identifiers (i.e., fully expanded URIs in
general).

3.8 Document Indexing
Document indexing assigns content indicators, called index terms,
to documents. These terms are then used by retrieval systems to
access the documents. For many applications, a human indexer
may choose the terms, as is almost inevitably done for indexing
non-text documents. Other applications rely on full-text indexing,
in which a subset of words (or phrases) occurring in a document
are chosen as index terms and assigned to the document. The
appropriateness of a full -text indexing method to a specific
document repository depends on the language and content domain
of its documents. For example, the indexing terms that are
effective for a repository of English novels will perform poorly
when used against a repository of Finnish technical
documentation.

The DDL for an XML database should allow application
programs to specify the rules for indexing documents (and the
data manipulation language should provide faciliti es for querying
the indexing rules and for choosing which indexes to use to
execute a given query). This need extends to indexing structure as
well as text content. Furthermore, the DDL should have faciliti es
to bind a collection of such rules to the whole database, to a
subcollection of the database, or to a view.

3.9 User Roles and Access Rights
An XML database including data for a variety of purposes and
diverse users needs role-based access control [7, 22, 36].
Definition of role hierarchies, the hierarchic structure of XML
documents, and hierarchic document containers allow the
specification of very fine-grained authorization. The challenge for
XML database systems is to support such fine-grained access
control eff iciently in very large database environments with very
many users, each shifting among many possible roles.

4. DATA MANIPULATION
The development of XML query languages has been based on
extensive discussion about the desired characteristics of such
languages [38, 15]. We will not repeat all those characteristics
here; instead we discuss those characteristics of the Data
Manipulation Language (DML) that are important for
manipulating persistent XML data in a controlled way, in the
context of a system having the definition capabiliti es described in
Section 3.

4.1 Queries
In an XML database we should be able to express queries in terms
of all data in the database, including entities, URIs, tags,

comments, processing instructions, schemas and other metadata.
The latest proposals for XML query languages, including Lorel
[31], XML-QL [25], XQL [41], and XQuery [14] all omit some
of the data from XML documents. The document type definition,
entities, entity references, and notations are not accessible through
any of these languages, and Lorel also ignores comments and
processing instructions. Each item of data, however, may provide
important information for managing parts of the database.

4.2 Transformations
In traditional databases the most important group of operations
consists of queries. In structured document management
environments transformations are typically at least as important as
queries that retrieve a subset of data. Hence the DML should
include flexible means to specify transformations for various
needs [47].

At some level, there is no clear distinction between queries and
transformations, which has led to extensive discussions
surrounding the roles of XQuery and XSLT and whether the
efforts in one of these directions should be abandoned in favour of
the other (http://www.xml.org/xml-dev/). Nevertheless, in a
traditional database query we specify the data we wish to retrieve,
and the form of the result is of secondary interest, often
determined largely by the data model or by the system. In
contrast, a transformation specification is primarily concerned
with the form of the result and secondarily includes criteria to
include or omit various parts. Transformations are needed, for
example, for the following purposes:

Rendering. Flexible rendering capabiliti es are not important in
databases where XML is primarily used for data exchange
between applications and the database is an archive of
transactions. In the rare occasions when the data is presented to a
human reader, some simple predefined external format may be
appropriate. However, such limited control is not satisfactory for
many applications.

Because presentation media for documents are diverse and new
media are continuously being developed, there should be flexible
means to specify how to render XML on various types of media.
The specification may require first a transformation of the content,
and then the attachment of layout information. For example,
displaying the content of an HTML page on a small screen of a
mobile device may require removal of images, partitioning the
page into clusters suitable to the small screen, and adding some
style information. The XML database system should provide
capabiliti es both for persistent storage of specifications for
rendering, such as XSL style sheets [4] together with XSLT
transformation descriptions [17] and for dynamic production of
external presentations.

Integration support. An XML database system should include
capabiliti es to import and export data between the database and
other systems. This typically requires some transformation of the
data.

Schema evolution. In Section 3, we discussed the problem of
multiple document type definitions in XML document production
environments. Because changes in document type definitions are
quite common, there is often a need to transform existing data to
correspond to a new definition.

Views. In all databases, view definition capabilit y is an important
means to provide data independence in the presence of database
growth and restructuring, to allow data be seen in different ways
by different applications, and to provide security for hidden data.
The complexity and evolving nature of XML databases makes a
view definition mechanism critical to a system’s usabilit y.

Whether defining a virtual or materialized view, a view definition
typically hides part of the database. The DDL of an XML
database system should allow the hiding of the physical structure
of XML documents, specific types of documents or links, specific
elements or attributes in documents, all comments and processing
instructions in documents, style sheets, or a subset of metadata.
However, in addition to removal of data, an XML view
specification will t ypically include other transformations, for
example, to change element and attribute names or change the
order or hierarchical organization of elements. Whereas SQL and
other database systems specify views through their query
languages, it may be more appropriate in an XML database
system to base view definitions on a transformation language.

4.3 Document Assembly
Document assembly is the process of constructing a new
document from fragments of a collection of existing documents.
For example, the manufacturer of a complex piece of machinery
may create a large collection of documentation, from which
several manuals can be assembled to meet the needs of various
classes of users. To facilit ate flexible creation and update of
assembled documents, systems should offer support for the
specification of the assembly process, which typically includes a
compound operation involving several queries and
transformations.

4.4 Update
As for other database systems, the update operations for an XML
database include insertion, deletion, and replacement. The data
affected can be a whole document, part of a document, a file, a
URI, a style sheet, or any other unit. Furthermore the affected
component may be either basic data or metadata, such as a DTD, a
set of RDF descriptions for resources within the database or
outside it, or a set of links. The DML should provide mechanisms
for applications to distinguish updates that cause the creation of
new documents from those that create new versions or new
variants of existing document parts.

An application may activate an update by specifying a
transformation that is to persist in the store. In many environments
various users in different roles maintain the content of structured
document repositories through a complicated process in which
documents are developed gradually and collaboratively. Such
processes rely on XML editors and support for workflow
management and collaboration, which should be integrated with
XML database systems.

An XML database may contain various forms of reference: entity
references, intradocument IDREFs, and inter-document links,
where the links can be embedded HTML-like links or richer
XLink-type links. The requirement of referential integrity is an
important goal for an XML database, restricting updates such that
all entity references, IDREFs, and links to documents within the
database have existing targets. Traditional mechanisms to
disallow or to cascade updates that would otherwise violate
referential integrity should be supported.

A major concern in updating traditional databases has been
transaction management. Database systems include as part of their
DMLs capabiliti es for applications to specify the scope of each
transaction. In XML database systems, an XML document is a
natural unit for specifying the collection of operators that must be
executed as an atomic transaction, whether the data units to be
updated are documents, document fragments, or nodes. The DML
should include a mechanism in which an application request is
presented to the database system in the form of an XML
document. Examples of XML-based “ languages” to express
transactions that are common to various business sectors are being
continually developed (see, for example, [19]).

5. SYSTEMS FOR MANAGING
PERSISTENT XML DATA
In the time since the publication of the SGML standard, no widely
accepted single model or technology for the management of
SGML/XML document repositories as a database has evolved.
The generic names for candidate management systems have
varied, and the boundaries between types of systems are fuzzy.
For example, under the title of “XML database products” Ronald
Bourret separates the following categories: middleware, XML-
enabled databases, native XML databases, XML servers, XML
application servers, content management systems, and XML query
engines [9]. There are also activities towards developing
specialized search engines for XML documents on the Web.
These systems, such as Xyleme [51] and Niagara [39], bring new
information management capabiliti es to the Web, but they cannot
be characterized as complete database systems. Below we
consider two broad categories of systems: native SGML/XML
systems and extensions of relational and object-oriented database
systems. We characterize the categories in terms of the features
we discussed in the previous sections: data model, data definition
and data manipulation.

5.1 Native SGML/XML Systems
Native SGML/XML systems are designed especially for the
management of SGML/XML data. The systems should include
capabiliti es to define, create, store, validate, manipulate, publish,
and retrieve SGML/XML documents and their parts. Some of the
native systems, such as Astoria [16] and Information Manager
[32], are comprehensive document management systems with
front-ends for users to work with documents. Some others, such
as SIM [44] and Tamino [46], are software packages intended for
building applications for the management of SGML/XML data. A
few systems, especially those that support semistructured data,
such as Lore [31], XYZFind [52], and dbXML [45], provide
native support for tree-structured data but are limited in their
support of rich XML documents because they do not rely
extensively on DTDs or other document type definitions.

The data model. As we discussed in Section 2, there is no single
well -defined data model for XML data. The lack of a well -defined
universal conceptual model causes problems in the native
systems: for example, the underlying model for XML data is not
explicitl y defined in Astoria or Tamino, and system-specific
notions and models have been invented in SIM. Many of the
systems consist of packages of tools that do not share a common
data model and may be limited in kind of XML documents they
are able to store and manipulate. Unfortunately, because the

systems do not highlight the details of the data model, such
inconsistencies and constraints are often diff icult to detect.

In Tamino the database data model is a tree, and a central notion
is the “XML object.” Nevertheless, the data model is not
explicitl y described, and the extensive glossary for Tamino’s
documentation does not include the notion of an XML object. The
data model derives from the data model of the XQL language
[41], which is the query language in Tamino (with some
limitations and some extensions). It consists of nodes,
representing elements and attributes in an XML document, and
parent-child relationships between them. The Tamino tree
structure lacks comments and processing instructions that form
part of the XQL structure. On the other hand, Tamino allows the
association of a set of data types to nodes in the tree.

Data definition. The capabilit y to define document types is an
important characteristic of XML, and we consider the document
type definition capabilit y an essential feature in systems of this
category. This aspect severely reduces the utilit y of semistructured
approaches for managing persistent XML resources. The systems
originally developed for SGML are able to use DTDs directly as
the document type definition with no translation to some other
form of schema. Additional definitions may be needed, however,
to support flexible manipulation and eff icient implementation. In
Astoria an important extension is provided by components, which
form the data unit for many operations. For example, access rights
are granted at the component level, components can have variants
and versions, and simultaneous update to a document by several
users is controlled at the component level.

Tamino provides a proprietary schema language for data
definition. The database can be defined to contain collections of
XML documents of given types and non-XML objects. Thus there
can be collections of document types and collections of
documents. A document type can be created from a DTD, but the
creation is not automatic. Tamino’s document type definition
capabiliti es both restrict and extend the definition capabiliti es of
DTDs. A Tamino document type does not include information
related to entities, attribute types, or URIs. Furthermore, some
information about the content models is simpli fied; for example,
information about optionality of an element is not saved. On the
other hand, a document type in Tamino includes definitions
related to indexing and data storage. There is no special support
for defining namespaces, and there are two essential forms of
validity: the validity of non-XML data with respect to their data
types and the validity of XML data with respect to the
corresponding Tamino document types. XML documents without
a Tamino schema can be stored in the database, but they are
stored as indexed text with no XML structure and thus are treated
as non-XML data. Versions can be defined at the database level,
and authorization is restricted to schemas.

Data manipulation. The lack of a standardized XML query
language has led to various system-specific query languages. In
addition, the simpli fied data models restrict query capabiliti es. For
example, since Tamino does not store information about attribute
types, queries utili zing IDs and IDREFs are impossible. The
response to a Tamino query is an XML document containing the
query result as tagged text, plus metadata related to the query (e.g.
date and time). Thus the query language cannot be applied
directly to query results unless a Tamino schema defines them as
part of the database. In content management systems such as

Astoria and Information Manager, parts of documents can be
updated by structure editors integrated with the systems. In both
of them style sheets can be associated with documents in their
associated editors, and transformations can be defined by means
of style sheets. Both of the systems also offer some capabiliti es for
document assembly. In Tamino, database update is applied at the
document level. The data storage mechanism for XML data
(called X-Machine) has an associated programming language that
includes commands for inserting and deleting documents. XSL is
used to transform XML documents to HTML for Web publishing,
but there is no additional support for defining transformations.

5.2 Extensions of Relational and Object-
oriented Database Systems
In this approach a relational or object-oriented database system is
extended to support SGML/XML data management. The
proposed SGML extensions included, for example, a system
where SGML files were mapped to the O2 database management
system [2], and the extension of operators of SQL to
accommodate structured text [13]. All current commercial
database systems provide some XML support. Examples of
commercial systems are Oracle’s XML SQL Utilit y [50] and
IBM’s DB2 XML Extender [23]. For the sake of discussion, we
consider IBM’s DB2 XML Extender as representative of the
many systems following this approach.

Data model. When conventional database systems are used for
XML, data structuring is systematic and explicitl y defined by a
database schema. The data model of the original system is
typically extended to encompass XML data, but the extensions
define simpli fied tree models rather than rich XML documents.
The XML extensions are intended primarily to support the
management of enterprise data, wrapped as elements and
attributes in an XML document. A problem in using the systems
is the need for parallel understanding of two different kinds of
data models.

Data definition. The extended systems require explicit definition
of transformation of a DTD to the internal structures. XML
elements are typically mapped to objects in object-oriented
systems, but relational systems require more elaborate
transformations to represent hierarchic and ordered structures in
unordered tables. In the DB2 XML Extender the whole document
can be stored either externally as a file or as a whole in a column
of a table. Elements and attributes can also be stored separately in
side tables, which can be accessed independently or used for
selecting whole documents (as if the side tables were indexes).
DTDs, which are stored in a special table, can be associated with
XML documents and used to validate them.

Data manipulation. In relational extensions, whole documents
and DTDs that are stored in tables can be accessed and
manipulated through the SQL database language. As explained
above, specific elements of XML data can be extracted when
documents are loaded, maintained separately, and accessed
directly through SQL. Support for accessing elements that have
not been extracted as part of document loading is provided
through limited XPath queries, and the DB2 XML Extender can
be used together with DB2 UDB Text for full -text search. DB2
also provides document assembly via a function call that can be
embedded in an SQL query.

6. CONCLUSION
In many environments collections of XML documents will be
carriers of large bodies of information related to a particular
enterprise or crossing enterprise boundaries. The information
must be securely accessible, often for a long time, despite
continuing changes both in technology and in participating
enterprises, and despite heterogeneity in the user community. The
special characteristics of XML data cause problems when
adapting database management principles and systems to XML
data. In this paper we have discussed these characteristics and
derived a set of desired features for XML database management
systems.

Data model, DDL, and DML design must be coordinated if the
resulting system is to be consistent. Much effort has been devoted
to data definition for the purpose of validation and to query
language features. We believe that now the highest priority is to
define a complete data model that covers enterprise and document
data, serves as a means to define conceptual schemas, and defines
the mechanism to answer whether any two items of data are
equivalent. We are encouraged by the move towards convergence
of the XPath and XQuery data models; if convergence with the
DOM and Infoset models were undertaken, a complete and stable
database model might evolve. DDLs and DMLs can then be
defined to include all components of the model.

We believe that priority should also be given to developing
mechanisms to manage collections of DTDs and other document
definitions along with managing the documents themselves. This
is especially important in the context of managing diverse
collections of documents, each of which encompasses many
versions and variants and subject to various levels of validity.

The purpose of the paper is to initiate discussion of the
requirements for XML databases, to offer a context in which to
evaluate current and future solutions, and to encourage the
development of proper models and systems for XML database
management. A well -defined, general-purpose XML database
system cannot be implemented before database researchers and
developers understand the needs of document management in
addition to the needs of more traditional database applications.

7. ACKNOWLEDGEMENTS
Ideas for this paper have arisen from many sources, and we
particularly thank members of the Database Research Group at the
University of Waterloo and of the inSGML project at the
University of Jyväskylä, as well as colleagues at Open Text
Corporation. We gratefully acknowledge the financial support
provided by the Academy of Finland (under Project 48989), the
University of Waterloo, the Natural Sciences and Engineering
Research Council of Canada, and Bell University Labs.

8. REFERENCES
[1] Abiteboul, S., Buneman, P., and Suciu, D. Data on the Web.

Morgan-Kaufmann, 2000.

[2] Abiteboul, S., Cluet, S., and Milo, T. Querying and updating
the file. in Proc. of the 19th Int. Conf. on Very Large Data-
bases (1993), 73-84.

[3] Abiteboul, S., Segoufin, L., and Vianu, V. Representing and
querying XML with incomplete information. in Proc. 20th

Symp. on Principles of Database Systems (2001), 150-161.

[4] Adler, S., Berglund, A., Caruso, J., Deach, S., Grosso, P.,
Gutentag, E., Milowski, A., Parnell , S., Richman, J., and
Zill es, S. (eds.). Extensible Stylesheet Language (XSL)
Version 1.0, W3C Candidate Recommendation 21 November
2000. http://www.w3.org/TR/2000/CR-xsl-20001121/.

[5] Arnold-Moore, T., Fuller, M., and Sacks-Davis, R.
Approaches for structured document management. Markup
Technologies (MT’1999).

[6] Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I.,
Le Hors, A., Nicol, G., Robie, J., Sutor, R., Wilson, C., and
Wood, L. (eds.). Document Object Model (DOM) Level 1
Specification Version 1.0, W3C Recommendation 1 October,
1998. http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001/.

[7] Bertino, E., Castano, S., Ferrari, E., and Mesiti , M.
Controlled access and dissemination of XML documents. in
Proc.2nd International Workshop on Web Information and
Data Management (1999), 22 – 27.

[8] Biron, B. V., and Malhotra, A. (eds.). XML Schema Part 2:
Datatypes, W3C Recommendation 02 May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[9] Bourret, R. XML Database Products. http://www.rpbourret.
com/xml/XMLDatabaseProds.htm, updated August 13, 2001.

[10] Boyer, J. Canonical XML Version 1.0, W3C Recommend-
ation, 15 March 2001. http://www.w3.org/TR/2001/REC-
xml-c14n-20010315.

[11] Bray, T., Hollander, D., and Layman, A. (eds.). Namespaces
in XML, World Wide Web Consortium, 14 January 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[12] Bray, T., Paoli , J., Sperberg-McQueen, C. M., and Maler, E.
(eds.). Extensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation 6 October 2000.
http://www.w3.org/TR/2000/REC-xml-20001006/.

[13] Brown, L. J., Consens, M. P., Davis, I. J., Palmer, C.R., and
Tompa, F. W. A structured text ADT for object-relational
databases. Theory and Practice of Object Systems 4, 4
(1998), 227-244.

[14] Chamberlin, D., Clark, J., Florescu, D., Robie, J., Siméon, J.,
and Stefanescu, M. (eds.). XQuery 1.0: An XML Query
Language, W3C Working Draft, 07 June 2001.
http://www.w3.org/TR/2001/WD-xquery-20010607/.

[15] Chamberlin, D., Fankhauser, P., Marchiori, M., and Robie, J.
XML Query Requirements, W3C Working Draft 15 February
2001. http://www. w3.org/TR/2001/WD-xmlquery-req-
20010215/.

[16] Chrystal Software, Astoria. http://www.chrystal.com/product/
astoria/index.htm, retrieved August 2001.

[17] Clark, J. (ed.). XSL Transformations (XSLT) Version 1.0,
W3C Recommendation, 16 November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

[18] Clark, J., and DeRose, S. (eds.). XML Path Language
(XPath) Version 1.0, W3C Recommendation 16 November
1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

[19] Cover, R. (ed.). The XML Cover Pages. http://www.oasis-
open.org/cover/, retrieved August 2001.

[20] Cover, R. (ed.). XML schemas. http://www.oasis-open.org/
cover/schemas.html, retrieved August 2001.

[21] Cowan, J., and Tobin, R. (eds.). XML Information Set, W3C
Proposed Recommendation 10 August 2001.
http://www.w3.org/TR/2001/PR-xml-infoset-20010810.

[22] Damiani, E., De Capitani di Vimercati, S., Stefano
Paraboschi, S., and Samarati, P. Fine grained access control
for SOAP E-services. in Proc. Tenth International World
Wide Web Conference (Hong Kong, May 2001), 504-513.

[23] DB2 Universal Database XML Extender, XML Extender
Administration and Programming. http://www-4.ibm.com/
software/data/db2/extenders/xmlext/docs/v71wrk/english/
index.htm, retrieved August 2001.

[24] DeRose, S., Maler, E., and Orchard, D. (eds.). XML Linking
Language (XLink) Version 1.0, W3C Recommendation, 27
June 2001. http://www.w3.org/TR/2001/REC-xlink-
20010627/.

[25] Deutsch, A., Fernandez, M., Florescu, D., Levy, A.Y., and
Suciu, D. XML-QL: a query language for XML, Submission
to W3C, NOTE-xml-ql-19980819 (19-August-1998).
http://www.w3.org/TR/NOTE-xml-ql/.

[26] Fahrenholz, S. SGML for electronic publishing at a technical
society – Expectations meets reality. Markup Languages:
Theory and Practice 1, 2 (Spring 1999), 1-30.

[27] Fallside, D.C. (ed.). XML Schema Part 0: Primer, W3C
Recommendation 2 May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

[28] Fan, W., and Libkin, L. On XML integrity constraints in the
presence of DTDs. in Proc. 20th Symp. on Principles of
Database Systems (2001), 114-125.

[29] Fernández, M., and March, J. (eds.). XQuery 1.0 and XPath
2.0 Data Model, W3C Working Draft 7 June 2001.
http://www.w3.org/TR/2001/WD-query-datamodel-
20010607/.

[30] Goldfarb, C. F. The SGML Handbook. Oxford University
Press, Oxford, UK (1990).

[31] Goldman, R., McHugh, J., and Widow, J. From
semistructured data to XML: Migrating the Lore model and
query language. in Proc. Int. Workshop on the Web and
Databases (WebDB’99) 1999, 25-30.

[32] Information Manager, Standard-based content manage-
ment, Interleaf. http://www.interleaf.com/products/im.htm,
retrieved August 2001.

[33] ISO/IEC JTC1/WG4 N1955, Document Description
Languages, 1997. http://www.ornl.gov/sgml/wg8/
document/1955.htm.

[34] Jardine, D. A. (ed.). The ANSI/SPARC DBMS Model.
North-Holland, 1977.

[35] Karjalainen, A., and Tyrväinen, P. Defining genres and their
features for studying information reuse: Preliminary findings.
in Proc. of IRMA 2001, Information Resources Management
Association International Conference (Toronto, May 2001),
Idea Group Publishing, 346-348.

[36] Kudo, M, and Hada, S. XML document security based on
provisional authorization. in Proc. 7th ACM Conf. on
Computer and Communications Security (Athens, Nov.
2000), 87-96.

[37] Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J.,
Champion, M., and Byrne, S. (eds.). Document Object
Model (DOM) Level 2 Core Specification Version 1.0, W3C
Recommendation 13 November, 2000. http://www.w3.org/
TR/2000/ REC-DOM-Level-2-Core-20001113.

[38] Maier, D. Database desiderata for an XML query language.
QL’98 – The Query Language Workshop, W3C, (Boston,
Dec. 1998).

[39] Naughton, D., DeWitt, D., Maier, D., Aboulnaga, A., Chen,
J., Galanis, L., Kang, J., Krishnamurthy, R., Luo, Q.,
Prakash, N., Ramamurthy, R., Shanmugasundram, J., Tian,
F., Tufte, K., Viglas, S., Wang, Y., Zhang, C., Jackson, B.,
Gupta, A., and Chen, R. The Niagara Internet Query System.
IEEE Data Engineering Bulletin 24,2 (2001), 27-33.

[40] Raymond, D. R., Tompa, F. W., and Wood, D. From data
representation to data model: meta-semantic issues in the
evolution of SGML. Computer Standards & Interfaces 18
(1996), 25-36.

[41] Robie, J. (ed.). XQL (XML Query Language), August 1999.
http://www.ibiblio.org/xql/xql-proposal.html.

[42] Salminen, A., and Tompa, F. W. Grammars++ for modelli ng
information in text. Information Systems 24, 1 (1999), 1-24.

[43] Salminen, A., Lyytikäinen, V., Tiiti nen, P., and Mustajärvi,
O. SGML for E-Governance: The case of the Finnish
Parliament. in Proc. 11th International Workshop on Data
and Expert Systems Applications (2000), 349-353.

[44] The Structured Information Manager.
http://www.simdb.com/, retrieved August 2001.

[45] Staken, K. dbXML Users Guide version 0.9, 2001/06/04.
http://www.dbxml.org/docs/UserGuide.html.

[46] Tamino Version 1.2.1. http://www.cs.uni-essen.de/dawis/
teaching/ss2000/nsdb/tamino/help/overview.htm, retrieved
August 2001.

[47] Tang, X., and Tompa, F. W. Specifying transformations for
structured documents. in Proc. 4th Int. Workshop on the Web
and Databases (WebDB) 2001, 67-72.

[48] Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn,
N. (eds.). XML Schema Part 1: Structures, W3C Recom-
mendation 2 May 2001. http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/.

[49] Vianu, V. A Web odyssey: from Codd to XML. in Proc. 20th

Symp. on Principles of Database Systems (2001), 1-15.

[50] Wait, B. Using XML in Oracle database applications, Nov.
1999. Oracle Corporation. http://technet.oracle.com/tech/
xml/info/htdocs/otnwp/about_xml.htm.

[51] Xyleme, L. A dynamic warehouse for XML data of the Web.
IEEE Data Engineering Bulletin 24,2 (2001) 40-47.

[52] XYZFind, The schema-independent native XML database.
http://www.xyzfind.com/product/, retrieved August 2001.

