
ToX – The Toronto XML Engine†

Denilson Barbosaa Attila Bartaa Alberto Mendelzona
George Mihailab Flavio Rizzoloa Patricia Rodriguez-Gianollia

aDepartment of Computer Science
University of Toronto

{dmb,atibarta,prg,mendel,flavio} @cs.toronto.edu

bIBM T.J. Watson Research Center
mihaila@us.ibm.com

We present ToX – the Toronto XML Engine – a repository for XML data and
metadata, which supports real and virtual XML documents. Real documents are
stored as files or mapped into relational or object databases, depending on their
structuredness; indices are defined according to the storage method used. Virtual
documents can be remote documents, defined as arbitrary WebOQL queries, or
views, defined as queries over documents registered in the system. The system
catalog contains metadata for the documents, especially their schemata, used for
query processing and optimization. Queries can range over both the catalog and the
documents, and multiple query languages are supported. In this paper we describe
the architecture and main of ToX; we present our indexing and storage strategies,
including two novel techniques; and we discuss our query processing strategy. The
project started recently and is under active development.

1 Introduction

XML was originally designed for allowing the representation of user-defined structure in
Web documents. However, it turned out to be also an elegant textual representation for
semistructured data [1]. As a consequence, it blurs the notions of data and document and
enables the joining of efforts from the Web and database management communities. Many
XML related projects have been conducted, both in academia and in industry: data models
and query languages been defined; tools and applications, mostly open source code, have been
developed; and a considerable standardization effort has been done. As a result, XML is
becoming the standard for representing information on the Web. Nevertheless, this is still a
very active field. Given the current size and growth tendency of the Web, efficient storage,
indexing and query processing of XML documents is of paramount importance.

 In this paper we introduce ToX, a repository for XML data and metadata. As such, ToX
storage units are documents1, which are registered, modified and eventually removed from the
system. For each document we typically store its data (i.e., its contents) and a set of related
metadata. The latter includes standard metadata (e.g., [7]), but we are particularly interested
in storing the schemata of the documents in the system. A schema defines a document type;
we assume that there will be more documents than types in the system. We maintain a catalog
containing entries for all documents and types registered in the system. ToX supports
heterogeneous data storage and indexing as well as multiple XML query languages. Virtual
documents, for which only metadata is stored, are defined as queries over either remote data
sources or documents in the system. In this setting, ToX can be used as a data integration
environment, where the data sources correspond to XML documents.

1 For clarity, hereafter we refer to document simply as an XML document, regardless of its contents.
†This work is supported by the National Science and Engineering Research Council of Canada, Bell University
Laboratories, and the IBM Centre for Advanced Studies.

The remainder of this document is organized as follows. In Section 2, we present the
notion of document structuredness, a key aspect for the efficient storage of XML documents.
ToX architecture and its main components are presented in Section 3. In Section 4 we briefly
discuss the automatic characterization of documents, one of our main goals in this project.
Section 5 presents EXIP, an executive information portal, which is our first data intensive
application for ToX. Finally, Section 6 draws some conclusions.

2 Document structuredness
Although XML can represent both textual documents (e.g., books) and data (e.g., a

catalog of books), documents in these categories differ greatly, not only in their characteristics
but also in the way they are indexed and queried. Consider an XML representation of a book.
Most elements are strings with varying length (e.g., a few words for the title and many
sentences for the paragraphs). Typical queries involve searching for words occurring in a
given context (Structured Information Retrieval [9]), thus requiring a full-text index. Other
typical query is to retrieve a large sequential portion of the document (e.g., a chapter of the
book). A book catalog, on the other hand, is expected to have many entries with a somewhat
similar, record-like structure involving different data types. Typical queries in this case access
many fragments of the data (e.g., aggregate queries) and yield small result sets (e.g.,
determining the lowest price among all Database books). For this scenario, traditional DBMS
indexing techniques are more adequate.

Given these differences, characterizing the documents is crucial for determining the best
storage and indexing strategy. We use the document structuredness, a fuzzy measure that
determines how close a document is to each extreme of this spectrum. We say a document has
low structuredness if it is similar to a textual document, for storing and indexing purposes.
Documents of the same type are expected to have equivalent structuredness. We also need to
determine a threshold value for deciding which storage and indexing approach to use for a
given document. Note, however, that structuredness is not the same as regularity in the
structure (i.e., a document might have low structuredness and a regular structure).

3 ToX architecture
The ToX architecture is depicted in Figure 1. The modules visible to the user are the

Document Manager and the Query Processor. The former allows the user to register, check-in,
check-out and remove documents in the repository. This module is also responsible for
determining the storage and indexing strategy for incoming documents. The core of the
system is the Document Access Engine, which mediates the requests of the other modules and
the actual data access engines. We next describe the other ToX components.

Document Manager Catalog Manager Query Processor

Document Access Engine

Relational
Storage
Engine

Object
Storage
Engine

File System
Storage
Engine

Virtual
Document

Engine

Figure 1 – ToX architecture.

3.1 The catalog manager
This module is responsible primarily for maintaining the metadata associated with the

documents registered in the system. We intend to store typical metadata (e.g., [7]) and also the
schemata of the documents. There are many schema formalisms for XML [16], but initially
we intend to support DTDs, given their popularity, and XML Schema. The latter is preferred
since it allows the representation of more detailed information about the structural properties
of the documents, which can improve the storage, indexing and query processing in the
system. Note that structural queries can be answered by accessing the catalog alone, provided
that every document registered in the system has a schema associated with it. The catalog
itself is an XML document and as such can be queried by the user.

Other functions of the Catalog Manager include maintaining statistics on the use of the
documents and a version control mechanism. One important problem here is how to represent
and manage multiple versions of XML documents. We also intend to extend this module with
schema integration support, for allowing reasoning about schemata in the repository.

All ToX modules depend heavily on the catalog for performing their functions. For this
reason we define a set of system queries, using one of the languages supported by ToX. One
of our goals in this project is to identify the most useful set of system queries and an efficient
way of implementing them.

3.2 Storage and indexing
Current storage methods for XML documents fall into three broad categories: files,

DBMS mappings and native storage engines. Intuitively, files are more suited for textual
documents, since they allow fast sequential access while DBMS mappings are better for
documents with high structuredness. Native storage engines (e.g., [17]) are starting to flourish
and their performance might depend on the document structuredness as well2. Although
differing in many aspects, each of these methods relies on a single storage mechanism, which
may not be optimal for all types of documents. ToX, on the other hand, uses different
mechanisms, thus allowing more flexibility in the storage of documents. Next, we briefly
describe the storage engines supported by ToX (Figure 1).

The Relational Storage Engine maps the contents of the documents into relational
databases; traditional RDBMS indexing is used in this module. ToX will support a generic
mapping [11], which is insensitive to the structure of the document and, thus, can be used
even for documents whose schema is unknown; structure dependent mappings (e.g., STORED
[8]) can be used as well. DB2 is our relational storage engine; we also intend to use its own
storage mechanisms for XML content [13] also. A generic engine, in which all data accesses
will be done via ODBC for enabling the use of any RDBMS, will also be provided.

The Object Storage Engine can be used in two ways: for defining a mapping and for
storing a DOM tree corresponding to the XML document. We use Ozone [18], an open source
persistent storage engine for Java objects, which has already some support for storing XML
documents. Currently, the indexing mechanisms available in Ozone are those provided by the
Java language (e.g., hash tables). The third storage strategy allowed in ToX is to keep the
documents as files, and use a text database system for indexing and querying these files. We
intend to use MultiText [6] for this purpose.

Hybrid storage. In Section 2 we discussed two types of XML documents: text and data.
Note, however that it is customary to have “ hybrid” documents exhibiting characteristics of
both categories. An example of a hybrid document is a catalog of books, containing data
about the books annotated with comments from readers, editor or publishers, as usually found
in most online bookshops.

2 In fact, another goal of this project is to characterize the performance of different storage engines w.r.t.
different types of XML documents (see Section 4).

A hybrid document can be viewed as a join of a data component and a set of textual
components. In our example, the data component would contain the data about the books and
each textual component would be a single comment about a book. The join attribute can be
any unique element in the data component3 (e.g., ISBN in our example) or a system generated
value; we index both data sources on the join attribute, for efficiency reasons. In this scenario,
two new document types are registered in the catalog, corresponding to the documents that are
actually stored, while the original is represented as a virtual document. This physical storage
design decision can be hidden from the user by differentiating among the corresponding
document types in the catalog.

ToXin – the ToX indexing mechanism. ToXin is a main-memory indexing mechanism
inspired by DataGuides [12] and Access Support Relations [14]. It was designed for allowing
fast access to elements in the XML tree both for forward and backward navigation. It consists
of two separate indices: a path index, for allowing the efficient evaluation of regular path
expressions, and a value index, used for efficiently locating nodes in the document that satisfy
certain criteria. Thus, ToXin allows a more flexible query processing. Another interesting
feature of ToXin is that, unlike DataGuides, the total size of the index is always linear with
respect to the size of the document. Preliminary experiments indicate promising results [19].

In its current implementation, the index is built from a DOM tree, which is kept in
memory for actual references to the document. We are currently working on eliminating this
dependency on the DOM structure and on providing persistence to the indices. As a result,
ToXin will be used as an efficient native storage method for XML content.

3.3 Query processing
The query processor is primarily responsible for providing an interface for the issuing

of user queries over the documents in the repository. This module is also used for processing
the system queries (see Section 3.1). Different XML query languages are allowed: currently,
we are integrating ToX with Kweelt [20], Xpath [5] and XSLT [4].

Note that different data storage mechanisms have different data representation and
access patterns. We adopt an algebraic approach for query processing and optimization in
ToX, thus hiding this heterogeneity and reducing the complexity of the query processor. All
that is needed is that each data storage engine supports this algebra, which also simplifies the
addition of new storage engines. We intend to use the W3C XML Algebra [10].

3.4 Vir tual documents
ToX was designed to deal transparently with both real and virtual documents. We

distinguish two kinds of virtual documents: remote documents, which the user is unable or
does not care to store, and views, which are queries ranging over documents registered in the
catalog. A remote document is specified by an arbitrary WebOQL [3] query; views are
specified in any language supported by ToX.

Note that as far as the user is concerned, ToX does not distinguish between real and
virtual documents. However, optimizing queries that access remote documents is a process
that depends on the access patterns of the remote data source. Efficient view materialization
and maintenance are also important issues here.

4 Automatic document character ization
As we have seen in the previous sections, the key aspect for the storage, indexing and

querying of a document in ToX is its structuredness. Therefore, one of our goals in this
project is to establish an algorithm for computing it. Intuitively, this measure should be a
weighted average of factors including characteristics of the document and its usage in a

3 Note that uniqueness constraints can be expressed by a DTD or an XML Schema specification.

typical query mix. However, one could also take into account the structuredness of similar
documents (e.g., with a similar type) in the system. We plan to investigate the use of schema
mapping techniques for inferring such similarities.

Another point worth mentioning here is that we need a more realistic classification of
XML documents. In Section 2 we discussed textual and data documents, which seem to be the
most common. However, XML has also been used for representing Java code and UML
diagrams, for instance. Since one can expect a higher frequency of recursive elements in these
classes of documents, it might be the case that none of the storage strategies discussed here
yield optimal performance. In summary, properly characterizing XML documents is an
extremely relevant task.

4.1 ToXgene – generating synthetic XML content
ToXgene is a generator of synthetic XML content based on templates. Each template

consists of XML Schema specifications annotated with the probabilities of occurrence and
characteristics of each element (or attribute) in the document. Our goal with ToXgene is to be
able to generate large collections of documents for evaluating the storage, indexing and query
processing mechanisms in ToX. Having total control over the structure of the benchmarking
documents is a requirement in this case.

One of our motivations in designing ToXgene was the necessity of generating large
collections of documents sharing both structure and values for some elements (i.e., documents
that can be joined). Figure 2 shows a fragment of a template defining two XML documents:
books. xml , representing a book catalog with 1000 entries, and r evi ews. xml , containing
at least 500 and at most 2000 book reviews. In order to be able to join these documents, we
have to make sure that all I SBN values in the reviews appear in some entry in the catalog.
This is accomplished in ToXgene by keeping all ISBN values in a t ox- l i st (not shown in
the figure), which are later referenced in the actual XML documents; the ISBN element is
declared to be unique in that list. Note that in our example, the books for which a review is
written are chosen randomly, reflecting the fact that some books being more popular will get

<t ox- f i l e name=
�

books. xml
�

>
 <el ement name=

�

books
�

>
 <el ement name=

�

book
�

 t ox- mi nqt t y=
�

1000
�

 t ox- maxqt t y=

�

1000
�

>
 <t ox- l ookup l i st =

�

book_l i s t
�

 met hod=

�

sequent i al
�

>
 <el ement name=

�

i sbn
�

 t ype=
�

i sbn_t ype
�

>
 <t ox- l ookup- i t em pat h=

�

book/ i sbn
�

/ >
 </ el ement >
 <el ement name=

�

t i t l e
�

 t ype=
�

t i t l e
�

>
 <t ox- l ookup- i t em pat h=

�

book/ t i t l e
�

/ >
 </ el ement >
 </ t ox- l ookup>
 <el ement name=

�

pr i ce
�

>
 <compl ext ype>
 <at t r i but e name =

�

cur r ency
�

 t ype=

�

st r i ng
�

>
 <t ox- val ue>CDN</ t ox- val ue>
 </ at t r i but e>
 <t ox- number t ype=

�

r eal
�

 mi nval ue=
�

10
�

 maxval ue=

�

100
�

 dec i mal s=
�

2
�

>
 </ compl ext ype>
 </ el ement >
 </ el ement >
 </ el ement >
</ t ox- f i l e>

<t ox- f i l e name=
�

r ev i ews. xml
�

>
 <el ement name=

�

r evi ews
�

>
 <el ement name=

�

r ev i ew
�

 t ox- mi nqt t y=
�

500
�

 t ox- maxqt t y=

�

2000
�

>
 <t ox- l ookup l i s t =

�

book_l i st
�

 met hod=

�

r andom
�

>
 <el ement name=

�

i sbn
�

 t ype=
�

i sbn_t ype
�

>
 <t ox- l ookup- i t em pat h=

�

book/ i sbn
�

/ >
 </ el ement >
 </ t ox- l ookup>
 <el ement name=

�

comment s
�

>
 <compl ext ype>
 <t ox- al t er nat i ves>
 <t ox- opt i on odds=

�

75
�

>
 <at t r i but e name=

�

t ype
�

 t ype=
�

st r i ng
�

>
 <t ox- val ue>r eader </ t ox- val ue>
 </ at t r i but e>
 <t ox- st r i ng t ype=

�

par agr aph
�

 t ox- mi nqt t y=

�

1
�

 t ox- maxqt t y=
�

5
�

/ >
 …
 </ t ox- opt i on>
 <t ox- opt i on odds=

�

25
�

>
 …
</ t ox- f i l e>

Figure 2: ToXgene template definition of two XML documents.

more reviews4; it is also specified that 75% of the reviews are written by readers (as opposed
to publishers, for instance). The values of the elements can be generated by ToXgene (e.g., a
t ox- st r i ng) or specified in the template (e.g., CDN as the currency for the prices).

5 EXIP – one motivating application for ToX
Strategic business analysts keep track of trends that are relevant to their organization and

its strategic objectives. To accomplish their mission, they monitor news stories and other
reports as they become available, looking for evidence that these objectives remain on track,
or have encountered obstacles. The Executive Information Portal (EXIP) is a prototype
intended to support this type of knowledge work. Because EXIP has to handle news stories
and reports, it is designed to manage thousands of documents that have multiple links among
them. EXIP supports complex search operations on these documents, involving both full-text
and metadata search. Documents are indexed according to a multidimensional index with
respect to the semantic model. Last but not least, the system supports online updates. In order
to address all these requirements the documents are internally stored as XML documents. The
first release of the document management component of EXIP was build using a relational
DBMS. Currently we are in the process of porting this component to ToX.

EXIP is a good test bed for the ToX engine. One of the major issues that ToX has to
address is querying large collections of XML documents. Although there are quite a few
implementations of XML query languages, not many of them handle query inputs of
thousands of documents. Furthermore, EXIP’s query requirements range from very complex
XML queries to very simple ones. To accommodate these requirements, EXIP employs
different XML query languages for different tasks. For example, Kweelt is used for complex
queries while our own lightweight XML query implementations are used for simple ones.

6 Conclusions

In this paper we introduced ToX, a heterogeneous repository for XML content that can be
used for data integration. We discussed its architecture, and presented some of its features;
namely, ToXin, ToXgene and a hybrid storage scheme. The main goal of this project is to
understand how the characteristics of a document affect its storage and query processing. We
expect to define ways of characterizing XML documents; define guidelines for their storage
and indexing; design efficient native storage mechanisms; and, finally, better understand the
factors that affect the performance of the various storage approaches.

There are already a number of methods for storing and querying XML documents, using
files (e.g., Kweelt [20]); schema independent mappings (e.g., Edge Tables [11]); schema
dependent mappings (e.g., [21]); hybrid mappings (e.g., STORED [8] and Ozone5 [15]); and
native storage mechanisms (e.g., Lore [17] and Xyleme [2]). ToX differs from all of them in
the following ways: it allows heterogeneous data storage and indexing; it supports multiple
query languages; it can be used as a data integration environment; and, most importantly, it
uses the characteristics of the documents as the criterion for determining the way they are
stored and indexed. Unlike query processors (e.g., Kweelt), ToX provides persistent storage
for indices and other query optimization data. Note that although STORED and Ozone offer
hybrid mappings, they rely on a single storage engine (a RDBMS and an ODBMS,
respectively). Xyleme is intended to be a warehouse for all XML data on the Web. As such, it
deals with the crawling and refreshing of documents, which are irrelevant in our context.

ToX is a recent project and is under active development.

4 One can define different probabili ty distributions when choosing items from the lists.
5 This method should not be confused with [18].

References

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. Morgan Kaufman,
1999.

[2] Vincent Aguilera, Sophie Cluet, Pierangelo Veltri, Dan Vodislav, and Fanny Wattez.
Querying XML documents in Xyleme. In Proceedings of the ACM SIGIR 2000
Workshop on XML and Information Retrieval, Athens, Greece, July 2000.

[3] Gustavo Arocena, and Alberto Mendelzon. WebOQL: Restructuring documents,
databases, and Webs. In Proceedings of the Fourteenth International Conference on
Data Engineering, pages 24-33, Orlando, Fl, USA, February 1998.

[4] James Clark, editor. XSL transformations (XSLT) Version 1.0 - W3C recommendation,
November 16 1999. http://www.w3.org/TR/xslt.html.

[5] James Clark, and Steve DeRose, editors. XML path language (XPath). W3C
recommendation, November 16 1999. http://www.w3.org/TR/xpath.

[6] Gordon V. Cormack, Charles L. A. Clarke, Christopher R. Palmer, and Robert C. Good.
The MultiText retrieval system. In Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, page 334,
Berkeley, CA USA, August 1999.

[7] The Dublin Core Metadata Initiative. http://purl.org/dc/.

[8] Alin Deutsch, Mary F. Fernandez, and Dan Suciu: Storing semistructured data with
STORED. In Proceedings ACM SIGMOD International Conference on Management of
Data, pages 431-442, Philadephia, PA USA, June 1999.

[9] Daniel Egnor, and Robert Lord. Structured Information Retrieval. In Proceedings of the
ACM SIGIR 2000 workshop on XML and Information Retrieval, Athens, Greece, July
2000.

[10] Peter Fankhauser, Mary Fernández, Ashok Malhotra, Michael Rys, Jérôme Siméon, and
Philip Wadler, editors. The XML Query Algebra - W3C working draft, December 4
2000. http://www.w3.org/TR/query-algebra/.

[11] Daniela Florescu, and Donald Kossman. Storing and querying XML data using an
RDMBS. IEEE Data Engineering Bulletin 22(3):27-34, September1999.

[12] Roy Goldman, and Jennifer Widom. DataGuides: Enabling query formulation and
optimization in semistructured databases. In Proceedings of the 23rd International
Conference on Very Large Data Bases, pages 436-445, Athens, Greece, August 1997.

[13] IBM DB2 Universal Database XML Extender – Administration and programming.
http://www-4.ibm.com/software/data/db2/extenders/xmlext/, 1999.

[14] Alfons Kemper, and Guido Moerkotte. Advanced query processing in object bases
using access support relations. In Proceedings of the 17th International Conference on
Very Large Databases, pages 294-305, Brisbane, Australia, August 1990.

[15] Tirthankar Lahiri, Serge Abiteboul, and Jennifer Widom. Ozone: Integrating structured
and semistructured data. In Proceedings of The 8th International Workshop on
Database Programming Languages, Kinloch Rannoch, Scotland, September 1999.

[16] Dongwon Lee, and Wesley Chu. Comparative analysis of six XML schema languages.
SIGMOD Record, 29(3):76-87, September 2000.

[17] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer Widom.
Lore: A database management system for semistructured data. SIGMOD Record,
26(3):54-66, September 1997.

[18] Ozone: The open source Java ODBMS. http://www.ozone-db.org/.

[19] Flavio Rizzolo. ToXin: an indexing scheme for XML data. Master Thesis, Department
of Computer Science, University of Toronto. January 2001.

[20] Arnaud Sahuguet. Kweelt – Querying XML in the new millennium.
http://db.cis.upenn.edu/Kweelt, September 2000.

[21] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David DeWitt, and
Jeffrey Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In Proceedings of 25th International Conference on Very Large Data
Bases, pages 302-314, Edinburgh, Scotland, UK, September 1999.

