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Abstract—

This paper examines the efficacy of symbolic execution as
a method for automatic test pattern generation. We focus
on the creation of test patterns for software components
written in Java.

A number of shortfalls of symbolic execution have been dis-
cussed in previous publications, such as dealing with loops,
method calls, impossible paths and algebraic simplification.
We present practical solutions to several of these problems
which we have implemented in the form of a software com-
ponent testing system. We also present a novel approach
for dealing with aliasing of array elements and references
within symbolic execution.
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I. INTRODUCTION

A software component of even moderate complexity has so
many paths which can be followed during execution with
real data - each of which must be tested if the component
is to be labelled ‘fully verified’ - that automated generation
of the necessary tests has attracted research interest for at
least two decades. The problem is fundamentally a hard
one: if a method of a component has n simple two-way
branches (if then .. else statements), then there
may be as many as 2" paths to be tested.

An automatic test generation system based on a sim-
ple parser can parse the code of a method with simple
branches, identify the n branches and enumerate the paths
which must be followed for a comprehensive set of tests.
Each such path represents an equivalence class for testing
the component and a representative (set of values of the
inputs) of the equivalence class must be chosen and values
of the outputs resulting from applying the method to the
inputs determined. Symbolic execution[1], [2], [3] can pro-
duce formal specifications for the equivalence classes in the
form of constraints which each input must satisfy. However,
it is determining outputs which the chosen representative
should produce which is the expensive process. Except in
rare cases where formal, transformable specifications have
been produced, the specifications are expressed in natural
language. Correct outputs can only be determined, from a
natural language specification, by a human who can read
and interpret its meaning. Thus automatic path detection
and test generation systems must rely on the absence of
gross errors such as the generation of exceptions to detect
faults as there is no practical way to automatically generate
outputs in accordance with the specifications.
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Despite this limitation, automatic test pattern generation
(ATPG) has a useful role in maintaining quality software:

o It provides a very strict basis for regression testing of
reasonably stable components. The stability criterion
is important since

— test cases are only reusable if the interface to a spe-
cific method does not change during modification

— if the implementation of a method changes dramat-
ically, then the (implementation-derived or ‘white
box’) equivalence classes may also change.

o The equivalence classes provide a formal and compact
description of the behaviour of the component. Check-
ing them against the original requirements provides
very strong support for the integrity of the implemen-
tation.

However, researchers who have previously studied sym-
bolic execution have noted some significant problems which
limit its ability to define accurately individual equivalence
classes[4], [5]:

Handling loops within the source code[3],
handling onward method calls[6],

array element aliasing[6],

infeasible paths|[3],

the cost of algebraic simplification®,
pointer /reference aliasing and

7. handling other complex abstract data types.

AN

Although it is widely accepted that symbolic execution is
the strictest way to generate an exhaustive set of test pat-
terns, these difficulties have resulted in relatively little in-
terest in symbolic execution in recent years. Attempts to
apply symbolic execution to languages whose use of point-
ers has been (appropriately) described as ‘promiscuous’ 2
has led to complex and rather impractical solutions|[7].
However, many recent languages tend towards formal data
typing, which makes them well suited to analysis by sym-
bolic execution. Java is one example, which uses strictly
typed object references as a consequence of its design re-
quirement for a secure sand-box execution model[8]. It is
likely that future imperative languages, such as Microsoft’s
C-sharp[9], will continue the type-safe approach. We be-
lieve this trend, combined with substantial increases in pro-
cessor performance, mark an opportunity to revisit sym-
bolic execution as an automatic test pattern generation
(ATPG) technique.

IThe final three items arise from our own research in this area.

2This statement has entered programming language folklore: we
are unable to locate the original source, but we believe it is a widely
accepted truth.



We have implemented a symbolic execution system for use
with software components written in Java. Software com-
ponents provide the perfect testing ground for symbolic ex-
ecution since they are significantly smaller than traditional
‘monolithic’ software systems. This makes them easier to
test. Software components are also typically designed for
reuse allowing the cost of testing to be amortized over a
greater number of users.

Our ‘Component Test Bench’ (CTB)[10] provides an envi-
ronment for developing solutions to some of the symbolic
execution shortcomings listed above. The project objective
is to create an ATPG system which can be used to analyse
any syntactically valid source code. In the following sec-
tions we illustrate the idea behind symbolic execution and
how it can be used for ATPG and then discuss the imple-
mentation of the CTB and propose a solution to the array
index aliasing problem.

The terminology used throughout this paper is that of ob-
ject orientated program development and Java. However,
the symbolic execution concepts discussed here are not re-
stricted to OO languages so the reader should feel free
to substitute non-OO synonyms: for instance procedure or
function in place of method.

II. SYMBOLIC EXECUTION

Literal execution requires that the program be executed
with actual values that are bound to variables and modified
by statements within the program. These values steer the
flow of control through the program based on the outcome
of a number of conditional tests. This is a model that all
imperative programmers understand.

Symbolic execution is a technique for analysing the
dataflow dependency along a preordained path through a
method. The variables are bound to symbolic (often alge-
braic) values and their interdependence can be tracked via
algebraic expressions which are produced as the program
executes. On completion, symbolic execution gives rise to
two sets of expressions:

e An expression which describes the set of conditions
that must be met by the parameters to ensure that
the chosen path will be followed. Commonly called
the ‘path condition’ (PC).

e An set of expressions which fully describe the side ef-
fects of executing the method. This is a set of map-
pings which describe how its output variables depend
on its formal parameters.

The path condition for a specific path defines an equiv-
alence class. This means that all test patterns that are
members of the class will follow the same path testing the
method in the same way. In this sense they are all equally
able to to detect a fault along the path and are therefore
equivalent.

Consider the example method shown in figure 1. The
testMethod has two parameters x and y and returns a
single value which we will denote ret 3. It is comprised of

3When considering a non-static method, any instance variables that

public static int testMethod(int x, int y)

{
S0: if (x > 3) {

S1: int z = x + 2;
S2: if (z < y)
S3: return Xx;
else
S4: return y;
}
S5: return O;
}

Fig. 1. A Java method that could be analysed by symbolic execution.
The six statements within the program are labelled S0 to S5.

six statements which we denote S0 to S5.
Symbolic execution of this method will give rise to three
equivalence classes:

o Equivalence class one corresponds to the path S0;S5.
The path condition is (z < 3) and the mapping is
ret = 0.

o Class two corresponds to the path S0;51;52;53. The
path condition is that (z > 3) and (2 + 2 < y) must
jointly be satisfied, whilst the mapping is ret = x + 2.

o Class three corresponds to the path S0;51;52;54. The
path condition is that (z > 3) and (2 + 2 > y) must
jointly be satisfied, whilst the mapping is ret = y.

In combination the set of equivalence classes fully charac-
terise the behaviour of the method. They can also be used
to generate test patterns to exercise the code later during
regression testing. This can be achieved by choosing a test
pattern for each of the equivalence classes with values which
satisfy the associated path condition. Expected results can
be generated for each test pattern by sustituting the the
chosen parameters into the result mapping functions.

For the three equivalence classes listed above we might gen-
erate three test patterns using randomly chosen = and y
(shown in figure 2).

Equivalence class || Input z | Input y || Result ret
1 -4 6 0
2 7 15 9
3 9 11 11

Fig. 2. Three test patterns derived from the equivalence classes.

Used in this way symbolic execution provides a very precise
and complete mechanism for test pattern generation.

III. THE SYMBOLIC EXECUTOR

The are two approaches to implementing symbolic exe-
cution systems in Java. Execution can occur on the in-
termediate form of the language (the byte codes)[11] or

the method uses as r-values must be added to the parameter list and
any variables that appear as l-values must be added to the list of
results. The fact that these methods are instance variables of an
object (rather than formal parameters) does not otherwise impact
symbolic execution.



on the original expression of the program (the program
source). Most Java programs are compiled into an inter-
mediate form for reasons of compactness and performance.
However in the process of compilation much of the origi-
nal semantic structure is obfuscated - particularly when an
optimising compiler is used.

We have therefore chosen to implement a source interpreter
as the basis for the component test bench (CTB). This
parses the source code and builds a parse tree representa-
tion of the program statements in memory which is then
executed directly by an interpreter #. This is referred to as
the ‘instrumented runtime system’ (IRTS) since it is con-
figured to collect information about the running program.
The IRTS is a subsystem within the CTB.

A. Querview

The IRTS has been designed to be as flexible as possible.
It supports execution using literal quantities (in which case
it behaves identically to any other Java virtual machine).
This allows test patterns to be ‘walked-through’ much as
is possible with a symbolic debugger. An extension to the
IRTS allows the system to operate with symbolic dataflow
paths, allowing the creation of equivalence classes from
which test patterns may be derived.

The IRTS has two phases of operation: we term these the
dataflow/recording phase and the constraint/implication
phase.

A.1 The dataflow/recording phase

In the dataflow phase, the system follows the chosen path
and keeps track of the algebraic values bound to each of
the variables. For example, refering to figure 1, at the
conclusion of path S0;51;52;53 the IRTS would have three
program variables within its scope: parameter x with final
(algebraic) value z, parameter y with value y and local
variable z with final value = + 2.

A.2 The constraint/implication phase

The IRTS will then enter the constraint phase in which
it will attempt to derive the path condition on the basis
of parameters to the method. The initial path conditions
would be (z > 3) and (z < y) and it will have to substitute
a value for the local variable z to obtain a path condition
defined in terms of parameters x and y. When the algebriac
expressions arise from an iterative path they will often be
convoluted (such as (((((z+2)—2y)+4x)—7)+4y)) and they
must be simplified to a canonical form before thay can be
used. If this is the case, the constraint/implication phase
must take responsibility for (computationally expensive)
algebraic manipulation.

B. Design Issues

In the introduction a number of shortcomings of previous
symbolic execution systems were listed. During the design

4One (minor) weakness with this approach is that it assumes the
compiler’s code generation algorithm is correct, since we are unable
to test this part of the development process.

phase of the IRTS we were able to address a number of
these problems.

B.1 Loop Handling

The handling of loops within methods must be addressed in
a heuristic fashion. Any loop within a method-under-test
whose termination condition is functionally dependant on
one or more of the parameters will have no clear termina-
tion condition. In principle, such a loop could be traversed
an infinite number of times. In practice a decision must
be made as to which paths to follow: for instance the loop
should be traversed zero times, once, twice and a larger
number of times. However, it is conceivable that such an
approach may miss faults that only arise after a consider-
able number of iterations (such as an array overflow ). One
by-product of our array element aliasing solution (which is
discussed below in section V) is that it provides an ad-
ditional set of conditions that ensure no array overflows
occur. These can be used as additional preconditions on
methods.

B.2 Method Calls

There are two approaches that can be followed when a
method which is being analysed by symbolic execution
makes calls to other method calls: the macro-expansion
approach[12] and the lemma approach[13], [14]. Both of
these approaches are used by the IRTS depending on the
context of the call.

Symbolic execution is normally used to analyse methods
which are part of the public interface to a component.
When these public methods make calls to private methods
within the same component they are most appropriately
made using macro-expansion. This means that the code is
‘in-lined’” within the interpreter (and the parameters appro-
priately initialised from those of the caller). This increases
the number of potential paths to the product of the feasible
paths through caller and callee methods.

However, when public methods are called, the lemma ap-
proach may be used since this increases the number of
equivalence classes directly without the cost of considering
more paths. The lemma approach requires that the equiv-
alence classes for the called method have already been es-
tablished. This increases the number of equivalence classes
to the product of those associated with the callee and caller
methods.

B.3 Impossible Paths

Many of the multitude of potential paths that may be fol-
lowed through a method-under-test, will be impossible to
actually follow. This is due to the logical conditions that
predicate the various statement blocks. Consider the code
snippet in figure 3. The paths 50;51;52;53 and 55;56 are
possible for values of = greater than 6 and less than or
equal to 3 respectively. However, the path condition for

5In Java such faults result in program termination, since an excep-
tion is thrown, and so it is highly unlikely that such faults would go
undiscovered in a shipped software component.



S0: if (x > 3)

Si: something;

52: if (x > 6)

S3: something else;
S4: if (x <= 3)

S5: final thing;

Fig. 3. An code snippet with impossible paths. The six statements
are labelled SO to S5.

the path S0;51;52;53;55;56 would require (z > 6) and
(z < 3) which is impossible, assuming statement blocks S1
and S3 do not alter the value of z.

The IRTS addresses this problem by using a rule-based so-
lution engine which searches for logical impossibilities each
time a condition is appended to the path condition during
the dataflow/recording phase. As soon as it detects a logi-
cal inconsistancy the analysis of the path is aborted. Thus
the IRTS does not waste resources investigating impossi-
ble paths.

B.4 Algebraic Simplification

As discussed in section ITI-A, the IRTS needs to perform
algebraic simplification as part of its constraint /implication
phase. The simplification subsystem used by the IRTS has
two aims:

o It converts each expression into a canonical form by
removing any redundancy. For instance it would con-
vert the expression (((((z+2)—2y)+4z)—T7)+4y) into
the equivalent form ((5z + 2y) — 5). This aids human
readability in the reports that are created.

o The simplification subsystem acts as a front-end for
other algebraic systems within the IRTS such as the
solution engine used by the array element alising detec-
tor (discussed in section V). The canonicalised input
format considerably reduces the complexity of these
systems.

Our simplifier implementation consists of a database of
186 rules. Each rule consists of two parts: a pattern that
must be matched before the rule is enacted and a rewrite
form that can replace the matching part of the expres-
sion. For instance, the database contains a rule of the
form (N1Ey) + (N2E1) — (N1 + N2)E;. We have a sim-
ple (but fast) pattern matcher that searches for matches
between an expression to be simplified and the patterns
associated with each of the rules. It will match N; and N,
in the rule against any numeric literals, but will only match
E, against a repeated algebraic expression (which must be
identical in both instances). For example, the expression
3(z + 5) + 5(z + 5) would match the rule and would be
rewritten as (3 + 5)(z + 5). This expression would subse-
quently match with a second rule telling the simplifier that
it can evaluate the sum of two numeric literals. Then a
third rule would then match, mapping 8(z + 5) to a sum of
products form. The final canonical form of the expression
would therefore be (8z + 40) since, at this point, no more
rules match.

Since our simpilifier design emphasises simplicity and
speed, we decided to progressively simplify expressions as
they are constructed during the dataflow /recording phase.
This means that the complexity of expressions is kept under
control at all times and there is less chance of encountering
an expression exceeding the capabilities of the simplifier.
Moreover, by keeping most of the complexity of our simpli-
fier in the pattern database it allows us to extend the set
of rules as future needs demand.

B.5 Other Problems

We also address several of the other problems listed in the
introduction. The most substantial of these is the handling
of array element aliasing, described in section V below.
The related problem of pointer alising arises when a Java
method operates on two parameters which reference the
same underlying object. A modification of the mutable
object using either reference leads to an apparent change of
the other value ‘behind-the-scenes’. It is therefore essential
that the symbolic execution system be able to detect the
implications of such aliases. This is discussed in section V-
D below.

We are also currently investigating the problem of sup-
porting symbolic execution of non-numeric ADTs. This is
described further in section VI below.

IV. ANALYSIS OF A SAMPLE METHOD

To demonstrate the capabilities of the CTB system we
have symbolically analysed an implementation of the quick-
sort partition algorithm[15]. The source code for this test is
included in figure 4. This method partitions a subsection
of an array of integers a into two groups: only elements
between indices low and high (inclusive) are processed.
The first group is comprised of those elements less than
the pivot value, whereas the second group is all other el-
ements. To simplify the discussion, the method excludes
the recursive method calls that would be required to form
a complete sort 6.

A. Path Generation

The IRTS contains a path generation algorithm which is
used to enumerate potential paths through the method’s
source code. The symbolic executor subsequently analyses
these paths to decide which paths are possible. Firstly the
path generator analyses the source representation of the
method to detect the loop and control constructs and their
relationships. It constructs a heirarchical tree of the these
nodes and their nesting. In the case of figure 4 this would
result in CO being the root node with three siblings C'1,
C2 and C3.

Loops are processed in a heuristic manner. The path gen-
erator is therefore configured with the strategies that it will
apply to various types of control construct:

61t is possible for symbolic execution to be used to analyse recursive
methods but that is beyond the scope of this article. All recursive
methods may be re-expressed in an iterative form, on which symbolic
execution is able to operate.



public static
int partition(int[] a, int low, int high)
{

int pivot_item = a[low];

int left = low + 1;

int right = high;

CO0: while ( left < right ) {

Cl: while( a[left] < pivot_item )
left++;
C2: while( alright] > pivot_item )
right--;
C3: if ( left < right ) {
int temp = a[left];
alleft] = alright];
alright] = temp;
}
}
allow] = alright];

alright] = pivot_item;
return right;

}

Fig. 4. The quicksort partition method. The four conditional state-
ments within the method are labelled C0 to C3.

o For each if statement block the path generator will
create two paths: one that passes through the state-
ment block predicated by if, the other through the
‘else’ clause (if it exists).

o For each while loop the path generator will create
(L + 1) paths that traverse the loop 0..L times. for
loops are treated identically to while loops.

o Each do loop is treated similarly to while except that
it is impossible to traverse a loop zero times (since
the termination condition is not tested until the end).
Since they must be traversed at least once, L paths
with 1..L iterations are created.

o For each switch statement block, it creates paths that
visit each of the case options (and the default option
if it is specified). For a switch block with NC' case
options and a default specified, it will therefore create
NC + 1 paths.

The limit value L can be specified as a parameter to the
path generator subsystem. The path generator is designed
to enumerate each possible combination of paths through
the control statements hence, as L increases, the number
of potential paths grows very rapidly. The number of po-
tential paths for the partition method for L is shown in
figure 5. An algebraic expression for the number of poten-
tial paths is derived in Appendix A.

The path generator returns each path encoded as a string
of true and false values. For instance the path descriptor
‘T TTF TF F F’ tells the symbolic executor to (execute

Loop limit, L | Potential Paths, P(C0)
1 9
2 343
3 33,825
1 6,377,551
5 1,961,791,488

Fig. 5. The number of potential paths for chosen loop limit value L.

the three leading statements, then) enter loop C0, traverse
loop C'1 twice but exit the loop on the third test, traverse
loop C2 one time, do not enter the if clause C'3 (the else
block would be executed if it existed). The final false value
instructs the symbolic executor to exit the while loop CO,
at which point the three trailing statements are executed
and the test completes.

B. Analysis of the partition method

We ran the symbolic executor across each of the 343 poten-
tial paths resulting from using limit value, L = 2. Of the
343 paths only 97 (or 28%) were possible given the condi-
tions imposed on the loop statements. The test ran in 226
seconds on a Celeron 350MHz PC.

The test left us with a 97 sets of path conditions and the
functional mapping associated with each path. In this case
the (rather artificial) return value is not of much interest
since it merely indicates how many times the right vari-
able has descended down the array (as a result of iterations
of loop C2).

For instance, potential path 224 (of the original 343) was
described by ‘TTFTTFTTTFFFF’ and proved to be pos-
sible. The path conditions associated with this test are
(high > (low + 4)) A (allow + 1] < a[low]) A (alow + 2] =
afllow]) A (alhigh] > a[low]) A (alhigh — 1] > allow]) A
(alhigh — 2] < allow]) A (a[low + 3] > a[low]) A (high <
(low+5)) 7. These eight conditions must be jointly satisfied
if the path is to be followed.

The only side effect of this static method is its return value
which takes the form (symbolic int (high-2)). Note
that, even when executing symbolically, the IRTS is able
to track the types of values that are created. The value
(high—2) is simply a reflection that the path only traverses
loop C2 twice during the first iteration of C0 (and zero
times during the second iteration of C0).

It is also enlightening to study a path that proved to be im-
possible. We will consider potential path 15 associated with
path descriptor ‘TTTFFTF’. The path conditions at the
point that the path terminated were (high > (low + 3)) A
(allow + 1] < aflow]) A (a[low + 2] < a[low]) A (a[low + 3] >
a[low]) A(alhigh] < a[low]) A (high < (low+3)). Just prior
to termination the symbolic executor had entered the if

"The rather awkward form of this expression illustrates why this
process is best automated. Moreover, the expression demonstrates
that we can take further steps in the algebraic simplification of
information we present to the user. Combining the conditions
high > (low +4) and high < (low + 5) along with knowledge that
low and high are of type integer, would allow us to conclude more
succinctly that high = (low + 5).



public static
int rotate(int[] array, int i, int j, int k)

{

int temp = arrayl[il;
array[i] = array[j];
array[j] = arrayl[k];
array[k] = temp;

return arrayl[il;

}

Fig. 6. A method which rotates the contents of three array elements.

statement block C3 which requires that ((low+3) < high).
The statement block of C'3 does not modify the values of
variables le ft or right, so when the path immediately tried
to exit loop CO0, this could only happen if ((low + 3) >
high). The IRTS immediately detected this contradiction
and terminated execution of the path.

V. ARRAY ELEMENT ALIASING

Consider the method listed in figure 6. This is a very sim-
ple method that rotates the contents of three elements con-
tained in an array of integers (formal parameter array).
An experienced programmer would probably attach a set
of preconditions to this method. For instance array must
already be allocated, parameters ¢, 7 and k£ must not exceed
the number of elements within array and finally i # j,
j#£kandi#k.

These final three preconditions are the most interesting.
Sometimes it is not possible to know whether these condi-
tions have been met by the caller. If any two of these values
coincide they profoundly effect the execution behaviour of
the rotate method since storage of the three array ele-
ments will no longer be distinct. This is the array element
aliasing problem.

It is clear that accesses to array[i] and array[j] will refer
to different storage locations when i # j. But when i = j
they will refer to the same storage location and so sucessive
accesses as l-values will return the same value. Moreover,
accesses as r-values may result in the shared storage loca-
tion being overwritten.

A. The Element Aliasing Subsystem

Our extension to the symbolic executor locates situations
where array acesses may result in the aliasing of the un-
derlying storage locations. It ascertains how many distinct
categories of aliasing may occur and it generates a set of
preconditions that, if satisfied, will ensure that a specific
category of aliasing results or conversely that no aliasing is
possible.

We refer to each category of aliasing as an ezecution context
(EC). Once it has decided on the possible ECs, the sym-
bolic executor will execute each context again to see if the
context alters the functional mapping for the method. As
we will see in the case of rotate the return value depends
on the EC which is used.

Our subsystem starts by performing conventional symbolic

execution on a method and detecting instances where dif-
ferent algebraic indices are used to access elements within
the same array. If it found two access such as array[i + 2]
and array[5j] it would infer algebraically that, if the wuni-
fication condition (i = 3j) is imposed, both accesses will
refer to the same storage location. It progresses to work
out every possible combination of unifications and generate
an EC for each combination (including the conditions and
EC when every array access is distinct).

B. The rotate example

To illustrate the possible ECs, we will examine the code
sample in figure 6. The element aliasing subsystem is able
to resolve five distinct ECs for this method (only one of
which the author presumably intended). The side effects
of the ECs are shown in figure 7. In this table we use
a notation to describe the storage locations that the pro-
gram uses during execution. If the storage location behind
arrayli] is distinct from all others we denote this s; in the
table. However, if some unification condition is in force
which means that array[j] and array[k] are storing to the
same location we denote this s;;. In EC5 all array indices
are equal and so all accesses are to the same storage loca-
tion, denoted s;;y-

The table provides the unification conditions for each EC.
It also shows the sequence of storage operations that the
method will perform. It demonstrates that many of the
operations become redundant in the presence of unifica-
tions. Indeed EC5 devotes considerable effort to reading
and rewriting the same storage element five times with no
side effect at all. Finally the table lists the parameter value
the method returns. This will be value of one of the ele-
ments within array before the method was called. In some
cases the unification conditions imply that two or more of
the original array elements were unified from the outset and
so the possible return values are listed. It is interesting to
observe that in each case the side effects of the method are
different since it returns a different value from within the
original array.

C. Element Aliasing Implementation

Our subsystem automates the process that was just de-
scribed by adding an additional phase after the con-
straint/implication phase. Once the path conditions have
been derived, it further scans the method to detect array
indices and construct a set of unifications constraints and
hence an execution context. These may be thought of as
adjunct to the PCs since they do not indicate which path
is followed, but rather how the execution within that path
behaves.

The symbolic executor is then restarted for each of the ECs.
It performs the dataflow analysis as shown in figure 7 al-
lowing the correct side effects for the EC to be ascertained.
Used for ATPG this would allow a test pattern to be chosen
satisfying each EC, rather than just one for the entire PC
as was previously possible. If the tester wishes to rule out
one of more unexpected ECs they have the option of im-



| Exec. Context | EC’1 | E'CQ | EC3 EC4 EC5
Unification i1#£] 1=7 i1#£] i £ ] i=7
Conditions i #£k i £k i £k i=k i=k
J#£k J#£k j=k J#£k j=k
Storage Si = Stemp Sij — Stemp Si — Stemp Sik — Stemp Sijk —* Stemp
Operations 8j — 8; Sij — Sij Sjk — Si Sj — Sik Sijk — Sijk
Sk — 8j Sk — Sij Sjk — Sjk Sik — Sj Sijk = Sijk
Stemp — Sk Stemp — Sk Stemp — Sik Stemp — Sik Stemp — Sijk
s; = return | s;; — return s; — return Sik — return Sijr — return

| Return Value | array[j] | arrayk]

| array(j], arraylk] | arrayli], array[k] | arrayli], array[j], array[k] |

Fig. 7. The various execution contexts arising from the rotate method.

posing preconditions on the method-under-test to restrict
its use.

We further analysed the quicksort partition example (pre-
viously discussed in section IV-B) to see what execution
contexts arose. Within the 97 feasible paths our system
detected 232 possible execution contexts. It increased the
number of separate tests which should be applied to the
method by 140%.

D. Reference Aliasing

A related form of aliasing can arise with the parameters of
the method-under-test. Reference aliasing will impact the
operation of symbolic execution when the following condi-
tions are met:

o Two or more parameters to the method-under-test are
type compatible.

o Their class (or interface) type must be mutable.

o Their references are used within the chosen path of the
method-under-test to modify the state of the objects
by calling one or more setter methods.

A simple Java example which meets these conditions
is shown in figure 8, which uses references to the
java.util.Set type.

public static Set aliasable(Set x, Set y)
{
Object three = new Integer(3);
x.remove(three);
if (y.contains(three))
return Xx;
return null;

}

Fig. 8. A method which is susceptible to reference aliasing.

Assume the chosen path requires that the if block be en-
tered. Two ECs exist for this path. The first EC will result
from the unification condition (x # y). This is presumably
the expected mode of operation since z and y are distinct.
The path condition will be (3 € y).

A second EC will arise when (z = y) (since both references
refer to the same set instance), in which case invocation
of the method will behave very differently. Now the call

to x.remove () will remove the element 3 from the shared
set and so it becomes impossible to follow the chosen path,
since y.contains (three) cannot subsequently be true.
Our IRTS implementation does not currently deal with
this form of aliasing. We will add this capability as part of
our future development work.

VI. ONGOING WORK

We are currently looking at the problem of symbolic ex-
ecution of abstract data types. These are values that
can propogate within the program but do not follow al-
gebraic rules. The most widely used example is Java’s
java.lang.String type, but we could also consider types
such as java.util.Set. There are two approaches that we
plan to investigate.

Firstly one could inline them, decomposing the String for
instance, into an array of character ordinals and a length in-
teger. Sets of equivalance classes could then be constructed
for each of the public interfaces of String. Subsequently,
when String is cited in any tests, it could be treated as a
sequence of method calls to a separate software component,
using the lemma approach (see section III-B.2).

The second approach is based on the observation that, al-
though this solution would work, it does not provide the
most compact and useful description of what is happening
to each String’s internal state as it propogates through
the program. Strings are subject to operations within the
program which are not algebraic, such as concatenation
and conversion to upper case. It might therefore be better
to model them with some symbolic value which is better
suited to describing the contents of a String. Consider-
ing the objective of symbolic execution is to allow sets of
test patterns to be created, a better representation for the
contents of a String might be a regular expression.

We will propose an extension to symbolic execution to deal
with these types in a future publication.

VII. CONCLUSION

This work demonstrates the efficacy of symbolic execution
as a means of automatic test pattern generation. We be-
lieve that the approach is particularly applicable to the
semi-automated testing of software components, due to
their limited size. Widespread reuse of components also



allows the cost of testing to be amortized over a large user
base.

Our research aims to generalise symbolic execution to a
point where it can be applied to any Java source code.
Future work may allow symbolic execution to be used with
other strongly typed languages.

This work on symbolic execution has been part of a unified
approach towards software component testing and market-
ing, which includes the development of a standard XML
document, format for the interchange of test pattern sets,
such as those created by the CTB[10].

The project also operates a software component trading
web site, VeriLib[16]. We encourage our contributors to
test their software components using the CTB and the
symbolic execution techniques that have been described
here. We believe components that have been rigorously
tested will be at a commercial premium over coming years.
For further information regarding the future development
of the CTB we encourage readers to periodically visit the
VeriLib site.
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APPENDIX
I. CALCULATING THE MULTIPLICITY OF PATHS

The number of paths associated with any tree of control
nodes can be specified by the recurrence relationship.

R

. [o ,
P(N;) = i [H P( }k)] (1)
[ J
j=M; |k=1

This describes the number of potential paths through a
control node N; which we denote P(N;). This is a function
of the number of paths through each of the child control
nodes, denoted P(N]?',k), where N]?',k is the k-th child of N;
when it is in state j. The child control nodes are those
control nodes nested within the statement block(s) of N;.
This assumes that node N; has C; children when it is in
state j: for instance, an if statement may have one set of
children when it visits its if statement block (for which
j = 1) and a different set (and number) of children in its
else block (when j = 0). This also applies to switch
statements, but not to any of the loop nodes, for which C’}
and N]?"k are the same for all j.

The additional parameters M; and S; denote the minimum
and maximum state for IV;. The interpretation of the state
parameter depends on the type of node under considera-
tion:

o For if nodes the state selects which of the two possible
child blocks (if or else) is being visited and so C}
depends on the choice of j.

o switch nodes also use the state as an index for the
(case or default) child block which is being consid-
ered.

o In the case of all loops, the state j indicates which
iteration of the loop is currently under consideration.

Finally R; denotes the number of times that execution of a
path will visit the children as a function of the state. Given
the previous discussion we can see that if and switch
nodes visit their children once no matter what their state
is. Loop nodes will have visited their children once for each
iteration prior to and including 7 and so R;- =7.

This recurrence relationship only applies to parent nodes.
Table 9 shows trivially the number of paths through child-
less nodes, denoted P(N;)', and is equal to S; — M; + 1. L
denotes the limit we have chosen for loop travsersal (see the
main text). The table also provides values of the parame-
ters for common control structure types. NCj is the num-
ber of clauses within nodes which correspond to switch
statements: it counts the number of case clauses, plus one
if the statement has a default clause.



Control type of N; [ P(N;)' [ M; | Si | R} |

if statement 2 0 1 1
while and for loops | L+1 0 L j
do loop L 1 L j
switch statement NC; 1 | NC; | 1

Fig. 9. Values for parameters P(N;)', M;, S; and R; for various
control node types.

We can apply this framework to the partition method de-
scribed in section IV. The method has four control nodes,
labelled C0 to C3 in figure 4. Of these only CO0, the outer
while loop, is a parent node to which the recurrence re-
lationship applies. Control nodes C1 to C3 are children
of C0, but are themselves childless and so their number
of paths, P(N;)’, can be looked up in the table above.
We therefore end up with a relatively simple expression
for P(C0) when we substitute for the product of the three
children.

Si .
P(C0) = Y [P(C1)'P(C2)'P(C3)]" (2)
J=M;
By substituting values from the lookup table for the num-
ber of paths through C1 and C2 (which are both while
loops) and through C3 (which is an if statement), we get
an expression of the form:

Si )
P(Co)= 3 [(L+1)(L+1)2" (3)

Jj=M;

simplifying and looking up M;, S; and Rj- for CO (a while
loop) gives the final form:

L
P(CO) =" [2L7 + 4L + 2]’ (4)
=0
This final form gives us a relation between the maximum
number of loop iterations that we are prepared to make,
L, and the number of potential paths P(CO) through C0
that we must investigate. We can see that this function of
L is O(n?"™). Substituting values for L will give rise to the
values in figure 5 of the main text.



